Создание новых векторных систем на основе рекомбинантного аденовируса человека с генетически модифицированным капсидным белком IX тема диссертации и автореферата по ВАК РФ 03.01.06, кандидат биологических наук Рогожин, Василий Николаевич

  • Рогожин, Василий Николаевич
  • кандидат биологических науккандидат биологических наук
  • 2011, Москва
  • Специальность ВАК РФ03.01.06
  • Количество страниц 166
Рогожин, Василий Николаевич. Создание новых векторных систем на основе рекомбинантного аденовируса человека с генетически модифицированным капсидным белком IX: дис. кандидат биологических наук: 03.01.06 - Биотехнология (в том числе бионанотехнологии). Москва. 2011. 166 с.

Оглавление диссертации кандидат биологических наук Рогожин, Василий Николаевич

ПРИНЯТЫЕ СОКРАЩЕНИЯ.

ВВЕДЕНИЕ.

1. ОБЗОР ЛИТЕРАТУРЫ.

1.1. Общая характеристика аденовирусов.

1.1.1. Классификация аденовирусов.

1.1.2. Строение и репродукция аденовирусов.

1.2. Векторы на основе аденовирусов человека серотипа 5.

1.3. Методы конструирования капсид-модифицированных аденовекторов.

1.3.1. Аденовирусные векторы с модифицированными фиберами.

1.3.2. Аденовирусные векторы с модифицированными гексонами.

1.3.3. Аденовирусные векторы с модифицированными белками Illa.

1.3.4. Аденовирусные векторы с модифицированными белками IX.

1.3.4.1. Особенности строения, экспрессии и локализации белка IX.

1.3.4.2. Стратегия генетической модификации белка IX.

1.3.4.3. Получение рекомбинантных аденовирусов человека серотипа 5 с модифицированным pIX и возможные пути применения его модификации

1.4. Углевод-связывающие домены гликозилгидролаз и их практическое применение.

1.5. Наноантитела и их применение в качестве агентов для связывания с опухолеспецифическими рецепторами.

1.5.1. Структурные и биофизические особенности наноантител.

1.5.2. Применение наноантител для связывания с опухолеспецифическими рецепторами.

1.6. Перспективы применения модификации pIX аденовируса углевод-связывающими доменами гликозилгидролаз и наноантителами.

2. МАТЕРИАЛЫ И МЕТОДЫ.

2.1. Материалы.

2.1.1. Вирусы и бактериальные штаммы.

2.1.2. Клеточные линии.

2.1.3. Плазмидные векторы.

2.1.4. Ферменты и другие реактивы.

2.1.5. Лабораторные животные.

2.1.6. Лабораторное оборудование.

2.2. Методы.

2.2.1. Подготовка компетентных клеток Е. coli штамма DH5a.

2.2.2. Подготовка компетентных клеток Е. coli штамма BJ5183.

2.2.3. Трансформация компетентных клеток Е. coli штамма DH5a.

2.2.4. Трансформация компетентных клеток Е. coli штамма BJ5183.

2.2.5. Гомологичная рекомбинация в клетках Е. coli.

2.2.6. Выделение аналитических количеств плазмидной ДНК.

2.2.7. Выделение и очистка плазмидной ДНК.

2.2.8. Метод рестрикционного картирования ДНК с помощью специфических эндодезоксирибонуклеаз.

2.2.9. Дефосфорилирование 5'-концов плазмидного вектора.

2.2.10. Фракционирование фрагментов ДНК методом электрофореза в агарозном геле.

2.2.11. Препаративное разделение фрагментов ДНК с помощью гель-электрофореза и их элюирование из агарозного геля.

2.2.12. Лигирование фрагментов ДНК.

2.2.13. Идентификация рекомбинантных клонов.

2.2.14. Полимеразная цепная реакция.

2.2.15. Выделение тотальной ДНК.

2.2.16. Трансфекция культур клеток методом липофекции.

2.2.17. Получение рекомбинантных аденовирусов.

2.2.18. Накопление вирусов.

2.2.19. Очистка и концентрирование аденовирусов.

2.2.20. Выделение вирусной ДНК.

2.2.21. Титрование рекомбинантных аденовирусов.

2.2.22. Иммунизация животных.

2.2.23. Приготовление сыворотки.

2.2.24. Иммуноферментный анализ для доказательства экспонирования углевод-связывающих доменов над поверхностью капсидов р1Х-модифицированных аденовирусов.

2.2.25. Иммуноферментный анализ для доказательства специфического взаимодействия лейциновых зипперов в составе р!Х аденовируса и в молекулах рекомбинантных наноантител.

2.2.26. Определение нуклеотидной последовательности ДНК.

2.2.27. Электрофорез белков в ПААГ-ДСН (РАОЕ^Я).

2.2.28. Оценка термостабильности рекомбинантных аденовирусов.

2.2.29. Определение углевод-связывающей способности рекомбинантных аденовирусных векторов с углевод-связывающими доменами в составе капсидного белка IX.

2.2.30. Проточная цитофлуориметрия.

2.2.31. Электронная микроскопия.

2.2.32. Высокоэффективная жидкостная хроматография (ВЭЖХ).

2.2.33. Статистическая обработка результатов исследований.

3. РЕЗУЛЬТАТЫ СОБСТВЕННЫХ ИССЛЕДОВАНИЙ.

3.1. Получение рекомбинантных аденовирусов человека серотипа 5, экспонирующих на поверхности капсида целлюлозо-связывающие и декстран-связывающие домены в составе белка IX.

3.1.1. Создание плазмидных конструкций, несущих последовательности целлюлозо-связывающего (СВЭ) или декстран-связывающего (БВБ) доменов на С-конце капсидного белка IX Ад5.

3.1.2. Получение плазмидных конструкций, содержащих полноразмерный геном Ад5 и несущих последовательности БВО или СВЭ на С-конце рГХ.

3.1.3. Получение рекомбинантных Ад5 с декстран-связывающими или целлюлозо-связывающими доменами в структуре р1Х.

3.1.4. Изучение физической стабильности рекомбинантных Ад5 с декстран-связывающими или целлюлозо-связывающими доменами в структуре р1Х.

3.2. Определение функциональной активности углевод-связывающих доменов, находящихся в структуре капсидного белка р1Х рекомбинантных аденовирусов

3.2.1. Доказательство экспонирования углевод-связывающих доменов над поверхностью капсида рекомбинантных аденовирусов.

3.2.2. Определение способности р1Х-модифицированных аденовекгоров с углевод-связывающими доменами связываться с соответствующими полисахаридными субстратами.

3.3. Подбор условий элюирования модифицированного аденовируса с целлюлозо-связывающими доменами, адсорбированного на аморфной целлюлозе.

3.3.1. Выбор метода десорбции аденовируса с CBD, связанного с волокнами аморфной целлюлозы.

3.3.2. Подбор условий элюирования модифицированного аденовируса с целлюлозо-связывающими доменами, адсорбированного на аморфной целлюлозе, с помощью кислых буферов.

3.4. Очистка р1Х-модифицированного аденовируса с целлюлозо-связывающими доменами в препаративных количествах из культурального препарата с помощью аморфной целлюлозы.

3.5. Получение рекомбинантных аденовирусов человека серотипа 5, экспонирующих на поверхности капсида последовательности лейциновых зипперов в составе белка IX.

3.5.1. Получение плазмидной конструкции, содержащей полноразмерный геном Ад5 и несущей последовательность ER-зиппера на С-конце pIX Ад5.

3.5.2. Получение рекомбинантного Ад5, содержащего ER-зипперы в структуре pIX и несущего репортерный ген EGFP.

3.6. Определение способности аденовирусного вектора с ER-лейциновыми зипперами специфически адсорбировать на своей поверхности рекомбинантные анти-СЕА-наноантитела.

3.7. Определение эффективности доставки генетической информации аденовекторами с лейциновыми зипперами, нагруженными наноантителами против опухолеспецифического рецептора CEA, в опухолевые клетки CAR-независимым путем.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ.

5. ВЫВОДЫ.

6. ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ПОЛУЧЕННЫХ НАУЧНЫХ РЕЗУЛЬТАТОВ.

7. РЕКОМЕНДАЦИИ ПО ИСПОЛЬЗОВАНИЮ НАУЧНЫХ ВЫВОДОВ.

8. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ.

ПРИНЯТЫЕ СОКРАЩЕНИЯ

293-НЕК - линия клеток почки эмбриона человека, трансформированных Е1областью генома Ад а.о. - аминокислотный остаток

Ад - аденовирус

Ад5 - аденовирус человека серотипа 5 AT - антитело

БОЕ - бляшкообразующая единица ВИЧ - вирус иммунодефицита человека Да - дальтон

ДНК - дезоксирибонуклеиновая кислота дНТФ — дезоксирибонуклеозидтрифосфат ДСН - додецилсульфат натрия ИФА - иммуноферментный анализ кДа - килодальтон

МАА - меланома-ассоциированный антиген

ОФЭКТ - однофотонная эмиссионная компьютерная томография п.н. - пара нуклеотидов

ПААГ - полиакриламидный гель

ПЦР - полимеразная цепная реакция

ПЭГ - полиэтиленгликоль

РНК - рибонуклеиновая кислота т.п.н. - тысяча пар нуклеотидов

TP - терминальный белок

УСД - углевод-связывающие домены

ЦПД - цитопатическое действие

ЦСД - целлюлозо-связывающий домен

А549 — клетки карциномы легких человека

ABTS - 2,2-ацидобис-(3-этилбензотиазолин-6-сульфоновая кислота) диаммониевая соль

ВАР - биотин-связывающий пептид

CAD - ферментный комплекс: карбамилфосфатсинтетаза, аспартаттранскарбамилаза и дигидрооротаза

