Развитие дискретного подхода для моделирования высокоскоростной деформации материала тема диссертации и автореферата по ВАК РФ 01.04.07, кандидат физико-математических наук Чертов, Максим Андреевич
- Специальность ВАК РФ01.04.07
- Количество страниц 190
Оглавление диссертации кандидат физико-математических наук Чертов, Максим Андреевич
ВВЕДЕНИЕ.
ГЛАВА 1. СОВРЕМЕННЫЕ МЕТОДЫ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ МАТЕРИАЛОВ.
1.1 Методы прямого моделирования ансамбля частиц.
4 1.2 Сеточные методы.
1.3 Современные методы псевдо-частиц: SPH, GPA. Свободно-лагранжевы методы.
1.4 Метод клеточных автоматов.
ГЛАВА 2. МЕТОД ПОДВИЖНЫХ КЛЕТОЧНЫХ АВТОМАТОВ (МСА). СОВМЕЩЕНИЕ ДИСКРЕТНОГО И КОНТИНУАЛЬНОГО ПОДХОДОВ.
2.1 Основные положения метода подвижных клеточных автоматов.
2.2 Эквивалентность описания упругой среды методом МСА и континуального описания в пределе малого размера частиц.
2.3 Совмещение метода подвижных клеточных автоматов с конечно-разностным сеточным методом.
2.3.1 Основные положения конечно-разностного сеточного метода.
2.3.2 Алгоритм совмещения сеточного метода и метода МСА.
2.3.3 Решение задачи прохождения упругих волн через границу раздела.
ГЛАВА 3. РАЗВИТИЕ МЕТОДА ПОДВИЖНЫХ КЛЕТОЧНЫХ АВТОМАТОВ ДЛЯ ОПИСАНИЯ ВЫСОКОСКОРОСТНЫХ ДЕФОРМАЦИЙ.
3.1 Нелинейная функция отклика.
3.1.1 Обоснование и основные положение нелинейной модели.
3.1.2 Верификация модели на основе численных расчетов.
3.2 Учет влияния скорости деформирования на отклик материала.
3.2.1 Модели деформирования твердых тел, учитывающие влияние скорости деформации.
3.2.2 Динамическая модель однородно-дсформируемого материала, построенная в рамках калибровочной теории дефектов.
3.2.3 Физическое обоснование и способ реализации функции отклика клеточных автоматов, зависящей от скорости деформации.
ГЛАВА 4. МОДЕЛИРОВАНИЕ УДАРНОГО ВЗАИМОДЕЙСТВИЯ ТЕЛ МЕТОДОМ ПОДВИЖНЫХ КЛЕТОЧНЫХ АВТОМАТОВ.
4.1 Соударение группы частиц с поверхностью материала. Анализ влияния поверхностных волн.
4.2 Пробитие преград деформируемым ударником. Сравнение с расчетами на основе комбинированного дискретно-континуального подхода.
4.3 Тест Тейлора.
Рекомендованный список диссертаций по специальности «Физика конденсированного состояния», 01.04.07 шифр ВАК
Развитие метода подвижных клеточных автоматов для моделирования деформации и разрушения сред с учётом их структуры2009 год, доктор физико-математических наук Смолин, Алексей Юрьевич
Развитие подхода клеточных автоматов для описания процессов деформации и разрушения хрупких материалов и сред со сложной структурой2006 год, доктор физико-математических наук Шилько, Евгений Викторович
Многоуровневое моделирование деформации и разрушения хрупких пористых материалов методом подвижных клеточных автоматов2012 год, кандидат физико-математических наук Роман, Никита Витальевич
Особенности генерации повреждений при разрушении хрупких гетерогенных материалов и формирование блочных структур на мезоуровне: Исследование методом подвижных клеточных автоматов1999 год, кандидат физико-математических наук Моисеенко, Дмитрий Давидович
Исследование релаксационных процессов в структурно-неоднородных средах методами численного моделирования1999 год, кандидат физико-математических наук Романова, Варвара Александровна
Введение диссертации (часть автореферата) на тему «Развитие дискретного подхода для моделирования высокоскоростной деформации материала»
Объект исследования и актуальность темы. Компьютерное моделирование занимает особое положение в системе научного знания, между теоретическими и экспериментальными исследованиями. По сравнению с теоретическим подходом, компьютерное моделирование позволяет оперировать большим количеством степеней свободы, и в свою очередь в сравнении с реальным экспериментом, оно дает существенно большую свободу в выборе условий испытаний. При достаточном качестве физической модели численное моделирование позволяет уменьшить количество натурных испытаний и тем самым уменьшить полную стоимость исследований. Одно из немаловажных преимуществ компьютерного эксперимента заключается в возможности анализа динамики процессов с произвольным временным разрешением, в произвольном ракурсе и сечении, то есть в буквальном смысле заглянуть внутрь моделируемого процесса, тогда как в натурном эксперименте возможно изучение лишь его внешних проявлений. Это позволяет глубже понять физические механизмы многих явлений, а иногда и предсказать новые нелинейные динамические эффекты.
