Статистический анализ динамических систем, подверженных интенсивным случайным воздействиям тема диссертации и автореферата по ВАК РФ 01.04.03, доктор физико-математических наук Музычук, Олег Владимирович

  • Музычук, Олег Владимирович
  • доктор физико-математических наукдоктор физико-математических наук
  • 2001, Нижний Новгород
  • Специальность ВАК РФ01.04.03
  • Количество страниц 346
Музычук, Олег Владимирович. Статистический анализ динамических систем, подверженных интенсивным случайным воздействиям: дис. доктор физико-математических наук: 01.04.03 - Радиофизика. Нижний Новгород. 2001. 346 с.

Оглавление диссертации доктор физико-математических наук Музычук, Олег Владимирович

Введение

Глава 1. Некоторые математические вопросы, методы и приемы анализа стохастических систем

§1.1. Форм\гла Фуруцу - Новикова для совместных кумулянтов совокупности: случайная сила и её функционал

§1.2. Структура статистической связи случайного воздействия и выходной координаты стохастической системы.

§1.3. О некоторых применениях цепных дробей и матричных цепных дробей к анализу нелинейных стохастических систем

1.3.1. Одномерные непрерывные дроби

1.3.2. Матричные цепные дроби

§1.4. Кинетические уравнения для вероятностных характеристик динамических систем, находящихся под воздействием экспоненциально-коррелированных случайных сил

1.4.1. Системы с газ^ссовым марковским шумом

1.4.2. Системы со случайным воздействием в виде квадрата гауссова шума

§1.5. Кинетические уравнения для вехюятностных характеристик систем, находящихся под воздействием винеров-ского шума

Глава 2. Статистическое описание линейных и параметрических систем с интенсивными случайными воздействиями

§2.1. Некоторые точно решаемые задачи

2.1.1. Стохастическое уравнение 1-го порядка

2.1.2. Стохастический осциллятор. Вероятностные характеристики выходного шума

2.1.3. Стохастический осциллятор. Вероятностные характеристики амплитуды колебания

§ 2.2. Вероятностное описание стохастических линейных систем общего вида в диффузионном приближении

§ 2.3. Статистические средние в линейных системах с экспоненциально-коррелированными флуктуациями параметров

2.3.1. Функциональный подход к анализу линейных стохастических систем; развитие метода "последовательных приближений"

2.3.2. Дифференциальное описание линейных стохастических систем; адекватность функционального и куму лянтног о подхода к отысканию статистических средних

2.3.3. Некоторые примеры

§2.4. Вероятностные характеристики линейных систем с квадратичной параметрикой"

2.4.1. Статистические средние в системах с широкополосными флуктуациями параметров

2.4.2. Системы с флуктуациями параметров, являющихся квадратом гауссовых марковских процессов

2.4.3. Адаптивный автокомпенсатор помех

§2.5. Эффективная частотная характеристика стохастической линейной системы с экспоненииально-коррелиро-ванными флуктуациями параметров

§2.6. Энергетические характеристики и устойчивость осциллятора, параметрически возбуждаемого интенсивным небелым и^мом

2.6.1. Параметрическое возбуждение резонансным шумом

2.6.2. Параметрическое возбуждение "розовым" шумом.

§2.7. Шумовые характеристики параметрического усилителя с интенсивными флукт)^ациями накачки

Глава 3. Стационарные вероятностные характеристики нелинейных колебательных систем, находящихся под воздействием аддитивных и мультипликативных случайных сил

§3.1. Некоторые точные результаты; нелинейно-параметрическая нормализация

§3.2. Вероятностные характеристики амплитуды колебаний стохастического осциллятора с нелинейным затуханием

3.2.1. Возбуждение дельта-коррелированным шумом

3.2.2. Возбуждение широкополосным резонансным и низкочастотным шумом

§3.3. Метод матричных цепных дробей для нахождения моментов нелинейных колебательных систем

3.3.1. Системы с кубичной нелинейностью

3.3.2. Системы с полиномиальной нелинейностью

§3.4. Вероятностные характеристики броуновского движения в стохастическом потенциальном профиле

Глава 4. Релаксации вероятностных характеристик одномерного броуновского движения. Квазилинейные системы

§4.1. Релаксация моментов и эволюция модельного вероятностного распределения безынерционных частиц

§4.2. Релаксация вероятностных характеристик броуновского движения нелинейного осциллятора

4.2.1. Общий анализ и система с нелинейной жесткостью.

4.2.2. Система с нелинейной вязкостью

§4.3. Релаксация вероятностных характеристик "розового" броуновского движения

4.3.1. Стационарные моменты нелинейных систем с аддитивным "розовым" шумом

4.3.2. Релаксация под действием гауссовой марковской случайной силы

4.3.3. Релаксация под действием телеграфной случайной силы и "квазистатическая" релаксация

Глава 5. Вероятностное описание некоторых принципиально нелинейных стохастических систем и саморегулирующихся сообществ в среде с интенсивными флуктуациями параметров

§5.1. Точные результаты для вероятностных характеристик уравнения Ферхюльста с флуктуирующими параметрами

5.1.1. Стационарные вероятностные характеристики

5.1.2. Релаксация обратных моментов

§5.2. Релаксация моментов и модельных распределений некоторых систем, связанных с уравнением Ферхюльста.

5.2.1. Метод анализа. Системы с дельта-коррелированным шумом

5.2.2. Релаксация вероятностных характеристик генераторных систем

5.2.3. Релаксация вероятностных характеристик уравнения Ферхюльста с "розовым" шумом

§5.3. Вероятностное описание системы "хищник-жертва" с интенсивными флуктуациями параметров

5.3.1. Стационарные вероятностные характеристики чи-сленностей

5.3.2. Релаксация среднеквадратичных характеристик в системе с дельта-коррелированным шумом

5.3.3. Релаксация моментов и модельных вероятностных распределений в системе с "розовым" шумом

Рекомендованный список диссертаций по специальности «Радиофизика», 01.04.03 шифр ВАК

Введение диссертации (часть автореферата) на тему «Статистический анализ динамических систем, подверженных интенсивным случайным воздействиям»

Как известно, широкий круг проблем современного естествознания связан с исследованием динамических систем, находящихся под воздействием случайных сил, процессов или полей различной физической природы. Это, прежде всего, проблемы статистической физики, распространения волн в случайно-неоднородных и нестационарных средах, задачи обнаружения сигналов на фоне помех и их адаптивной фильтрации, проблемы, связанные со статистической динамикой и диагностикой машин, механизмов и инженерных сооружений, ряд экологических и экономических задач. Здесь перечислены лишь некоторые фундаментальные научные направления, существенно использующие статистический подход; в каждой конкретной области имеются свои весьма актуальные прикладные проблемы, решение которых так или иначе связано с исследованием стохастических систем. По существу любая реальная динамическая система и, в первую очередь, работающая в экстремальном режиме (максимальная чувствительность, близость к фазовым переходам и т. п.) является системой стохастической, поведение которой в значительной степени определяется действием случайных факторов и может быть адекватно описано только вероятностными методами.

Причины,, вызывающие флуктуации, в различных задачах разные: это могут быть тепловые и другие шумы, турбулентность, неустойчивость, атмосферные факторы, искусственно созданная помеховая обстановка; в экологических задачах — случайные изменения среды обитания и другие. Тем не менее, методы статистического описания таких систем достаточно похожи. Исходные динамические уравнения — дифференциальные или интегродифференциальные уравнения, в которые аддитивным или мультипликативным образом входят сл}гчайные силы. Вероятностные характеристики этих случайных воздействий обычно известны или заданы в соответствии с выбранной для решения конкретной задачи моделью.

Наиболее универсальным и мощным математическим аппаратом исследования стохастических систем является теория марковских процессов и процессов диффузионного типа, возникшая на основе теории броуновского движения [1-5]. Математическим аспектам этой теории посвящена значительная литература (см., например, монографии [6-11]). Вероятностные характеристики находятся путем решения уравнений Фоккера-Планка или близких к ним кинетических уравнений. Сделав определенные допущения о мелкомасштабности случайных сил, получить подобные уравнения обычно несложно. Основные же проблемы возникают при их аналитическом и даже численном решении. С ростом порядка динамической системы увеличивается размерность кинетических уравнений, к этому же приводит попытка учесть отличный от нуля масштаб корреляции случайных сил. Решения нестационарных уравнения Фоккера-Планка в нетривиальных случаях неизвестны.

Кроме классической марковской методики или параллельно с ней ис-пользл'ются и некоторые дополнительные средства. Для вероятностного описания линейных стохастических систем в настоящее время эффективно применяются методы, первоначально разработанные в квантовой теории поля. Это диаграммные и перенормировочные методы селективного суммирования рядов теории возмущений, аппарат вариационных производных и континуальных интегралов. Другой подход основан на выборе удобных для анализа "точно решаемых" моделей действующих на систему случайных сил (телеграфный случайный процесс, процессы Кубо-Андерсона) и построении соответствующих кинетических уравнений. Развитие этих методов анализа стохастических систем отражено в значительном количестве статей и монографий; к наиболее существенным можно отнести публикации [12-41], а литература, связанная с соответствующими приложениями, еще более обширна (см., например, монографии [40-45] и библиографию в них).

Существует также весьма общий приближенный метод статистического описания, основанный на замыкании цепочек уравнений для моментов (или кумулянтов) выходных переменных с помощью квазигауссовских разложений высших моментов (или пренебрежения высшими кумулянтами) [46-53]. Однако отмстим, что применяемый в таком виде, кумулянтный подход далеко не всегда приводит к адекватным результатам, особенно если истинное вероятностное распределение выходных переменных значительно отличается от гауссового. Широко используется лишь его первое — гауссово приближение позволяющее, как правило, качественно верно оценить наиболее простые вероятностные ха-ракт ернстики спстемы.

При вероятностном описании нелинейных колебательных систем эффективной процедурой, упрощающей анализ, является усреднение по "быстрому" времени [54-56]. Эта операция широко используется непосредственно в динамических уравнениях при переходе к укороченным и флуктуационным уравнениям в системах с относительно слабыми шумами, в частности, при расчете флуктуационных характеристик автогенераторов и параметрических генераторов [57, 58]. С другой стороны, это усреднение, осуществляемое в уравнении Фоккера-Планка или связанных с ним иных кинетических уравнений, существенно упрощает последние и позволяет решить значительное число задач [40, 4244, 59]. Ясно однако, что применение такой процедуры требует в общем случае квазилинейности и достаточной добротности колебательной системы и накладывает определенные ограничения на интенсивность и масштаб корреляции случайных сил.

Несмотря на значительное количество используемых методов, проблемы статистического описания динамических систем с интенсивными шумами далеко не исчерпаны. Ощущается необходимость дальнейшего развития как аналитических, так и численных методов анализа стохастических систем в сторону смягчения или снятия традиционных ограничений на масштаб корреляции, интенсивность и вид вероятностного распределения случайных сил.