CAR - коксакивирусный-аденовирусный рецептор

CBD - целлюлозо-связывающий домен Anaerocellum thermophilum

CD - кластер дифференцировки

CDR - гипервариабельные участки антитела

СЕА - карцино-эмбриональный антиген

CMV - промотор цитомегаловируса человека

DBD - декстран-связывающий домен Leuconostoc mesenteroides

DEAE - диэтиламиноэтил

EGFP - зеленый флуоресцирующий белок

EGFR - рецептор эпидермального фактора роста

FITC - флуоресцеинизотиоцианат

GLP - надлежащая лабораторная практика

GMP - надлежащая производственная практика

GON - группа из девяти гексонов аденовируса

HLA - главный комплекс гистосовместимости человека hnRNP-K - гетерогенный ядерный рибонуклеопротеин К

HSV-1 - вирус простого герпеса

HVR - гипервариабельный регион

ICTV - Международный комитет по таксономии вирусов Ig - иммуноглобулин

ITR - концевые повторяющиеся последовательности Liml215 - клетки карциномы толстого кишечника человека MUC1 - муциноподобный антиген ORF — открытая рамка считывания PB S - фосфатный солевой буфер рН - водородный показатель pIX - минорный капсидный белок аденовирусов человека

PPGK - полифосфатглюкокиназа

PSA - простатический специфический антиген

RFP - красный флуоресцирующий белок

RGD - трипептид: аргинил-глицил-аспарагиновая кислота sdAb - однодоменное антитело

TCR - Т-клеточный рецептор

VBP - вителлогенин-связывающий белок

VH - вариабельный домен тяжелой цепи антитела

VL - вариабельный домен легкой цепи антитела

VLA-3 - рецептор для фибронектина, коллагена и ламинина zipper - последовательность «лейциновой молнии» транскрипционного фактора VBP

Рекомендованный список диссертаций по специальности «Биотехнология (в том числе бионанотехнологии)», 03.01.06 шифр ВАК

Введение диссертации (часть автореферата) на тему «Создание новых векторных систем на основе рекомбинантного аденовируса человека с генетически модифицированным капсидным белком IX»

АКТУАЛЬНОСТЬ ПРОБЛЕМЫ

В настоящее время векторные системы на основе рекомбинантного аденовируса человека серотипа 5 (Ад5) являются одними из наиболее широко используемых средств доставки генетической информации в клетки млекопитающих и человека. К преимуществам таких векторов относятся: их способность трансдуцировать как делящиеся, так и неделящиеся клетки [239]; аденовирусная ДНК не встраивается в геном клетки-хозяина и остается в экстрахромосомной форме; аденовирусы могут быть получены в титре более Ю10 БОЕ/мл, что позволяет использовать их в качестве живых рекомбинантных вакцин; и наконец, обеспечение высокого уровня экспрессии целевого гена в клетке-мишени [237].

Однако технология получения готового препарата аденовирусного вектора, в целом, а также сама векторная система на основе Ад5, в частности, не лишена недостатков. Наиболее существенными из них являются:

- отсутствие технологически простой и эффективной методики очистки' и концентрирования аденовирусного препарата, готового к 1 непосредственному применению в медицине или ветеринарии; , "

- невысокая эффективность трансдукции данными векторами некоторых типов опухолевых клеток человека и млекопитающих [253].

Устранение этих недостатков возможно путем конструирования рекомбинантных аденовирусов с модифицированным капсидом. Перспективным направлением модификации капсида аденовируса является модификация минорного капсидного белка IX (р1Х). Преимущества модификации р1Х заключаются в следующем: возможность встраивания к С-концу р1Х относительно крупных пептидных фрагментов, высокая структурная совместимость р1Х с внедряемыми лигандами, широкий спектр возможных направлений использования модификаций р1Х [79].

Проблема невысокой эффективности проникновения аденовирусного вектора в некоторые типы опухолевых клеток объясняется тем, что первичным рецептором для связывания вириона Ад5 с поверхностью клетки является коксакивирусный-аденовирусный рецептор (CAR) [316], высокий уровень экспрессии которого имеют не все типы опухолевых клеток [245, 296]. В связи с высокими темпами роста количества онкологически больных людей и животных в последние годы, создание аденовирусного вектора, эффективно доставляющего генетическую информацию в опухолевые клетки с целью противоопухолевой терапии и диагностики, является актуальной научной задачей.

В связи с широким использованием векторов на основе аденовирусов в научной практике и медицинских исследованиях, в настоящее время активно создаются GLP и GMP производства для получения препаративных количеств аденовируса. В этой связи особенно актуальной является не только задача конструирования и получения рекомбинантных Ад5, но и разработка эффективных методов очистки и концентрирования Ад5.

Существующие сегодня способы очистки рекомбинантных Ад5 обладают следующими недостатками:

- в результате очистки аденовируса ультрацентрифугированием в градиенте плотности хлористого цезия получаемый вирусный препарат содержит высокие концентрации хлористого цезия (3.13-3.17 М), несовместимые для применения животным и человеку вследствие его токсичности [106]; использование для очистки рекомбинантных аденовирусов ионообменной и эксклюзионной хроматографии не позволяет использовать исходный клеточный лизат с аденовирусом, а сам способ очистки является многоступенчатым [35, 220];

- метод ультрафильтрации не может быть отдельно использован для очистки аденовирусного препарата из клеточного лизата, так как процесс ультрафильтрации не является абсолютным и не позволяет полностью освободиться от массы балластных белков [145].

В связи с вышеизложенным, наиболее удобным и эффективным представляется способ, позволяющий непосредственно использовать клеточный вируссодержащий лизат для очистки аденовирионов и получать чистый препарат аденовируса на выходе, готовый к применению. Разработка такого способа очистки рекомбинантных аденовирусов представляет самостоятельный научный интерес.

ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЯ

Целью исследований являлось создание рекомбинантных аденовирусных векторов с различными модификациями капсидного белка IX для усовершенствования очистки рекомбинантных аденовирусов и для повышения эффективности проникновения рекомбинантных аденовирусных векторов в опухолевые клетки.

В процессе выполнения работы предстояло решить следующие задачи:

1. Получить капсид-модифицированные вирусные векторы на основе рекомбинантного аденовируса человека 5 серотипа, экспонирующие на поверхности капсида различные углевод-связывающие домены гликозилгидролаз в составе аденовирусного белка IX.

2. Определить способность полученных модифицированных аденовекторов с углевод-связывающими доменами специфически связываться с соответствующими полисахаридными субстратами.

3. Подобрать условия элюирования капсид-модифицированных аденовирусов с углевод-связывающими доменами, адсорбированных на полисахаридном субстрате, и разработать способ аффинной очистки модифицированных аденовирусов с углевод-связывающими доменами в препаративных количествах из культурального препарата на полисахаридных носителях.

4. Получить рекомбинантные аденовирусы человека серотипа 5, несущие в составе капсидного белка IX последовательность лейцинового зиппера, способные адсорбировать на поверхности рекомбинантные наноантитела.

5. Определить эффективность доставки генетической информации аденовекторами с лейциновыми зипперами, нагруженными наноантителами против опухолеспецифического рецептора CEA, в опухолевые клетки in vitro.

НАУЧНАЯ НОВИЗНА

Впервые получены рекомбинантные аденовирусы человека серотипа 5, несущие в составе капсидного белка IX целлюлозо-связывающие и декстран-связывающие домены. Доказано, что углевод-связывающие домены экспонированы над поверхностью капсидов полученных рекомбинантных аденовирусов, а для аденовируса с целлюлозо-связывающими доменами в составе pIX впервые показана способность специфически связываться с волокнами аморфной целлюлозы.

Разработан новый способ аффинной очистки р1Х-модифицированных аденовирусных векторных систем с целлюлозо-связывающими доменами на целлюлозном носителе. Показана высокая эффективность нового способа очистки аденовекторов в получении чистого, биологически активного препарата аденовируса.

Впервые получены рекомбинантные аденовирусы человека серотипа 5, несущие в составе капсидного белка IX последовательность лейцинового зиппера. На моделях культур клеток аденокарциномы легких человека (линия А549) и карциномы толстой кишки человека (линия Liml215) показано, что рекомбинантный аденовирусный вектор, содержащий репортерный ген зеленого флуоресцирующего белка (EGFP), с лейциновыми зипперами в составе белка IX, нагруженный наноантителами против опухолеспецифического рецептора CEA, способен к эффективному проникновению в опухолевые клетки человека CAR-независимым путем/

По результатам работы подана заявка на получение патента Российской

Федерации № 2011123472/10(034727) от 09.06.2011 «Способ очистки рекомбинаитных аденовирусов млекопитающих и человека» и получено уведомление о положительном результате формальной экспертизы от 05.07.2011 года.

ПРАКТИЧЕСКАЯ ЗНАЧИМОСТЬ

Плазмидная технология модификации гена капсидного белка IX аденовируса человека серотипа 5 внедрена в работу лаборатории молекулярной биотехнологии ФГБУ «НИИЭМ им. Н.Ф. Гамалеи» Минздравсоцразвития России для получения рекомбинаитных аденовирусов с различными модификациями белка IX. Коллекция полученных рекомбинаитных аденовирусов: Аё5ЕОРР-р1Х-СВБ, Аё5ЕОРР-р1Х-ВВБ и АсЬЕОРР-рГХ-^ррег хранится в вирусном музее лаборатории молекулярной биотехнологии ФГБУ «НИИЭМ им. Н.Ф. Гамалеи» Минздравсоцразвития России. г

По результатам научно-исследовательской работы разработаны «Методические положения по использованию аффинной очистки в производстве рекомбинаитных аденовирусных векторов с генетически модифицированным капсидным белком IX», утвержденные на заседании секции отделения ветеринарной медицины Российской академии сельскохозяйственных наук «Ветеринарная биотехнология» (протокол № 2 от 20 октября 2011г.), которые могут быть использованы в научных, учебных и производственных целях.

Разработанный способ аффинной очистки векторных систем на основе р1Х-модифицированных рекомбинаитных аденовирусов человека серотипа 5 используется в лаборатории молекулярной биотехнологии ФГБУ «НИИЭМ им. Н.Ф. Гамалеи» Минздравсоцразвития России для очистки препаративных количеств рекомбинаитных аденовирусных векторов.