Численное моделирование динамических процессов имеет, с одной стороны, высокую прикладную и научную ценность, а с другой, - является достаточно сложной задачей. В первую очередь это связано с большим количеством принципиально различных взаимовлияющих факторов и физических процессов, которые вовлечены в высокоскоростное деформирование. Так, данный процесс имеет выраженный волновой характер с комплексным взаимодействием ударных волн и волн разгрузки. Динамические воздействия приводят к разогреву материала, который может приводить к изменению его механических свойств, характерными являются фазовые переходы, возможны эффекты локального плавления и даже испарения вещества. При сверхвысоких давлениях необходимо учитывать излучение и ионизацию. Общепринятым приемом в механике сплошной среды, который используется и при построении численных методов, является раздельное вычисление объемной и сдвиговой части напряжений, поскольку это необходимо для описания предельного случая отсутствия сдвиговой жесткости (течение жидкости). Описание отклика среды на объемное сжатие требует построения адекватных широкодиапазонных уравнений состояния. Не менее важно иметь надежные модели поведения среды при сдвиговых деформациях. Причем модели пластического поведения должны быть работоспособны при различных значениях скоростей деформации, обеспечивая плавный переход от малых скоростей, когда девиаторная часть напряжений доминирует над объемной, до больших, когда ситуация обратная. Кроме того, возможно механическое разрушение и фрагментация материала на отдельные осколки под действием растягивающих или сдвиговых напряжений. Особо сложной задачей является описание взаимодействия отдельных фрагментов, сопровождаемое перемешиванием масс, после разрушения. Процесс разрушения твердого тела крайне сложен и многообразен, он включает различные аспекты, многие из которых недостаточно изучены к настоящему времени даже качественно.
Таким образом, для полного описания такого сложного процесса, как высокоскоростное деформирование и разрушение твердых тел, необходимо привлекать практически все разделы механики сплошных сред и многие разделы физики твердого тела. Достаточно общие и универсальные физико-математические модели такого рода на настоящий момент отсутствуют. Это обуславливает одновременное сосуществование большого количества частных теорий и численных методов со своими характерными особенностями и преимуществами. Полная теория должна учитывать упругость и пластичность, плавление и затвердевание, кинетику фазовых переходов и процессов накопления дефектов различных типов, приводящих к макроразрушению, а также обратное влияние указанных явлений на структуру материала и его физические свойства. В связи с этим, проблема количественного описания процессов высокоскоростного деформирования осложняется, с одной стороны, необходимостью знать реальные свойства конструкционных материалов в широком диапазоне изменения параметров для различных агрегатных состояний вещества, а с другой, -необходимостью иметь модельные представления для их адекватной математической формулировки.
В этой связи особый интерес представляет интенсивно развиваемый в последние годы метод подвижных клеточных автоматов. Этот метод примечателен своими достоинствами при решении ряда задач, которые во многих случаях являются уникальными. В силу своей дискретной природы метод МСА особенно удобен для описания интенсивных разрушений, сопровождаемых образованием большого количества границ раздела, моделирования гетерогенных материалов, моделирования нагружения за пределами разрушения, которое сопровождается перемешиванием масс. Достоинства данного метода позволили получить ряд новых научных результатов в различных областях, в том числе при моделировании геологических сред, нано-материалов, сыпучих сред, керамик, при расчете прочности каркасных конструкций, и др. Универсализм подхода клеточных автоматов, в котором единственным ограничением при выборе взаимодействия между автоматами является критерий лучшего соответствия модели эксперименту, является очень удобной основой для реализации широкого класса моделей, описывающих очень разнообразные по природе физические явления.
Существенным ограничением, которое, тем не менее, не помешало получать новые научные результаты, являлось то, что использование метода МСА ограничивалось рамками сравнительно небольших напряжений (порядка единиц предела текучести материала) и небольших скоростей нагружения. Возможность рассматривать задачи, предусматривающие интенсивные динамические нагрузки существенно повышает прикладную и научную ценность данного метода численного моделирования и открывает новые возможности в применении методов численного моделирования для решения задач, связанных с высокоскоростными деформациями материалов и конструкций.
Поэтому, целью диссертационной работы является развитие дискретного численного метода подвижных клеточных автоматов для описания высокоскоростного нагружения материалов и конструкций, а также исследование на его основе некоторых частных задач ударного взаимодействия твердых тел.
В соответствии с общей целью в диссертационной работе были поставлены следующие конкретные задачи:
1. Провести сравнительный анализ метода подвижных клеточных автоматов с распространенными сеточными методами и исследовать возможность построения на его основе комбинированного дискретно-континуального подхода.
2. Разработать физические основы описания больших величин и скоростей деформаций на основе введения нелинейной функции отклика.
3. Провести численное исследование взаимодействия деформируемого ударника с преградами различной толщины с использованием метода МСА.
4. Исследовать влияние поверхностных волн на соударение группы частиц с преградой.
5. Исследовать особенности моделирования теста Тейлора (соударение деформируемого цилиндра с жесткой преградой) в рамках метода частиц.
Научная новизна.
1. На основе теоретического анализа показано, что уравнения метода подвижных клеточных автоматов физически эквивалентны соотношениям механики сплошной среды в упругой области в пределе бесконечно малого размера автоматов. На этой основе впервые построен комбинированный дискретно-континуальный подход. Его реализация позволила объединить конечно-разностный сеточный метод и метод частиц (метод подвижных клеточных автоматов) для решения динамических задач физики конденсированного состояния.
2. Впервые предложена нелинейная функция отклика клеточного автомата, зависящая от объемной деформации, позволяющая учитывать нелинейную сжимаемость твердых тел.
3. На основе модели однородно-деформируемой среды, полученной в рамках калибровочной теории дефектов, предложена функция отклика клеточного автомата с зависимым от скорости деформации пределом текучести.
4. Показана роль поверхностных волн как переносчиков взаимодействия, реализующих коллективные эффекты при обработке поверхности потоком налетающих частиц. Влияние поверхностных волн может быть важным фактором, способствующим возникновению сверхглубокого проникания.
