Системный анализ и математическое моделирование процесса развития течения аномально-вязкой жидкости во вращающейся вокруг своей оси трубе тема диссертации и автореферата по ВАК РФ 05.13.01, кандидат технических наук Вершинина, Ирина Петровна

  • Вершинина, Ирина Петровна
  • кандидат технических науккандидат технических наук
  • 2004, Волгоград
  • Специальность ВАК РФ05.13.01
  • Количество страниц 146
Вершинина, Ирина Петровна. Системный анализ и математическое моделирование процесса развития течения аномально-вязкой жидкости во вращающейся вокруг своей оси трубе: дис. кандидат технических наук: 05.13.01 - Системный анализ, управление и обработка информации (по отраслям). Волгоград. 2004. 146 с.

Оглавление диссертации кандидат технических наук Вершинина, Ирина Петровна

ВВЕДЕНИЕ.

1. СОСТОЯНИЕ ВОПРОСА И ЗАДАЧИ ИССЛЕДОВАНИЯ.

1.1. Анализ современных конструкций аппаратов центробежного типа, содержащих центральную трубу для подвода жидкости.

1.2. Критический обзор теоретических и экспериментальных исследований течения жидкотекучих сред во вращающейся вокруг своей оси трубе.

1.3. Постановка задачи настоящего исследования.

2. ИССЛЕДОВАНИЕ РЕОЛОГИЧЕСКИХ СВОЙСТВ КОМПОЗИЦИЙ

В УСЛОВИЯХ СЛОЖНОНАПРЯЖЕННОГО СДВИГОВОГО ТЕЧЕНИЯ.

2.1. Краткий обзор работ по теории вискозиметрии расслаивающихся композиций.

2.2. Разработка теоретических основ определения реологических характеристик расслаивающихся композиций на капиллярном вискозиметре.

2.3. Описание конструкции установки для определения реологических характеристик расслаивающихся композиций.

2.4. Методика определения реологических характеристик композиций, проявляющих аномальное поведение вблизи твердой границы.

2.5. Определение реологических характеристик исследуемых жидкостей

3. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ТЕЧЕНИЯ НЕЛИНЕЙНО-ВЯЗКОЙ ЖИДКОСТИ ВО ВРАЩАЮЩЕЙСЯ

ВОКРУГ СВОЕЙ ОСИ ПОЛУБЕСКОНЕЧНОЙ ТРУБЕ.

3.1. Смысловой аспект моделирования процесса развития течения нелинейно-вязкой жидкости во вращающейся полубесконечной трубе.

3.2. Аналитический аспект моделирования процесса развития течения нелинейно-вязкой жидкости во вращающейся полубесконечной трубе.

3.3. Вычислительный аспект моделирования процесса развития течения нелинейно-вязкой жидкости во вращающейся полубесконечной трубе.

3.4. Анализ результатов численного интегрирования.

4. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПРОЦЕССА ТЕЧЕНИЯ АНОМАЛЬНО-ВЯЗКОЙ ЖИДКОСТИ ВО ВРАЩАЮЩЕЙСЯ

ВОКРУГ СВОЕЙ ОСИ ТРУБЕ.

4.1. Основные требования, предъявляемые к экспериментальной установке.

4.2. Описание конструкции экспериментальной установки.

4.3. Методика экспериментального определения давления жидкости на стенке вращающейся вокруг своей оси трубы.

4.4. Оценка ожидаемых погрешностей.

4.5. Анализ результатов экспериментального исследования.

4.6. Определение коэффициента сопротивления при течении аномально-вязкой жидкости во вращающейся вокруг своей оси трубе.

Рекомендованный список диссертаций по специальности «Системный анализ, управление и обработка информации (по отраслям)», 05.13.01 шифр ВАК

Введение диссертации (часть автореферата) на тему «Системный анализ и математическое моделирование процесса развития течения аномально-вязкой жидкости во вращающейся вокруг своей оси трубе»

Одно из важнейших понятий современной науки - система. Возникнув в кибернетике, оно приобрело статус философской категории, настолько широко и обще его применение.

Понятие "системы" дает возможность осуществить математическую формализацию изучаемых объектов, обеспечивающую глубокое проникновение в их сущность и получение широких обобщений и закономерностей.

Всякая система состоит из взаимосвязанных и взаимодействующих между собой и внешней средой частей, т.е. система - это достаточно сложный объект, который можно разделить на составляющие элементы или подсистемы. Эти элементы информативно связаны друг с другом и с окружающей средой. Совокупность связей образует структуру системы.