ЛИЧНЫЙ ВКЛАД СОИСКАТЕЛЯ

Автор непосредственно получил рекомбинантные аденовирусные вектора с модифицированным р1Х, разработал и оптимизировал технологию очистки р1Х-модифицированных аденовирусных векторов, исследовал проникающую способность модифицированного аденовектора с лейциновым зиппером в составе р1Х в опухолевые клетки человека, проанализировал, обобщил и интерпретировал полученные результаты, сформулировал выводы и рекомендации по дальнейшему применению разработанной технологии очистки и полученных аденовекторов. Электронная микроскопия образцов аденовирусов была выполнена совместно с д.б.н. Диденко Л.В., а цитофлуориметрия клеточного материала - совместно с к.б.н. Щебляковым Д.В. (ФГБУ «НИИЭМ им. Н.Ф. Гамалеи» Минздравсоцразвития России).

АПРОБАЦИЯ РАБОТЫ

Результаты диссертационной работы были доложены на итоговых конференциях по результатам выполнения мероприятий за 2009 и 2010 годы в рамках приоритетного направления «Живые системы» ФЦП «Исследования и разработка научно-технического комплекса России на 2007-2012 гг.» (Москва, 2009, 2010), Международной научно-практической конференции «Достижения супрамолекулярной химии и биохимии в ветеринарии и зоотехнии» (Москва, 2008), V Московском международном конгрессе «Биотехнология: состояние и перспективы развития» (Москва, 2009), IX Международном аденовирусном съезде (Венгрия, Добогоко, 2009).

Автор является победителем Всероссийского конкурса на лучшую научную работу среди студентов, аспирантов и молодых ученых ВУЗов Минсельхоза РФ по направлению «Биологические науки» (Москва-Брянск-Краснодар, 2011).

ПУБЛИКАЦИИ

По материалам диссертации опубликовано 8 научных работ, в том числе 3 статьи в журналах, рекомендованных ВАК, 5 - в сборниках международных конференций и конгрессов.

ОБЪЕМ И СТРУКТУРА ДИССЕРТАЦИИ

Диссертационная работа изложена на 157 страницах машинописного текста и включает введение, обзор литературы, собственные исследования, обсуждение результатов, выводы и список используемой литературы (321 источник, из которых 5 отечественных и 316 иностранных). Работа содержит 9 таблиц и 27 рисунков.

Похожие диссертационные работы по специальности «Биотехнология (в том числе бионанотехнологии)», 03.01.06 шифр ВАК

Заключение диссертации по теме «Биотехнология (в том числе бионанотехнологии)», Рогожин, Василий Николаевич

5. ВЫВОДЫ

1. Созданные капсид-модифицированные вирусные векторы на основе рекомбинантного аденовируса человека серотипа 5 экспонируют на поверхности капсида целлюлозо-связывающие и декстран-связывающие домены гликозилгидролаз в составе аденовирусного белка IX.

2. Модифицированный рекомбинантный аденовирус с целлюлозо-связывающими доменами способен специфически связываться с волокнами аморфной целлюлозы.

3. Оптимальными условиями элюирования капсид-модифицированных аденовирусов являются использование трис-фосфатного буфера с рН=3,0, время инкубирования 30 минут, температура плюс 4°С.

4. Разработанный способ аффинной очистки р1Х-модифицированных аденовирусных векторных систем с целлюлозо-связывающими доменами на целлюлозном носителе позволяет получать чистый, биологически активный препарат рекомбинантного аденовируса с выходом 64,5% по вирусным частицам и 59,5% - по бляшкообразующим единицам.

5. Созданные рекомбинантные аденовирусы человека серотипа 5, несущие в составе капсидного белка IX последовательность лейцинового зиппера, способны специфически адсорбировать на своей поверхности наноантитела за счет взаимодействия комплементарных последовательностей лейциновых зипперов в составе вируса и наноантител.

6. Рекомбинантный аденовирусный вектор с лейциновыми зипперами в составе белка IX, нагруженный наноантителами против опухолеспецифического рецептора СЕА, в 2,8±0,2 раза более эффективно проникает в опухолевые клетки человека линий А549 и 1лт1215 САЫ-независимым путем, в отличие от немодифицированного аденовируса Ас15ЕОРР и вируса АсІЗЕвРР-рІХ-гіррег без адсорбции наноантител на поверхности капсида.

6. ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ПОЛУЧЕННЫХ НАУЧНЫХ

РЕЗУЛЬТАТОВ

Результаты диссертационной работы используются в научно-исследовательской и производственной работе в лаборатории молекулярной биотехнологии ФГБУ «НИИЭМ им. Н.Ф. Гамалеи» Минздравсоцразвития России для конструирования аденовирусных векторов с модифицированным капсидным белком IX.

Материалы, изложенные в диссертации, внедрены в учебный процесс и используются при чтении лекций и проведении лабораторных и практических занятий по дисциплинам «Молекулярная биология», «Молекулярная биология вирусов», «Основы генной инженерии», «Генетическая инженерия» со студентами (бакалавры и магистры биологии) ветеринарно-биологического факультета ФГБОУ ВПО МГАВМиБ.

7. РЕКОМЕНДАЦИИ ПО ИСПОЛЬЗОВАНИЮ НАУЧНЫХ ВЫВОДОВ

Технология получения аденовирусов с модифицированным геном белка IX может быть рекомендована к использованию в научно-исследовательской работе для получения рГХ-модифицированных аденовирусных векторов.

Разработанная технология аффинной очистки рекомбинантных аденовирусных векторных систем с модифицированным капсидным белком IX может быть рекомендована для использования в лабораторной и производственной практике для получения чистого биологически активного препарата аденовируса.

Полученный аденовирусный вектор с лейциновыми зипперами в составе капсидного белка IX рекомендуется использовать в качестве наноплатформы для экспонирования на своей поверхности различных белковых лигандов за счет их адсорбции через взаимодействие комплементарных последовательностей лейциновых зипперов в составе аденовируса и лиганда.

Список литературы диссертационного исследования кандидат биологических наук Рогожин, Василий Николаевич, 2011 год

1. Семихин А.С., Лящук A.M., Мезенцева М.В., Трегубова М.И., Сергиенко О.В., Полетаева Н.Н., Народицкий Б.С., Карягина А.С., Лунин

2. B.Г., Гинцбург А.Л. Получение рекомбинантного интерферона-p человека на основе технологии аффинных доменов // Молекул, генетика. 2009. - № 4.1. C. 38-41.

3. Тиллиб С. В. «Верблюжьи антитела» эффективный инструмент для исследований, диагностики и терапии. // Молекулярная биология. - 2011. -№45(1). - С. 77-85.

4. Хорвиц М.С. Аденовирусы и их репликация. // "Вирусология" под ред.Филдс. Изд.: "Мир". 1989.

5. Acsadi G., Lochmuller Н., Jani A., Huard J., Massie В., Prescott S., Simoneau M., Petrof B. J., and Karpati G. Dystrophin expression in muscles of mdx mice after adenovirus-mediated in vivo gene transfer. // Hum. Gene Ther. 1996. V. 7. P. 129-140.

6. Ahmadvand D., Rasaee M.J., Rahbarizadeh F., Kontermann R.E., Sheikholislami F. Cell selection and characterization of a novel human endothelial cell specific nanobody. //Mol Immunol. 2009. V. 46. P. 1814-1823.

7. Ahmadvand D., Rasaee M.J., Rahbarizadeh F., Mohammadi M. Production and characterization of a high-affinity nanobody against human endoglin. // Hybridoma (Larchmt). 2008. V. 27. P. 353-360.

8. Akalu A., Liebermann H., Bauer U., Granzow H., Seidel W. The subgenus-specific C-terminal region of protein IX is located on the surface of the adenovirus capsid. // J Virol. 1999. V. 73. P. 6182-6187.

9. Anderson C.W. The proteinase polypeptide of adenovirus serotype 2 virions. //Virology. 1990. V. 177(1). P. 259-272.

10. Angeletti P.C., Engler J.A. Adenovirus preterminal protein binds to the CAD enzyme at active sites of viral DNA replication on the nuclear matrix. // J Virol. 1998. V. 72(4). P. 2896-2904.

11. Angelov A., Loderer C., Pompei S., Liebl W. A novel family of carbohydrate-binding modules revealed by the genome sequence of Spirochaeta thermophila DSM 6192. // Appl Environ Microbiol. 2011. P. 17.

12. Arbabi-Ghahroudi M., Desmyter A., Wyns L., Hamers R., Muyldermans S. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. //FEBS Lett. 1997. V. 414. P. 521-526.

13. Arbabi-Ghahroudi M., Tanha J., MacKenzie R. Prokaryotic expression of antibodies. // Cancer Metastasis Rev. 2005. V. 24. P. 501-519.

14. Armentano D., Sookdeo C., Hehir K., Gregory R., St. George J., Prince G., Wadsworth S.C., Smith A.E. Characterization of an adenovirus gene transfer vector containing an E4 deletion. // Hum. Gene Then. 1995. V. 6. P. 1343-1353.

15. Athappilly F.K., Murali R., Rux J J., Cai Z., Burnett R.M. The refined crystal structure of hexon, the major coat protein of adenovirus type 2, at 2.9 A resolution. // J Mol Biol. 1994. V. 242. P. 430-455.

16. Badger C., Anasetti C., Davis J., Berstein I. Treatment of malignancy with unmodified antibody. // Pathol. Immunopathol. Res. 1987. V. 6. P. 419-^34.

17. Baral T.N., Magez S., Stijlemans B., Conrath K., Vanhollebeke B., Pays

18. E., Muyldermans S., De Baetselier P. Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. // Nat. Med. 2006. V. 12. P. 580-584.

19. Bauerschmitz G.J., Barker S.D., Hemminki A. Adenoviral gene therapy for cancer: from vectors to targeted and replication competent agents (review). // Int. J Oncol. 2002. V. 21. P. 1161-1174.