5. Показано, что при моделировании высокоскоростной пластической деформации методом подвижных клеточных автоматов необходим явный учет формоизменения клеточного автомата. Предложены возможные подходы к решению данной проблемы.
Научная и практическая ценность. В диссертационной работе развиты физико-математические модели, позволяющие использовать метод подвижных клеточных автоматов для моделирования поведения материалов и конструкций при динамических нагрузках и больших величинах деформаций. Это позволило существенно (на 1-2 порядка) расширить диапазон доступных к исследованию с помощью данного метода давлений и скоростей нагружения (амплитуд давлений до ~10ГПа и скоростей нагружения до ~106 с"1). Разработанные физико-математические модели, алгоритмы и программы могут быть использованы при анализе поведения и разрушения конструкций при интенсивных динамических нагрузках, исследовании влияния различных модификаций конструкций с целью оптимизации их характеристик, а также проведения расчетов при конструировании новых материалов.
Внесен вклад в теоретическое и практическое обоснование применимости метода МСА к моделированию задач физики твердого тела на макро и мезоуровне.
Показано, что в предельном случае бесконечно малого размера автоматов уравнения метода МСА эквивалентны соотношениям механики сплошной среды в упругой области, поэтому можно считать строго доказанным корректность метода для описания упругих задач и задач хрупкого разрушения.
Разработаны физико-математические основы и реализован комбинированный дискретно-континуальный подход, совмещающий достоинства метода частиц, связанные с возможностью моделирования интенсивного разрушения и перемешивания масс, с достоинствами сеточного метода: более высокой точностью при малых деформациях и большей скоростью счета. Это имеет практическую ценность при полноразмерном моделировании задач, где одновременно совмещаются области больших и малых деформаций, особенно при моделировании пар трения, процессов пробития, контактных границ.
Описанный эффект влияния поверхностных волн на взаимодействие налетающих частиц с поверхностью материала может иметь важное прикладное значение, способствуя лучшему пониманию процессов, протекающих, в частности, при холодном газодинамическом напылении. Более детальное исследование позволит сформулировать практические рекомендации по оптимальному выбору условий обработки.
Положения, выносимые на защиту:
1. Научные основы и методика совмещения метода частиц (метода МСА) и континуального подходов.
2. Нелинейная функция отклика для описания высокоскоростных деформаций, позволяющая расширить область применения метода подвижных клеточных автоматов.
3. Физическое обоснование и способ реализации зависящей от скорости деформирования функции отклика, основанной на модели однородно-деформируемой дефектной среды, построенной в рамках калибровочной теории дефектов.
-104. Механизм реализации коллективных эффектов при взаимодействии потока частиц с поверхностью материала, связанный с влиянием поверхностных волн на соударение отдельных частиц с преградой.
5. Результаты расчетов, показывающие необходимость учета формоизменения клеточного автомата при моделировании высокоскоростной пластической деформации и возможные способы его реализации.
Обоснованность и достоверность расчетов и выводов, сформулированных в диссертации, обеспечивается аналитическими исследованиями, сходимостью численных решений при тестовых расчетах, согласием полученных результатов с опубликованными результатами других авторов и данными физических экспериментов.
Апробация работы. Результаты работы докладывались и обсуждались на следующих конференциях:
1. На международных конференциях «Computer Aided Design of Advanced Materials and Technologies» - С AD AMT (Томск, 2001, 2003).
2. На международных конференциях по физической мезомеханике (Томск, 2003, 2004; Патрас, Греция 2004).
3. На международной конференции «Advanced Problems in Mechanics» - АРМ (Санкт-Петербург, 2003).
4. На международной конференции «International Congress on Fracture» - ICF (Москва, 2003; Турин, Италия 2005).
5. На региональной школе-семинаре молодых ученых «Современные проблемы физики, технологии и инновационного развития» (Томск, 2003, 2004).
6. На всероссийской школе-семинаре «Физика взрыва и применение взрыва в физическом эксперименте» (Новосибирск, 2003).
Публикации. Основные результаты диссертации опубликованы в 10 работах. Перечень их наименований представлен в списке цитируемой литературы [92-94, 110, 115, 138, 151, 152, 157, 158].
Объем и структура работы. Диссертация состоит из введения, четырех глав, заключения и списка литературы. Объем диссертации составляет 190 страниц, 49 рисунков, 3 таблицы. Список литературы содержит 160 наименований.
Похожие диссертационные работы по специальности «Физика конденсированного состояния», 01.04.07 шифр ВАК
Численное исследование задач динамики деформируемых сред сеточно-характеристическими методами1991 год, доктор физико-математических наук Петров, Игорь Борисович
Динамическая локализация деформации в нагруженном материале на нано- и мезо-масштабных уровнях: моделирование методом частиц2006 год, доктор физико-математических наук Дмитриев, Андрей Иванович
Моделирование процессов деформации и разрушения в трехмерных структурно-неоднородных материалах2008 год, доктор физико-математических наук Романова, Варвара Александровна
Механизмы деформации и разрушения пластичных и твердых тел при высокоскоростном взаимодействии2003 год, доктор технических наук Савенков, Георгий Георгиевич
Деформирование и разрушение твердых тел с микроструктурой2002 год, доктор физико-математических наук Кривцов, Антон-Иржи Мирославович
Заключение диссертации по теме «Физика конденсированного состояния», Чертов, Максим Андреевич
Основные результаты и выводы, полученные в данной работе, заключаются в следующем:
1. Теоретически показана эквивалентность описания упругой среды в рамках дискретного подхода метода подвижных автоматов и на основе уравнений континуальной механики при устремлении размера частиц к нулю. Выявлен смысл коэффициента переноса взаимодействия в методе МСА, проведена его оценка.