Основу современного подхода к решению проблем химической технологии составляет системный анализ. Системный анализ - это стратегия изучения сложных систем, каковыми, в частности, являются процессы химической технологии. В качестве метода исследования в нем используется математическое моделирование, а основным принципом является декомпонизация сложной системы на более простые подсистемы (принцип иерархии системы) [23,24].

Примером системы может служить любой химико-технологический процесс, например процесс гранулирования. Процесс гранулирования перерабатываемых материалов широко применяется в различных отраслях промышленности: при переработке полимерных материалов, в производстве лекарственных препаратов, в пищевой промышленности, при производстве удобрений и т.д. Во многих случаях процесс гранулирования осуществляется совместно с другими физико-механическими процессами и является лимитирующей стадией, определяющей производительность машины в целом и качество получаемого продукта.

К одним из наиболее эффективных устройств для гранулирования относятся центробежно-экструзионные грануляторы, в которых совмещение поля давления и центробежного поля позволяет значительно интенсифицировать процесс, получать практически монодисперсные гранулы, размер которых можно варьировать в широких пределах. Конструирование и оптимизация работы центробежно-экструзионных грануляторов требует разработки теоретических основ течения перерабатываемых материалов во всех элементах аппарата с учетом реологических свойств композиций, учитывающих специфику переработки (рис. 1).

Таким образом, процесс гранулирования как систему можно разделить на несколько подсистем, а именно: течение композиции во вращающейся подводящей трубе, во вращающемся кольцевом конвергентном канале и во вращающемся цилиндрическом насадке. Т.е. процесс развития течения жидкости во вращающейся вокруг своей оси цилиндрической трубе можно рассматривать как элемент так называемой малой системы, ограниченной одним типовым процессом, его внутренними связями, а также особенностями аппаратурного оформления и функционирования.

Процесс развития течения жидкости во вращающейся вокруг своей оси трубе реализуется и в ряде других машин и аппаратов химической технологии: подвод перерабатываемых жидкотекучих сред к центробежным распылителям жидкостей, роторным экстракторам, смесителям, распылительным сушилкам, роторно-пленочным аппаратам разделения неоднородных систем, при бурении скважин и т.д.

Рис. 1 Схема центробежно-экструзионного гранулятора:

1 - подводящая труба; 2 - питающие окна; 3 - криволинейный осесимметричный канал; 4 - насадок

Частным случаем такого течения, имеющим самостоятельное значение, является развитие течения жидкости в неподвижной цилиндрической трубе, поскольку такие процессы имеют место во многих машинах и аппаратах химических производств. Для этого достаточно положить значение угловой скорости вращения трубы в этой модели равной нулю.

Большой вклад в развитие теории движения жидкостей во вращающихся трубах внесли отечественные ученые Касьянов В.М., Щукин В.К., Кравцов В.И., Рябчук Г.В., Золотоносов Я.Д, Ремнев В.П. и многие другие. Из зарубежных исследователей следует отметить Леви, Страуса, Ито, Нанбу и др.

Как уже отмечалось ранее, основным методом исследования в системном анализе является математическое моделирование. Математическое моделирование осуществляется в три взаимосвязанных стадии [23]:

1. формализация изучаемого процесса - построение математической модели (составление математического описания);

2. программирование решения задачи (алгоритмизация), которое обеспечивает нахождение численных значений определяемых параметров;

3. установление соответствия (адекватности) модели изучаемому процессу.

При выборе модели необходимо учитывать следующее: во-первых, модель должна наиболее полно отражать характер потоков вещества и энергии при достаточно простом математическом описании; во-вторых, параметры модели могут быть определены экспериментальным или другим способом. Так, например, течение жидкости в поле центробежных сил можно описать в рамках модели сплошной среды дифференциальными уравнениями динамики Навье-Стокса с соответствующими граничными условиями.

После составления математического описания и определения соответствующих граничных условий необходимо выбрать метод решения и составить алгоритм расчета. Опять, взяв в пример уравнения Навье-Стокса, можно сказать, что теоретическое исследование этих уравнений позволило получить основные закономерности движения сред вблизи тел (теория пограничного слоя) и на периферии потока. Однако для практических приложений требуется знание детальной картины течения во всей расчетной области, а это вызывает значительные трудности, связанные со сложностью и нелинейностью исходных уравнений. Поэтому основными методами их решения служат численные методы. Вычислительные трудности при решении весьма быстро возрастают с ростом числа независимых переменных. Они преодолеваются двумя путями: увеличением быстродействия вычислительных машин и разработкой эффективных алгоритмов, позволяющих расширить классы решаемых задач и уменьшить время расчетов.