20. Bayer E.A., Chanzy H., Lamed R., Shoham Y. Cellulose, cellulases and cellulosomes. // Curr. Opin. Struct. Biol. 1998. V. 8. № 5. P. 548-557.

21. Beach N., Duncan R., Larsen C., Meng X.J., Sriranganathan, N., Pierson

22. F. Comparison of 12 turkey hemorrhagic enteritis virus isolates allows prediction of genetic factors affecting virulence. // J. Gen. Virol. 2009. V. 90. P. 1978-1985.

23. Belousova N., Korokhov N., Krendelshchikova V., Simonenko V., Mikheeva G., Triozzi P.L. Genetically targeted adenovirus vector directed to CD40-expressing cells. // J Virol. 2003. V. 77. P. 11367-11377.

24. Belousova N., Krendelchtchikova V., Curiel D.T., Krasnykh V. Modulation of adenovirus vector tropism via incorporation of polypeptide ligands into the fiber protein. // J Virol. 2002. V. 76. P. 8621-8631.

25. Benko M., Harrach B. A proposal for a new (third) genus within the family Adenoviridae. // Arch Virol. 1998. V. 143(4). P. 829-837.

26. Berdichevsky Y., Ben-Zeev E., Lamed R., Benhar I. Phage display of a cellulose binding domain from Clostridium thermocellum and its application as a tool for antibody engineering. // J. Immunol. Methods. 1999. V. 228. P. 151-162.

27. Berdichevsky Y., Lamed R., Frenkel D., Gophna II, Bayer E., Yaron S., Shoham Y., Benhar I. Matrix-assisted refolding of single-chain Fv- cellulose binding domain fusion proteins. // Protein Expr. Purif. 1999. V. 17. P. 249-259.

28. Bergelson J.M., Krithivas A., Celi L., Droguett G., Horwitz M.S., Wickham T., Crowell R.L., Finberg R.W. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. // J. Virol. 1998. V. 72(1). P. 415-419.

29. Berkner K.L. Development of adenovirus vectors for the expression of heterologous genes. //Biotechniques. 1988. V. 6(7). P. 616-629.

30. Bett A., Haddara W., Prevec L., Graham F.L. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. // Proc Natl Acad Sci USA. 1994. V. 13. № 91(19). P. 8802-8806.

31. Blanche F., Barbot A., Cameron B. Method of separating viral particles. // United States Patent. 2003. N. US 6537793 B2.

32. Blanche F., Cameron B., Barbot A., Ferrero L., Guillemin T., Guyot S., Somarriba S., Bisch D. An improved anion-exchange HPLC method for the detection and purification of adenoviral particles // Gene Therapy. 2000. V. 7. P. 1055-1062.

33. Bond C.J., Marsters J.C., Sidhu S.S. Contributions of CDR3 to VHH domain stability and the design of monobody scaffolds for naive antibody libraries. // J. Mol. Biol. 2003. № 332. P. 643- 655.

34. Boraston A.B., Nurizzo D., Notenboom V., Ducros V., Rose D.R., Kilburn D.G., Davies G.J. Differential oligosaccharide recognition by evolutionarily-related beta-1,4 and beta-1,3 glucan-binding modules. // J. Mol. Biol. 2002. V. 319. № 5. P. 1143-1156.

35. Boraston A.B., Bolam D.N., Gilbert H.J., Davies G.J. Carbohydrate-binding modules: fine-tuning polysaccharide recognitio // Biochem. J. 2004. V. 382. P. 769-781.

36. Both G.W. Ovine atadenovirus: a review of its biology, biosafety profile and application as a gene delivery vector. // Immunol Cell Biol. 2004. V. 82(2). P. 189-195.

37. Boudin M.L., D'Halluin J.C., Cousin C., Boulanger P. Human adenovirus type 2 protein Ilia. Maturation and encapsidation. // Virology. 1980. V. 101(1). P. 144-156.

38. Boulanger P., Lemay P., Blair G.E., Russell W. C. Characterization of adenovirus protein IX. // J. Gen. Virol. 1979. V. 44. P. 783 800.

39. Bramson J.L. Helper-dependent adenoviral vectors containing modified fibre for improved transduction of developing and mature muscle cells. // Hum. Gene Ther. 2004. V. 15. P. 179-188.

40. Breidenbach M., Rein D.T., Everts M., Glasgow J.N., Wang M., Passineau M.J. Mesothelinmediated targeting of adenoviral vectors for ovarian cancer gene therapy. // Gene Therapy. 2005. V. 12. P. 187-193.

41. Brough D.E., Lizonova A., Hsu C., Kulesa V.A., Kovesdi I. A gene transfer vector-cell line system for complete functional complementation of adenovirus early regions El and E4. // J. Virol. 1996. V. 70. P. 6497-6501.

42. Bruder J.T., Jie T., McVey D.L., Kovesdi I. Expression of gp 19K increases the persistence of transgene expression from an adenovirus vector in the mouse lung and liver. // J. Virol. 1997. V. 71. P. 7623-7628.

43. Campos S.K., Barry M.A. Comparison of adenovirus fiber, protein IX, and hexon capsomeres as scaffolds for vector purification and cell targeting // Virology. 2006. № 349. P. 453-462.

44. Campos S.K., Parrott M.B., Barry M.A. Avidin-based targeting and purification of a protein IX-modified, metabolically biotinylated adenoviral vector. // Mol. Ther. 2004. V. 9. P. 942-954.

45. Carter P. Improving the efficacy of antibody-based cancer therapies. // Nat. Rev. Cancer. 2001. V. 1. P. 118-129.

46. Chen H.H., Mack L.M., Kelly R., Ontell M., Kochanek S., Clemens P.R. Persistence in muscle of an adenoviral vector that lacks all viral genes // Proc Natl Acad Sci USA. 1997. V. 4. № 94(5). P. 1645-50.

47. Chen S.H., Shine H.D., Goodman J.C., Grossman R.G., Woo S.L. Gene therapy for brain tumors: Regression of experimental gliomas by adenovirusmediated gene transfer in vivo. II Proc. Natl. Acad. Sci. U.S.A. 1994. V. 91. P. 3054-3057.

48. Chiocca S., Kurzbauer R., Schaffner G., Baker A., Mautner V., Cotten M. The complete DNA sequence and genomic organization of the avian adenovirus CELO // J. Virol. 1996. V. 70. P. 2939 2949.

49. Chu G., Hayakawa H., Berg P. Electroporation for the efficient transfection of mammalian cell with DNA. // Nucleic Acids Res. 1987. V. 15, P. 1311-1326.

50. Clemens P., Kochanek S., Sunada Y., Chan S., Chen H.H., Campbell K., Caskey C.T. In vivo muscle gene transfer of full-length dystrophin with an adenoviral vector that lacks all viral genes. // Gene Ther. 1996. V.3(l 1). P.965-972

51. Colby W., Shenk T. Adenovirus type 5 virions can be assembled in vivo in the absence of detectable polypeptide IX. // J. Virol. 1981. V. 39. P. 977 980.

52. Cortez-Retamozo V., Backmann N., Senter P.D., Wernery U., De Baetselier P., Muyldermans S., Revets H. Efficient cancer therapy with a nanobodybased conjugate. // Cancer Res. 2004. V. 64. P. 2853-2857.

53. Cortez-Retamozo V., Lauwereys M., Hassanzadeh Gh.G., Gobert M., Conrath K. et al. Efficient tumor targeting by single-domain antibody fragments of camels. // Int. J. Cancer. 2002. V. 98. P. 456-462.

54. Crawford-Miksza L., Schnurr D.P. Analysis of 15 adenovirus hexon proteins reveals the location and structure of seven hypervariable regions containing serotype-specific residues. // J Virol. 1996. V. 70. P. 1836-1844.

55. Curiel D. Capsid-modified recombinant adenovirus vectors and methods of use // United States patent № 6555368.

56. Davis G. Structural studies on cellulases. // Biochem. Soc. Trans. 1998. V. 26. P. 167-173.

57. Davison A.J., Benko M., Harrach B. Genetic content and evolution of adenoviruses. // J Gen Virol. 2003. V. 84. P. 2895-2908.

58. Davison A.J., Telford E., Watson M.S., McBride K., Mautner V. The DNA sequence of adenovirus type 40. //J. Mol. Biol. 1993. V. 234. P. 1308-1316.

59. Davison A J., Wright K.M., Harrach B. DNA sequence of frog adenovirus. // J. Gen. Virol. 2000. V. 81. P. 2431-2439.

60. Decanniere K., Muyldermans S., Wyns L. Canonical antigen-binding loop structures in immunoglobulins: more structures, more canonical classes? // J. Mol. Biol. 2000. V. 300. P. 83-91.

61. Desmyter A., Transue T. R., Ghahroudi M. A., Thi M. H., Poortmans F., Hamers R. et al. Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. //Nat. Struct. Biol. 1996. V. 3. P. 803-811.

62. Dmitriev I., Kashentseva E.A., Seki T., Curiel D.T. Utilization of minor capsid polypeptides IX and Ilia for adenovirus targeting. // Mol Ther. 2001. V. 3. P. 167.

63. Dmitriev I.P., Kashentseva E.A., Curiel D.T. Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. // J. Virol. 2002. V. 76. P. 6893-6899.

64. Duff S. E., Li C., Garland J.M., Kumar S. CD105 is important for angiogenesis: evidence and potential applications. // FASEB J. 2003. V. 17. P. 984-992.

65. Dumoulin M., Conrath K., Van Meirhaeghe A., Meersman F., Heremans K., Frenken L.G., Muyldermans S, Wyns L, Matagne A. Single-domain antibody fragments with high conformational stability // Protein Sci. 2002. V.l 1. P.500-515.

66. Eastham J.A., Hall S.J., Sehgal I., Wang J., Timme T.L., Yang G., Connell-Crowley L., Elledge S.J., Zhang W.W. et al. In vivo gene therapy with p53 orp21 adenovirus for prostate cancer. // Cancer Res. 1995. V. 55. P. 5151-5155.