2. Сформулирован комбинированный подход к моделированию твердых тел, основанный на совместном использовании дискретного и континуального подходов. Впервые разработан и реализован алгоритм, объединяющий в рамках единой схемы метод подвижных клеточных автоматов с конечно-разностными методами механики сплошной среды.
3. Впервые введен новый тип нелинейной функции отклика клеточного автомата, позволяющий учесть нелинейное нарастание давления при больших степенях сжатия. Это позволяет значительно расширить доступный при моделировании методом МСА диапазон напряжений и скоростей нагружения.
4. В рамках подхода калибровочной теории дефектов исследована физическая модель упругопластической среды, включающая диссипацию и самодействие поля дефектов, которая позволяет анализировать влияние скорости деформирования на а-е диаграммы. Полученная в модели зависимость предела текучести от скорости деформации использована при построении функции отклика клеточного автомата, зависящей от скорости нагружения.
5. На основе результатов численного моделирования предложен новый механизм реализации коллективных эффектов при соударении потока частиц с преградой, обусловленный влиянием поверхностных волн, генерируемых отдельными столкновениями, на взаимодействие потока с поверхностью. Данный механизм может быть использован при построении физико-механической модели феномена сверхглубокого проникания.
6. Показана применимость метода МСА, в том числе в рамках комбинированного дискретно-континуального подхода, к моделированию процессов высокоскоростной деформации для случая пробития преград конечной толщины удлиненным деформируемым ударником.
7. На основе численного моделирования теста Тейлора методом МСА показано, что для более точного описания пластического поведения в условиях высокоскоростной деформации необходим явный учет формоизменения частиц. Определены возможные способы его реализации.
Список литературы диссертационного исследования кандидат физико-математических наук Чертов, Максим Андреевич, 2005 год
1. Tsai D.H., MacDonald R.A. Shock wave profile in a crystalline solid // 1.id. - 1978. -V.ll, N.10. - P. L365-L371.
2. Batteh J.H., Powell J.D. Shock propagation in the one dimensional lattice at a nonzero initial temperature // J.Appl.Phys. 1978. - V.49, N.7. P. 3933-3940.
3. Клименко В.Ю., Дремин A.H. Структура фронта ударной волны в твердом теле // Докл. АН СССР 1980. Т.251, № 6. С. - 1379-1381.
4. Коростелев С.Ю., Псахье С.Г., Панин В.Е. Молекулярно-динамическое исследование атомной структуры материала при распространении ударной волны // ФГВ. 1988. Т.24, № 6. - С. 124-127.
5. Псахье С.Г., Зольников К.П., Костин И.А. О нелинейном механизме переноса энергии фронтом возмущения при локальном высоко-энергетическом нагружении // Письма в ЖТФ. 2002. Т.28. В.2. С.30-36.
6. Могилевский М.А., Мынкин И.О. Роль флуктуаций в зарождении сдвигов при одномерном сжатии решетки // ФГВ. 1985. Т.21, № 3. - С. 113-120.
7. Ющенко B.C., Щукин Е.Д. Молекулярно-динамическое исследование элементарных процессов разрушения под действием постоянной нагрузки // Докл. АН СССР 1978. Т.242, № 3. С. - 653-656.
8. Псахье С.Г., Дмитриев А.К. О влиянии точечных дефектов в проблеме устойчивости двумерных атомных решеток // Письма в ЖТФ. 1994. Т.20. В.7. С.83-87.
9. Зольников К.П., Уваров Т.Ю., Псахье С.Г. Об анизотропии процессов пластической деформации и разрушения при динамическом нагружении //Письмав ЖТФ. 2001. Т.27. В.7. С. 1-7.
10. Псахье С.Г., Зольников К.П. Об аномально высокой скорости перемещения границ зерен при высокоскоростном сдвиговом нагружении // Письма в ЖТФ. 1997. Т.23. В.14. С.43-48.
11. П.Псахье С.Г., Зольников К.П., Сараев Д.Ю. Об изменении структурного состояния границ зерен при высокоскоростном механическом нагружении // ФГВ. 1999. Т.35. N6. С.153-155.
12. Псахье С.Г., Уваров Т.Ю., Зольников К.П. О новом механизме генерации дефектов на границах раздела. Молекулярно-динамическое моделирование // Физ. мезомех. 2000. Т.З. N3. С.69-71.
13. Krivtsov A.M. Simulating Perforation of Thin Plates Using Molecular Dynamics Approach // Proceedings of International Conference "Shock waves in Condensed Matter", St.-Petersburg, Russia, 2000, P. 158-160.
14. Кривцов A.M., Волковец И.Б., Ткачев П.В., Цаплин В.А. Применение метода динамики частиц для описания высокоскоростного разрушения твердых тел // Труды всероссийской конференции «Математика, Механика и Информатика 2002», в честь 10-летия РФФИ.
15. Krivtsov, A.M. Relation between spall strength and mesoparticle velocity dispersion // Int. J. Impact Eng. 23 (1999) 477^87.
16. Verlet L. Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules//Phys. Rev. 1967.-V. 159, N.l. P. 98-103.
17. Welch D.O., Dienes G.J., Paskin A. A molecular dynamical study of the equation of state of solids at high temperature and pressure // J.Phys.Chem.Sol. 1978. - V.39, N.6. P. 589-603.
18. Потгер Д. Вычислительные методы в физике. М.: Мир, 1975. - 218 с.
19. Powell J.D., Batteh J.H. Effects of solitary waves upon the shock profile in a three-dimensional lattice // Ibid 1980. - V.51, N.7. P. 2050-2058.