Отметим также, что существует много актуальных задач статистического описания динамических систем, решение которых нетривиально и в рамках широко используемого диффузионного приближения. Это анализ вероятностных характеристик линейных стохастических систем общего вида, исследование нелинейных колебательных систем, находящихся под воздействием аддитивных и параметрических шумов [42, 43, 73-75], некоторые статистические задачи адаптивной фильтрации на фоне интенсивных помех [76-81], вопросы статистической динамики саморегулирующихся сообществ [82-86] и ряд других.

Чрезвычайно актуальными являются задачи, связанные с нахождением или моделированием нестационарных вероятностных характеристик стохастических систем. В последние годы значительно возрос интерес к проблемам неравновесного броуновского движения в регулярных и случайных потенциалах, связанный с большим количеством приложений в электронике, физической химии и других областях [45, 87-92]. Для решения этих нестационарных задач приходится комбинировать аналитический и численный подход, а в ряде случаев необходимо выйти за рамки почти традиционных идеализаций, главные из которых — безынерционно сть частиц и дельта-коррелированность случайных сил. В настоящее время также активно исследуется статистическая динамика систем, описывающих взаимодействие саморегулирующихся сообществ в средах со случайно изменяющимися параметрами. Заметим, что в математическом описании таких систем и в некоторых задачах броуновского движения имеется много общего [45].

В диссертации исследован ряд указанных здесь вопросов статистического описания динамических систем с интенсивными, в том числе и не дельта-коррелированными случайными воздействиями. Под таковыми будем понимать аддитивные или мультипликативные случайные силы, действие которых существенным образом меняет поведение динамической системы. Мы не будем использовать в явном виде предположения о малости эффективной мощности шумов и, там где это возможно, откажемся от ограничений на масштабы их корреляции.

Остановимся на содержании работы.

В главе 1 рассмотрены некоторые математические вопросы вероятностного описания стохастических систем, существенно используемые в дальнейшем анализе.

При отыскании вероятностных характеристик систем, находящихся под воздействием случайных сил, возникает проблема размыкания совместных статистических средних, содержащих эти воздействия и некоторые функции выходных координат. В достаточно простых ситуациях эта задача решается с помощью известной формулы Фуруцу-Новикова [13-15] и предположения о мелкомасштабности случайных сил. В §1.1 получены обобщения этой формз^лы на совместные кумулянты совокупности: случайная сила — её функционал [93], используемые в дальнейшем для статистического анализа нелинейных систем и линейных стохастических с не дельта-коррелированными шумами. В §1.2 на основании этих результатов найдены соотношения для совместных кумз^лянтов указанного вида для динамической системы, описываемой обыкновенными дифференциальными уравнениями с га}^с;совой дельта-коррелированной случайной силой. Установлено, в частности, что при аддитивной случайной силе имеется только корреляционная связь между ней п выходной переменной, а совместные кумулянты, описывающие статистические связи высших порядков, равны нулю.

Как известно, решить уравнения Фоккера-Планка для представляющих интерес вероятностных распределений удается далеко не всегда. Для практических целей часто бывает достаточно знания менее общих характеристик, обычно нескольких первых моментов выходной переменной. Ясно, что в нелинейной системе с дельта-коррелированным шумом искомые моменты зацепляются за высшие. В линейной стохастической системе с не дельта-коррелированными случайными силами подобное зацепление происходит за совместные моменты, а в общем случае имеет место и то и другое.

При решении стохастических уравнений с нелинейностью степенного вида довольно типичной является цепочка уравнений для моментов (пли иных статистических характеристик) типа "трехчленного взаимодействия". Подобное характер зацепления возникает при отыскании статистических средних в линейных системах с марковскими флукту-ациями параметров и в ряде задач распространения волн в случайнонеоднородных средах [31, 36-41, 93-95]. Известно, что такие цепочки имеют решения в форме непрерывных (или цепных) дробей (см., например, [96-98]).

В §1.3, содержащем два раздела, рассмотрены некоторые вопросы использования цепных дробей для отыскания стационарных моментов нелинейных систем, находящихся иод воздействием гауссовых дельта-коррелированных случайных сил [99]. В п.1.3.1 исследуются одномерные непрерывные дроби для системы с кубичной нелинейностью. Доказана сходимость таких дробей для моментов стохастического уравнения первого порядка и моментов амплитуды осциллятора с нелинейным затуханием.

Изложена методика построения .ЛГ-го приближения и нелинейного Л^-го приближения, основанная на использовании конечных отрезков непрерывных дробей. Построение таких приближений физически естественно, поскольку соответствующие им разложения высших моментов связаны с истинным вероятностным распределением переменных линейной системы. Установлен колебательный характер сходимости рассмотренных цепных дробей и показано, что средние значения соседних приближений значительно быстрее сходятся к точным результатам.

В более общей ситуации (многомерная стохастическая система, полиномиальная нелинейность, не дельта-коррелированная случайная сила) характер зацепления искомых вероятностных характеристик может быть сведен к трехчленному взаимодействию с помощью матричного описания [100-102]. При этом решение для искомых моментов имеет вид матричной цепной дроби. В п.1.3.2 изложен общий подход, названный методом матричных цепных дробей; он является естественным обобщением использования одномерных цепных дробей и имеет подобную же "физическую идеологию". Показано применение этого метода для отыскания среднеквадратичных характеристик осциллятора с нелинейной реактивностью, приведен соответствующий алгоритм численного анализа, оценена область сходимости.

Как известно, идеализация реальных случайных сил дельта-коррелированными, или хотя бы достаточно широкополосными процессами, лежащая в основе получения замкнутых уравнений диффузионного приближения не всегда адекватна. Есть несколько моделей случайных сил с отличным от нуля масштабом корреляции, допускающих в той или иной мере, аналитические решения для вероятностных характеристик стохастических систем. Это, прежде всего, телеграфный случайный процесс с пуассоновской статистикой перескоков [40, 41, 33] и его обобщения, известные как процессы Куб о -Андерсона [103, 104]. Это шумы с дискретными состояниями и соответствующие модели случайных сил могут быть весьма искусственными. Известно также, что можно найти некоторые вероятностные характеристики линейных систем с гауссовыми марковскими флуктуациями параметров (определенные результаты в этом направлении изложены в главе 2).

В §1.4 предложен общий подход построения кинетических уравнений для вероятностных характеристик систем, описываемых нелинейным дифференциальным уравнением первого порядка или, в общем случае, системой таких уравнений [39]. Действующая на динамическую систему случайная сила полагается гауссовым марковским процессом с произвольным временем корреляции (п.1.4.1), или квадратом такого процесса (п.1.4.2). В качестве базисных переменных, для которых строятся цепочки кинетических уравнений, выбраны совместные кумулянты, описывающие статистические связи между случайным воздействием и некоторыми функциями выходного процесса. Зацепление кинетических уравнений имеет вид трехчленного взаимодействия, а размыкание этих цепочек на некотором шаге соответствует пренебрежению указанными статистическими связями высших порядков. Аналогичным образом строится цепочка кинетических уравнений для нахождения вероятностного распределения выхода.

Показано, что второе приближение (при котором учитываются только корреляционные статистические связи) для системы с гауссовым марковским шумом адекватно замене его на случайный телеграфный дихотомический) процесс, а переход в соответствующих уравнениях к белому шуму приводит к известным результатам диффузионного приближения [24, 40]. Здесь же рассмотрено несколько примеров использования предложенного подхода, который существенно использован ниже для отыскания вероятностных характеристик конкретных динамических систем, находящихся под действием не дельта-коррелированных случайных сил.

В §1.5 по тому же принципу строятся цепочки кинетических уравнений для вероятностных характеристик системы, находящейся под воздействием винеровского шума (или фликкерного шума с показателем спектра у = —2) [105]. Эти уравнения подобны полученным в п.1.4.1, но являются нестационарными, поскольку дисперсия такого шума растет со временем. Естественно, что возможность нахождения аналитических решений здесь крайне ограничена. В качестве примера исследовано второе приближение для моментов амплитуды осциллятора с винеров-скими флуктуациями потерь. Установлено, что оно качественно верно описывает эволюцию моментов стохастических систем с фликкерными флуктуациями затухания, а именно асимптотическую неустойчивость моментов при ограниченности их на значительном временном интервале [65, 70].

Статистический анализ линейных систем с флуктуирующими параметрами имеет очень широкий спектр радиофизических и иных приложений. Как уже отмечалось, здесь используются и специальные методы. Статистическому описанию линейных систем с интенсивными флуктуациями параметров посвящена глава 2.

В §2.1 и §2.2 рассмотрение идет в рамках диффузионного приближения, в §2.3 развивается методика статистического описания систем с гауссовыми экспоненциально-коррелированными флуктуациями параметров. В §2.4 исследуются системы с квадратичной (и, в общем случае, степенной случайной параметрикой). §§2.5-2.7 посвящены вероятностном)" описанию конкретных стохастических систем, находящихся под параметрическим воздействием интенсивных не дельта-коррелированных случайных сил.

•у

В §2.1 рассмотрены системы, допускающие точные*) аналитические решения для стационарных вероятностных характеристик. Это стохастическое уравнение первого порядка и линейный осциллятор с флуктуирующими параметрами [106-108]. В п.2.1.1 анализируются стационарные вероятностные распределения выходного сигнала стохастического фильтра 1-го порядка при наличии шумовой и регулярной составляющей на входе, а также выражения для моментов и кумулянтов выхода. Эти результаты находятся достаточно просто и, в основном, известны. Рассмотрение их в настоящей работе связано с тем, что они отражают основные закономерности вероятностных характеристик линейных систем с гауссовыми флуктуациями параметров — неустойчивость высших моментов, обусловленную степенной асимптотикой вероятностного распределения выходного шума. С другой стороны, уравнение первого порядка является модельным для некоторых более сложных стохастических систем, рассмотренных ниже.

В п.2.1.2 рассмотрены вероятностные характеристики стохастического осциллятора. Соответствующее уравнение может описывать линейный фильтр с флуктуирующими параметрами, параметрический усилитель с чисто шумовой накачкой и ряд других систем. Естественно, в силу "популярности" такой модели, ряд вероятностных характеристик её (в основном, при гауссовой дельта-коррелированной параме-трике) хорошо известен, начиная с [4, 61]; (см. также [20, 29, 42-44, 71, 68-73]). Нас интересуют общие моменты выходного сигнала и его вероятностное распределение. Отметим, что аналитическое решение даже стационарного уравнения Фоккера-Планка (в переменных у, у) для стохастического осциллятора неизвестно.

На основании точных выражений для нескольких первых моментов найдены моменты п-го порядка для систем с флуктуациями собственной частоты и потерь. Построены соответствующие стационарные ве Употребляемый здесь и принятый в литературе термин "точные решения" относится, как правило, к аналитическим результатам диффузионного приближения, адекватных, чаще всего, полученным классическим аппаратом марковских процессов. роятностные распределения выходной переменной. Установлены условия моментной устойчивости системы.