Одним из подходов, позволяющих находить численное решение многомерных уравнений, является метод расщепления по пространственным направлениям. При таком подходе решение m-мерных уравнений сводится к последовательному решению т систем одномерных уравнений.

Среди численных методов решения уравнений динамики сплошной среды одним из наиболее эффективных ввиду своей универсальности является конечно-разностный метод. Применение метода конечных разностей позволяет получать решение широкого класса задач гидродинамики, включая численное описание областей разрыва, контактных поверхностей, переходных зон и других особенностей потока.

Следует, однако, учесть, что современное конструирование и расчет аппаратов для переработки композиционных материалов требует также знания их реологических характеристик, позволяющих решать задачи течения этих сред в различных элементах аппаратов и, в конечном счете, рассчитывать их технологические параметры. В зависимости от конструктивных особенностей аппаратов и условий переработки могут проявляться в различной степени следующие свойства перерабатываемых композиций: аномалия вязкости, пристенное скольжение (л-эффект), релаксация напряжений, вязко-упругие эффекты и др. Такие параметры определяются экспериментально и участвуют в математическом описании объекта. Это еще раз показывает, что все описание объекта нельзя построить на чисто теоретической основе, какие-то параметры всегда придется определять из опытов. Опытным путем определяется также адекватность математической модели реальному процессу. В этом проявляется единство структурного и эмпирического подхода к описанию системы.

Исходя из всего сказанного выше, настоящее исследование является актуальным и представляет значительный интерес. В нем автор пытается методом математического моделирования решить задачу течения аномально-вязкой жидкости во вращающейся вокруг своей оси трубе для двух случаев поведения жидкости вблизи твердой границы: условий прилипания и пристенного скольжения (я-эффекта) и определить поля скоростей и давления, а также величину участка стабилизации рассматриваемого течения.

Диссертация состоит из введения, четырех глав, выводов по работе, списка цитируемой литературы и приложения. Объем основного текста работы составляет 131 страницу, включая 40 рисунков и 4 таблицы.

Похожие диссертационные работы по специальности «Системный анализ, управление и обработка информации (по отраслям)», 05.13.01 шифр ВАК

Заключение диссертации по теме «Системный анализ, управление и обработка информации (по отраслям)», Вершинина, Ирина Петровна

ВЫВОДЫ ПО РАБОТЕ:

1. Проведены исследования по определению реологических констант и скорости пристенного скольжения 5%, 7% и 9% растворов КМЦ на капиллярном вискозиметре собственной конструкцию. Анализ результатов исследования позволяет сделать ряд важных выводов: вязкостные свойства исследуемых растворов КМЦ удовлетворительно описываются степенным законом Оствальда- де Билля г = kf"\ скорость пристенного скольжения определяется предложенной зависимостью иск=р<г.

2. На основе модельных представлений системного анализа разработана математическая модель процесса течения аномально-вязкой жидкости во вращающейся вокруг своей оси полубесконечной трубе для двух случаев поведения жидкости вблизи твердой границы: условий прилипания и пристенного скольжения (я-эффекта). Введением новой переменной бесконечный предел интегрирования заменен пределом от 0 до 1.

3. Разработан алгоритм и программа численного решения полученной системы уравнений.

4. Получены поля скоростей и давления для жидкости, текущей в вращающейся вокруг своей оси трубе.

5. Определена величина участка стабилизации при течении аномально-вязкой жидкости во вращающейся вокруг своей оси трубе при различных угловых скоростях ее вращения. Показано, что участок стабилизации во вращающейся трубе в несколько раз превышает участок стабилизации в неподвижной трубе. Это необходимо учитывать для стыковки по давлению двух подсистем системы ЦЭГ - вращающейся подводящей трубы и вращающегося конвергентного канала.

6. Для подтверждения адекватности математической модели реальному процессу проведены экспериментальные исследования процесса течения аномально-вязкой жидкости во вращающейся вокруг своей оси трубе. Сравнение теоретических и экспериментальных результатов позволяет сделать вывод о правильности разработанной математической модели и корректности принятых допущений.

7. На основе проведенных исследований получена зависимость для определения коэффициента сопротивления при течении аномально-вязкой жидкости во вращающейся вокруг своей оси трубе. Анализ ее позволяет сделать вывод о том, что коэффициент сопротивления увеличивается с увеличением угловой скорости вращения трубы со, что необходимо учитывать для стыковки подсистем системы ЦЭГ.