20. Головнев И.Ф., Калинина А.П. Применение оператора эволюции в методе классических траекторий // Моделирование в механике. 1992. - Т.6, № 2. - С. 13-24.
21. Головнев И.Ф., Калинина А.П Применение оператора эволюции для описания динамики гамильтоновых систем. Новосибирск. 1993. - 27 с. (Препринт СО РАН, ИТПМ; № 6-93)
22. Кривцов A.M. Метод частиц и его использование в механике деформируемого твердого тела // Дальневосточный математический журнал ДВО РАН. 2002. -Т.З, №2. - С. 254-276.
23. Кацнельсон А.А., Ястребов Л.И. Псевдопотенциальная теория кристаллических структур. -М.: Изд-во МГУ. 1981. - 192 с.
24. Kuznetsov V., Tsai К., Turkebaev Т. Calculation of thermodynamic properties of the Ni-Al alloys in normal conditions and under pressure. // J. Phys.: Condens. Matter. -1998. V.10, N 10.-P. 8957-8971.
25. Tersoff J. New empirical approach for the structure and energy of covalent systems // Phys. Rev. В 37, 6991-7000 (1988)
26. Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems // Phys. Rev. В 39, 5566-5568 (1989)
27. Штойер P. Многокритериальная оптимизация, Теория. Расчет и приложения. -М.: Радио и связь, 1992.
28. Хокни Р., Иствуд Дж. Численное моделирование методом частиц. М.: Мир, 1987.
29. Cundall Р.А. A computer model for simulating progressive, large scale movement in blocky rocksystem // In: Symposium of ISRM, Nansy, France, Proceedings. 1971. -V. 2.-P. 129-136.
30. Rothenbury L. Bathurst R.J. Influence of particle eccentricity on micromechanical behavior of granular materials // Mechanics of Materials. 1993. N. 16. - P. 141-152.
31. Hong D.C., McLennan J.A. Molecular dynamic simulations of hard sphere granular particles //Physica A.- 1992. -V. 187.-P. 159-171.
32. Herrmann H.J. Simulation of granular media // Physica A. 1992. - V. 191. - P. 263276.
33. Ristow G.H. Simulating granular flow with molecular dynamics // Journal de Physique I France. 1992. - V. 2. - P. 649-662.
34. Ng T.-T., Dobry R. Numerical simulations of monotonic and cyclic loading of granular soil // Jornal of Geotechnical Engineering. 1994. - V.120, N. 2. - P. 388403.
35. Cundall P.A. Computer simulations of dense sphere assemblies // In: Micromechanics of Granular Materials, edited by M. Satake and J.T Jenkins. Elsever Sci. Publ., Amsterdam, 1988.-P. 113-123.
36. Bardet J.P., Proubet J. Numerical simulation of localization in granular materials // In: Proc. of the Conf. Mechanics Computing in 1990's and beyond. 1991. - V. 2. - P. 1269-1273.
37. Bathurst R.J. Rothenburg L. Micromechanical aspects of isotropic granular assemblies with linear contact interactions // Journal of Applied Mechanics. 1988. -V. 55, N. 3. - P. 17-23.
38. Chang C.S., Liao C.L. Constitutive relation for a particulate medium with the effect of particle rotation // International Journal of Solids and Structures. 1990. - V. 26, N. 4.-P. 437-453.
39. Cundall P.A., Strack O.D.L. Modeling of microscopic mechanisms in granular material // In: Mechanics of Granular Materials: New Models and Constitutive Relations. Edited by M.Satake and J.T.Jenkins Elsever Sci. Publ., Amsterdam, 1983.-P. 137-149.
40. Bardet J.P. Numerical simulations of the incremental responses of idealized granular materials // International Journal of Plasticity. 1994. - V. 10, N. 8. - P. 879-908.
41. Ross~J.W., Miller W.A., Weatherly G.C. Computer simulation of sintering in powder compacts // Acta Metallurgica. 1982. - V. 30, N. 1. - P. 203-212.
42. Bouvard D., Ouedrogo E. Modeling of hot isostatic pressing: a new formulation using random variables // Acta Metallurgica. 1988. - V. 36, N. 8. - P. 1977-1987.
43. Куликовский А.Г., Погорелов H.B., Семенов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. М.: Физматлит, 2001.-608с.
44. Годунов С. К., Рябенький В. С Разностные схемы (введение в теорию). М.: Наука, 1973.-400 с.
45. Самарский А. А. Введение в теорию разностных схем. М.: Наука, 1971. - 400с.
46. B.M.-J.B.D. Walker A Survey of Finite Volume Numerical Approaches for Conservation Laws in Atmospheric Modelling, UGAMP report, 2002.
47. Куропатенко В.Ф. О разностных методах для уравнений гидродинамики // Труды Матем. Ин-та им. В.А. Стеклова АН СССР 74, Ч. 1, 107-137.
48. Richtmyer R.D., Morton K.W. Difference methods for initial-value problems // Interscience, New York. Рус. пер.: Рихтмайер P., Мортон К. Разностные методы решения краевых задач, 1972, Мир, Москва.
49. Головизин В.М. Об одном способе введения искусственной диссипации в вариационно-разностные схемы магнитной гидродинамики // Ж. вычисл. матем. и матем. физики, 1982, 22, № 1, 144-150.
50. Wilkins M.L Use of artificial viscosity in multidimensional fluid dynamic calculation // J. Comput. Phys., 1980,36, N. 3, 281-303.
51. Roe R.L. Approximate Riemann problem solvers, parameter vectors, and difference schemes // J. Comput. Phys., 1981, 43, N. 2, 357-372.
