Численное решение обратных задач переноса примеси на многопроцессорных вычислительных системах тема диссертации и автореферата по ВАК РФ 05.13.18, кандидат физико-математических наук Панасенко, Елена Александровна
- Специальность ВАК РФ05.13.18
- Количество страниц 138
Оглавление диссертации кандидат физико-математических наук Панасенко, Елена Александровна
Введение.
1 Обзор литературы по проблемам численного моделирования переноса примеси в атмосферном пограничном слое.
1.1 Моделирование переноса примеси.
1.1.1 Модели с гауссовым распределением концентрации.
1.1.2 Континуальные модели переноса примеси.
1.1.3 Лагранжев подход к моделированию перенрса примеси.
1.2 Прямые и обратные задачи переноса примеси в континуальном приближении.
1.2.1 Физические и математические постановки прямых задач. Начальные и граничные условия.
1.2.2 Постановки обратных задач. Начальные и граничные условия.
1.3 Применение метода Марчука при решении обратных задач переноса примеси.
1.4 Численные методы решения основных и сопряженных уравнений переноса примеси.
1.4.1 Численные методы решения адвективно-диффузионного уравнения переноса.
1.5 Методы оптимизации.
1.5.1 Применение методов оптимизации при решении задач переноса примеси.
1.6 Параллельные алгоритмы реализации моделей переноса примеси.
1.7 Выводы.
2 Математическое моделирование переноса примеси.
2.1 Физическая постановка задачи прогнозирования распределения примеси.
2.2 Математическая постановка задачи об адвективно-диффузионном переносе инертной газообразной примеси.
2.2.1 Адвективно-диффузионное уравнение.
2.2.2 Начальные и граничные условия.
2.2.3 Преобразование координат.
2.3 Физические постановки некоторых обратных задач переноса примеси.
2.4 Вывод сопряженной постановки задачи по определению параметров источников примеси по данным измерений.
2.5 Математическая постановка обратной задачи адвективно-диффузионного переноса примеси.
2.6 Мезомасштабная метеорологическая модель ТГУ-ИОА СО РАН.
2.7 Выводы.
3 Численные методы решения обратных задач переноса примеси.
3.1 Построение вычислительной сетки.
3.2 Конечно-разностная аппроксимация одномерных нестационарных уравнений для прямых и сопряженных задач переноса примеси методом конечного объема.
3.3 Аппроксимация граничных условий.
3.4 Схемы аппроксимации адвективных членов уравнения переноса.
3.4.1 Противопотоковая схема.
3.4.2 Схема MLU.
3.4.3 Схема Ботта.
3.5 Исследование аппроксимационных свойств и условий устойчивости используемых разностных схем.
3.5.1 Понятие сходимости разностной схемы.
3.5.2 Понятие аппроксимации дифференциальной задачи разностной схемой.
3.5.3 Понятие устойчивости разностной схемы, признак устойчивости
Неймана и связь со сходимостью.
3.5.4 Определение порядка аппроксимации используемых разностных схем.
3.5.4.1 Схема Upwind.
3.5.4.2 Схема MLU.
3.5.5 Исследование аппроксимации граничных условий.
3.5.6 Исследование устойчивости.
3.5.6.1 Схема UPWIND.
3.5.6.2 Схема MLU.
3.5.6.3 Схема Ботта.
3.6 Результаты тестирования разностных схем на задаче с мгновенным источником примеси.
3.7 Результаты тестирования разностных схем на задаче с постоянным источником примеси.
3.8 Выводы.
4 Параллельная реализация численных методов решения некоторых обратных задач переноса примеси.
4.1 Параллельный алгоритм решения обратной задачи переноса примеси с использованием функциональной декомпозиции.
4.2 Распараллеливание вычислительной процедуры решения обратной задачи переноса примеси с использованием геометрической декомпозиции по данным.
4.3 Комбинированный способ распараллеливания алгоритма решения обратной задачи переноса примеси.
4.4 Выводы.
5 Результаты решения некоторых обратных задач переноса примеси.
5.1 Обратная задача определения мгновенного точечного источника выброса примеси.
5.2 Обратная задача идентификации параметров источника выброса примеси постоянной мощности.
5.3 Определение городских районов — загрязнителей атмосферного воздуха.
5.4 Расчетно-программный комплекс для оценки и прогнозирования чрезвычайных ситуаций, связанных с выбросом вредных веществ.
5.5 Выводы.:.
Рекомендованный список диссертаций по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК
Вихреразрешающее моделирование турбулентных течений и переноса примеси в уличных каньонах с использованием многопроцессорных вычислительных систем2010 год, кандидат физико-математических наук Данилкин, Евгений Александрович
Параллельная реализация математической модели атмосферной диффузии для исследования распределения первичных и вторичных загрязнителей воздуха над урбанизированной территорией2006 год, кандидат физико-математических наук Беликов, Дмитрий Анатольевич
Вычислительные методы и модели нестационарного диффузного переноса примесей в задачах контроля и прогноза экологического состояния атмосферы2005 год, доктор физико-математических наук Наац, Виктория Игоревна
Применение сопряженных уравнений для оценки техногенной нагрузки на заданный регион2000 год, кандидат физико-математических наук Воронина, Полина Владимировна
Численное моделирование распространения газовых примесей в атмосфере с учетом их трансформации2000 год, кандидат физико-математических наук Арутюнян, Вардан Оганесович
Введение диссертации (часть автореферата) на тему «Численное решение обратных задач переноса примеси на многопроцессорных вычислительных системах»
В настоящее время проблема охраны окружающей среды становится одной из важных задач науки, что связано с возрастающими темпами технического прогресса во всех странах мира. Ухудшение качества атмосферного воздуха происходит вследствие выбросов в атмосферу отходов промышленных предприятий и выхлопных газов автотранспорта, что приводит к ухудшению здоровья населения, а в глобальном масштабе - к изменению климата на планете.