В п.2.1.3 на основании усредненного по времени уравнения Фоккера-Планка найдены вероятностные характеристики амплитуды стохастического осциллятора. Установлено, что степенная асимптотика вероятностного распределения амплитуды и>^(А) соответствует закону спадания "крыльев" построенных выше распределений выходного шума гиу(у). Выяснены соотношения, связывающие условия моментной и вероятностной устойчивости системы.

В §2.2 рассматриваются вероятностные характеристики стохастических систем общего вида в диффузионном приближении. Система описывается линейным дифференциальным уравнением п-го порядка с гауссовыми флуктуациями параметров. Поскольку в общем случае найти вероятностное распределение выходного сигнала невозможно, находятся менее общие статистические характеристики. В п.2.2.1 получены замкнутые уравнения для средней функции Грина и корреляционной функции выходного сигнала. Отмечено особое влияние флуктуаций диссипативного параметра, являющегося коэффициентом при (п — 1)-й производной в исходном уравнении — в отсутствие этих флуктуаций средняя функция Грина совпадает с невозмущенной.

В п.2.2.2 получены замкнутые уравнения для моментных и куму-лянтных функций общего вида. Установлено, что в отсутствие флуктуаций отмеченного выше параметра, структура этих уравнений соответствует статистической независимости параметрических воздействий и выходного сигнала. В качестве примера найдены выражения для первых четырех кумулянтов отклика стохастического осциллятора на гармонический вход.

Как известно, диффузионное приближение позволяет решать широкий спектр задач статистической радиотехники, распространения и рассеяния волн в случайно-неоднородных средах и других. Тем не менее, в ряде случаев возникает необходимость выйти за рамки условий его применимости, отказавшись от мелкомасштабности случайных воздействий. В работе [22] (см. также монографию [40]) для усреднения стохаотических уравнений был предложен метод "последовательных приближений", основанный на использовании формулы Фуруцу - Новикова и размыкании цепочки уравнений для средних значений вариационных производных выходных переменных на некотором шаге. Отметим, что это мощный метод, осуществляющий в действительности селективное суммирование рядов теории возмущений [34, 109].

Как показано в §2.3 (см. также [38, 39]), такой подход адекватен ку-мулянтным приближениям по статистическим связям между действующей на систему случайной силой и выходными переменными. На основе развития этого метода удается получать достоверные результаты для вероятностных характеристик стохастических линейных [31, 34, 109— 112] и не только линейных систем, не накладывая априорных ограничений на интенсивность и масштабы корреляции случайных сил.

В п.2.3.1 установлены соотношения, связывающие средние значения вариационных производных с моментами функции Грина для стохастической системы общего вида. На этом основании получена цепочка интегродифференциальных уравнений типа трехчленного взаимодействия для нахождения средней функции Грина ¿о) = д{1 ~ ¿о)- При гауссовых марковских флуктуациях параметров системы это позволяет найти соответствующее преобразование Лапласа или передаточную функцию С(р), а при наличии лишь одного флуктуирующего параметра при к-й (к = 0,1,., п) производной — записать для последней решение в форме непрерывной дроби.

В п.2.3.2 получена цепочка чисто дифференциальных уравнений для получения среднего значения выходной переменной стохастической линейной системы общего вида, базисными переменными которой являются совместные кумулянты. Использование такого описания гораздо удобнее интегродифференциальных уравнений. На основании обобщений формулы Фуруцу - Новикова, полученных в §1.4, установлена полная адекватность функционального и кумулянтного подходов для статистическому описанию линейных систем с гауссовыми флуктуациями параметров.

В п.2.3.3 рассмотрены некоторые примеры нахождения вероятностных характеристик по изложенной здесь методике. Отмечены определенные особенности построения приближенных решений: 7У-го приближения, получаемого в пренебрежении совместными кумулянтами, начиная с (ТУ + 1)-го, и 7У-го диффузионного, полз^чаемого "диффузионным" замыканием дифференциального уравнения для последнего. Численным образом исследована сходимость метода. Показано, что она имеет место вплоть до границ моментной устойчивости.

В §2.4 рассмотрено статистическое описание линейных систем с флуктзшрующими параметрами, являющимися степенями гауссовых шумов. Основное внимание уделено случаю квадратичной параметрики. В п.2.4.1 с помощью функционального подхода ползгчено интегродиф-ференциальное уравнение, являющееся аналогом приближения Бур-ре [12, 17] для системы с флзчстуациями параметров указанного вида. В случае квадратичной и достаточно широкополосной параметрики оно сводится к чисто дифференциальномз^, являющемз^ся аналогом уравнения диффз'зионного приближения для соответствующих систем с газгс-совыми флАчстуациями параметров.

В п.2.4.2, с использованием кумулянтного подхода, строится цепочка кинетических зфавнений для отыскания статистических средних в линейных системах общего вида с флуктуациями параметров, являющимися квадратом гауссова марковского процесса [113]. Установлено, что как и в случае гауссовой параметрики, преобразование Лапласа выходного сигнала здесь имеет вид непрерывной дроби.

В п.2.4.3 рассмотрены некоторые примеры статистического описания систем с квадратичной параметрикой. Наиболее существенным здесь является нахождение моментов выхода стохастического уравнения, описывающего установление огибающих заправляющего напряжения в системе автокомпенсации помех с корреляционной обратной связью [76-79]. Полз'чены среднее значение огибающей и её дисперсия, показано что использованное для этих целей второе приближение дает вполне адекватные результаты, оценены соответствующие з^словия применимости. Приведено также точное выражение для среднего значения огибающей в форме цепной дроби.

В §2.5 метод матричных цепных дробей применен для нахождения средней (или эффективной) частотной характеристики линейной системы общего вида с гауссовыми экспоненциально-коррелированными флуктуациями параметров [114]. Использованный подход не накладывает ограничений на интенсивность и масштабы корреляции параметрических воздействий, кроме естественного условия устойчивости стохастической системы в среднем. В качестве примера найдена эффективная частотная характеристика резонансной системы с флуктуациями собственной частоты и потерь, выяснена её зависимость интенсивности и ширины спектра флуктуаций. Соответствующая численная процедура сходится с контролируемой точностью в области устойчивости системы.

В §2.6 этим же методом исследуются энергетические характеристики осциллятора, находящегося под воздействием интенсивного параметрического шума [102, 112]. В п.2.6.1 рассмотрено возбуждение резонансным шумом с произвольной шириной спектра, огибающая которого может быть гауссовым или телеграфным процессом. Показано, что вероятностные характеристики огибающей выхода можно найти на основе стохастического уравнения 1-го порядка, рассмотренного в п.2.3.3. Установлено, в частности, что порог среднеквадратичной устойчивости системы не зависит от времени корреляции накачки, а определяется только её спектральной плотностью на параметрической частоте. Обсуждены отличия возбуждения системы гауссовым и телеграфным шумом, которые достаточно заметны в случае узкополосной шумовой накачки.

В п.2.6.2 рассмотрено действие на систему интенсивных флуктуаций собственной частоты и потерь с "розовым" спектром мощности (т.е. лоренцевым спектром с максимумом в нуле произвольной ширины). Анализ производится методом матричных цепных дробей, построенных на базе совместных кумулянтов флуктуаций параметров и квадратичных характеристик выходного шума.

Установлена область среднеквадратичной устойчивости системы; численный анализ показал быструю сходимость процедуры вплоть до границы устойчивости (где средняя мощность выхода может отличаться от невозмущенного значения на два порядка).

В §2.7 находятся основные шумовые характеристики одноконтурного параметрического усилителя, накачка которого содержит гармоническую составляющую и интенсивную'случайную модуляцию с "розовым" спектром мощности [115-117]. Используемые для получения среднеквадратичных характеристик матрицы имеют здесь фиксированный размер 2 х 2, а средние значения огибающих выхода выражаются одномерными непрерывными дробями, поэтому соответствующая численная процедура несложна. Как и в отмеченных выше ситуациях, она сходится в области среднеквадратичной устойчивости. Исследована зависимость отношения сигнал/шум от интенсивностей регулярной и шумовой компонент накачки, ширины спектра последней и добротности "холодной" системы. Установлено наличие оптимальной добротности, зависящей от параметров регулярной и шумовой компонент. Показано, что именно вблизи оптимальной добротности отличие влияния реальной ("розовой") накачки от дельта-коррелированной модели весьма существенно.

Рассмотрим содержание главы 3. Как уже отмечалось, флуктуации параметров могут приводить к нарушению моментной устойчивости линейных систем, связанной с медленным спаданием крыльев вероятностного распределения выходных переменных. Физически это означает наличие, может быть достаточно редких, но значительных выбросов шумовой компоненты выходного сигнала. Интенсивное случайное воздействие на параметры колебательных систем может приводить к их возбуждению, что выражается не только в росте моментов выхода, но и в нарушении вероятностной устойчивости — система превращается в шумовой генератор. В такой ситуации линейная модель реальной системы может оказаться физически неадекватной и следует учитывать её нелинейные характеристики, в первую очередь, — возможность нелинейных потерь.

Первые два параграфа главы 3 посвящены статистическому описанию некоторых систем с нелинейным затуханием, находящихся под одновременным воздействием аддитивных и мультипликативных случайных сил. Анализ идет в рамках диффузионного приближения. В §3.1 рассмотрено стохастическое уравнение первого порядка, которое может служить модельным при анализе более сложных динамических систем. Для него находится стационарное решение уравнения Фоккера-Планка при наличии нелинейности, описываемой любой нечетной функцией. Анализ выполняется, в основном, для систем с кубичной нелинейностью. Показано, что нелинейные потери устраняют степенную асимптотику вероятностного распределения соответствующей линейной системы и связанную с ней неустойчивость моментов.

Установлено, что при определенном соотношении между интенсивностью параметрического воздействия и коэффициентом кубичной нелинейности вероятностное распределение выходного шума становится гауссовым, т. е. происходит нелинейно-параметрическая нормализация [118]. Показано, что это имеет место и для стохастического осциллятора с кубичной нелинейностью затухания, причем здесь она является "полной" (плотность вероятности выхода не только становится гауссовой, но и совпадает с вероятностным распределением невозмущенной линейной системы). Обсуждены некоторые аспекты применения "классических" кумулянтных приближений [53] и цепных дробей к нахождению моментов выхода стохастических систем с нелинейными потерями [119].

В §3.2 рассмотрены вероятностные характеристики колебательной системы с нелинейными потерями [120, 121], которая может представлять собой нелинейный резонансный з^силитель с флуктуирующими параметрами, томпсоновский генератор или параметрический генератор с шумовой накачкой. Анализ выполняется в диффузионном приближении с использованием усреднения по "быстрому" времени в уравнениях релаксации вероятностных характеристик. В п.3.2.1 исследуется влияние дельта-коррелированных случайных сил, а в п.3.2.2 — достаточно широкополосных с максимумом на основной параметрической частоте или в нуле.