Список литературы диссертационного исследования кандидат технических наук Вершинина, Ирина Петровна, 2004 год

1. Алексеев И.И., Витков Г.А., Холпанов Л.П., Шерстнев С.Н. Расчет гидравлических сопротивлений и теплопередачи при движении ньютоновских жидкостей в трубах и каналах, вращающихся вокруг своей оси // Журнал прикладной химии. 1989. - 62, № 2. - С. 327-330.

2. А.с. 253764 СССР, Кл. 12д 1/01. Гранулятор / Рыков В.И. 1969.

3. А.с. 352020 СССР, МКИ В 04 В 5/12. Устройство для разделения суспензий / Батуров В.И., Прилуцкий Я.Х. 1972.

4. А.с. 1151319 СССР, МКИ В 05 В 3/02, 3/12. Объемный центробежный распылитель / Мусташкин Ф.А., Сосков В.Н., Маминов О.В. -1985.

5. А.с. 1327906 СССР, МКИ В 01 D 11/04. Центробежный аппарат для контактирования жидкостей / Поникаров И.И., Дулатов Ю.А., Кирпичников П.А., Алиев Н.-К.М. 1987.

6. А.с. 1529494 СССР, МКИ5 В 01 D 11/04. Центробежный экстрактор / Корпусов Г.В., Филянин А.Т. 1993.

7. Астарита Дж., Марручи Дж. Основы гидродинамики неньютоновских жидкостей. -М.: Мир, 1978. 195 с.

8. Белкин И.М., Виноградов Г.В., Леонов В.И. Ротационные приборы. Измерение вязкости и физико-механических характеристик материалов. М.: Машиностроение, 1968. - 267 с.

9. Виноградов Г.В., Малкин А.Я. Реология полимеров. М.: Химия, 1977.-438 с.

10. Виноградов Г.В., Прозоровская Н.В. Исследование расплавов полимеров на капиллярном вискозиметре постоянных давлений // Пластмассы. 1964. - Т. 50, №5. - С. 50-57.

11. Вихман Г.Л., Круглое С.А. Основы конструирования аппаратов и машин нефтеперерабатывающих заводов // Учебник для студентов вузов. -М.: Машиностроение, 1978. 328 с.

12. Галеев Р. А. Исследование процесса приготовления мелкообразующего раствора триацетата целлюлозы в смесителе с ленточной мешалкой: Дис. . канд. техн. наук. Казань, 1982. - 193 с.

13. Гарифуллин Ф.А. Некоторые вопросы течения и разбрызгивания неньютоновских жидкостей в центробежных аппаратах химической технологии: Автореферат дис. . канд. техн. наук. Казань, 1966. - 15 с.

14. Гидравлическое сопротивление при ламинарном течении жидкости в канале, вращающемся вокруг своей оси / Борисенко А.И., Костиков О.Н., Чумаченко В.И. // Самолетостроение и техника воздушного флота. Харьков, 1973. - №32. - С. 42-45.

15. Гольдштик М.А. Приближенное решение задачи о ламинарном закрученном потоке в круглой трубе // ИФЖ. 1959. - Т. 2, №3. - С. 100-105.

16. Гориславец В.М., Дунец А.А. Исследование реологических свойств концентрированных суспензий при наличии пристенного эффекта // ИФЖ. 1975. - Т. 29, №2. - С. 273-282.

17. Грануляторы / Вагин А.А., Волошина П.С., Ненашев Е.Н. // ЦИНТИхимнефтемаш. М.: Сер. ХМ-1. - 1970. - 37 с.

18. Ермаков В.И., Шейн B.C., Рейхфельд В.О. Инженерные методы расчета процессов получения и переработки эластомеров. Л.: Химия, 1982. -333 с.

19. Жаскин А.Н., Ященков В.Д. Пути совершенствования грануляции продуктов и составов (аналитический обзор). М.: 1984. - 29 с. - Деп. в ЦНИИНТИ 2.07.84 г., №ДР-465.

20. Ито Г., Нанбу К. Течение во вращающихся прямых трубах круглого поперечного сечения И Труды американского общества инженеров-механиков. Энергетические машины и установки. 1971. - №3. - С. 46-56.

21. Казакова Е.А. Гранулирование минеральных удобрений. М.: Химия, 1975.-223 с.

22. Касьянов В.М. О влиянии центробежных сил на характер протекания жидкости в трубах // Труды МНИ. Вып. 13. - 1953.