Избежать поступления загрязняющих веществ в атмосферу невозможно, но постоянный контроль качества воздуха позволит обеспечить безопасный уровень воздействия на атмосферу. Одним из способов оценки уровня загрязнения воздуха является контроль интенсивности выбросов вредных веществ с помощью постов наземных наблюдений. Но даже разветвленная сеть таких пунктов наблюдения не всегда может предоставить достоверную информацию для природоохранных служб. Большую помощь здесь может оказать применение методов математического моделирования и, особенно, технологий численного решения обратных задач по определению характеристик источников загрязнения.
Но сложность процессов распространения примеси делают модели оценки качества воздуха громоздкими и требовательными к вычислительным ресурсам. Перспективным способом решения этих проблем является использование высокопроизводительных многопроцессорных вычислительных систем, которые обеспечивают существенное ускорение получения результатов расчетов и повышение качества численного прогноза. Развитие же многопроцессорных вычислительных систем, в свою очередь, непосредственно связано с успехами вычислительной математики. Поэтому к числу важнейших работ по развитию параллельных вычислительных технологий следует отнести: создание новых методов и алгоритмов, ориентированных на эффективное использование многопроцессорных вычислительных систем, и разработку оригинального программного обеспечения с высокими показателями масштабируемости.
Математическому моделированию загрязнения атмосферного воздуха и решению обратных задач переноса примеси посвящены работы М.Е. Берлянда, Г.И. Марчука, В.В. Пененко, А.Е. Алояна, Р.Д. Борнштейна, Ф.Т.М. Ньистадта, X. Ван Допа, М. Uliasz, Н. Mayer, N. Moussiopoulos, а также работы группы сотрудников НИИ аэробиологии ГПЦ ВБ «Вектор» (А.И. Бородулин, Б.М. Десятков, С.С. Котлярова и др.). Параллельному программированию и методам распараллеливания численных алгоритмов много внимания уделено в работах В.В. Воеводина, Вл.В. Воеводина, В.Э. Малышкина, В.А. Вшивкова, В.В, Корнеева, М.А. Толстых, Р. Хокни, К. Джессхоуп, D. Dubdub, Н. Meuer и др.
Целью диссертационной работы является разработка нового метода параллельных вычислений для решения обратных задач переноса примеси на многопроцессорных вычислительных системах и его апробация для реальных городских условий.
Для достижения данной цели поставлены и решены следующие основные задачи:
1. Построение математической модели обратной задачи, описывающей перенос газообразной примеси.
2. Разработка численного метода решения обратных задач переноса примеси, опирающегося на использование сопряженных уравнений и двойственное представление функционала концентрации примеси и предназначенного для детальной идентификации основных районов - загрязнителей атмосферного воздуха в городе.
3. Теоретическое исследование свойств разностных схем для решения сопряженных к адвективно-диффузионным уравнениям.
4. Разработка параллельной реализации вычислительных алгоритмов и её апробация для некоторых обратных задач переноса примеси в условиях г.Томска с целью определения источников загрязнения, находящихся на городской территории.
Научная новизна полученных автором результатов заключается в следующем:
1. Разработана математическая модель обратной задачи переноса примеси для идентификации параметров источников загрязняющих веществ, которая опирается на уравнения, сопряженные к уравнению турбулентной диффузии, и двойственное представление функционала от концентрации примеси. Модель является многокритериальной, так как она учитывает пространственный и нестационарный характер изменения концентрации примеси за счет адвекции, турбулентного рассеяния, сухого и влажного осаждения, шероховатость поверхности и растительность, что позволяет достаточно точно описывать процессы, происходящие в окружающей среде.
2. Создана модификация численного метода Марчука решения обратных задач для определения городских районов - загрязнителей атмосферного воздуха, заключающаяся в преобразовании двойственного представления функционала концентрации примеси в дополнительные условия для оперативной количественной оценки интенсивности поступления примеси от различных районов города. Это преобразование позволяет весь вычислительный процесс представить в виде последовательности двух отдельных этапов, что существенно упрощает решение обратной задачи.
3. Создан алгоритм численного решения сопряженных уравнений, которые лежат в основе обратной задачи переноса примеси, с использованием явных и явно-неявных разностных схем. Применение таких схем по сравнению с методами покоординатного расщепления имеет преимущество по быстродействию и возможности более эффективного распараллеливания. Теоретически доказано, что построенные разностные схемы аппроксимируют дифференциальную задачу на точном решении, условно устойчивы и сходятся.
4. Разработан новый метод параллельных вычислений для решения обратных задач переноса примеси, опирающийся на использование комбинации функциональной и геометрической декомпозиции. Предложенный метод численного решения обратных задач переноса примеси на многопроцессорных вычислительных системах позволяет существенно (на порядок) увеличить количество используемых процессоров по сравнению с функциональной или геометрической декомпозицией и тем самым значительно сократить время счета.
Теоретическая значимость работы заключается в существенном продвижении в теории методов параллельных вычислений и методов решения обратных задач, а именно в создании метода параллельной реализации решения обратных задач переноса примеси, позволяющего значительно увеличить ускорение выполнения параллельной программы, а также в создании метода определения параметров источников загрязнения городского воздуха.
Практическая значимость работы состоит в том, что разработанные в диссертационной работе математические модели и параллельные алгоритмы могут использоваться в реальных условиях для контроля качества атмосферного воздуха над урбанизированными территориями и обнаружения районов города и расположенных на них предприятий, существенно влияющих в текущий момент времени на уровень загрязнения приземного воздуха.
Разработанные в диссертации модели, алгоритмы и программы используются в созданном в рамках проекта РНП.2.2.3.2.1569 аналитической ведомственной целевой программы "Развитие научного потенциала высшей школы (2006-2008 годы)" расчетно-программном комплексе для обучения по вопросам обеспечения безопасности жизнедеятельности в чрезвычайных ситуациях на основе современных информационно-образовательных технологий (http://mchs.tsu.ru).