В п.3.2.1 получены стационарные вероятностные распределения амплитуд колебаний для пассивных и генераторных систем с параметрическим воздействием как на собственную частоту, так и на затухание. Установлено, в частности, что в случае пассивной системы (с положительной линейной частью затухания) при шумовом воздействии на собственную частоту режим генерации начинается со значения мощности ш}^ма, приводящего к нарушению вероятностной устойчивости соответствзчогцей линейной системы. Режим развитой генерации (при котором наиболее вероятная амплитуда колебаний отлична от нуля) — с превышения этого значения в два раза, или превышения условия среднеквадратичной устойчивости линейной системы в четыре раза.

В п.3.2.2 рассмотрено влияние на нелинейный осциллятор широкополосных резонансных (П /¿, максимум спектра на частоте 20, где к — полоса системы, О, — собственная частота, О > К) и широкополосных низкочастотных (П /г, максимум спектра в нуле) флуктуаций параметров. Анализ выполняется на основе уравнений для синфазной и квадратурной огибающих сигнала, усредненных по периоду колебаний. Получено стационарное вероятностное распределение и моменты интенсивности выходного колебания для пассивных и генераторных систел! с шумовым воздействием на собственную частоту и диссипацию.

Выяснены определенные отличия действия на систему дельта-коррелированных и широкополосных флуктуаций потерь, в то время как соответствующие параметрические воздействия на собственную частоту в рамках диффузионного приближения адекватны. Низкочастотные флуктуации собственной частоты не оказывают возбуждающего действия на резонансную систему, как линейную, так и нелинейную (влияние высших параметрических зон диффузионное приближение "не отслеживает"). Установлено, что низкочастотные флуктуации потерь также не могут возбудить систему, хотя, как отмечалось выше, приводят к нарушению моментной (но не вероятностной) устойчивости в линейном случае.

В §3.3 рассмотрено применение матричных цепных дробей для нахождения моментов выхода нелинейных колебательных систем [100, 101]. Как отмечалось выше, для системы с нелинейным затуханием при наличии аддитивных и параметрических случайных сил удается осуществить достаточно полное статистическое описание. Для системы с нелинейной жесткостью (реактивностью) без параметрических шумов стационарные вероятностные характеристики находятся из распределения Больцмана. При наличии обеих нелинейностей аналитических решений нет, нет их тем более в случае действия не дельта-коррелированных случайных сил. В тоже время численная процедура, основанная на матричных цепных дробях, является достаточно универсальной и может использоваться для отыскания моментов выхода таких систем. С другой стороны, поскольку условия сходимости этой процедуры для нелинейных систем практически не изучены, определенные результаты в этом направлении удается получить на основании сравнения соответствующих результатов с отмеченными выше точно решаемыми моделями. Это и составляет содержание §3.3.

В п.3.3.1 рассмотрена колебательная систем с кубичной нелинейностью (в жесткости и затухании) при наличии аддитивных и параметрических пгумов. Численным образом исследовалась сходимость процедуры матричных цепных дробей. Параметром, определяющим скорость сходимости, как и в рассмотренном выше одномерном случае, является произведение эффективной мощности шума на коэффициент, характеризующий нелинейность. В отличие от одномерных цепных дробей, рассмотренных в п.1.3.1, сходимость матричных накладывает определенные ограничения на величину указанного параметра. При наличии параметрических шумов здесь, как и в одномерном случае, настоящей сходимости нет, имеется лишь "локальная", когда результат Л^-го приближения стремится к точному значению лишь до определенного значения номера N1 зависящего от величины шума.

В п.3.3.2 рассмотрена подобная система без параметрических воздействий с нелинейностями, заданными полиномами невысоких степеней (в качестве последних выбраны усеченные разложения в ряд некоторых функций). Для случая нелинейной реактивности стационарные моменты выхода ищутся на основе статистически эквивалентного модельного уравнения Ланжевена 1-го порядка, а для системы с нелинейными потерями — исходя из усредненного по "быстрому" времени кинетического уравнения для моментов интенсивности. При таком подходе размерность матриц не растет с ростом номера приближения, а определяется только числом учитываемых членов в разложении нелинейно ст ей, что существенно упрощает численный анализ. Оценены условия и скорость сходимости использованной процедуры.

В §3.4 рассмотрено нелинейное стохастическое уравнение 1-го порядка "генераторного" типа, трактуемое как уравнение Ланжевена для броуновских частиц в случайно меняющемся потенциальном профиле с двумя симметричными равновесными состояниями [122]. Найдена стационарная плотность вероятности координат частиц; показано, в частности, что в рассматриваемой системе также возможна нелинейно-параметрическая нормализация. Выяснено, что интенсивные флуктуации потенциала приводят к исчезновению равновесных состояний (с ростом параметрического шума максимумы распределения сближаются, сглаживаются и сливаются в нуле).

Для рассматриваемой системы возможна "генерация", т.е. существует стационарное вероятностное распределение и в отсутствие аддитивного шума. В этом случае удается выйти за рамки диффузионного приближения и найти плотность вероятности второго приближения, соответствующую телеграфным флуктуациям потенциала. Это распределение является финитным, а с ростом времени корреляции параметрического шума у него появляются интегрируемые особенности на границах, означающие существенное увеличение концентрации частиц в соответствующих областях.

Последние две главы диссертации в основном посвящены вероятностному описанию нестационарных процессов в нелинейных стохастических системах. Исследование статистической динамики нелинейных систем, подверженных интенсивным случайным воздействиям и, в частности, релаксации вероятностных характеристик броуновского движения, актуально для широкого спектра задач статистической радиофизики, радиоэлектроники, физической химии и других приложений (см, напр., [45, 86-88]). Трудности анализа этих проблем общеизвестны — аналитические решения нестационарных уравнений Фоккера-Планка в нетривиальных случаях найти не удается. Из значительного количества публикаций по данной тематике следует выделить работы [89-92] (особенно последнюю), где получены аналитические результаты для оценки времени установления плотности вероятности координат броуновских частиц в потенциальных профилях весьма общего вида.

Представляет интерес, однако, получить более детальное и наглядное представление о релаксации хотя бы некоторых вероятностных характеристик (моментов, кумулянтов), на основании которых можно моделировать нестационарную плотность вероятности броуновского движения системы. Отметим также, что в силу очевидных математических трудностей, обычно рассматривается лишь динамика безынерционных частиц, описываемых уравнением Ланжевена 1-го порядка. Практически не исследованными остаются также особенности броуновского движения под действием случайных сил с отличным от нуля масштабом корреляции.

Очевидно, что пытаться решать подобные задачи можно лишь комбинируя аналитический и численный анализ. Определенные результаты в этом направлении приведены в главе 4 (см. также [124-132]), где рассмотрены некоторые аспекты релаксации вероятностных характеристик броуновского движения квазилинейных систем. Термин "квазилинейность" здесь означает не близость системы к линейной, а лишь наличие линейного члена в разложении той или иной нелинейной характеристики.

Использ)/'емый подход основан на применении матричных цепных дробей в нестационарных задачах: по тем же принципам вводятся векторы, компонентами которых являются моменты координат частиц (при использовании диффузионного приближения), или совместные кумулянты определенного вида (при анализе систем с не дельта-коррелированной случайной силой). Соответствующие разомкнутые цепочки обыкновенных дифференциальных уравнений численно решаются с начальными условиями, соответствующими тому или иному начальному распределению частиц. Сходимость процедуры контролируется путем сравнения установившихся значений искомых характеристик с истинными, определяемыми на основе стационарных вероятностных распределений.

Численным образом находятся времена релаксации среднего значения и дисперсии, характеризующие динамику установления вероятностного распределения частиц. На основании релаксации нескольких первых моментов строится нестационарная модельная плотность вероятности. Используемые в 4-й главе модельные распределения не имеют истинной стационарной асимптотики; их назначение — дать наглядное представление об эволюцию вероятностного распределения, хотя бы вблизи его вершины. Основной моделью здесь является гауссова плотность вероятности*^, соответствующая линейной системе (или броуновскому движению в параболическом потенциальном профиле).

В §4.1 таким путем рассмотрена релаксация среднего значения и дисперсии координат безынерционных броуновских частиц в потенциальном профиле, описываемом полиномом четвертой степени. Начальные условия могут быть детерминированные, соответствующие начальному распределению в виде дельта-функции или гауссовы. Исследована зависимость релаксации этих характеристик от нелинейности квазиупру Гауссова, модель, разумеется, не является единственной. Можно использовать любое подходящее (или истинное стационарное) вероятностное распределение, если оно определяется несколькими, первыми моментами. Таковыми являются рэлеевское, гамма-распределение и ряд других [53, 123, 124]. гой силы и интенсивности шума. Численным образом оценена сходимость использованной процедуры.

В §4.2 исследуется релаксация моментов реальных частиц, движение которых описывается уравнением осциллятора с нелинейной жесткостью и нелинейно вязкостью. В п.4.2.1 рассмотрен линейный случай; при этом для гауссовых или детерминированных начальных условий нестационарное вероятностное распределение координат и скоростей частиц также гауссово. Соответствующие аналитические результаты легко находятся и используются ниже для контроля численной процедуры.

В п.4.2.2 изложен общий метод нахождения релаксации моментов координат и скоростей частиц в нелинейном случае и исследовано установление моментов в системе с нелинейной жесткостью. Выяснены определенные отличия в релаксации вероятностных характеристик координат и скоростей. Установлено, в частности, наличие минимума времени релаксации дисперсии координат частиц на границе осцилляторного и апериодического режимов. На основании релаксации средних значений и дисперсий строится эволюция модельных вероятностных распределений координат и скоростей.

Хотя использованный подход позволяет учесть влияние обоих нелинейных факторов, систему с нелинейной вязкостью целесообразно рассмотреть отдельно, использую процедуру усреднения по "быстрому" времени в уравнениях релаксации моментов амплитуды колебаний, как это сделано в п.4.2.3. В линейном случае нестационарное вероятностное распределение амплитуды рэлеевское, такую же плотность вероятности используем в качестве модельной. Исследована релаксация средней интенсивности (I) = (А2) и её дисперсии. Поскольку в данном случае размерность используемых моментных векторов не зависит от номера приближения, численная процедура здесь существенно проще, чем при анализе системы с нелинейной жесткостью, и дает адекватные результаты, по существу, при любых значениях нелинейной вязкости и интенсивности шума.

При анализе динамических систем, находящихся под действием не дельта-коррелированного шума, кроме чисто моментного зацепления, обусловленного нелинейностью, возникает также зацепление за совместные моменты или совместные кумулянты. Как установлено при анализе линейных систем, матричное описание при этом следует строить на векторах, компонентами которых являются совместные кумулянты. Ясно, что такой подход следует применить и для отыскания релаксации вероятностных характеристик "розового" броуновского движения.

§4.3 посвящен анализу броуновского движения в потенциальном профиле под действием экспоненциально-коррелированной случайной силы.

В п.4.3.1 находится стационарная дисперсия координат, выясняется её зависимость от интенсивности и времени корреляции шума. Для сравнения, рассмотрено два способа матричного описания системы: первый основан на совместных моментах, второй — на совместных кз'мулянтах. Показано, что последний имеет явное преимущество, и иляенно он используется ниже для анализа релаксации моментов координат броуновских частиц.

