Поведение диоксида урана в гидротермальных окислительных условиях тема диссертации и автореферата по ВАК РФ 02.00.14, кандидат химических наук Батук, Ольга Николаевна

  • Батук, Ольга Николаевна
  • кандидат химических науккандидат химических наук
  • 2007, Москва
  • Специальность ВАК РФ02.00.14
  • Количество страниц 168
Батук, Ольга Николаевна. Поведение диоксида урана в гидротермальных окислительных условиях: дис. кандидат химических наук: 02.00.14 - Радиохимия. Москва. 2007. 168 с.

Оглавление диссертации кандидат химических наук Батук, Ольга Николаевна

Список используемых сокращений.

Список рисунков.

Список таблиц.

Введение.

ГЛАВА 1. Обзор литературы

Механизмы окисления диоксида урана и процессы коррозии ОЯТ.

Растворение диоксида урана в восстановительных условиях.

Использование термодинамического и электрохимического подходов для описания окисления диоксида урана.

Влияние радиолиза на коррозию ОЯТ.

Механизмы коррозии 1Ю2 и ОЯТ в различных условиях.

Механизмы окисления 1Юг под действием различных реагентов

Скорость коррозии и02 в зависимости от кристаллографического направления на его поверхности.

Образование вторичных фаз на поверхности диоксида урана при коррозии.

Механизмы включения актинидов и технеция в состав различных минералов урана.

Механизмы включения ионов актинидов в состав минералов урана

Механизмы включения технеция в состав минералов урана.

Экспериментальные доказательства возможности включения актинидов в состав минералов урана.

Рекомендованный список диссертаций по специальности «Радиохимия», 02.00.14 шифр ВАК

Введение диссертации (часть автореферата) на тему «Поведение диоксида урана в гидротермальных окислительных условиях»

Актуальность

Развитие ядерной энергетики и получение обогащенного уранового топлива для нужд ЯТЦ приводит к накоплению значительных количеств обедненного урапа, с содержанием и-235 меньше природного (0,711%). В настоящее время мировые запасы обедненного урана оцениваются в 1,2 млн. тонн, причем 80% приходится на долю России и США. Более 90% этих запасов хранится в виде высокотоксичного гексафторида урана (Ш^) в герметичных емкостях на дневной поверхности. В ряде стран (Франция, Россия, Германия, Великобритания) планируется перевод имеющихся запасов обедненного урапа в более устойчивые оксидные формы для безопасного хранения и возможности использования в будущем в составе смешанного оксидного топлива (6% РиОг и 94% иОг).

В настоящее время обедненный уран в виде его оксидов используется в качестве балластов в самолетах, для защиты от ионизирующею излучения в рентгеновских медицинских установках, в качестве материала контейнеров для транспортировки радиоактивных материалов, в составе различных соединений, обладающих каталитической активностью, как материал для сварочных устройств при изготовлении стеклянных изделий и керамики, и в стоматологии. В оборонной промышленности обедненный уран эффективно используется в качестве компонента брони танков и оболочек кумулятивных зарядов. Однако до сих пор вопрос о безопасности для здоровья человека и окружающей среды вышеперечисленных способов обращения с обедненным ураном остается открытым, и в любом случае, эти подходы пе позволят утилизировать весь объем накопленных запасов. В США и России рассматривается возможность использования кислородных соединений обедненного урана для создания протнвомиграциопных барьеров в хранилищах радиоактивных отходов, что требует детальных исследований растворимости этих соединений, их сорбционпой способности по отношению к различным радионуклидам, способности к образованию коллоидных частиц и других процессов.

Цели работы

1. Исследовать поведение диоксида обедненного урана, полученного промышленным способом в условиях, моделирующих природные: кинетику его раствореиия в зависимости от температуры отжига, а также сорбциопное поведение по отношению к нептунию и технецию.

2. Исследовать поведение диоксида обедненного урана в растворах, моделирующих природную воду в гидротермальных условиях, включая диагностику изменений поверхности и объема образцов различными методами и исследование возможности образования папочаетиц вторичных фаз.

3. Синтез и исследование кристаллических папочаетиц оксидов Th(IV) и U(VI) методами протяженной топкой структуры (EXAFS) и околокраевой топкой структуры (XANES) спектров рентгеновского поглощения.

Объекты исследования

В качестве объектов исследования были выбраны образцы диоксида урана, полученные промышленным способом (ОАО 'ТВЭЛ", г. Электросталь), которые отжигали в восстановительной среде в ВНИИПМ им. A.A. Ьочвара при температурах 700°С, 800°С, 1500°С, 1600°С и 1700°С, а также моиодисперспые паиочастицы ТЬОг и U02(0II)2, инкорпорированные в структуру пор мезопористого диоксида кремния семейства МСМ-41.

Научная новизна

Впервые оценена возможность утилизации обедне/того урана в форме его диоксида, как компонента инженерного геохимического барьера в местах захоронения РАО - исследованы сорбционпые свойства образцов диоксида урана по отношению к нептунию и технецию, а также их растворимость.