Материалы проведенных исследований включены в программу специального курса лекций, читаемого на механико-математическом факультете ТГУ.
Обоснованность научных положений и выводов, сделанных в диссертационной работе, следует из адекватности используемых физических и математических моделей, численных методов, что подтверждается сравнением с результатами экспериментов, а также с известными теоретическими данными других авторов.
На защиту выносятся:
1. Математическая модель обратной задачи переноса газообразной примеси.
2. Модификация численного метода Марчука решения обратных задач для определения городских районов - загрязнителей атмосферного воздуха.
3. Явные и явно-неявные разностные схемы, применяемые для численного решения сопряженных уравнений, и их теоретическое исследование.
4. Метод параллельных вычислений для решения обратных задач переноса примеси, опирающийся на использование комбинации функциональной и геометрической декомпозиции, и результаты идентификации городских районов - загрязнителей атмосферного воздуха.
Личный вклад автора: Панасенко Е.А. под руководством профессора Старченко А.В. принимала участие в разработке численного метода решения обратных задач переноса примеси, разработке алгоритма численного решения сопряженных уравнений, создании и применении параллельных алгоритмов для численного решения обратных задач переноса примеси; осуществила тестирование разработанных методов для определения городских районов - загрязнителей приземного воздуха; самостоятельно получила основные результаты диссертационной работы и провела их обоснование.
Основные результаты диссертации доложены соискателем на 5-ти международных и 5-ти Всероссийских конференциях в Алуште, Новороссийске, Томске и полностью представлены в следующих опубликованных работах [41,51,52,53,54,55,56,57,89], в том числе в 1 статье в изданиях списка ВАК.
Диссертационная работа состоит из введения, пяти глав и заключения.
Похожие диссертационные работы по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК
Математическое моделирование процессов движения воздушной среды и загрязняющих веществ в условиях городской застройки2010 год, кандидат физико-математических наук Любомищенко, Денис Сергеевич
Моделирование турбулентных течений и переноса примеси в элементах городской застройки2008 год, кандидат физико-математических наук Нутерман, Роман Борисович
Новые методы параллельного моделирования распространения загрязнений в окрестности промышленных и муниципальных объектов2009 год, доктор технических наук Пекунов, Владимир Викторович
Параллельная реализация математической модели атмосферного пограничного слоя над поверхностью с неоднородными свойствами2005 год, кандидат физико-математических наук Есаулов, Алексей Олегович
Модели и методы для решения диагностических и прогностических задач геоэкологии: Атмосферы и гидросферы2001 год, доктор технических наук Аргучинцев, Валерий Куприянович
Заключение диссертации по теме «Математическое моделирование, численные методы и комплексы программ», Панасенко, Елена Александровна
5.5 Выводы
1. Разработанные модели, численные методы, алгоритмы и программы решения обратных задач переноса примеси на основе сопряженных уравнений и двойственного представления функционала концентрации примеси прошли успешную апробацию на тестовых двумерных задачах переноса примеси по идентификации параметров мгновенного источника примеси или источника постоянной мощности. Исследовано влияние погрешности «измеренных» значений концентрации примеси на точность определения параметров источника. На основе проведенных вычислительных экспериментов установлена практически линейная связь между этими величинами.
2. Для определения на основе измерений городских районов - загрязнителей атмосферного воздуха разработана модификация метода Марчука решения обратных задач, заключающаяся в преобразовании двойственного представления функционала концентрации примеси в дополнительные условия для оперативной количественной оценки интенсивности поступления примеси от различных районов города. Это преобразование позволяет весь вычислительный процесс представить в виде последовательности двух этапов, что существенно упрощает решение обратной задачи. Предлагаемая методика решения обратных задач прошла апробацию для реальных условий г. Томска, причем в качестве входных данных использовались реальные измерения монооксида углерода на стационарных постах или мобильной станции, а также результаты расчетов по мезомасштабной метеорологической модели. Предсказанная численно картина соответствует расположению основных городских районов, ответственных за выброс в атмосферу СО, а также дает достаточно хорошую оценку уровня интенсивности выбросов.
3. Разработанные математические модели, численные методы и параллельные программы для решения обратных задач используются в расчетно-программном комплексе, предназначенном для обучения по вопросам обеспечения безопасности жизнедеятельности в крупных и чрезвычайных ситуациях (проект РНП.2.2.3.2.1569 аналитической ведомственной целевой программы "Развитие научного потенциала высшей школы (2006-2008 годы)").
ЗАКЛЮЧЕНИЕ
1. Построена математическая постановка обратной задачи переноса примеси для идентификации параметров источников поступления примеси в атмосферу с использованием данных измерения её концентрации, которая опирается на уравнения, сопряженные к уравнению турбулентной диффузии, начальные и граничные условия для них и дополнительные соотношения на неизвестные параметры источников, получающиеся на основе двойственного представления функционала от концентрации примеси.
2. Применены явные и явно-неявные разностные схемы для численного решения сопряженных к уравнениям турбулентной диффузии примеси уравнений. Применение этих схем, по сравнению с часто используемыми методами покоординатного расщепления, имеет преимущество по быстродействию и возможности более эффективного распараллеливания. Дискретизация сопряженных уравнений на сетке, покрывающей область исследования, осуществлялась методом конечного объема. При аппроксимации адвективных членов уравнений рассматривались схемы первого, второго и четвертого порядка точности, для диффузионных - второго. Теоретически доказано, что построенные разностные схемы аппроксимируют дифференциальную задачу на точном решении, условно устойчивы и сходятся. Проведено тестирование построенных разностных схем для модельных двумерных задач распространения примеси от мгновенного источника или источника постоянной мощности, которое показало, что без существенного ущерба по точности получения численных результатов можно применять схему MLU Ван Лира, которая имеет преимущества по минимизации временных затрат по сравнению со схемой Ботта.