В п.4.3.2 рассмотрена релаксация моментов под действием гауссовой марковской случайной силы. Начальные условия — детерминированные или гауссовы. Численная процедура контролируется путем сравнения установившихся значений с результатами, находящимися из стационарных вероятностных распределений, известных в предельных случаях дельта-коррелированной и квазистатической случайной силы. Строится эволюция модельной плотности вероятности.

В п.4.3.3 аналогичным образом рассмотрено броуновское движение под действием телеграфной случайной силы. В обоих случаях выяснена зависимость времен релаксации среднего значения и дисперсии от мощности шума и вида его спектра. Установлено, в частности, что при отличном от нуля времени корреляции случайной силы эволюция вероятностного распределения с ненулевой начальной дисперсией происходит немонотонно. В процессе релаксации дисперсия проходит через минимум, связанный, по-видимому с тем, что частицы сначала "кучно ссыпаются" со стенок потенциальной ямы и лишь спустя некоторое время не дельта-коррелированный шум устанавливает распределение, соответствующее заданному потенциальному профилю. Этот эффект не является чисто нелинейным, но при нелинейной квазиупругой силе он выражен сильнее.

Здесь же численным образом найдена релаксация моментов для случая квазистатического случайного воздействия обоих видов. Как показывает анализ, эти квазистатические кривые действительно соответствуют предельному переходу к медленно меняющейся случайной силе в использованной ранее вычислительной процедуре.

В последней пятой главе диссертации рассмотрено вероятностное описание некоторых "принципиально нелинейных" стохастических систем, т. е. таких, у которых нет предельного перехода к линейному режиму при равенстве нулю нелинейных параметров. Это системы генераторного типа и близкие к ним динамические системы, описывающие взаимодействие саморегулирующихся сообществ в среде со случайно изменяющимися параметрами. Основное внимание здесь уделено исследованию релаксации вероятностных характеристик. Отметим, что для таких систем использованная выше методика, основанная на матричных цепных дробях, неприемлема: непрерывные дроби для стационарных моментов расходятся и решать соответствующие им }фавнения релаксации не имеет смысла. Для описания релаксации вероятностных характеристик здесь предлагается иной подход, основанный на построении нестационарных модельных вероятностных распределений на базе известных стационарных. Основные результаты этой главы получены в работах [134-141].

В §5.1 и §5.2 рассматривается вероятностное описание динамических систем, связанных со стохастическим уравнением Ферхюльста. Это весьма простое дифференциальное уравнение, являющееся однако "принципиально нелинейным" в указанном смысле и имеющее многочисленные приложения [45, 82-85]. В п.5.1.1 находятся некоторые точные результаты для стационарных вероятностных характеристик решения этого уравнения при наличии флуктуации коэффициента роста (или трофического коэффициента*)) и коэффициента внутривидовой конкуренции. Полученные здесь вероятностные распределения используем ниже в качестве модельных при решении нестационарных задач. Статистическое описание выполняется как для численности популяции ж(£), так и для обратной величины «(£) = 1/ж, имеющей смысл "площади", приходящейся на одну особь. Стохастическое уравнение для последней является линейным, что позволяет исследовать влияние не только дельта-коррелированных флуктуаций параметров на «-характеристики.

Установлено, что гауссовы флуктуации коэффициента внутривидовой конкуренции приводят к неинтегрируемости моментов численности, а флуктуации коэффициента роста — к неинтегрируемости моментов «-распределения. Естественно, те и другие оказывают дестабилизирующее влияние на численность популяции. Рассмотрены стационарные вероятностные характеристики для системы с широкополосными и экспоненциально-коррелированными шумами. Установлено, в частности, что в последнем случае "розовые" гауссовы флуктуации параметра оказывают более сильное влияние на дисперсию численности, чем дихотомический шум.

В п.5.1.2 рассмотрена релаксация «-моментов решения стохастического уравнения Ферхюльста. Приведено точное решение для средней удельной площади при наличии флуктуаций обоих параметров. Более подробно исследован случай экспоненциально-коррелированных флуктуаций коэффициента роста: получена замкнутая система уравнений релаксации моментов и соответствующие решения для средней площади и ее дисперсии. Найдена зависимость релаксации этих характеристик от интенсивности и времени корреляции шума.

Исследовать нестационарные вероятностные характеристики уравнения Ферхюльста аналитически удается только в «-переменных, хотя более естественном и адекватным был анализ характеристик исходной

Здесь и ниже используем "экологическую" терминологию. динамической переменной. Именно это и требуется в радиофизических приложениях, связанных с уравнением Ферхюльста. Решение такой задачи на основе аналитико-численного подхода рассмотрено в §5.2.

Поскольку найти нестационарное вероятностное распределение для нелинейных систем не удается, альтернативным путем является построение модельной плотности вероятности на основании решения уравнений релаксации нескольких первых моментов или кумулянтов. Для стохастического уравнения Ферхюльста и некоторых связанных с ним систем в п.5.2.1 находится самосогласованная модель нестационарного вероятностного распределения, опирающаяся на известное стационарное. Это означает, что замыкание уравнений релаксации моментов осуществляется на основе точных аналитических соотношений для стационарных характеристик, соответствующих моделируемой плотности вероятности. Моделируемое распределение при этом имеет правильную стационарную асимптотику. На основании сравнения с точными решениями для релаксации «-кумулянтов установлена адекватность такого модельного распределения.

Используя такой подход, в п.5.2.2 рассмотрена релаксация вероятностных характеристик генераторных систем, динамические уравнения которых сводятся к уравнению Ферхюльста. Исследована релаксация моментов интенсивности автогенератора с флуктуациями собственной частоты и параметрического генератора с шумовой накачкой, построена эволюция вероятностного распределения амплитуды колебаний.

Подобным образом в п.5.2.3 рассмотрена релаксация вероятностных характеристик уравнения Ферхюльста с "розовыми" гауссовыми флуктуациями параметра. Анализ выполнен на основе системы уравнений гауссова приближения по статистическим связям совокупности случайная сила-выходная переменная. Интересно отметить, что хотя исходная система уравнений релаксации является приближенной, она дает истинные стационарные значения искомых моментов в предельных случаях как дельта-коррелированного, так и квазистатического шума. Это позволяет построить два нестационарных модельных распределения, имеющих точную стационарную асимптотику в этих предельных случаях. На основании выполненного численного анализа выяснена зависимость релаксации вероятностных характеристик от параметров системы, интенсивности и вида спектра шума, начальных условий.

Как известно, взаимодействие саморегулирующихся сообществ относится к классическим задачам нелинейной динамики [82, 142, 143]. Наиболее простой системой, адекватно описывающей динамику взаимодействия сообщества "хищник-жертва", является схема Вольтерра-Лоткп. В реальной ситуации параметры среды испытывают флуктуации и система становится стохастической. Некоторые вопросы вероятностного описания подобных систем затрагивались в монографиях [83, 84], см. также [74, 85, 86]. В основном рассматривались стационарные характеристики, либо полученные на основе линеаризованных динамических уравнений.

Система Вольтерра-Лотки является принципиально нелинейной в указанном выше смысле и для её вероятностного описания в §5.3 применена методика, использованная выше для уравнения Ферхюльста. В п.5.3.1 найдены стационарные вероятностные характеристики сообществ при наличии дельта-коррелированных флуктуации параметров среды (трофического коэффициента "жертв" и коэффициента смертности "хищников"). Выяснена зависимость дисперсий численностей от нелинейных параметров системы и интенсивности флуктуаций.

В отсутствие флуктуаций второго параметра анализ упрощается; удается найти стационарные вероятностные распределения численностей, рассмотреть релаксацию моментов и построить самосогласованные модельные распределения вероятностей.

В п.5.3.2 анализ идет в рамках диффз^зионного приближения. Установлено, что сильные флуктуации трофического коэффициента приводит к "критическом}' режиму", когда максимумы вероятностных распределений той или иной популяции смещаются в ноль. Найдены границы такого режима. В процессе релаксации эти флуктуации увеличивают амплитуду колебаний и время установления стационарных характеристик.

В п.5.3.3 рассмотрено действие на систему гауссовых марковских и квазистатических флуктуации трофического коэффициента. Здесь анализ выполняется на основе системы уравнений гауссова приближения по совокупности: случайная сила - флуктуации численностей. Как и в подобной ситуации в п.5.2.3, для предельных случаев дельта-коррелированного и квазистатического шума эта системы дает точные стационарные значения искомых моментов. Исследована релаксация наиболее вероятных значений численностей и эволюция модельных распределений. Установлено, что дестабилизирующее влияние параметрического шума связано, в основном, с низкочастотной частью спектра. Отмечены определенные отличия в динамике релаксации дисперсий численностей "жертв" и "хищников", особенно заметные при низкочастотном шуме.

В Заключении кратко изложены основные результаты, полученные в диссертации.

В Приложении описан алгоритм компьютерной реализации метода матричных цепных дробей (П.1), а также приведен вывод некоторых формул, используемых в основном тексте диссертации. Это получение цепочки кинетических уравнений для плотности вероятности систем с гауссовым марковским шумом (П.2) и построение матричных цепных дробей для нахождения эффективной частотной характеристики стохастических линейных систем общего вида (П.З).

Положения, выносимые на защит)':

1. Получены некоторые обобщения формулы Фуруцу - Новикова для совместных кумулянтов совокупности: случайная сила — выходные переменные, использованные для анализа стохастических систем с не дельта-коррелированными случайными воздействиями.

2. Развит функциональный и кумулянтный подход (и доказана их адекватность) к вероятностному описанию линейных систем с не дельта-коррелированными флуктуаииямп параметров. Установлена асимптотическая процедуры отыскания статистических средних в таких системах и разработан соответствующий численной алгоритм, основанный на использовании цепных дробей и матричных цепных дробей.

3. Предложен метод нахождения вероятностных характеристик нелинейных систем с гауссовой экспоненциально-коррелированной случайной силой, основанный построении цепочки кинетических уравнений для совместных кумулянтов определенного вида. Метод модифицирован для случая винеровского воздействия и случайной силы, являющейся квадратом гауссова шума.

4. Разработан метод матричных цепных дробей для нахождения моментов выхода квазилинейных стохастических систем, находящихся под воздействием интенсивных случайных сил. На ряде примеров исследована сходимость соответствующей численной процедуры.

5. Предложена,методика построения нестационарных модельных вероятностных распределений, имеющих точную стационарную для нелинейных стохастических систем определенного вида.

На основании существующих и разработанных методов решен ряд статистических задач, актуальных для радиофизических и иных приложений, в частности:

1. Исследована моментная и вероятностная устойчивость стохастического осциллятора при различных видах шумового возбуждения.

2. Найдены основные вероятностные характеристики параметрического усилителя наличии интенсивных флуктуаций накачки. Установлены существенные особенности действия "розового" шума.