52. Courant R., Isaacson E., Rees M. On the solution of nonlinear hyperbolic differential equations by finite differences // Comm. Pure Appl. Math, 1952, 5, N. 3, 243-255.
53. Холодов A.C. О построении разностных схем с положительной аппроксимацией для уравнений гиперболического типа // Ж. вычисл. матем и матем. физики, 1978,18, № 6, 1476-1492.
54. J.P.Boris and D.L.Book, Flux-Corrected Transport. I. SHASTA, a Fluid Transport Algorithm that Works // Journal of Computational Physics 1972, 11, pp 397-431.
55. Коларов Д., Балтов А., Бончева H. Механика сплошных сред, Мир, Москва, 1979.
56. Кондауров В.И. О законах сохранения и симметризации уравнений нелинейной теории термоупругости // Докл. АН СССР 1981. Т.256, № 4. С. - 819-823
57. Харлоу Ф. Численный метод частиц в ячейках для задач гидродинамики // В. сб. Вычислительные методы в гидродинамике. М.: Мир, 1967. С. 316-342.
58. Агурейкин В.А., Крюков Б.П. Метод индивидуальных частиц для расчета течений многокомпонентных сред с большими деформациями // Численные методы МСС. 1985. С. 17-31.
59. Randies P.W., Libersky L.D. Smoothed Particle Hydrodynamics: Some recent improvements and applications // Comput. Methods Appl. Mech. Engrg. 139, 1996, 375-408.
60. Johnson G.R., Beissel S.R., Stryk R.A. A generalized particle algorithm for high velocity impact computations // Computational Mechanics 25, 2000, 245-256.
61. Анучина H.H., Бабенко К.И., Годунов C.K. и др. Теоретические основы и конструирование численных алгоритмов задач математической физики. М.: Наука, 1979.
62. Libersky L.D., Petscheck A.G., Carney Т.С., Hipp J.R., Allahdadi F.A. High strain Lagrangian hydrodynamics // J. Comput. Phys., 109, 1993, 67-75.
63. Иванов М.Ф., Гальбурт B.A. Численное моделирование динамики газов и плазмы методами частиц: учеб. Пособие. -М.: МФТИ, 2000. 168 с.
64. Lucy L.B. A numerical approach to the testing of fission hypothesis // Astron. J., 82, 1977, 1013.
65. Libersky L.D. and Petscheck A.G Smoothed particle hydrodynamics with strength of materials // in: H. Trease, J. Fritts and W. Crowley eds., Proceedings, The Next Free Lagrange Conf., Springer-Verlag, NY, 395, 1991, 248-257.
66. Herrmann W. Constitutive equations for large dynamic deformations // Proceedings, Third Int. Conf on Constitutive Laws for Eng. Materials, Tuscon, AZ, 1991,45-52.
67. Johnson G.R., Stryk R.A., Beissel S.R. SPH for high velocity impact computations // Comput. Methods Appl. Mech. Engrg. 139, 1996, 347-373.
68. Johnson G.R. Artificial viscosity effects for SPH impact computations // Int. J. Impact Eng. 18, 1996,477-488.
69. Бондаренко Ю.А., Башуров B.B., Янилкин Ю.В. Математические модели и численные методы для решения задач нестационарной газовой динамики. Обзор зарубежной литературы / Препринт, Саров: РФЯЦ -ВНИИЭФ ,2003, 53 с.
70. Computer methods in Applied Mechanics and Engineering, V. 139, 1996.
71. Минский M. Вычисления и автоматы. M.: Мир, 1971.
72. Николис Г., Пригожин И. Познание сложного. М.: Мир, 1971, 344 с.
73. Haken Н. Synergetics. Berlin / N.Y.: Springer, 1978. Рус. пер.: Хакен Г. Синергетика. М.: Мир, 1980.
74. Gardner М. The fantastic combinations of John Conway's new solitaire game of life. // Scientific American. (Mathematical games Apr. 1970), V. 223, P. 120-123.
75. Шредер M. Фракталы, хаос, степенные законы. Миниатюры из бесконечного рая. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001, 528 с.
76. Компьютеры и нелинейные явления: Информатика и современное естествознание / Авт. Предисл. А.А. Самарский. М.: Наука, 1988. - 192 с.
77. Salem J., Wolfram S. Theory and applications of cellular automata: World Scientific edited by Wolfram S., 1986
78. Псахье С.Г., Хори Я., Коростелев С.Ю., Смолин И.Ю., Дмитриев А.И., Шилько Е.В., Алексеев С.В. Метод подвижных клеточных автоматов как инструмент для моделирования в рамках физической мезомеханики // Изв. вузов. Физика. -1995.-Вып. 38. -№ 11.-С. 58-69.
79. Псахье С.Г., Коростелев С.Ю., Смолин А.Ю., Дмитриев А.И., Шилько Е.В., Моисеенко Д.Д., Татаринцев Е.М., Алексеев С.В. Метод подвижных клеточных автоматов как инструмент физической мезомеханики материалов // Физ. мезомех.- 1998.-Т. l.-№ 1.-С. 95-108.
80. Псахье С.Г., Дмитриев А.И., Шилько Е.В., Смолин А.Ю., Коростелев С.Ю. Метод подвижных клеточных автоматов как новое направление дискретнойвычислительной механики. I. Теоретическое описание // Физ. мезомех. -2000. -Т. 3. -№ 2. -С. 5-15.
81. Дмитриев А.И., Коростелев С.Ю., Остермайер Г.П., Псахье С.Г., Смолин А.Ю., Шилько Е.В. Метод подвижных клеточных автоматов, как инструмент для моделирования на мезоуровне // Известия РАН. Мех. твердого тела. 1999. - № 6. - С. 87-94.