3. Разработаны новые параллельные реализации численного решения обратных задач переноса примеси, опирающиеся на функциональную и геометрическую декомпозиции. Теоретический анализ и проведенные вычислительные эксперименты на кластере ТГУ СКИФ Cyberia показали более высокую эффективность функциональной декомпозиции, что выражается в меньших потерях времени на межпроцессорную передачу данных при различной вычислительной нагрузке (N=5,10,20) и количестве использованных процессов (5 < р < 20). Для существенного увеличения количества используемых процессов создан комбинированный метод, сочетающий функциональную и геометрическую декомпозиции. Его применение показало хорошую масштабируемость параллельной программы до нескольких сотен процессов, т.е. обеспечение эффективности не ниже 50% при увеличении числа используемых процессов при неизменных остальных параметрах решаемой задачи.
4. Проведена апробация разработанных моделей, численных методов, алгоритмов и программ решения обратных задач переноса примеси на тестовых двумерных задачах.
Исследовано влияние погрешности «измеренных» значений концентрации примеси на точность определения параметров источника. На основе проведенных вычислительных экспериментов установлена практически линейная связь между этими величинами.
5. Разработана модификация метода Марчука решения обратных задач для определения городских районов — загрязнителей атмосферного воздуха, заключающаяся в преобразовании двойственного представления функционала концентрации примеси в дополнительные условия для оценки интенсивности поступления примеси от различных районов города. Предлагаемая методика прошла апробацию для реальных условий г. Томска, причем в качестве входных данных использовались реальные измерения монооксида углерода на стационарных постах или мобильной станции, а также результаты расчетов по мезомасштабной метеорологической модели. Предсказанная численно картина соответствует расположению основных городских районов, ответственных за выброс в атмосферу СО, а также дает достаточно хорошую оценку уровня интенсивности выбросов.
6. Разработан расчетно-программный комплекс, который предназначен для обучения по вопросам обеспечения безопасности жизнедеятельности в крупных и чрезвычайных ситуациях. В основе этого комплекса лежат разработанные в диссертационной работе математические модели, численные методы и параллельные программы для решения обратных задач. Материалы проведенных исследований включены в программу специального курса лекций, читаемого на механико-математическом факультете ТГУ.
Список литературы диссертационного исследования кандидат физико-математических наук Панасенко, Елена Александровна, 2010 год
1. Агошков В.И. Методы оптимального управления и сопряженных уравнений в задачах математической физики / В.И. Агошков. — М. : ИВМ РАН, 2003. 256 с.
2. Андреева Е.А. Вариационное исчисление и методы оптимизации / Е.А. Андреева. М. : Высшая школа, 2006. — 583 с.
3. Атмосферная турбулентность и моделирование распространения примесей / под ред. Ф.Т.М. Ньистадта, X. Ван Допа. JL : Гидрометеоиздат, 1985. - 350 с.
4. Аттетков А.В. Введение в методы оптимизации / А.В. Аттетков, B.C. Зарубин, А.Н. Канатников. М. : Финансы и статистика, 2008. - 272 с.
5. Бартеньев О. В. Фортран для профессионалов. Математическая библиотека IMSL / О.В. Бартеньев. М. : Диалог - МИФИ, 2000. - 457 с.
6. Бахвалов Н.С. Численные методы / Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. -М. : Бином, 2004.-636 с.
7. Белов И.А. Модели турбулентности: учебное пособие / И.А. Белов. JI. : ЛМИ, 1986.- 100 с.
8. Белов И.А. Моделирование гидромеханических процессов в технологии изготовления полупроводниковых приборов и микросхем / И.А. Белов, В.А. Шеленкевич, Л.И. Шуб. Л. : Политехника, 1991. - 287 с.
9. Берлянд М.Е. Прогноз и регулирование загрязнения атмосферы / М.Е. Берлянд. — Л.: Гидрометеоиздат, 1985.-272 с.
10. Берлянд М.Е. О расчете загрязнений атмосферы выбросами их дымовых труб электростанций / М.Е. Берлянд, Е.Л. Генихович, Р.И. Оникул // Труды Геолого -географического общества. — 1964. — вып. 158. — С. 3 — 21.
11. Библиотека численного анализа НИВЦ Московский государственный университет Электронный ресурс. / Научно-исследовательский Вычислительный Центр
12. Московского Государственного Университета им. М.В.Ломоносова (НИВЦ МГУ). — Электрон, дан. М. : Библиотека численного анализа НИВЦ Московский государственный университет, 2006. - URL: http://num — anal.srcc.msu.ru (дата обращения: 16.01.2007).
13. Васильев Ф.П. Численные методы решения экстремальных задач / Ф.П. Васильев. -М.: Наука, 1980.-551 с.
14. Вержбицкий В.М. Основы численных методов / В.М. Вержбицкий. М. : Высшая школа, 2002. - 847 с.
15. Воеводин В.В. Параллельные вычисления / В.В. Воеводин, Вл. В. Воеводин. -СПб. : БХВ Петербург, 2002. - 608 с.
16. Вшивков В.А. Параллельные численные алгоритмы. Решение задач многофазной гидродинамики и астрофизики: Учеб. пособие / В.А. Вшивков, Г.Г. Лазарева, А.В. Снытников. — Новосибирск : Новосибирский государственный университет, 2006. — 145 с.
17. Высокопроизводительные вычисления на кластерах / под ред. А.В. Старченко. — Томск : Изд — во Томского университета, 2008. 198 с.
18. Гергель В.П. Основы параллельных вычислений для многопроцессорных вычислительных систем / В.П. Гергель, Р.Г. Стронгин. Нижний Новгород : Издательство ННГУ им. Н.И. Лобачевского, 2003 - 184 с.