3. Построен алгоритм нахождения эффективной частотной характеристики стохастической линейной системы общего вида с гауссовыми марковскими флуктуациями параметров; в качестве примера исследована частотная характеристика осциллятора с интенсивными флуктуациями собственной частоты и потерь.

4. Исследованы вероятностные характеристики нелинейных колебательных систем с интенсивными шумами, в том числе генератора и параметрического генератора. В частности, установлена возможность нелинейно параметрической нормализации в системе с нелинейным затуханием; найдены условия возникновения шумовой генерации и режима развитой генерации.

5. Построены кинетические уравнения для нахождение статистических средних в линейных системах с квадратичной параметрикой. На их основе исследованы некоторые характеристики автокомпенсатора с корреляционной обратной связью при интенсивной не дельта-коррелированной огибающей помехи.

6. Найдено вероятностное распределение броуновских частиц в стохастическом потенциальном профиле с двумя симметричными состояниями равновесия для случая гауссовых и дихотомических флуктуации потенциала. Показано, что действие интенсивных флуктуации адекватно существенной деформации профиля.

7. Аналитико-численным образом исследована релаксация среднеквадратичных характеристик броуновского движения в некоторых потенциальных профилях и построена эволюция соответствующих модельных распределений. Установлены существенные особенности действия "розового" и квазистатического шума. Исследована релаксация инерционных частиц, для которых уравнением Ланжевена является осциллятор с нелинейной жесткостью и нелинейной вязкостью.

8. Построены самосогласованные модельные вероятностные распределения для решения стохастического уравнения Ферхюльста и некоторых связанных с ним систем. На их основе исследована релаксация вероятностных характеристик томпсоновского генератора с интенсивными шумами и параметрического генератора шума.

9. Аналитико-численным образом исследована релаксация вероятностных характеритик числеиностей сообщества "хищник-жертва" в модели Вольтерра-Лотки при наличии интенсивных флуктуаций параметров различного вида.

Материалы, изложенные в диссертации опубликованы в ¡заботах [31, 43, 38, 39, 79, 81, 93, 99-122, 125-131, 134-142].

Основные результаты докладывались на:

• 7-м Всесоюзном симпозиуме по теории дифракции и распространению радиоволн, Ростов-на-Дону, 1977; Всесоюзной научной конференции "Статистические методы в теории передачи и преобразования информационных сигналов", Киев, 1985; Всесоюзной научной конференции "Вибрация и вибр о диагностика", Горький, 1988; международной конференции "Nonlinear dynamics and chaos", Саратов, 1996;

• научных конференциях по радиофизике Нижегородского госуниверситета 1999 и 2000 гг.;

• научно-технических конференциях Нижегородского архитектурно-строительного университета 1998-2000 гг. и Волжской государственной академии водного транспорта 1999 и 2000 гг.

Значительная часть вопросов, рассмотренных в диссертации, обсуждалась на семинарах по статистической радиофизике ННГУ и семинарах научной школы профессора А.Н.Малахова.

В заключение, считаю своим долгом выразить глубок}^ю признательность недавно ушедшему от нас Аскольду Николаевичу Малахову, учеником которого и участником его научной школы являюсь. Я искренне благодарен также постоянным участникам семинара этой школы, особенно А. А.Дубкову, А.А.Мальцеву, А.В.Якимову, общение и творческие дискуссии с которыми были очень полезны.

Похожие диссертационные работы по специальности «Радиофизика», 01.04.03 шифр ВАК

Заключение диссертации по теме «Радиофизика», Музычук, Олег Владимирович

ЗАКЛЮЧЕНИЕ

В диссертации разработаны аналитико-численные методы и приемы вероятностного описания динамических систем, подверженных интенсивным случайным воздействиям. Перечислим главные:

1. Получены обобщения формулы Фуруцу - Новикова для совместных кумулянтов совокупности: случайная сила-выходные переменные, использованные для анализа стохастических систем с не дельта-коррелированными случайными воздействиями.

2. Установлена адекватность функционального и кумулянтного подходов к вероятностному описанию линейных систем с не дельта-коррелированными флуктуациями параметров. В развитии этого подхода предложена асимптотическая процедура отыскания статистических средних в таких системах. Разработан соответствующий численной алгоритм, основанный на использовании цепных дробей и матричных цепных дробей.

3. Предложен метод нахождения вероятностных характеристик нелинейных систем, находящихся под воздействием гауссовой экспоненциально-коррелированной случайной силы, основанный на построении кинетических уравнений для совместных кумулянтов определенного вида. Метод модифицирован для случая винеровского воздействия и случайной силы, являющейся квадратом гауссова шума.

4. Разработан метод матричных цепных дробей для нахождения моментов выхода квазилинейных стохастических систем, находящихся под воздействием интенсивных случайных сил. На ряде примеров исследована сходимость соответствующей численной процедуры.

5. Предложена методика построения нестационарных модельных вероятностных распределений, имеющих точную стационарную асимптотику для нелинейных стохастических систем определенного вида.

На основании существующих и разработанных методов решен ряд статистических задач, актуальных для радиофизических и иных приложений, в частности:

1. Исследована моментная и вероятностная устойчивость стохастического осциллятора при различных видах шумового возбуждения.

2. Найдены основные вероятностные характеристики параметрического усилителя при наличии интенсивных флуктуаций накачки. Установлены существенные особенности действия "розового" шума.

3. Построен алгоритм нахождения эффективной частотной характеристики стохастической линейной системы общего вида с гауссовыми марковскими флуктуациями параметров; в качестве примера исследована частотная характеристика осциллятора с интенсивными флуктуациями собственной частоты и потерь.

4. Исследованы вероятностные характеристики нелинейных колебательных систем с интенсивными шумами, в том числе генератора и параметрического генератора. В частности, установлена возможность нелинейно параметрической нормализации в системе с нелинейным затуханием; найдены условия возникновения шумовой генерации и режима развитой генерации.

5. Построены кинетические уравнения для нахождение статистических средних в линейных системах с квадратичной параметрикой. На их основе исследованы некоторые характеристики автокомпенсатора с корреляционной обратной связью при интенсивной не дельта-коррелированной огибающей помехи.

6. Найдено вероятностное распределение броуновских частиц в стохастическом потенциальном профиле с двумя симметричными состояниями равновесия для случая гауссовых и дихотомических флуктуаций потенциала. Показано, что действие интенсивных флуктуаций адекватно существенной деформации профиля.

7. Аналитико-численным образом исследована релаксация среднеквадратичных характеристик броуновского движения в некоторых потенциальных профилях и построена эволюция соответствующих модельных распределений. Выяснены существенные особенности действия "розового" и квазистатического шума. Исследована релаксация инерционных частиц, для которых уравнением Ланжевена является осциллятор с нелинейной жесткостью и нелинейной вязкостью. При этом установлено наличие минимума времени релаксации среднеквадратичных характеристик координат на границе осцилляторного и апериодического режимов.

8. Построены самосогласованные модельные вероятностные распределения для решения стохастического уравнения Ферхюльста и некоторых связанных с ним систем. На их основе исследована релаксация вероятностных характеристик томпсоновского генератора с интенсивными шумами и параметрического генератора шума.

9. Найдены стационарные вероятностные характеристики численно-стей сообщества "хищник - жертва" в модели Вольтерра-Лотки при наличии интенсивных флуктуаций параметров различного вида. Ана-литико-численным образом исследована их релаксация. Установлены определенные отличия в релаксации численностей популяций при наличии низкочастотных флуктуаций трофического коэффициента.

Список литературы диссертационного исследования доктор физико-математических наук Музычук, Олег Владимирович, 2001 год

1. Uhlenbeck G. Е., Ornstein L. S. On the theory of Brounian motion // Phys. Rev. 1930. V.36. P. 823.

2. Эйнштейн A., Смолуховский M. Броуновское движение, сб. статей. — M.: ОНТИ, 1936.

3. Чадрасекар С. Стохастические проблемы в физике и астрономии. — М.: ИЛ., 1947.

4. Стратонович P. J1. Избранные вопросы теории флуктуаций в радиотехнике. — М.: Сов. радио, 1961. 558 с.

5. Рытов С. М. Введение в статистическую радиофизику. — М.: Наука, 1966.

6. Дуб Д. Л. Вероятностные процессы. — М.: ИЛ., 1956.

7. Дынкин Е.Б. Марковские процессы. — М.: Физматгиз, 1963.

8. Феллер В. Введение в теорию вероятностей и её приложения. — М.: Мир, 1964. Т.1, 2.

9. Гихман И. А., Скороход A.B. Введение в теорию случайных процессов. — М.: Наука, 1965.

10. Ито К., Маккин Г. П. Диффузионные процессы и их траектории. — М.: Мир, 1968.

11. Стратонович Р. Л. Условные марковские процессы. — М.: МГУ, 1970.

12. Bourret R. С. Propagation of randomly perturbed fields // Cañad. J. Phys. 1962. V. 40. №6. P. 782.

13. Furutsu K.-J. // Res. NBS. 1963. V. D-67. №3. P. 303.

14. Новиков E. A. // ЖЭТФ. 1964. T.47. Вып. 5 (11). С. 1919.

15. Donsker M. D. On function space integrals // Proc. of a conf. on the theory and appl. of analysis in function space. — Cambridge: M.I.T. Press, 1964. P. 17-30.

16. Фейнман P., Хибс А. Квантовая механика и интегралы по траекториям. — М.: Мир, 1968.

17. Татарский В. И. Распространение волн в турбулентной атмосфере. — М.: Наука, 1967.

18. Келлер Дж. Б. Распространение волн в случайной среде. В сб.: Гидродинамическая неустойчивость. — М.: Мир, 1964.

19. Барабаненков Ю.Н., Кравцов Ю.А., Рытов С.М., Татарский В. И. Состояние теории распространения волн в случайно-неоднородной среде // УФН. 1970. Т. 102. Вып. 1. С.З.

20. Papanicolaou G. С., Keller J. В. Stochastic differential equations with application to random harmonic oscillator and wave propagations in random media // SIAM. J. Appl. Math. 1970. V.21. №2. P. 287.

21. Collin R. E. A comparison of selective summation techniques for the cogerent Green's function in random media // Radio Sci. 1971. V.6. №11. P. 991.

22. Кляцкин В. И., Татарский В. И. Новый метод последовательных приближений в задаче о распространении волн в среде со случайными крупномасштабными неоднородностями // Изв. вузов. Радиофизика. 1971. Т. 14. №9. С. 707.

23. Bourret R., Frish V., Pouquet A. Brownian motion of garmonic oscillator with stochastic frequensy // Physica. 1973. V. 65. №2. P. 303.

24. Кляцкин В. И., Татарский В. И. Приближение диффузионного случайного процесса в некоторых нестационарных задачах физики // УФН. 1973. Т. 110. Вып. 4. С. 499.

25. Brissaud A., Frish V. Solving linear stochastic differential equations // J. Math. Phys. 1974. V.15. №5. P. 524-534.

26. Татарский В. И. Некоторые методы решения стохастических дифференциальных уравнений // Изв. вузов. Радиофизика. 1974. Т. 17. №4. С. 570.