67. Els Conrath K., Lauwereys M., Wyns L., Muyldermans S. Camel singledomain antibodies as modular building units in bispecific and bivalent antibody constructs. // J. Biol. Chem. 2001. V. 276. P. 7346-7350.

68. Enders J.F., Bell J.A., Dingle J.H., Francis T. J., Hilleman M.R., Huebner R.J., Payne A.M. Adenoviruses: group name proposed for new respiratory-tract viruses//Science. 1956. V. 124(3212). P. 119-120.

69. Engelhardt J.F., Ye X., Doranz B., Wilson J.M. Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. // Proc Natl Acad Sci USA. 1994. V. 21. № 91(13). P. 6196-6200.

70. Engler J. A. The nucleotide sequence of the polypeptide IX gene of human adenovirus type 3. // Gene. 1981. V. 13. P. 387 394.

71. Ewert S.C.C., Conrath K., Pluckthun A. Biophysical properties of camelid VHH domains compared to those of human VH3 domains. // Biochemistry. 2002. V. 41. P. 3628-3636.

72. Fabry C.M., Rosa-Calatrava M., Moriscot C., Ruigrok R.W., Boulanger P., Schoehn G. The C-terminal domains of adenovirus serotype 5 protein IX assemble into an antiparallel structure on the facets of the capsid. // J Virol. 2009. V. 83(2). P. 1135-1139.

73. Falgout B., Ketner G. Characterization of adenovirus particles made by deletion mutants lacking the fiber gene. // J Virol. 1988. V. 62. P. 622-625.

74. Farkas S. L. et al. Genomic and phylogenetic analyses of an adenovirus isolated from a corn snake (Elaphe guttata) imply a common origin with members of the proposed new genus Atadenovirus. // J Gen Virol. 2002. V. 83(10). P. 24032410.

75. Fessler S.P., Young C.S. Control of adenovirus early gene expression during the late phase of infection. // J. Virol. 1998. V. 72. P. 4049 4056.

76. Furcinitti P.S., van Oostrum J., Burnett R.M. Adenovirus polypeptide IX revealed as capsid cement by difference images from electron microscopy and crystallography. //EMBO J. 1989. V. 8. P. 3563-3570.

77. Gall J., Kass-Eisler A., Leinwand L., Falck-Pedersen E. Adenovirus type 5 and 7 capsid chimera: fiber replacement alters receptor tropism without affecting primary immune neutralization epitopes. // J. Virol. 1996. V. 70(4). P. 2116-2123.

78. Gallichan W.S., Rosenthal K.L. Long-term immunity and protection against herpes simplex virus type 2 in the murine female genital tract after mucosal but not systemic immunization. // J. Infect. Dis. 1998. V. 177. P. 1155-1161.

79. Gao G.P., Yang Y., Wilson J. Biology of adenovirus vectors with El and E4 deletions for liver-directed gene therapy. // J. Virol. 1996. V. 70. P. 8934-8943.

80. Gilkes N.R., Henrissat B., Kilburn D.G., Miller R.J., and Warren R.A. Domains in microbial -l,4-glycanases: sequence conservation, function,'; and enzyme families. //Microbiol. Rev. 1991. V. 55. P. 303-315.

81. Gilkes N.R., Warren R.A., Miller R.J., and Kilburn D.G. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. // J. Biol. Chem. 1988. V. 263. P. 10401-10407.

82. Glasgow J.N., Mikheeva G., Krasnykh V., Curiel D.T. A strategy for adenovirus vector targeting with a secreted single chain antibody // PLoS One. 2009. V. 4(12). P. 8355.

83. Glotzer J.B., Saltik M., Chiocca S., Michou A.I., Moseley P., Cotten M. Activation of heat-shock response by an adenovirus is essential for virus replication. //Nature. 2000. V. 407(6801). P. 207-211.

84. Goldman M.J., Yang Y., Wilson J.M. Gene therapy in a xenograft model of cystic fibrosis lung corrects chloride transport more effectively than the sodium defect. //Nat. Genet. 1995. V. 9. P. 126-131.

85. Graham F.L. and Prevec L. Manipulation of adenovirus vectors. // Methods in Mol.Biol. 1994. V. 7. P. 109-127.

86. Graham F.L., Smiley J., Russell W.C., Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. // J Gen Virol. 1977. V. 36(1). P. 59-74.

87. Graham F.L., Prevec L. Adenovirus-based expression vectors and recombinant vaccines. In "Vaccines: New approaches to immunological Problems" (R.W. Ellis, ed.). P. 363-389. Butterworth-Heinemann, Boston, MA. 1992.

88. Green K.Y., Wold W.S.M. Human adenoviruses: growth, purification and transfection assay. // Methods Enzymology. 1980. V. 80. P. 425-431.

89. Greenberg A.S., Avila D., Hughes M., Hughes A., McKinney E.C., Flajnik M.F. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. // Nature. 1995. V.374. P. 168-173.

90. Ha J.S., Lee Y.M., Choi S.L., Song J.J., Shin C.S., Kim J.H., Lee S.G. Thermostable beta-glycosidase-CBD fusion protein for biochemical analysis of cotton scouring efficiency. // J Microbiol Biotechnol. 2008. V. 18(3). P. 443-448.

91. Hamers-Casterman C., Atarhouch T., Muyldermans S., Robinson G., Hamers C., Songa E.B., Bendahman N., Hamers R. Naturally occurring antibodies devoid of light chains. //Nature. 1993. V. 363. P. 446-448.

92. Hanahan D. Studies of transformation of Escherichia coli with plasmids. // J Mol Biol. 1983. V.166. P. 557-580.

93. Harmsen M.M., De Haard H.J. Properties, production, and applications of camelid single-domain antibody fragments. // Appl. Microbiol. Biotechnol. 2007. V. 77. P. 13-22.

94. Harmsen M.M., Ruuls R.C., Nijman I .J., Niewold T.A., Frenken L.G., de Geus B. Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. // Mol. Immunol. 2000. V. 37(10). P. 579-590.

95. Harmsen M., van Solt C.B., Fijten H.P., Van Setten M.C. Prolonged in vivo residence times of llama single-domain antibody fragments in pigs by binding to porcine immunoglobulins. // Vaccine. 2005. V. 23. P. 4926-4934.

96. Harpst J., Ennever J., Russell W. Physical properties of nucleoprotein cores from adenovirus type 5. //Nucleic Acids Res. 1977. V. 4(2). P. 477-490.

97. Hashimoto H., Tamai Y., Okazaki F., Tamaru Y., Shimizu T., Araki T., Sato M. The first crystal structure of a family 31 carbohydratebinding module with affinity to beta-1,3-xylan. // FEBS Lett. 2005. V. 579. P. 4324-4328.

98. Hedley S.J., Auf der Maur A., Hohn S., Escher D., Barberis A., Glasgow J.N., et al. An adenovirus vector with a chimeric fiber incorporating stabilized single chain antibody achieves targeted gene delivery. // Gene Therapy. 2006. V. 13. P. 88-94.

99. Hemminki A., Belousova N., Zinn K.R., Liu B., Wang M., Chaudhuri T.R., et al. An adenovirus with enhanced infectivity mediates molecular chemotherapy of ovarian cancer cells and allows imaging of gene expression. // Mol Ther. 2001. V. 4. P. 223-231.

100. Hemminki A., Wang M., Desmond R.A., Strong T.V., Alvarez R.D., Curiel D.T. Serum and ascites neutralizing antibodies in ovarian cancer patients treated with intraperitoneal adenoviral gene therapy. // Hum Gene Ther. 2002. V. 13. P. 1505-1514.

101. Henning P., Andersson K.M., Frykholm K., Ali A., Magnusson M.K., Nygren P.A., et al. Tumor cell targeted gene delivery by adenovirus 5 vectors carrying knobless fibers with antibody-binding domains. // Gene Therapy. 2005. V. 12. P. 211-224.

102. Hilden L., G. Johansson. Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. // Biotechnol. Lett. 2004. V. 26. P. 1683-1693.

103. Hitt M.M., Addison C.L., Graham F. L. Human adenovirus vectors for gene transfer into mammalian cells. In "Advances in Pharmacology" (T. August, ed.), V. 40. P. 137-206. Academic Press, San Diego. 1997.

104. Holmes D., Quigley M. A rapid boiling method for the preparation of bacterial plasmids. // Anal Biochem. 1981. V. 114. P. 193.

105. Imler J.L. Adenovirus vectors as recombinant viral vaccines. // Vaccine. * 1995. V. 13. P. 1143-1151.t !

106. Jacobs S.C., Davison A.J., Carr S., Bennett A.M., Phillpotts R., Wilkinson G.W.G. Genome Sequence of Human Adenovirus 4. // National Center for Biotechnology Information, NIH, Bethesda, MD. 2004.

107. Jervis E.J., Haynes C.A., Kilburn D.G. Surface diffusion of cellulases and their isolated binding domains on cellulose. // J. Biol. Chem. 1997. V. 272. №38. P. 24016-24023.

108. Jespers L., Schon O., Famm K., Winter G. Aggregation-resistant domain antibodies selected on phage by heat denaturation. // Nat. Biotechnol. 2004. V. 22. P.1161-1165.

109. Jobling S.A., Jarman C., Teh M.M., Holmberg N., Blake C., Verhoeyen M.E. Immunomodulation of enzyme function in plants by single-domain antibody fragments. // Nat. Biotechnol. 2003. V. 21. P. 77-80.

110. Khazaeli M.B., Conry R.M., LoBuglio A.F. Human immune response to monoclonal antibodies. //J. Immunother. 1994. V. 15. P. 42-52.

111. Konz J.R., Lee A.L., Brian To C.S., Goerke A.R. Method of adenovirus purification // United States patent № 2005/0196854A1.