19. Гергель В.П. Теория и практика параллельных вычислений / В.П. Гергель. Изд - во: БИНОМ. Лаборатория знаний, 2007. - 423 с.
20. Гласко В.Б. Обратные задачи математической физики / В.Б. Гласко М. : Издательство Московского университета, 1984. - 111 с.
21. Годовое изменение концентрации белка в биогенной компоненте атмосферного аэрозоля на юге Западной Сибири / А.Н. Анкилов и др. // Оптика атмосферы и океана. — 2001.-Т. 14, №6-7.-С. 520-525.
22. Годунов С.К. Разностные схемы / С.К. Годунов, B.C. Рябенький. М. : Наука, 1977.-439 с.
23. Гусев Е.Л. Задачи и методы оптимизации / Е.Л. Гусев. Якутск : Издательство Якутского университета, 1995. — 116 с.
24. Денисов A.M. Введение в теорию обратных задач / A.M. Денисов. — М. : Издательство Московского университета, 1994.-206 с.
25. Есаулов А.О. К выбору схемы для численного решения уравнения переноса / А.О. Есаулов, А.В. Старченко // Вычислительная гидродинамика. 1999. - № 2. - С. 27 - 32.
26. Зангвилл У. Нелинейное программирование. Единый подход / У. Зангвилл. — М. : Советское радио, 1973. 290 с.
27. Изучение изменчивости белковой компоненты атмосферного аэрозоля над лесными массивами юга Западной Сибири / Б.Д. Белан и др. // Доклады РАН. 2000. -Т.374, № 6. — С. 827-829.
28. Изучение изменчивости биогенной компоненты атмосферного аэрозоля над лесными массивами Западной Сибири / И.С. Андреева и др. // Оптика атмосферы и океана. 2000. - Т. 13, № 6 - 7. - С. 639 - 644.
29. Ильин С.А. Сравнение квазимонотонных разностных схем сквозного счета. Нестационарные задачи газовой динамики / С.А. Ильин, Е.В. Тимофеев. СПб. : Питер, 1993.-49 с.
30. Калиткин Н.Н. Численные методы / Н.Н. Калиткин. М. : Наука, 1978. - 512 с.
31. Карманов В.Г. Математическое программирование / В.Г. Карманов. М. : Наука, 2004.-263 с.
32. Корнеев В.В. Параллельные вычислительные системы / В.В. Корнеев. — М. : Нолидж, 1999.-320 с.
33. Курбацкий А.Ф. Введение в моделирование турбулентного переноса импульса и скаляра / А.Ф. Курбацкий. Новосибирск : Академическое изд-во «ГЕО», 2007. - 331 с.
34. Лебедев А.С. Практикум по численному решению уравнений в частных производных / А.С. Лебедев, С.Г. Черный. Новосибирск: Изд - во Новосибирского университета, 2000. —136 с.
35. Малышкин В.Э. Параллельное программирование мультикомпьютеров / В.Э. Малышкин, В.Д. Корнеев. — Новосибирск : изд во НГТУ, 2006. - 296 с.
36. Марчук Г.И. Математическое моделирование в проблеме окружающей среды / Г.И. Марчук. М.: Наука, 1982. - 315 с.
37. Марчук Г.И. Глобальный перенос примеси в атмосфере / Г.И. Марчук, А.Е. Алоян // Физика атмосферы и океана. 1995. - Т. 31, № 5. - С. 29 - 42.
38. Межрегиональный супервычислительный центр ТГУ Электронный ресурс. / Электрон, дан. — Томск: Межрегиональный супервычислительный центр ТГУ, 2007 2009. -URL: http://www.skif.tsu.ru (дата обращения: 08.09.2007).
39. Многопроцессорные системы: построение, развитие, обучение / К.Е. Афанасьев и др.; под ред. А.Н. Тихонова. М. : КУДИЦ - ОБРАЗ, 2005. - 224 с.
40. Мобильная станция АКВ 2 и её применение на примере города Томска / М.Ю. Аршинов и др. // Оптика атмосферы и океана. — 2005. — Т. 18, №8. - С.643 - 648.
41. Немнюгин С.А. Параллельное программирование для многопроцессорных вычислительных систем / С.А. Немнюгин, О.Л. Стесик. — СПб. : БХВ Петербург, 2002. -400 с.
42. ОАО «Сибирский химический комбинат» Электронный ресурс. / Электрон, дан. Томск: ОАО «Сибирский химический комбинат», 1999 — 2009. - URL: http://atomsib.ru (дата обращения: 14.07.2008).
43. Обратная задача определения параметров источника атмосферных примесей на основе данных о плотности осадка на подстилающей поверхности / О.В. Боталова и др. // Оптика атмосферы и океана. 2003. - Т. 16, №7. - С. 641 - 644.
44. Определение параметров источника атмосферных загрязнений с помощью мобильных пунктов мониторинга / А.И. Бородулин и др. // Оптика атмосферы и океана. -2003.-Т. 16,№8.-С. 765-768.
45. Определение параметров многоточечного источника аэрозольных примесей путем решения обратной задачи / С.Р. Сарманаев и др. // Оптика атмосферы и океана. — 2000. Т.13, № 9. - С. 875 - 878.
46. Оценка биологической компоненты атмосферного аэрозоля на юге Западной Сибири / А.Н. Анкилов и др. // Оптика атмосферы и океана. 1999. - Т. 12, № 6. - С.507 -511.
47. Панасенко Е.А. Определение городских районов — загрязнителей атмосферного воздуха по данным наблюдений / Е.А. Панасенко, А.В. Старченко // Оптика атмосферы и океана. 2009. - Т.22, № 03. - с. 279 - 283.