27. Апресян JI.A. Методы статистической теории возмущений (обзор) // Изв. вузов. Радиофизика. 1974. Т. 17. №2. С. 165.

28. Квантовая теория поля и физика фазовых переходов: сб. статей. — М.: Мир, 1975.

29. Кляцкин В. И. Статистическое описание динамических систем с флуктуирующими параметрами. — М.: Наука, 1975.

30. Van Kampen N.G. Stochastic differential equations // Phys. Rep. 1976. V.24-C. №3. P. 171-228.

31. Музычук О. В. К построению точного решения уравнения Дай-сона для средней функции Грина // Теор. и матем. физика. 1976. Т. 28. №3. С. 371.

32. Рыжов Ю. А. О статистическом описании динамических систем, находящихся под воздействием случайных сил // Изв. вузов. Радиофизика, 1976. Т. 19. №7. С. 1001.

33. Кляцкин В. И. Динамические системы с флуктуирующими параметрами в виде процессов телеграфного типа // Изв. вузов. Радиофизика. 1977. Т. 20. №4. С. 562.

34. Дубков А. А., Музычук О. В. К анализ)' высших приближений уравнения Дайсона для средней функции Грина // Изв. вузов. Радиофизика. 1977. Т. 20. №6. С. 901.

35. Кузовлев Ю.Е., Бочков Г. И. Операторные методы анализа стохастических негауссовых процессов и систем // Изв. вузов. Радиофизика., 1977. Т. 20. №10. С. 1505.

36. Кляцкин В. И. О методах квантовой теории поля в динамике линейных стохастических систем // Изв. вузов. Радиофизика. 1977. Т. 20. №11. С. 1968.

37. Логинов В.М., Шапиро В.Е. Простой метод решения стохастических уравнений для некоторых распространенных моделей случайных процессов. // Препринт ИФСО-55 Ф. — Красноярск, 1977.

38. Музычук О. В. К статистическому описанию линейных систем с не дельта-коррелированными флуктуациями параметров // Изв. вузов. Радиофизика. 1979. Т. 22. №10. С. 1246.

39. Малахов А. П., Музычук О. В. О вероятностных характеристиках динамических систем, подверженных воздействию не дельта-коррелированных случайных сил // Изв. вузов. Радиофизика. 1980. Т. 23. №8. С. 968-981.

40. Кляцкин В. PI. Стохастические уравнения и волны в случайно-неоднородных средах. — М.: Наука, 1980.

41. Шапиро В. Е., Логинов В.М. Динамические системы при случайных воздействиях. — Новосибирск: Наука, Сиб. отделение, 1983.

42. Болотин В. В. Случайные колебания упругих систем. — М.: Наука, 1979.

43. Диментберг М. Ф. Нелинейные стохастические задачи механических колебаний. — М.: Наука, 1980. 368 с.

44. Ахманов С. А., Дьяков Ю.Е., Чиркин A.C. Введение в статистическую радиофизику. — М.: Наука, 1981.

45. Хорстхемке В., Лефевр Р. Индуцированные шумом переходы: теория и применение в физике, химии и биологии. — М.: Мир, 1987. 397 с.

46. Kubo R. Generalized cumulant expantion method //J. Phys. Soc. of Japan. 1962. V.17. №7. P. 1100-1120.

47. Крейчнан P.X. Проблема замыкания в теории турбулентности. В кн.: Гидродинамическая неустойчивость. — М.: ИЛ, 1964. С.231-264.

48. Van Kampen N. G. A cumulant expantion for stochastic linear differential equations // Physica. 1974. V.74. №2. P. 215-247.

49. Fox R. F. Application of cumulant techniques to multiplicative stochastic processes // J. Math. Phys. 1974. V. 15. №9. P. 1479-1483.

50. Дашевский M. JI., Липцер З.Ш. Применение условных семиинвариантов в задачах нелинейной фильтрации марковских процессов // Автоматика и телемеханика. 1967. №6. С. 63-74.

51. Дашевский М.Л. Приближенный анализ точности нестационарных нелинейных систем методом семиинвариантов // Автоматика и телемеханика. 1967. №11. С. 62-81.

52. Малахов А.Н. Кинетические уравнения кумулянтов произвольного марковского процесса // Изв. вузов. Радиофизика. 1976. Т. 19. №2. С. 214-223.

53. Малахов А.Н. Кумулянтный анализ негауссовых случайных процессов и их преобразований. — М.: Сов. радио, 1978.

54. Митропольский Ю.А. Метод усреднения в нелинейной механике. — Киев: Наукова думка, 1971.

55. Мигулин В. В. и др. Основы теории колебаний. — М.: Наука, 1978.

56. Солин Н. Н. Применение асимптотических методов теории колебаний к анализу стохастических нелинейных сосредоточенных колебательных систем // Изв. вз^зов. Радиофизика. 1975. Т. 18. №12. С. 1831-1844.

57. Малахов А. Н. Флуктуации в автоколебательных системах. — М.: Наука, 1968.

58. Каплан А.Е., Кравцов Ю.А., Рылов В. А. Параметрические генераторы и делители частоты. — М.: Сов. радио, 1966.

59. Барабаненков Ю.Н., Калинин М.И. Об усреднении по времени в теории линейных динамических систем со случайными параметрами // Иов. вузов. Радиофизика. 1977. Т. 20. №3. С. 343.

60. Rosenbloom A. Analysis of linear system with randomly time-varying parameters // Proc. of Symp. on Information Network. 1954. P. 145.

61. Дьяков Ю.Е. Вынужденные колебания контура со случайно меняющейся ёмкостью // Радиотехника и электроника. 1960. Т. 5. №5. С. 863-865.

62. Caughey Т.К., Dienes J.К. The behaviour of linear system with random parametric exitation //J. Math. Phys. 1962. V.41. №4. P. 300.

63. Левин Б. P. Теоретические основы статистической радиотехники. Т. 1. — М.: Наука, 1966.

64. Хасьминский Р. 3. Устойчивость систем дифференциальных уравнений при случайных возмущениях их параметров. — М.: Наука, 1969.

65. Бочков Г.Н., Музычук О. В. О стохастической устойчивости линейных систем с нестационарно флуктуирующими параметрами // Изв. вузов. Радиофизика. 1971. Т. 14. №3. С.403.

66. Chen К. К. On moment stabilities of weakly stochastic linear systems // Int. J. Control. 1972. V. 16. №2. P. 209.

67. Morrison J. A. Moments and correlation functions of solutions of some stochastic matrix differential equations //J. Math. Phys. 1972. V. 13. №3. P. 300.

68. Бочков Г. Н., Кузов лев Ю.Е. К анализу и оптимизации стохастических фильтров // Изв. вузов. Радиофизика. 1973. Т. 16. №1. С. 45.

69. Бочков Г.Н., Дубков А. А. О. В. Об эффективности фильтров со случайно изменяющимися параметрами // Изв. вузов. Радиофизика. 1974. Т. 17. №6. С. 869.

70. Бочков Г. П., Музычук О. В. К анализу преобразования сигналов стохастическими системами с нестационарно флуктуирующими параметрами // Изв. вузов. Радиофизика. 1974. Т. 17. №7. С.1005-1012.

71. Пугачев B.C., Казаков И.Е., Евланов Л.Г. Основы статистической теории автоматических систем. — М.: Машиностроение, 1974.

72. Бочков Г. Н., Кузовлев Ю. Е. К анализу преобразования сигналов стохастическими системами // Изв. вузов. Радиофизика. 1975. Т. 18. №2. С. 222.

73. Диментберг М.Ф., Горбунов А. А. Некоторые задачи диагностики колебательной системы со случайным параметрическим возбуждением // Прикладная механика. 1975. Т. 11. №4. С. 7175.

74. Диментберг М. Ф. Точные решения уравнения Фоккера-Планка-Колмогорова для некоторых многомерных динамических систем // ПММ. 1983. Т. 47. Вып. 4. С. 55-58.

75. Noise in Nonlinear Dynamical Systems edited by F.Moss and P. V. E. McClintock. — Cambridge: Cambridge Univercity Press, 1989. V.l-3.

76. Уидроу Б. и др. Адаптивные компенсаторы помех. Принцип построения и применения // ТИИЭР. 1975. Т. 63. №12. С. 69.

77. Уидроу Б. и др. Стационарные и нестационарные характеристики обучения адаптивных фильтров, использующих критерий минимума СКО // ТИИЭР. 1976. Т. 64. №8. С. 37-51.

78. Мальцев A.A., Силаев A.M. О применении теории оптимальной фильтрации к задаче синтеза адаптивных систем, минимизирующих среднеквадратичную ошибку // Радиотехника и электроника. 1987. Т. 32. №2. С. 309-315.

79. Мальцев A.A., Музычук О. В., Позументов И.Е. О статистических характеристиках системы автокомпенсации помех с корреляционной обратной связью // Радиотехника и электроника. 1978. Т. 23. №7. С. 1401.

80. Мальцев A.A., Саичев А.И. Точное вычисление статистических характеристик одноканального автокомпенсатора помех с корреляционной обратной связью // Радиотехника и электроника. 1978. Т. 23, №12. С. 2543.

81. Арзамасов С.Н., Малахов А.Н., Музычук О. В., Позументов И.Е. Спектрально-корреляционные характеристики одноканального автокомпенсатора помех // Радиотехника и электроника. 1979. Т. 24. №3. С. 545-550.

82. Вольтерра В. Математическая теория борьбы за существование. — М.: Наука, 1976.

83. Свирижев Ю. М., Логофет Д. О. Устойчивость биологических сообществ. — М.: Наука, 1978.

84. Свирижев Ю.М. Нелинейные волны, диссипативные структуры и катастрофы в экологии. — М.: Наука, 1987.

85. Higgs P. G. Frequency distributions in populations genetics parallel those in statistical physics // Phys. rev. 1995. V. 51. P. 95-101.

86. Abramson G. Ecological model of extinction // Phys. rev. E. 1997. V. 55. P. 785-788.

87. Kramers H. Brownian motion in a field of force and diffusion model of chemical reactions // Physica. 1940. V.7. P. 284-304.

88. Risken H. The Fokker Planck Equation. Methods of solutions and applications. — Berlin: Springer-Verlag, 1989. 472 p.

89. Климонтович Ю.Л. Нелинейное броуновское движение // УФН. 1994. Т. 164. №8. С. 811-844.

90. Malakhov A.N., Agudov N.V. The kinetics of liquid-gas phase transitions of Van der Waals substance with fluctuations taken into ac-cont // Chaos. 1994. V.4. №4. P.665-671.

91. Malakhov A.N., Pankratov A.L. Exact solution of the Kramers' problem for piese-wise parabolic potential profiles // Physica. 1996. V.A229. №1. P. 109-126.

92. Malakhov A.N. Time scales overdamped nonlinear Brownian motion in arbitrary potential profiles // Chaos. 1997. V.7(3). P. 488-505.