112. Korokhov N., de Gruijl T.D., Aldrich W.A., Triozzi P.L., Banerjee P.T., Gillies S.D. High efficiency transduction of dendritic cells by adenoviral vectors targeted to DC-SIGN. // Cancer Biol Ther. 2005. V. 4. P. 289-294.

113. Korokhov N., Mikheeva G., Krendelshchikov A., Belousova N., Simonenko V., Krendelshchikova V., et al. Targeting of adenovirus via genetic modification of the viral capsid combined with a protein bridge. // J. Virol. 2003. V. 77. P. 12931-12940.

114. Kovacs E.R., Benko M. Complete sequence of raptor adenovirus 1iconfirms the characteristic genome organization of siadenoviruses. // Infect Genet Evol. 2011. V. 11(5). P. 1058-1065.

115. Krasnykh V., Belousova N., Korokhov N., Mikheeva G., Curiel D.T. Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. // J. Virol. 2001. V. 75. P. 4176-4183.

116. Krasnykh V., Dmitriev I., Mikheeva G., Miller C.R., Belousova N., Curiel D.T. Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. // J Virol. 1998. V. 72. P. 18441852.

117. Krasnykh V.N., Mikheeva G.V., Douglas J.T., Curiel D.T. Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism. // J. Virol. 1996. V. 70. P. 6839-6846.

118. Krougliak V., Graham F.L. Development of cell lines capable of complementing El, E4, and protein IX defective adenovirus type 5 mutants. // Hum. Gene Ther. 1995. V. 6. P. 1575-1586.

119. Kuo J. Electron microscopy: methods and protocols // Humana press. 2007. (2nd edition) Clifton, NJ.

120. Lange I.G., Daxenberger A., Meyer H.H. Studies on the antibody response of Lama glama-evaluation of the binding capacity of different IgG subtypes in ELISAs for clenbuterol and BSA. // Vet. Immunol. Immunopathol. 2001. V. 83. P. 1-9.

121. Laver W.G., Wrigley N.G., Pereira H.G. Removal of pentons from particles of adenovirus type 2. // Virology. 1969. V. 39. P. 599-604.

122. Le L.P., Everts M., Dmitriev I.P., Davydova J.G., Yamamoto M., Curiel D.T. Fluorescently labeled adenovirus with pIX-EGFP for vector detection. // Mol Imaging. 2004. V. 3. P. 105-116.

123. Lee J., Fenton B.M., Koch C.J., Frelinger J.G., Lord E.M. Interleukin 2 expression by tumor cells alters both the immune response and the tumor microenvironment. //Cancer Res. 1998. V. 58. P. 1478-1485.

124. Legerski R., Robberson D. Analysis and optimization of recombinant DNA joining reactions.//J of Mol Biol. 1985. V. 181.P. 297-312.

125. Lehtio J., Sugiyama J., Gustavsson M., Fransson L., Linder M., Teeri T.T. The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. // Proc. Natl. Acad. Sci. USA. 2003. V. 100. № 2. P. 484-489.

126. Lehtio J., Wernerus H., Samuelson P., Teeri T.T., Stahl S. Directed immobilization of recombinant staphylococci on cotton fibers by functional display of a fungal cellulose-binding domain. // FEMS Microbiol. Lett. 2001. V. 195. № 2. P. 197-204.

127. Levy I., Shani Z., Shoseyov O. Modification of polysaccharides and plant cell wall by endo-l,4-beta-glucanase and cellulose-binding domains. // Biomol. Eng. 2002. V. 19. №1. P. 17-30.

128. Levy I., Shoseyov O. Cellulose binding domains: industrial and biotechnological application. //Biotechnol. Adv. 2002. V. 20. P. 191-213.

129. Li E., Stupack D.G., Brown S.L., Klemke R., Schlaepfer D.D., Nemerow G.R. Association of pl30CAS with phosphatidylinositol-3-OH kinase mediates adenovirus cell entry. // J. Biol. Chem. 2000. V. 275. P. 14729-14735.

130. Li E., Stupack D., Bokoch G.M., Nemerow G.R. Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. // J. Virol. 1998. V. 72. P. 8806-8812.

131. Li E., Stupack D., Klemke R., Cheresh D.A., Nemerow G.R. Adenovirus endocytosis via av integrins requires phosphoinositide-3-OH kinase. // J. Virol. 1998. V. 72. P. 2055-2061.

132. Li E., Brown S.L., Stupack D.G., Puente X.S.,. Cheresh D.A, Nemerow G.R. Integrin avpi is an adenovirus coreceptor. // J. Virol. 2001. V. 75. P. 54055409.

133. Li H.-J. et al. Adenovirus tumor targeting and hepatic untargeting by a CAR ectodomain-anti-CEA bi-specific adapter. // Cancer Res. 2004. V. 67. P. 5354-5361.

134. Liao H., Myung S., Zhang Y.H. One-step purification and immobilization of thermophilic polyphosphate glucokinase from Thermobifida fusca YX: glucose-6-phosphate generation without ATP. // Appl Microbiol Biotechnol. 2011. V. 16. P. 134-140.

135. Linder M., Teeri T.T. The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. // Proc Natl Acad Sci USA. 1996. V. 93. №22. P. 12251-12255.

136. Linder M., Winiecka-Krusnell, and Linder E. Use of recombinant cellulose-binding domains of Trichoderma reesei cellulase as a selective immunocytochemical marker for cellulose in protozoa. // Appl. Environ. Microbiol. 2002. V. 68. P. 2503-2508.

137. Liu T.J., Zhang W.W., Taylor D.L., Roth J.A., Goepfert H., Clayman G.L. Growth suppression of human head and neck cancer cells by the introduction of a wild-type p53 gene via a recombinant adenovirus. // Cancer Res. 1994. V. 54. P. 3662-3667.

138. Lutz P., Rosa-Calatrava M., Kedinger C. The product of the adenovirus intermediate gene IX is a transcriptional activator. // J. Virol. 1997. V. 71. P. 5102 -5109.

139. Magnusson M.K., Hong S.S., Boulanger P., Lindholm L. Genetic retargeting of adenovirus: novel strategy employing 'deknobbing' of the fiber. // J. Virol. 2001. V. 75. P. 7280-7289.

140. Maizel J.V., White D.O., Scharff M. D. The polypeptides of adenovirus. II. Soluble proteins, cores, top components and the structure of the virion. // Virology. 1968. V. 36. P. 126-136.

141. Mangel W.F., Baniecki M.L., McGrath W.J. Specific interactions of the adenovirus proteinase with the viral DNA, an 11-amino-acid viral peptide, and the cellular protein actin. // Cell Mol Life Sci. 2003. V. 60(11). P. 2347-2355.

142. Maniatis T., Sambrook J., Fritsch E.F. Molecular Cloning: a laboratory manual // Cold Spring Harbor Laboratory Pr. 1989. 2nd edition.

143. Matsui T., Murayama M., Mita T. Adenovirus 2 peptide IX gene is expressed only on replicated DNA molecules. // Mol. Cell. Biol. 1986. V. 6. P. 4149-4154.

144. Matthews D.A., Russell W.C. Adenovirus core protein V interacts with p32-a protein which is associated with both the mitochondria and the nucleus. // J Gen Virol. 1998. V. 79(7). P. 1677-1685.

145. Matthews D.A., Russell W.C. Adenovirus protein-protein interactions: hexon and protein VI. // J Gen Virol. 1994. V. 75(12). P. 3365-3374.

146. Mattinen M.L., Linder M., Drakenberg T., Annila A. Solution structure of the cellulose-binding domain of endoglucanase I from Trichoderma reesei and its interaction with cello-oligosaccharides. // Eur. J. Biochem. 1998. V. 256. №2. P. 279-286.

147. Meier O., U. F. Greber. Adenovirus endocytosis. // J. Gene Med. 2004. V. 6(1). P. 152-163.

148. Meulenbroek R.A., Sargent K.L., Lunde J., Jasmin B.J., Parks R.J. Use of adenovirus protein IX (pIX) to display large polypeptides on the virion-generation of fluorescent virus through the incorporation of pIX-GFP. // Mol Ther. 2004. V. 9. P. 617-624.

149. Mikolajczyk S.D., Marks L.S., Partin A.W., Rittenhouse H.G. Free prostatespecific antigen in serum is becoming more complex. // Urology. 2002. V. 59. P. 797-802.

150. Morenweiser R. Downstream processing of viral vectors and vaccines // Gene Therapy. 2005. No. 12. P. S103-S110.

151. Muyldermans S. Single domain camel antibodies: Current status. // J Biotechnol. 2001. V. 74. P. 277- 302.

152. Muyldermans S., Atarhouch T., Saldanha J., Barbosa J.A., Hamers R. Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. // Protein Eng. 1994. V. 7. P. 1129-1135.

153. Nermut M.V. The architecture of adenoviruses. // The Adenoviruses, ed. By H.S. Ginsberg. 1984.

154. Nicklin S.A., Dishart K.L., Buening H., Reynolds P.N., Hallek M., Nemerow G.R., et al. Transductional and transcriptional targeting of cancer cells using genetically engineered viral vectors. // Cancer Lett. 2003. V.201. P. 165-173.

155. Nickiin S.A,. White S.J., Watkins S.J., Hawkins R.E., Baker A.H. Selective targeting of gene transfer to vascular endothelial cells by use of peptides isolated by phage display. // Circulation. 2000. V. 102. P. 231-237.

156. Notenboom V., Boraston A.B., Kilburn D.G., Rose D.R. Crystal structures of the family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A in native and ligand-bound forms. // Biochemistry. 2001. V. 40. № 21. P. 6248-6256.

157. Nuttall S.D., Krishnan U.V., Hattarki M., De Gori R., Irving R.A., Hudson P.J. Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries. // Mol. Immunol. 2001. V. 38. P. 313-326.

158. Ohno T., Gordon D., San H., Pompiii V. J., Imperiale M. J., Nabel G. J., Nabel E.G. Gene therapy for vascular smooth muscle cell proliferation after arterial injury. // Science. 1994. V. 265. P. 781-784.