82. Псахье С.Г., Чертов М.А., Шилько Е.В. Интерпретация параметров метода подвижных клеточных автоматов на основе перехода к континуальному описанию // Физ. мезомех. 2000. - Т. 3. - № 3. - С. 93-96.
83. Псахье С.Г., Смолин А.Ю., Стефанов Ю.П., Макаров П.В., Шилько Е.В., Чертов М.А., Евтушенко Е.П. Моделирование поведения сложных сред на основе комбинированного дискретно-континуального подхода // Физ. мезомех. -2003.-Т. 6, №6.-С. 11-21.
84. Псахье С.Г., Смолин А.Ю., Стефанов Ю.П., Макаров П.В., Чертов М.А. Моделирование поведения сложных сред на основе совместного использования дискретного и континуального подходов // Письма в ЖТФ. 2004. Т.30. В. 17. С.7-13.
85. НохВ.Ф. СЭЛ— совместный эйлерово-лагранжев метод для расчета нестационарных двумерных задач // Вычислительные методы в гидродинамике / Под ред. Б. Олдера, С. Фернбаха, М. Ротенберга. М.: Мир, 1967, С. 128-184.
86. Johnson G.R. Dynamic response of axisymmetric solids subjected to impact and spin// AIAA Journal. 1979.-V. 17.-No. 9.-P. 975-979.
87. Корнеев A.H., Николаев А.П., Шиповский И.Е. Приложение метода конечных элементов к задачам соударения твердых деформируемых тел // Численныеметоды решения задач теории упругости и пластичности: Матер. VII Всес. конф. Новосибирск. - 1982. - С. 122-129.
88. Псахье С.Г., Смолин А.Ю., Коростелев С.Ю. и др. Об особенностях установления стационарного режима деформирования твердых тел // Журнал технической физики. 1997. - Т. 67, В. 9. - С. 34-37.
89. Псахье С.Г., Ружич В.В., Смекалин О.П., Шилько Е.В. Режимы отклика геологических сред при динамических воздействиях // Физ. мезомех. 2001. -Т.4. - № 1.-С. 67-71.
90. Гольдин С.В., Псахье С.Г., Дмитриев А.И., Юшин В.И. Переупаковка структуры и возникновение подъемной силы при динамическом нагружении сыпучих грунтов // Физ. мезомех.- 2001. Т.4. - № 3. - С. 97-103.
91. Немирович-Данченко М.М., Стефанов Ю.П. Применение конечно-разностного метода в переменных Лагранжа для расчета волновых полей в сложнопостроенных средах // Геология и геофизика. 1995. - Т. 36. - № 11. С. 96-105.
92. Стефанов Ю.П. Численное исследование поведения упруго-идеально-пластических тел, содержащих неподвижную и распространяющуюся трещины, под действием квазистатических и динамических растягивающих нагрузок // Физ. мезомех. 1998. - № 2. - С. 81-93.
93. Stefanov Yu.P. Wave dynamics of cracks and multiple contact surface interaction // Theor. and Appl. Frac. Mech. 2000. - V. 34/2. - P. 101-108.
94. Свенсон К. Физика высоких давлений. М.: ИЛ, 1963.
95. Банди Ф.П., Стронг Г.М. Поведение металлов при высоких температурах и давлениях. М.: Изд. Металлургия, 1965, - 60с.
96. Bancroft D., Peterson E.L., Minshall S. Polymorphism of Iron at High Pressure // J.Appl.Phys. 1956. - V.27, N.3. P. 291-299.
97. Физические величины. Справочник под ред. Григорьева И.С., Мейлихова Е.З. М. Энергоатомиздат, 1991. - 1232 с.
98. Черный Г.Г. Газовая динамика. М.: Наука, 1988.
99. LASL Shock Hugoniot Data / Ed. S.P. Marsh. Berkeley (Calif): Univ. California Press, 1980.
100. Уилкинс M.JI. Расчет упруго-пластических течений// Вычислительные методы в гидродинамике/ Под ред. Б. Олдера, С. Фернбаха, М. Ротенберга. М.: Мир, 1967. С. 212-263.
101. Макаров П.В. Микродинамическая теория пластичности и разрушения структурно-неоднородных сред //Известия ВУЗов. Физика. 1992. N4. С.42-58.
102. Kelly J.M., Gillis P.P. Continuum descriptions of dislocations under stress reversals.//J.Appl. Phys. 1974. Vol.45. N3. P.1091-1096.
103. Жукова T.B., Макаров П.В., Платова T.M. и др. Исследование вязких и релаксационных свойств металлов в ударных волнах методами математического моделирования. //ФГВ. 1987. N1. С.29-34.
104. Коларов Д., БалтовА., БончеваН. Механика пластических сред. М.: Мир, 1979. 304 с.
105. Гилман Дж. Дж. Динамика дислокаций и поведение материалов при ударном воздействии//Механика. 1970. №2(120). С. 96-134.
106. Альтшулер J1.B., Чекин Б.С. Релаксационные параметры металлов за фронтом ударных волн. //Детонация. Критические явления. Физико-химические превращения в ударных волнах. Черноголовка: ОИХФ. 1978. С.87-90.
107. Гилман Дж.Д. Микродинамическая теория пластичности. //Микропластичность. М.: Металлургия, 1972. Р. 18-37.
108. Годунов С.К. Элементы механики сплошной среды. М.: Главная редакция физико-математической литературы издательства «Наука», 1978. 304с.- 188127. Фридель Ж. Дислокации. М.: Мир, 1975. 644с.