48. Панасенко Е.А. Применение многопроцессорной вычислительной техники длячисленной реализации метода решения обратных задач переноса примеси с целью определения источников мгновенного выброса в чрезвычайных ситуациях / Е.А. Панасенко,
49. A.В. Старченко // Вестник Новосибирского государственного университета. Серия: Информационные технологии. 2009. — Т.7, № 4. — С. 108 - 118.
50. Панасенко Е.А. Численное решение некоторых обратных задач с различными типами источников атмосферного загрязнения / Е.А. Панасенко, А.В. Старченко // Вестник ТГУ. Механика и математика. 2008. - № 2(3). - С.47 - 56.
51. Пасконов В.М. Численное моделирование процессов тепло и массообмена /
52. B.М. Пасконов, В.И. Полежаев, JT.A. Чудов. М. : Наука, 1984. - 285 с.
53. Патанкар С. Численные методы решения задач теплообмена и динамики жидкости: пер. с англ. / С. Патанкар. М. : Энергоатомиздат, 1984. - 152 с.
54. Пененко В.В. Методы численного моделирования атмосферных процессов / В.В. Пененко. JI. : Гидрометеоиздат, 1981. - 352 с.
55. Пененко В.В. Модели и методы для задач охраны окружающей среды / В.В. Пененко, А.Е. Алоян. — Новосибирск : Наука, 1985. — 255 с.
56. Поляк Б.Т. Введение в оптимизацию / Б.Т. Поляк. М.: Наука, 1983. - 384 с.
57. Применение мезомасштабных моделей ММ5 и WRF к исследованию атмосферных процессов / А.В. Старченко и др. // Оптика атмосферы и океана. — 2005. № 05 - 06. - С.455 — 461.
58. Ривин Г.С. Перенос аэрозоля в атмосфере: выбор конечно разностной схемы / Г.С. Ривин, П.В. Воронина // Оптика атмосферы и океана. - 1997. - Т. 10, № 6. - С. 623 - 633.
59. Рождественский Б. J1. Системы квазилинейных уравнений / Б.Л. Рождественский, Н.Н. Яненко — М.: Наука. Физматлит, 1968. 592 с.
60. Роуч П. Вычислительная гидродинамика: пер. с англ. / П. Роуч. — М. : Мир, 1980. -616 с.
61. Рябенький B.C. Введение в вычислительную математику / B.C. Рябенький. — М. : Наука, 1994.-335 с.
62. Самарский А.А. Вычислительная теплопередача / А.А. Самарский, П.Н. Вабищевич. -М.: Едиториал УРСС, 2003. 782 с.
63. Самарский А.А. Необходимые и достаточные условия двухслойных разностных схем//ДАН СССР. 1968. - Т.181, № 4. - С. 808-811.
64. Самарский А.А. Разностные методы решения задач газовой динамики : Учебное пособие для вузов по специальности "Прикладная математика" / А.А. Самарский, Ю.П. Попов. М. : Наука, 1992. - 422 с.
65. Самарский А.А. Устойчивость разностных схем / А.А. Самарский, А.В. Гулин. -М.: Наука, 1973.-415 с.
66. Самарский А.А. Численные методы математической физики / А.А. Самарский, А.В. Гулин. М.: Научный мир, 2000. - 316 с.
67. Самарский А.А. Численные методы решения задач конвекции диффузии / А.А. Самарский, П.Н. Вабищевич. - М. : Едиториал УРСС, 2003. - 247 с.
68. Самарский А.А. Численные методы решения обратных задач математической физики / А.А. Самарский, П.Н. Вабищевич. М. : Едиториал УРСС, 2004. - 478 с.
69. Старченко А.В. Моделирование переноса примеси в однородном атмосферном пограничном слое // Труды Международной конференции ENVIROMIS 2000. - Томск : Изд - во Томского ЦНТИ, 2000. - С. 77 - 82.
70. Старченко А.В. Параллельные вычисления в задачах охраны окружающей среды // Вторая Сибирская школа — семинар по параллельным и высокопроизводительным вычислениям: сборник трудов. / под ред. А.В. Старченко. Томск : Делтаплан, 2004. — С. 17 -22.
71. Старченко А.В. Параллельные вычисления на многопроцессорных вычислительных системах / А.В. Старченко, А.О. Есаулов. Томск : Изд - во Томского университета, 2002. - 56 с.
72. Старченко А.В. Применение многопроцессорных вычислительных систем при прогнозе распространения примеси в воздушном бассейне города // Вестник ТГУ. 2003. -№10.-С. 34-43.
73. Старченко А.В. Численная модель для оперативного контроля уровня загрязнения городского воздуха / А.В. Старченко, Д.А. Беликов // Оптика атмосферы и океана. 2003. - Т.16, №7. - С.657 - 665.
74. Старченко А.В. Численное исследование локальных атмосферных процессов // Вычислительные технологии. 2005. - № 10,4.2 - С. 81 — 89 .
75. Старченко А.В. Численное моделирование городской и региональной атмосферы и оценка ее влияния на перенос примеси // Вычислительные технологии. — 2004. — Т.9, 4.2. — С. 98- 107.
76. Тихонов А.Н. Методы решения некорректных задач / А.Н. Тихонов, В.Я. Арсенин. М. : Наука, 1979. - 288 с.
77. Тихонов А.Н. О решении некорректно поставленных задач и методе регуляризации //ДАН. 1963. - Т. 151, № 3. - С. 501 - 504.
78. Трухин А.В. Интерфейс доступа к расчетно программному комплексу для численного моделирования переноса примеси в атмосферном пограничном слое / А.В. Трухин, А.Н. Терентьев // Журнал "Открытое и дистанционное образование". - 2008. -№4(32). - С. 60 - 66.