159. Olichon A., Schweizer D., Muyldermans S., de Marco A. Heating as a rapid purification method for recovering correctly-folded thermotolerant VH and VHH domains. // BMC Biotechnol. 2007. V. 7. P. 7.

160. Ong E., Gilkes N.R., Miller R.C. Jr., Warren A.J., Kilburn D.G. Enzyme immobilization using a cellulose-binding domain: properties of a beta-glucosidase fusion protein. //Enz. Microb. Technol. 1991. V. 13. №1. P. 59-65.

161. Papanikolopoulou K., Forge V., Goeltz P., Mitraki A. Formation of highly stable chimeric trimers by fusion of an adenovirus fiber shaft fragment with the foldon domain of bacteriophage T4 fibritin. // J Biol Chem. 2004. V. 279. P. 8991-8998.

162. Parks R.J. Adenovirus protein IX: a new look at an old protein. // Mol Ther. 2005. V. 11. P. 19-25.

163. Pawelek J.M., Low K.B., Bermudes D. Bacteria as tumor targeting vectors. //Lancet Oncol. 2003. V. 4. P. 548-556.

164. Pereboeva L., Komarova S., Mahasreshti P.J., Curiel D.T. Fiber-mosaic adenovirus as a novel approach to design genetically modified adenoviral vectors. // Virus Res. 2004. V. 105. P. 35-46.

165. Perez J.M., Renisio J.G., Prompers J.J., van Platerink C.J., Cambillau C., Darbon H., Frenken L.G. Thermal unfolding of a llama antibody fragment: A two-state reversible process. // Biochemistry. 2001. V. 40. P. 74-83.

166. Rade J.J., Schulick A.H., Virmani R., Dichek D.A. Local adenoviral-mediated expression of recombinant hirudin reduces neointima formation after arterial injury. //Nat. Med. 1996. V.2. P. 293-298.

167. Raghothama S., Simpson P.J., Szabo L., Nagy T., Gilbert H.J., Williamson M.P. Solution structure of the CBM10 cellulose binding module from Pseudomonas xylanase A. //Biochemistry. 2000. V. 39. № 5. p. 978-984.

168. Rahbarizadeh F., Ahmadvand D., Sharifzadeh Z. Nanobody; an old concept and new vehicle for immunotargeting // Immunol Invest. 2011. V. 40(3). P. 299-338.

169. Rahbarizadeh F., Rasaee M.J., Forouzandeh-Moghadam M., Allameh A. High expression and purification of the recombinant camelid anti-MUCl single domain antibodies in Escherichia coli. // Protein Expr. Purif. 2005. V. 44. P. 32-38.

170. Ramirez C., Fung J., Miller R.C. Jr., Antony R., Warren J., Kilburn D.G. A bifunctional affinity linker to couple antibodies to cellulose. // Biotechnology (N.Y.) 1993. V. 11. №13. P. 1570-1573.

171. Rapid, single-step purification method for adenovirus vectors using CIM® QA disk monolithic column // BIA Separations GmbH. 2010. Application Note #A022

172. Reese E.T., Sui R.G.H., Levinson H.S. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. // J. Bacteriol. 1950. V. 59. P. 485^97.

173. Rein D.T., Breidenbach M., Wu H., Han T., Haviv Y.S., Wang M., et al. Gene transfer to cervical cancer with fiber-modified adenoviruses. // Int J Cancer. 2004. V. 111. P. 698-704.

174. Rekosh D.M., Russell W.C., Bellet A.J., Robinson A. Identification of a protein linked to the ends of adenovirus DNA. // Cell. 1977. V.l 1(2). P. 283-295.

175. Revets H., De Baetselier P., Muyldermans S. Nanobodies as novel agents for cancer therapy. // Expert. Opin. Biol. Ther. 2005. V. 5. P. 111-124.

176. Rexroad J., Evans R.K., Russell M. Effect of pH and Ionic Strength on the Physical Stability of Adenovirus Type 5 // Pharm. Seien. 2006. V. 95. N. 2. P. 237-247.

177. Ribatti D., Vacca A., Nico B., Sansonno D., Dammacco F. Angiogenesis and anti-angiogenesis in hepatocellular carcinoma. // Cancer Treat. Rev. 2006. V. 32. P. 437-444.

178. Rodrigues E.G., Zavala F., Nussenzweig R.S., Wilson J.M., Tsuji M. Efficient induction of protective anti-malaria immunity by recombinant adenovirus. //Vaccine. 1998. V. 16. P. 1812-1817.

179. Rodriguez-Sanoja R., Oviedo N., Sanchez S. Microbial starchbinding domain. // Curr. Opin. Microbiol. 2005. V. 8. P. 260-267.

180. Rosebrough S.F. Two-step immunological approaches for imaging and therapy. // Q. J. Nucl. Med. 1996. V. 40. P. 234-251.

181. Rotticci-Mulder J.C., Gustavsson M., Holmquist M., Hult K., Martinelle M. Expression in Pichia pastoris of Candida antarctica lipase B and lipase B fused to a cellulose-binding domain. // Protein Expr. Purif. 2001. V. 21. №3. P. 386-392.

182. Rowe W.P., Huebner R., Gilmore L., Parrott R., Ward T.G. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture // Proc Soc Exp Biol Med. 1953.V. 84(3). P. 570-573.

183. Ruben M., Bacchetti S., Graham F. Covalently closed circles of adenovirus 5 DNA. //Nature. 1983. V. 13. № 301(5896). P. 172-174.

184. Russell W.C., Kemp G.D. Role of adenovirus structural components in the regulation of adenovirus infection. // Curr Top Microbiol Immunol. 1995. V. 199(1). P. 81-98.

185. Russell W.C., Precious B. Nucleic acid-binding properties of adenovirus structural polypeptides. // J Gen Virol. 1982. V. 63(1). P. 69-79.

186. Russell W.C. Adenoviruses: update on structure and function. // J Gen Virol. 2009. V. 90(1). P. 1-20.

187. Rux J.J., Kuser P.R., Burnett R.M. Structural and phylogenetic analysis of adenovirus hexons by use of high-resolution x-ray crystallographic, molecular modeling, and sequence-based methods. // J Virol. 2003. V. 77. P. 9553-9566.

188. Saban S.D., Silvestry M., Nemerow G.R., Stewart P.L. Visualization of alpha-helices in a 6-angstrom resolution cryoelectron microscopy structure of adenovirus allows refinement of capsid protein assignments. // J Virol. 2006. V. 80(24). P. 12049-59.

189. Sakhuja K., Reddy P.S., Ganesh S., Cantaniag F., Pattison S., Limbach P., Kayda D.B., Kadan M.J., Kaleko M., Connelly S. Optimization of the generation and propagation of gutless adenoviral vectors // Hum Gene Ther. 2003. V. 14(3). P. 243-254.

190. Sakurai F., Mizuguchi H., Yamaguchi T., Hayakawa T. Characterization of in vitro and in vivo gene transfer properties of adenovirus serotype 35 vector. // Mol. Ther. 2003. V. 8. № 5. P. 813-821.

191. Saleemuddin M. Bioaffinity based immobilization of enzymes. // Adv. Biochem. Eng. Biotechnol. 1999. V. 64. P. 203-226.

192. Salone B., Y. Martina, S. Piersanti, E. Cundari, G. Cherubini, L. Franqueville, C. M. Failla, P. Boulanger, I. Saggio. Integrin a3pl is an alternative cellular receptor for adenovirus serotype 5. // J Virol. 2003. V. 77. P. 13448-13454.

193. San Martin C., Glasgow J.N., Borovjagin A., Beatty M.S., Kashentseva E.A., Curiel D.T. et al. Localization of the N-terminus of minor coat protein Ilia in the adenovirus capsid. // J Mol Biol. 2008. V. 383(4). P. 923-934.

194. Sanger F., Nicklen S., Coulson A. DNA sequencing with chain-terminating inhibitors. // Proc Natl Acad Sci USA. 1977. V. 74. P. 5463-5467.

195. Seregin S.S., Hartman Z.C., Appledorn D.M., Godbehere S., Jiang H., Frank M.M., Amalfitano A. Novel adenovirus vectors 'capsid-displaying' a human complement inhibitor. // J Innate Immun. 2010. V. 2(4). P. 353-359.

196. Shayakhmetov D.M., Papayannopoulou T., Stamatoyannopoulos G., Lieber A. Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. // J Virol. 2000. V. 74. P. 2567-2583.

197. Shenk T. Adenoviridae: the viruses and their replication. // Fundamental virology. 1996. V. 3. P. 979-1016.

198. Shoseyov O., Doi R.H. Essential 170-kDa subunit for degradation of crystalline cellulose by Clostridium cellulovorans cellulase. // Proc. Natl. Acad. Sci. USA. 1990. V. 87. P. 2192-2195.

199. Shoseyov O., Hamamoto T., Foong F., Doi R.H. Cloning of Clostridium cellulovorans endo-l,4-beta-glucanase genes. // Biochem. Biophys. Res. Commun. 1990. V. 169. P. 667-672.

200. Shpigel E., Goldlust A., Efroni G., Avraham A., Eshel A., Dekel M., Shoseyov O. Immobilization of recombinant heparinase I fused to cellulose-binding domain. //Biotechnol. Bioeng. 1999. V. 65. №1. P. 17-23.

201. Shpigel E., Roiz L., Goren R., Shoseyov O. Bacterial cellulose-binding domain modulates in vitro elongation of different plant cells. // Plant Physiol. 1998. V. 117. №4. P. 1185-1194.

202. Simpson H.D., Barras F. Functional analysis of the carbohydrate-binding domains of Erwinia chrysanthemi Cel5 (Endoglucanase Z) and an Escherichia coli putative chitinase. //J. Bacteriol. 1999. V. 181. № 15. P. 4611-4616.