109. Батьков Ю.В., Глушак Б.Д., Новиков С.А. Сопротивление материалов пластической деформации при высокоскоростном деформировании в ударных волнах. (Обзор). М.: ЦНИИатоминформ. 1990.
110. Предводителев A.A. Возможность моделирования процессов, связанных с движением и размножением дислокаций в кристаллах / Динамика дислокаций: под ред. Старцева В.И., Бенгус В.З. Киев: Наукова Думка, 1975. С. 178-190.
111. Макаров П.В. Упругопластическое деформирование металлов волнами напряжений и эволюция дефектной структуры //ФГВ. 1987. №1. С. 22-28.
112. Панин В.Е., Егорушкин В.Е., Макаров П.В., и др. Физическая мезомеханика и компьютерное конструирование материалов: в 2-х т. / Под. ред. Панина В.Е. Новосибирск: Наука. Сибирская издательская фирма РАН, 1995. Т.1. 298 с.
113. Панин В.Е., Макаров П.В., Псахье С.Г. и др. Физическая мезомеханика и компьютерное конструирование материалов: в 2-х т. / Под. ред. Панина В.Е. Новосибирск: Наука. Сибирская издательская фирма РАН, 1995. Т.2. 320 с.
114. Панин В.Е., Лихачев В.А., Гриняев Ю.В. Структурные уровни деформации твердых тел. Новосибирск: Наука, 1985. 229 с.
115. Конева H.A., Козлов Э.В. Физическая природа стадийности пластической деформации // Известия ВУЗов. Физика. 1990. N2. С.89-106.
116. Makarov P.V. Romanova V.A., Balokhonov R.R. Plastic deformation behavior of mild steel subjected to ultrasonic treatment //Theoretical and Applied Fracture Mechanics. 1997. Vol. 28. Issue 2. P. 141-146.
117. Гриняев Ю.И., Чертова Н.В., Чертов М.А. Анализ влияния скорости деформирования на характер диаграмм a-sll ПМТФ, 2002, т.43, №4 с 150-154.
118. Кадич А., Эделен Д. Калибровочная теория дислокаций и дисклинаций: Пер. с англ. М.: Мир, 1987. - 168 с.
119. Гриняев Ю.В., Чертова Н.В. Теорема живых сил в упругом континууме с дефектами. // ЖТФ. 1998. - Т. 68, - № 3 - С. 82-83.
120. Гриняев Ю.В., Чертова Н.В. Механические свойства материалов и предмет описания калибровочной теории. // ЖТФ. 1998. - Т. 68, - № 7 - С. 70-74.
121. Гриняев Ю.В., Чертова Н.В. Полевая теория дефектов // Физическая мезомеханика. 2000. Т.З, №.5. С.19-32,
122. Гриняев Ю.В., Панин В.Е. Полевая теория дефектов на мезоуровне // Докл.РАН. 1997. Т.353, №1. С.37-39.
123. Косевич A.M. Основы механики кристаллической решетки. М.: Мир, 1972.
124. Ландау Л.Д., Лифшиц Е.М. Теория упругости. М.: Наука, 1987.
125. Работнов Ю.Н. Механика деформируемого твердого тела. М.: Наука, 1979.
126. Дударев Е.Ф. Микропластическая деформация и предел текучести поликристаллов. Томск: Изд-во Том. Ун-та, 1988.
127. Рыбин В.В. Структурно кинетические аспекты физики развитой пластической деформации // Изв. вузов. Физика. 1991. №3. С.7-21.
128. Фридман Л.Б. Механические свойства металлов. М: Оборонгиз, 1952.
129. Александров A.B., Потапов В.Д. Основы теории упругости и пластичности. -М. Высшая школа, 1990.
130. Чертов М.А., Смолин А.Ю., Псахье С.Г. Особенности взаимодействия группы налетающих частиц с поверхностью. Влияние поверхностных волн. //
131. Современные проблемы физики, технологии и инновационного развития: Сб. статей молодых ученых. Томск: Изд-во Том. Ун-та, 2004. - 200 с. - С 61-63.
132. Чертов М.А., Смолин А.Ю., Сапожников Г.А., ПсахьеС.Г. Влияние поверхностных волн на взаимодействие налетающих частиц с поверхностью материала // Письма в ЖТФ. 2004. Т.ЗО. В.23. С.77-84.
133. Козорезов К.И., Максименко В.Н., Ушеренко С.М. // Избранные проблемы современной механики, Ч 1., 1981, № 9, С. 115.
134. Солоненко О.П., Алхимов А.П., Марусин В.В. и др. Высокоэнергетические процессы обработки материалов. // Новосибирск: Наука. Сибирская издательская фирма РАН, 2000. 425 с.
135. Kiselev S.P., Kiselev V.P. // International Journal of Impact Engineering 27 (2002), 135-152.
136. Рахимов A.E. // Вестник M. У-та, Математика. Механика, № 5, 1994, С. 7274.
137. Чертов М.А., Смолин А.Ю., Е.В. Шилько, С.Г. Псахье. О тонкой структуре возмущений, генерируемых в условиях локальных импульсных воздействий в упругих пластинах // Физ. мезомех. 2004. - Т. 7. - № 2. - С. 65-69.
138. Johnson G.R., Stryk R.A., Holmquist T.R., et al. // Int. J. Impact Eng. 10 (1990), pp. 281.
139. Allen D.J., Rule W.K., Jones S.E. Optimizing material strength constants numerically extracted from Taylor impact data // Experimental Mechanics, Vol. 37, No. 3,pp. 333-338,(1997)
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.