79. Aloyan A.E. Control theory and environmental risk assessment / A.E. Aloyan, V.O. Arutyunyan // Springer Series С Environmental Security: Air, Water and Soil Quality Modelling for Risk and Impact Assessment. - 2007. - P. 45-54.
80. Anderson D. Computational fluid mechanics and heat transfer / D. Anderson, J. Tannehill, R. Pletcher. New York : Hemisphere Publishing Corporation, 1984. - 726 p.
81. Anil W. Date Introduction to Computational Fluid Dynamics / W. Anil. — Cambridge : Cambridge University Press, 2005. 375 p.
82. Baliga B.R., Patankar S.V. A Control Volume - Based Finite - Element Method for Two - Dimensional Flows 1979.
83. Bott A. Monotone Flux Limitation in the Area — preserving Flux form Advection Algorithm // J. Monthly Weather Review. - 1992. - V.120. - P. 2592 - 2602.
84. Bott A. A Positive definite advection scheme obtained by Nonlinear Renormalization of the Advective Fluxes // Monthly Weather Review. 1989. - V. 117. - P. 1006 - 1115.
85. Bott A. The Monotone Area preserving Flux - form Advection Algorithm: Reducing the Time - splitting Error in Two - Dimensional Flow Fields // Notes and Correspondence. - 1993. -V. 120.-P. 2637-2641.
86. Bruaset A.M. Numerical Solution of Partial Differential Equations on Parallel Computers / A.M. Bruaset, A. Tveito. — Berlin : Springer, 2006 — 487 p:
87. Bunday B.D. Basic Optimization Methods / B.D. Bunday. London : Edward Arnold, 1984.-64 p.
88. Casanova H. Parallel Algorithms // H. Casanova, A. Legrand, Y. Robert. London : Chapman and Hall/CRC, 2008. - 360 p.
89. Chapra S. Numerical Methods for Engineers / S. Chapra, R. Canale. New York : McGraw-Hill Science/Engineering/Math, 2009. - 960 p.
90. Chlond A. Locally modified version of Bott's advection scheme // Mon. Wea. Rev. -1994.-Y. 122.-P.111 -125.
91. Colella P. The piecewise parabolic method (PPM) for gas dynamical simulations / P. Colella, P.R. Woodward // Journal of Computational Physics. - 1984. - V. 54. - P. 174 - 201.
92. Dennis J.E. Quasi Newton, motivation and theory / J.E. Dennis, J.J. More // SIAM Review. - 1977. - v. 19, № 1. - P. 46 - 89.
93. Dimov I. Parallel computations with large-scale air pollution models / I. Dimov, I. Farago, Z. Zlatev // Problems in Programming. 2003. - № 3. - P. 44 - 52.
94. Easter R.C. Two Modified Versions of Bott's Positive Definite Numerical Advection Scheme // J. Notes and Correspondence. - 1993. - V. 121. - P. 297 - 304.
95. Faries J.D. Numerical Methods / J.D. Faries, L. Burden. — Florence : Brooks Cole, 2002. 640 p.
96. Foster I. Designing and Building Parallel Programs : Concepts and Tools for Parallel Software Engineering /1. Foster. USA : Addison-Wesley Pub Co, 1995. - 381 p.
97. Gastaldi F. On a domain decomposition for the transport equation: theory and finite element approximation / F. Gastaldi, L. Gastaldi // IMA Journal of Numerical Analysis. 1994. -V. 14, №1. -P. 111-135.
98. Gibbons A. Efficient Parallel Algorithms / A. Gibbons, W. Rytter. : Cambridge University Press, 1990. - 257 p.
99. Golse F. A Domain Decomposition Analysis for a two-scale linear transport problem / F. Golse, S. Jin, C. D. Levermore. : 30 p.
100. Gropp W. Using MPI: Portable Parallel Programming with the Message-Passing Interface / W. Gropp, E. Lusk, A. Skjellum. Cambridge : MIT Press, 1999. - 371 p.
101. Herty M. A domain decomposition method for conservation laws with discontinuous flux function / M. Herty, M. Seaid, A.K. Singh // Applied Numerical Mathematics. 2007. - V. 57. -P. 361 -373.
102. Himmelblau D.M. Applied non linear programming / D.M. Himmelblau. - New York : McGraw-Hill Book Co., 1972.-230 p.
103. Hoffmann K.H. Parallel Algorithms and Cluster Computing Implementations, Algorithms and Applications / K.H. Hoffmann, A. Meyer. Berlin : Springer-Verlag, 2006. - 370 p.
104. Hundsdorfer W. Numerical solution of time-dependent advection-diffusion-reaction equations / W. Hundsdorfer, J.G. Verwer. Berlin : Springer, 2003. - 500 p.
105. Hurley P. J. The Air Pollution Model (TAPM) Version 2 // CSIRO Atmospheric Research Technical Paper. 2002. - № 55. - P.37.
106. Inverse Methods in Global Biogeochemical Cycles / P. Kasibhatla etc.. Washington : DC, 1999.- 114 p.
107. Klemp J.B. The simulation of three dimensional convective storm dynamics / J.B.
108. Klemp, R.B. Wilhelmson // Journal of Atmospheric science. 1978. - V. 35, № 6. - P. 1070 -1096.
109. Kunz R. Simulation of the wind field in Athens using refined boundary conditions / R. Kunz, N. Moussiopoulos //Atmospheric Enviroment. 1995. - V. 29. - P. 3375 - 3391.
110. Lax P.D. On the stability of difference schemes with variable coefficients / P.D. Lax, B. Wendroff// Comm. Pure Appl. Math. 1962. - № 4. - P. 12 - 16.
111. Lin C. Principles of Parallel Programming / C. Lin, L. Snyder. USA : Addison Wesley, 2008.-352p.
112. Marchuk G. I. Methods of numerical mathematics / G.I. Matchuk. New York : Springer - Yerlag, 1975. - 316 p.
113. Marchuk G.I. Adjoint Equations and Analysis of Complex Systems / G.I. Marchuk. : Springer Netherlands, 2009. - 480 p.