93. Малахов A. H., Музычук О. В. О структуре статистической связи между гауссовым случайным воздействием и выходной координатой стохастической системы // Изв. вузов. Радиофизика. 1983. Т. 26. №12. С. 1546-1551.

94. Малахов А.Н., Молодцов С.Н., Саичев А. И. О флуктуациях интенсивности тонкого лазерного луча в волноводном канале с крупномасштабными случайными неоднородностями // Изв. вузов. Радиофизика. 1977. Т. 20. №2. С. 250.

95. Бобрик Р. В. О бескумулянтном замыкании моментных уравнений для решения системы линейных дифференциальных уравнений со случайно возмущенными коэффициентами// Укр. мате-мат. журн.1985. Т. 37. №5. С. 551-558.

96. Хинчин А. Я. Цепные дроби. — М.: Наука, 1978.

97. Хованский А. H. Применение цепных дробей и их обобщений к вопросам приближенного анализа. — М.: Гостехтеориздат, 1956.

98. Дзядык В. К. Об обобщении проблемы моментов // ДАН УССР. Серия А. 1981. №6. С. 8.

99. Музычук О. В. О некоторых применениях цепных дробей к анализу нелинейных стохастических систем // Изв. вузов. Радиофизика, 1982. Т. 25. №2. С. 190-198.

100. Музычук О. В. Метод матричных цепных дробей для анализа нелинейных стохастических систем // Изв. вузов. Радиофизика. 1989. Т. 32. №2. С. 169-175.

101. Музычук О. В. Применение матричных цепных дробей к анализу стохастических систем с полиномиальной нелинейностью // ПММ. 1991. Т. 55. Вып. 4. С. 620-625.

102. Музычук О. В. Энергетические характеристики и устойчивость гармонического осциллятора с сильными небелыми флуктуаци-ями параметров // Изв. вузов. Радиофизика. 1990. Т. 33. N°l. С.43-48.

103. Knbo R. Note on the stochastic theory of resonance absorption //J. Phys. Soc. Japan. 1954. V.9. №6. P. 935-944.

104. Anderson P. W. A mathematical model for the narrowing of spectral lines by exchange or motions //J. Phys. Soc. Japan. 1954. V.9. №3. P. 316-339.

105. Музычук O.B. К статистическому описанию динамических систем с фликкерными флуктуациями определенного типа // Изв. вузов. Радиофизика. 1981. Т. 24. №9. С. 1137-1141.

106. Малахов А.Н., Музычук О. В. О моментных и кумулянтных функциях стохастических линейных систем // Изв. вузов. Радиофизика. 1978. Т. 21. №1. С. 71-80.

107. Музычук О. В. О статистических характеристиках осциллятора с флуктуирующими параметрами // Изв. вузов. Радиофизика. 1978. Т. 21. №4. С. 534-539.

108. Музычук О. В. О вероятностных характеристиках резонансной стохастической системы // Изв. вузов. Радиофизика. 1980. Т. 23. №6. С. 707-713.

109. Малахов А.Н., Музычук О. В. О высших приближениях уравнения Дайсона для среднего поля // Изв. вузов. Радиофизика. 1976. Т. 19. №2. С. 202-213.

110. Музычук О. В. О точном решении для моментов поля в одномерной случайной среде. Тезисы докл. 7-го Всесоюзн. сими, по теории дифракции и распр. радиоволн, Ростов на Дону, 1977. С. 333336.

111. Малахов А. И., Музычук О. В., Позументов И.Е. О дифференциальном описании стохастических линейных систем с небелыми флуктуациями параметров // Изв. вузов. Радиофизика. 1978. Т. 21. №9. С. 1279-1289.

112. Музычук О. В. Статистические характеристики осциллятора, параметрически возбуждаемого резонансным шумом // Изв. вузов. Радиофизика. 1985. Т. 28. №2. С. 195-201.

113. Музычук О. В. О статистических средних в динамических системах с негауссовыми флуктуациями параметров определенного типа // Изв. вузов. Радиофизика. 1978. Т. 21. №2. С. 217-223.

114. Музычук О. В. Об эффективной частотной характеристике линейной системы с сильными небелыми флуктуациями параметров // Изв. вузов. Радиофизика. 1990. Т. 33. №3. С. 315-321.

115. Медведев С.Ю., Музычук О. В. О влиянии шумов накачки на характеристики одноконтурного параметрического усилителя // Радиотехника и электроника. 1983. Т. 28. №10. С. 1975-1980.

116. Музычук O.B. Статистические характеристики одноконтурного параметрического усилителя при наличии шумовой амплитудной модуляции накачки // Радиотехника и электроника. 1985. Т. 30. №6. С. 1139-1144.

117. Мишанина М.Г., Музычук О. В. Влияние интенсивных амплитудных флуктуации накачки на шумовые характеристики одноконтурного параметрического усилителя // Изв. вузов. Радиофизика. 1993. Т. 36. №1. С. 65-72.

118. Медведев С.Ю., Музычук О. В. О влиянии нелинейного затухания на вероятностные характеристики некоторых стохастических систем // Изв. вузов. Радиофизика. 1980. Т. 23. №6. С.701-706.

119. Медведев С.Ю., Музычук О. В. Статистические характеристики нелинейной резонансной системы, параметрически возбуждаемой случайной силой // Изв. вузов. Радиофизика. 1981. Т. 24. №1. С.49-58.

120. Медведев С.Ю., Музычук О. В. К анализу вероятностных характеристик стохастического осциллятора с нелинейным затуханием // Изв. вузов. Радиофизика. 1982. Т. 25. №1. С. 53-59.

121. Музычук О. В. Вероятностные характеристики броуновского движения в стохастическом потенциальном профиле определенного вида // Изв. вузов. Радиофизика. 1998. Т. 41. №10. С. 129040.

122. Крамер Г. Математические методы статистики. — М.: ИЛ, 1948.

123. Кендалл M. Дж., Стюарт А. Теория распределений. — М.: Наука, 1966.

124. Muzychuk O.V. Some applications of matrix continued fractions for probability description of Brownian motions. Int. Conf. "Nonlinear dynamics and chaos". Saratov, Russia, 1996. Book of abstracts. P. 128.

125. Музычук О. В. Прямой метод численного анализа релаксации вероятностных характеристик броуновского движения // Изв. вузов. Радиофизика. 1999. Т. 42. N°9. С. 922-930.

126. Музычук О. В. Прямой метод численного анализа релаксации вероятностных характеристик броуновского движения в потенциальном профиле // Материалы науч.-техн. конф. Волжск, гос. акад. водн. трансп. — Н. Новгород, 1999. Вып. 283. С. 11.

127. Большаков В. В., Музычук О. В. Релаксация вероятностных характеристик броуновского движения нелинейного осциллятора // Тезисы докл. 3-й науч. конф. по радиофизике. — Н. Новгород: ННГУ, 1999. С. 221-222.

128. Музычук О. В. Релаксации вероятностных характеристик броуновского движения нелинейного осциллятора // Изв. вузов. Радиофизика, 2000. Т. 43. №5. С. 468-477.

129. Мишанина М.Г., Музычук О. В. К анализу нелинейных динамических систем, возбуждаемых интенсивным небелым шумом // ПММ. 1992. Т. 56. Вып. 6. С. 1039-1042.

130. Малахов А.Н., Музычук О. В. Релаксация вероятностных характеристик "розового" броуновского движения. В сб.: Памяти А.Н.Малахова". — Н.Новгород: ТАЛАМ, 2000. С.46-54.

131. Малахов А.Н., Музычук О. В. Релаксация вероятностных характеристик броуновского движения под действием не дельтакоррелированной случайной силы // Изв. вузов. Радиофизика. 2001 (принята к печати).

132. Muzychuk О. V. The relaxation of Brownian motion's probability characteristics under "telegraph" noise action // Fluctuation and noise letters (to be published).

133. Музычук О. В. Некоторые точные результаты для вероятностных характеристик стохастического уравнения Ферхюльста // Изв. вузов. Прикл. нелин. динамика. 1996. Т. 4. №3. С. 18-24.

134. Музычук О. В. Нестационарные вероятностные характеристики стохастического уравнения Ферхюльста // Изв. вузов. Прикл. нелин. динамика. 1996. Т. 4. №3. С. 25-30.

135. Музычук О. В. Аналитико-численное построение нестационарных вероятностных характеристик для одного класса нелинейных стохастических систем // Изв. вузов. Радиофизика. 2000. Т. 43. №9. С.827-834.

136. Музычук О. В. Релаксация вероятностных характеристик уравнения Ферхюльста с не дельта-коррелированным шумом. Тезисы докл. 4-й науч. конф. по радиофизике. — Н.Новгород: ННГУ, 2000. С. 250-251.

137. Музычук О. В. Релаксация вероятностных характеристик динамических систем, описываемых уравнением Ферхюльста с "розовым" шумом // Изв. вузов. Прикл. нелин. динамика. 2000. Т. 8. №5. С.36-42.

138. Muzychuk О. V. Some probability characteristics of "beast-sacrifiece" system in stochastic medium. Int. Conf. "Nonlinear Dynamics and Chaos". Saratov, Russia, 1996. Book of abstracts. P. 129.

139. Музычук О. В. Вероятностные характеристики системы "хищник-жертва" со случайно изменяющимися параметрами // Изв. вузов. Прикл. нелин. динамика. 1997. Т. 5. №2-3. С. 80-86.

140. Музычук O.B. Аналитико-численное моделирование релаксации вероятностных распределений стохастической системы "хищник-жертва". Тезисы докл. научно-техн. конф. ННГАСУ. — Н.Новгород, 2000. Часть 1. С. 117-118.

141. Рабинович М.И., Трубецков Д. И. Введение в теорию колебаний и волн. — М.: Наука, 1984.

142. Трубецков Д.И. Колебания и волны для гуманитариев. — Саратов: Колледж, 1997.

143. Миллионщиков М.Д. К теории однородной изотропной турбулентности // ДАН СССР. 1941. Т. 32. №9. С.611.

144. Рытов С.М., Кравцов Ю.Е., Татарский В. И. Введение в статистическую радиофизику. — М.: Наука, 1978.

145. Апресян JI.A. // Изв. вузов. Радиофизика. 1979. Т. 22. N°6. С.653.

146. Градштейн И. С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. — М.: Физматгиз, 1962.

147. Кляцкин В. И. // Изв. вузов. Радиофизика, 1979. Т. 22. №6. С.716.

148. Абрамовиц А., Сиган И. Справочник по специальным функциям. — М.: Наука, 1979.

149. Корн Г., Корн Т. Справочник по математике. — М.: Наука, 1970.

150. Солодов A.B., Петров Ф.С. Линейные автоматические системы с переменными параметрами. — М.: Наука, 1971.

151. Дубков A.A., Малахов А.Н. Кумулянтный анализ функционального нелинейного преобразования негауссовых случайных процессов и полей // ДАН СССР. 1975. Т. 222. №4. С. 793.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.