23. Кафаров В.В. Методы кибернетики в химии и химической технологии. М.: Химия, 1985. - 448 с.

24. Кафаров В.В., Дорохов Н.Н. Системный анализ процессов химической технологии. М.: Наука, 1976. - 499 с.

25. Классен П.В., Гришаев И.Г. Гранулирование. М.: Химия, 1991. - 239 с.

26. Классен П.В., Гришаев И.Г. Основные процессы технологии минеральных удобрений. М.: Химия, 1990. - 303 с.

27. Клетнев Г.С. Математическое моделирование и совершенствование процессов приготовления и формирования полимерных композиций: Дис. . доктора техн. наук. Казань, 1984. - 374 с.

28. Ковеня В.М., Яненко Н.Н. Метод расщепления в задачах газовой динамики. Новосибирск.: Наука. Сибирское отделение, 1981. - 304 с.

29. Козулин Н.А., Шапиро А .Я., Гавурина Р.К. Оборудование для производства и переработки пластических масс. Л.: Химия, 1967. - 783 с.

30. Кочетков В.П. Гранулирование минеральных удобрений. М.: Химия, 1975.-223 с.

31. Кравцов В.И. Влияние центробежных сил на характер протекания жидкости в трубах // Изв. ВНИИГ им Веденеева. 1948. - Т. 35, №2. - С. 316.

32. Ламинарное течение жидкости через вращающуюся прямую трубу круглого сечения / Касьянов В.М. // Геология и промысловое дело, технология и транспорт нефти: Сборник научных трудов МНИ. М., 1951. -Вып. 11.-С. 144-170.

33. Малкин А.Я., Чалых А.Е. Диффузия и вязкость полимеров. М.: Химия, 1979.-303 с.

34. ЦИНТИхимнефтемаш. М.: Сер. ХМ-1. - 1977. - 32 с.

35. Оборудование для гранулирования расплавов аммиачной селитры и карбамида / Селезнев А.Н., Сахаров В.Н., Леваков Н.Г. и др. // Химическое машиностроение. 1992. -№3. С. 10-11.

36. О пристенном эффекте при течении пластичных дисперсных систем / Трилисский К.К., Фройштетер Г.Б., Смородинский ЭЛ., Трищук В.И. // Коллоидный журнал. 1973. - Т. 35, №6. - С. 1109-1112.

37. Патент 2031701 РФ МКИ В 01 J 2/02. Центробежный гранулятор / Золотоносов Я.Д. 1995.

38. Патент 4009926 ФРГ МКИ5 F 26 В 11/16. Сушилка-смеситель / Куглер И., Больц А. 1990.

39. Патент 5358329 США МКИ5 В 01 F 5/12. Смеситель для жидкостей / Плейч Р., Селч М. 1994.

40. Патрикеева Н.И. Состояние техники гранулирования в зарубежной химической промышленности // Химическая промышленность за рубежом. 1972. -№7(127). - С. 48-61.

41. Петухов Б.С., Поляков А.Ф. Тепломассообмен и сопротивление во вращающихся трубах И Известия АН СССР. Энергетика и транспорт.1977. -№3- С. 110-133.

42. Пленочное течение неньютоновской жидкости в радиальных отверстиях центробежной насадки / Барамшин Е.П., Жданов Ю.А., Завгородный В.К. // Механика полимеров: Сборник научных трудов. Рига,1978.-С. 1-11.

43. Развитие ламинарного движения жидкости во вращающемся цилиндре в поле сил тяжести / Сидоров И.Н., Золотоносов Я.Д., Марченко Г.Н., Маминов О.В. // ИФЖ. 1988. - Т.54, №2. - С. 198-240.

44. Развитие течения неньютоновской жидкости во вращающейся цилиндрической трубе / Перепелицын Г.А., Золотоносов Я.Д., Рябчук Г.В., Ремнев В.П. // Тезисы докладов 15-го Всесоюзного симпозиума по реологии. -Одесса, 1990.-С. 165.

45. Расчет и конструирование машин и аппаратов химических производств: Примеры и задачи / Под общей редакцией Михалева Л.Ф. Л.: Машиностроение, 1984. - 301 с.

46. Расчет течения упруговязких жидкостей с учетом скольжения на стенках канала / Архипов В.М., Скульский О.И., Славнов Е.В. // Процессы тепло- и массопереноса вязкой жидкости: Сборник научных трудов АН СССР. Свердловск, 1986. С.48-51.