114. McNider R.T. Influence of diurnal and inertial boundary layer oscillations on long -range dispersion / R.T. McNider, M.D. Moran, R.A. Pielke // Atmospheric Enviroment. - 1988. -Y. 22., № 11. - P. 2445 - 2462.
115. Message Passing Interface Forum. MPI: A message Passing Interface Standart // International Journal of Super Computer Applications. - 1994. - V. 8(314). - P. 165-414.
116. Minghui J. A numerical method for solving a scalar advection dominated transport equation with concentration — dependent sources / J. Minghui, M. Roseanne, T. Peter // J.Computers & Chemical Engineering. - 2003. - V. 27. - P. 123 - 130.
117. Moussiopoulos N. Numerical simulation of photochemical smog formation in Athens, Greece A case study // Atmospheric Enviroment. - 1995. - V. 29, № 24 - P. 3619 - 3632.
118. Nocedal J. Numerical Optimization / J. Nocedal, W. Stephen. New York : Springer, 2006. - 664 p.
119. Noll B. Evaluation of a Bounded High Resolution Scheme for Combustor Flow // Computations AIAA Journal. - 1992. - V. 30, № 1. - P. 64 - 69.
120. Оке Т. Boundary Layer Climates / Т. Оке. London : Routledge, 1987. - 423 p.
121. Pasquill F. Atmospheric dispersion of pollution // Quart of Royal Meteorology Society. 1971.-V. 97.-P. 369-395.
122. Penenko V. Methods of sensitivity theory and inverse modeling for estimation of source parameters / V. Penenko, A. Baklanov, E. Tsvetova // Future Generation Computer Systems. 2002. - № 18. - P. 661 - 671.
123. Penenko V.V. Prediction of the atmosphere quality changes from monitoring data with estimation of indeterminacy // Atmospheric and Oceanic Optics Journal. 2008. - V. 21, № 6. - P. 426-431.
124. Penenko V.V. Study of mesoscale transport of impurities based on models of Euler and Lagrange types / V.V. Penenko, E.A. P'yanova, A.V. Chernova // Atmospheric and Oceanic Optics Journal. 2007. - V. 20, № 6. - P. 445 - 450.
125. Perego S. Metphomod a Numerical Mesoscale Model for Simulation of Regional Photosmog in Complex Terrain: Model Description and Application during Pollumet 1993 (Switzerland) // Meteorology and Atmospheric Physic. - 1999. - V. 70. - P. 43 - 69.
126. Physick W.L. LADM: Lagrangian Atmospheric Dispersion Model // CSIRO. Division of Atmospheric Research. 1994. - № 24. - P. 649 - 662.
127. Prusov V. Modelling and forecasting atmospheric pollution over region / V. Prusov, A. Dorosenko // Annales Univ. Sci. ELTE. 2003. - № 46. - P. 27-45.
128. Pudykiewicz J.A. Application of adjoint tracer transport equations for evaluating source parameters // Atmos. Environ. 1998. - V. 32. - P. 3039 - 3050.
129. Ramm A.G. Inverse Problems : Mathematical and Analytical Techniques with Applications to Engineering / A.G. Ramm. Berlin : Springer, 2004. - 442 p.
130. Richtmyer R.D. Difference methods for initial value problems / R.D. Richtmyer. -New York : John Wiley & Sons, 1967. - 401 p.
131. Rosenbrock H.H. Some general implicit processes for the numerical solution of differential equations // Computer journal. 1963. - V. 5, № 4. - P.329 - 330.
132. Samarskii A.A. The Theory of Difference Schemes / A.A. Samarskii. New York : Marcel Dekker, 2001. - 750 p.
133. Shu C. W. Essentially Non - Oscillatory and Weighted Essentially Non - Oscillatory Schemes for Hyperbolic Conservation Laws / NASA, Langley Research Center. - 1997. - P. 78.
134. Smith B. Domain Decomposition / B. Smith, P. Bjorstad, W. Gropp. — Cambridge : Cambridge University Press , 2004. 238 p.
135. Smolarkiewicz P.K. A simple positive definite advection scheme with small implicit diffusion // Mon. Wea. Rev. 1983. - V. 111. - P. 479 - 486.
136. Sutton O.G. Micrometeorology / O.G. Sutton. New York : McGraw-Hill Education, 1953.-333 p.
137. The forward in - time upstream advection scheme: extension to higher orders / C. Tremback and oth. // Monthly Weather Rev. - 1987. - V. 115. - P. 540 - 555.
138. Thompson D.J. Criteria for the selection of stochastic models of particle trajectories in turbulent flows // J. of Fluid Mechanics. 1987. - V. 180. - P. 529 - 556.
139. Traub J.F. Iterative Methods for the Solution of Equations / J.F. Traub. USA : American Mathematical Society, 1982. - 310 p.
140. Uliasz M. The atmospheric mesoscale dispersion modeling system // J. of Applied
141. Meteorology. 1993. - V. 32. - P. 139 - 149.
142. Van Leer B. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second order scheme // J. Comput. Phys. 1974. - V. 14. - P. 361 -370.
143. Varga R. Some results in approximation theory with applications to numerical analysis. Numerical solution of partial differential equations / R. Varga. New York - London : Academic Press, 1971.-135 p.
144. Zalesny V.B. Numerical algorithm of data assimilation based on splitting and adjoint equation methods / V.B. Zalesny, A.S. Rusakov // Russ. J. Numer. Anal. Math. Modelling. 2007. - V. 22, №2. - P. 199-219.
145. Zlatev Z. Parallel algorithms for the chemical part of large air pollution models // Russ. J. Numer. Anal. Math. Modelling. 2001. - V. 3, № 13. - P. 22-32.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.