203. Singer B.B., I. Scheffrahn, R. Kammerer, N. Suttorp, S. Ergun, H. Slevogt. Deregulation of the CEACAM expression pattern causes undifferentiated cell growth in human lung adenocarcinoma cells // PLoS One. 2010. № 5. P. 8747.

204. Stevenson S.C., Rollence M., Marshall-Neff J., McClelland A. Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein. // J Virol. 1997. V. 71(6). P. 4782-4790.

205. Stewart P.L., Burnett R.M., Cyrklaff M., Fuller S.D. Image reconstruction reveals the complex molecular organization of adenovirus. // Cell. 1991. V. 67. P. 145-154.

206. Stewart P.L., Fuller S.D., Burnett R.M. Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. // EMBO J. 1993. V. 12. P. 2589 2599.

207. Takayama K., Reynolds P.N., Short J.J., Kawakami Y., Adachi Y., Glasgow J.N., et al. A mosaic adenovirus possessing serotype Ad5 and serotype Ad3 knobs exhibits expanded tropism. // Virology. 2003. V. 309. P. 282-293.

208. Tanaka T., Manome Y., Wen P., Kufe D.W., Fine H.A. Viral vector-mediated transduction of a modified platelet factor 4 cDNA inhibits angiogenesis and tumor growth. //Nat. Med. 1997. V. 3. P. 437-442.

209. Tang J. C-T., Vellecamp G., Bondoc L.L. Methods for purifying viruses. // United States Patent. 2001. N. US 6261823 Bl.

210. Tang Y., Le L.P., Matthews Q.L., Han T., Wu H., Curiel D.T. Derivation of a triple mosaic adenovirus based on modification of the minor capsid protein IX // Virology. 2008. V. 377(2). P. 391-400.

211. Taylor-Papadimitriou J., Burchell J.M., Plunkett T., Graham R., Correa I., Miles D., Smith M. MUC1 and the immunobiology of cancer. // J Mammary Gland Biol. Neoplasia. 2002. V. 7. P. 209-221.

212. Terpe K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. // Appl. Microbiol. Biotechnol. 2003. V. 60. P. 523-533.

213. Thomas D.L., et al. Early region 1 transforming functions are dispensable for mammary tumorigenesis by human adenovirus type 9. // J. Virol. 1999. V. 73. P. 3071-3079.

214. Tomme P., Driver D.P., Amandoron E.A., Miller R.C. Jr., Antony R., Warren J., Kilburn D.G. Comparison of a fungal (family I) and bacterial (family II) cellulose-binding domain. // J. Bacteriol. 1995. V.177. № 15. P. 4356-4363.

215. Tsukimoto K., Takada R., Araki Y., Suzuki K., Karita S., Wakagi T., Shoun H., Watanabe T., Fushinobu S. Recognition of cellooligosaccharides by a family 28 carbohydrate-binding module // FEBS Lett. 2010. V. 584(6). P. 12051211.

216. Ugai H., Wang M., Le L.P., Matthews D.A., Yamamoto M., Curiel D.T. In vitro dynamic visualization analysis of fluorescently labeled minor capsid protein IX and core protein V by simultaneous detection. // J Mol Biol. 2010. V. 395(1). P. 55-78.

217. Vales L.D., Darnell J.E., Jr. Promoter occlusion prevents transcription of adenovirus polypeptide IX mRNA until after DNA replication. // Genes Dev. 1989. V. 3. P. 49-59.

218. Van Tilbeurgh H., P. Tomme, M. Claeyssens, R. Bhikhabhai. Limited proteolysis of the cellubiohydrolase I from Trichoderma reesei. Separation of functional domains. // FEBS Lett. 1986. V. 204. P. 223-227.

219. Vaneycken I., Devoogdt N., Van Gassen N., Vincke C., Xavier C., Wernery U., Muyldermans S., Lahoutte T., Caveliers V. Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer // FASEB J. 2011. V. 25(7). P. 2433-2446. }

220. Veiga E., de Lorenzo V., Fernández L.A. Structural tolerance of bacterial autotransporters for folded passenger protein domains. // Mol. Microbiol. 2004. V. 52. P. 1069-1080.

221. Vellinga J., Van der Heijdt S., Hoeben R.C. The adenovirus capsid: major progress in minor proteins. // J Gen Virol. 2005. V. 86(6). P. 1581-1588.

222. Vellinga J., et al. Spacers increase the accessibility of peptide ligands linked to the carboxyl terminus of adenovirus minor capsid protein IX. // J. Virol. 2004. V. 78. P. 3470-3479.

223. Vigne E., Mahfouz I., Dedieu J.F., Brie A., Perricaudet M., Yeh P. RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection. // J Virol. 1999. V.73. P. 5156-5161.

224. Vindrieux D., Le Corre L., Hsieh T.J., Metivier R., Escobar P., Caicedo A., Brigitte M., Lazennec G. Coxsackie and adenovirus receptor is a target and a mediator of estrogen action in breast cancer // Endocr. Relat. Cancer. 2011. №18(3). P. 311-321.

225. Volpers C., Thirion C., Biermann V., Hussmann S., Kewes H., Dunant P., et al. Antibody-mediated targeting of an adenovirus vector modified to contain a synthetic immunoglobulin g-binding domain in the capsid. // J Virol. 2003. V. 77. P. 2093-2104.

226. Von Seggern D.J., Chiu C., Fleck S.K., Stewart P.L., Nemerow G.R. A helper-independent adenovirus vector with El, E3, and fiber deleted: structure and infectivity of fiberless particles. // J Virol. 1999. V. 73. P. 1601-1608.

227. Vrati S., Brookes D. E., Strike P., Khatri A., Boyle D.B., Both G.W. Unique genome arrangement of an ovine adenovirus: identification of new proteins and proteinase cleavage sites. // Virology. 1996. V. 220. P. 186-199.

228. Vu K.B.G.M., Wyns L., Muyldermans S. Comparison of llama VH sequences from conventional and heavy chain antibodies. // Мої. Immunol. 1997. V. 34. P. 1121-1131.

229. Wang A.A., Mulchandani A., Clen W. Whole-cell immobilization using cell surface-exposed cellulose-binding domain. // Biotechnol. Prog. 2001. V. 17. № 3.P. 407-411.

230. Wang Q., Greenberg G., Bunch D., Farson D., Finer M.H. Persistent transgene expression in mouse liver following in vivo gene transfer with a dEl/dE4 adenovirus vector. // Gene Ther. 1997. V. 4. P. 393-400.

231. Wang Q., Jia X.C., Finer M.H. A packaging cell line for propagation of recombinant adenovirus vectors containing two lethal gene-region deletions. // Gene Ther. 1995. V. 2. P. 775-783.

232. Ward E.S., Gussow D.H., Griffiths A.D., Jones P.T., Winter G. Binding activities of a single immunoglobulin variable domain secreted from E. coli. // Nature. 1989. V. 341. P. 544-546.

233. Webster A., Leith I.R., Nicholson J., Hounsell J., Hay R.T. Role of preterminal protein processing in adenovirus replication. // J Virol. 1997. V. 71(9). P. 6381-6389.

234. Wickham T.J., Tzeng E., Shears L.L., Roelvink P.W. II, Li Y., Lee G.M., et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. //J Virol. 1997. V. 71. P. 8221-8229.

235. Wickham T.J., Filardo E.J., Cheresh D.A., Nemerow G.R. Integrin avp5 selectively promotes adenovirus mediated cell membrane permeabilization. // J. Cell Biol. 1994. V. 127. P. 257-264.

236. Wickham T.J., Mathias P., Cheresh D.A., Nemerow G.R. Integrins av(33 and avp5 promote adenovirus internalization but not virus attachment. // Cell. 1993. V. 73. P. 309-319.

237. Wiethoff C.M., Wodrich H., Gerace L., Nemerow G.R. Adenovirus protein VI mediates membrane disruption following capsid disassembly. // J Virol. 2005. V. 79(4). P. 1992-2000.

238. Wodrich H., Guan T., Cingolani G., Von Seggern D., Nemerow G., Gerace L. Switch from capsid protein import to adenovirus assembly by cleavage of nuclear transport signals. // EMBO J. 2003. V. 22(23). P. 6245-6255.

239. Wu H., Han T., Belousova N., Krasnykh V., Kashentseva E., Dmitriev I., Kataram M., Mahasreshti P.J., Curiel D.T. Identification of sites in adenovirus hexon for foreign peptide incorporation. // J Virol. 2005. V. 79(6). P. 3382-3390.

240. Wu H., Han T., Lam J.T., Leath C.A., Dmitriev I., Kashentseva E., et al. Preclinical evaluation of a class of infectivity-enhanced adenoviral vectors in ovarian cancer gene therapy. // Gene Therapy. 2004. V. 11. P. 874-878.

241. Wu T.T., Johnson G., Kabat E.A. Length distribution of CDRH3 in antibodies. // Proteins. 1993. V. 16. P. 1-7.

242. Yeh P., Dedieu J.F., Orsini C., Vigne E., Denefle P., Perricaudet M. Efficient dual transcomplementation of adenovirus El and E4 regions from a 293-derived cell line expressing a minimal E4 functional unit. // J. Virol. 1996. V. 70. P. 559-565.

243. Yuanming Zhang and Jeffrey M. Bergelson Adenovirus receptors. // J. Virol. 2005. V. 79. № 19. P. 12125-12131.

244. Zabner J., Chillon M., Grunst T., Moninger T.O., Davidson B.L., Gregory R., Armentano D. A chimeric type 2 adenovirus vector with a type 17 fiber enhances gene transfer to human airway epithelia. //J. Virol. 1999. V. 73(10). P. 8689-8695.,

245. Zhang W., Arcos R. Interaction of the adenovirus major core protein precursor, pVII, with the viral DNA packaging machinery. // Virology. 2005. V. 334(2). P. 194-202.

246. Zuckier L.S., DeNardo G.L. Trials and tribulations: Oncological antibody imaging comes to the fore. // Semin. Nucl. Med. 1997. V. 27. P. 10-29.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.