47. Ромашова Н.Н. Способы грануляции удобрений в развитых капиталистических странах // Химическая промышленность за рубежом. -1972.-№1 (109).-С. 19-28.

48. Стабников В.Н., Лысянский В.Н., Попов В.Д. Процессы и аппараты пищевых производств. М.: Агропромиздат, 1985. - 503 с.

49. Тагер А.А. Физико-химия полимеров. М.: Химия, 1968. - 536 с.

50. Татьянченко Б.Я. Разработка и исследование грануляторов серы: Дис. . канд. техн. наук. Харьков, 1971. - 163 с.

51. Технология карбамида / Горловский Д.М., Альтшулер J1.H., Кучерявый В.И. JI.: Химия, 1980. - 228 с.

52. Толстой Д.М. Об эффекте пристенного скольжения дисперсных систем. Методика изучения эффекта и предварительные экспериментальные результаты // Коллоидный журнал. 1948. - Т. 10, №2. - С. 133-147.

53. Толстой Д.М. Об эффекте пристенного скольжения дисперсных систем. Происхождение, размеры и значение эффекта // Коллоидный журнал. 1947. - Т. 9, №6. - С. 450-461.

54. Уилкинсон У.Л. Неньютоновские жидкости. М.: Мир, 1964.216 с.

55. Физико-химические методы анализа: Практическое руководство / Под редакцией Алесковского В.Б. Л.: Химия, 1988. - 273 с.

56. Холин Б.Г. Центробежные и вибрационные грануляторы и распылители жидкости. -М.: Машиностроение, 1977. 132 с.

57. Чанг Дей Хан. Реология в процессах переработки полимеров. -М.: Химия, 1979.-303 с.

58. Щукин В.К. Теплообмен и гидродинамика внутренних потоков в полях массовых сил. М.: Машиностроение, 1970. - 331 с.

59. Щукин В.К. Теплообмен и гидродинамика внутренних потоков в полях массовых сил. 2-е изд. перераб. - М.: Машиностроение, 1980. - 240 с.

60. Яненко Н.Н. Метод дробных шагов решения многомерных задач математической физики. Новосибирск: Наука. Сибирское отделение, 1981.- 304 с.

61. Ящук В.М. Влияние реологических свойств нитратов целлюлозы на процессы их приготовления и переработки: Дис. . канд. техн. наук. -Казань, 1976.-207 с.

62. Bothmer D., Reher Е.О., Schnabel R. Wandphanomene in Rheometrie und Verarbeitung von Polymerschmelzen // Rept. Akad. Wiss. DDR Inst. Mech., 1987.

63. Cohen Yoram Metzener A.B. Apparent slip flow of polymer solutions // J. Reol. 1985. - V. 29, № 1. - P. 67-102.

64. Funtsu K, Soto M. Measurement of slip velocity and true flow curve of poly vinge dilori melts // "Нихон рэордзи чак-кайси". J. Soc. Rheol. Jap. -1987.-V. 15, №1.-P. 67-102.

65. Imao S., Zhang Q., Yamada Y. The Laminar Flow in the Developing Region of a Rotating Pipe // Никон кикай такай ронбунсю, Ser В. 1988. - № 498. - P. 243-248.

66. Levy F. Stromungserscheinungen in rotieren den Rohren Forschungsarbeiten auf dem Gebiete des Inglnieurwesens Herausgeben vom VDI, Heft 322, 1929.

67. Patent 3214260 Japan Production of high drade complex fertilizers containing diammonium phosphate as principal component. Oct. 26. 1965.

68. Romamurfhy A.V. Wall slip in viscous fluids and influence of materials of constution// J. Rheol. 1986. - V. 30, № 2. - S. 337.

69. Schleger D., Wetter H. Wandeffecte bei dispers-plastischen material // Rheol. Acta. 1986. - V. 25, №6. - 618.

70. Schowalter W.R. The behaviour of complex fluids at solid boundaries // J. Now-Newton Fluid Mech. 1988. - V. 29. - S. 25-36.

71. Van Wazer J.R., Lyons J.W., Kim K.Y. Viscositi and Flow Measurement // Interscience, № 4, 1963.

72. Vinogradow G.V., Ivanova L.I. Wallsippde and elastic turbulence of polymers in the rubbery state // Rheol. Acta. 1968. - V. 7, № 53. - S. 243-254.

73. White A. Flow of fluid in an axially rotating pipe // J. Mech. Eng. Sci. -V. 6, №1.-1964.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.