Впервые исследовано поведение промышленно полученного образца диоксида урапа при температурах 70°С и 150°С и закономерности фазовых изменений, протекающих па поверхности и в объеме образцов, различными методами, в том числе основанными на сипхрогропном излучении.

Синтезированы и охарактеризованы моподиспсрспые напочастицы оксидов ТЬ(1У) и и(У1) кристаллического строения с использованием в качестве твердофазного тем плата мезопористого диоксида кремния.

Проведено исследование изменения интенсивности белой линии спектров ХАЫЕБ и протяженной тонкой структуры спектров ЕХАРБ от размера частиц оксидов урана и тория, что позволило получить экспериментальную зависимость плотности состояний от размера кластеров.

Практическая значимость

Диссертационная работа имеет важное прикладное значение - был впервые рассмотрен способ утилизации обедненного урана в промышленном масштабе в качестве компонента инженерного геохимического барьера в местах захоронения РАО. Кроме того, полученные результаты позволяют уточнить механизмы поведения ОЯТ в гидротермальных условиях. Все исследования, описанные в работе, были проведены с образцами диоксида урана, полученными иромышлен11ым способом.

Проведенные исследования папочастиц оксидов урана и тория имеют как фундаментальное, так и практическое значение, поскольку образование оксидов актинидов манометрового размера возможно в условиях ближней зоны хранилищ. Проведенные исследования папочастиц методами ПЭМ и рентгепо-абсорбцнопной спектрометрии позволят в дальнейшем анализировать коллоидные частицы актинидов не только в модельных системах, по и в реальных природных объектах, а также расширяют паши представления о свойствах и устойчивости папочастиц.

Положения, выносимые на защиту

Установлено, что при нейтральных значениях рП исследованные образцы диоксида урана проявляют высокую сорбциоппую способность по отношению к Ыр(У), Ыр(1У) и Тс(1У) и могут являться дополнительным прогивомиграциопным барьером для этих радионуклидов. Для Тс(1У) наблюдается необратимая сорбция, и переход системы в окислительные условия ис приводит к его окислению до Тс(УП) и десорбции.

Показано, что при низких значениях рН происходит восстановление ^(У) до Ыр(1У) па поверхности диоксида урана и сорбция его в четырехвалентной форме, тогда как при нейтральных значениях pH восстановление не происходит и сорбция протекает по механизму комплексообразования Np(V) с гидроксильиыми фуппами поверхности U02+x.

В результате исследования поведения диоксида урана в гидротермальных условиях (70°С и 150°С) было установлено, что процессы его объемного окисления и образования вторичных фаз на его поверхности являются конкурирующими. При 150НС наблюдается интенсивное образование паночастиц вторичных фаз U(VI), которые предотвращают его дальнейшее объемное окисление.

Для кристаллических паночастиц оксидов Th(IV) и U(VI) установлено, что уменьшение интенсивности белой линии в спектрах XANES (как се высоты, так п площади под пей) происходит с уменьшением размера частиц. Это можно объяснить увеличением соотношения количества атомов на поверхности к количеству атомов в объеме папочастнцы. В ряду образцов оксидов Th(lV) и U(VI): кристаллический осадок - папочастнцы 3 им - папочастнцы 2 им наблюдается уменьшение интенсивности амплитуд спектров EXAFS, представленных в R-прострапстве, описывающих взаимодействие металл-кислород, а амплитуда, соответствующая взаимодействию металл-металл исчезает для паночастиц.

Апробации работы

Основные результаты диссертационной работы были опубликованы в виде 5 статей в реферируемых научных российских и зарубежных журналах, а также были представлены па следующих всероссийских и международных конференциях: / Первая Всероссийская Школа но Радиохимии и Ядерным Технологиям, август 2004, Озерск, Россия, / IV Школа-ссминар "Актуальные проблемы современной неорганической химии и материаловедения", ноябрь 2004, Звенигород, Россия, / International Conference "Micro- and mcsoporous mineral phases", декабрь 2004, Рим, Италия, European Material Research Socicty Meeting, май 2005, Страсбург, Франция, / International Conference Physical-Chemical Foundations of New Technologies of

XXI Century, май-июнь 2005, Москва, Россия, / International Conference "Actinidcs-2005", июль 2005, Манчестер, Великобритания,

S Russian - Finnish Symposium on Radiochemistry, ноябрь 2005, Санкт-Петербург, Россия,

S The 15lh Radiochemical Conference, апрель 2006, Марышски Лазны, Чехия, S European Material Research Society Meeting, май-июнь 2006,11ицца, Франция, S International Conference "Plutonium Futures", июль 2006, Асиломар, США, ✓ The 4lh Workshop on Speciation, Techniques, and Facilities for Radioactive Materials at Synchrotron Light Sources "ActinidesXAS2006", сентябрь 2006, Карлсруэ, Германия, S Пятая российская конференция но радиохимии "Радиохимия-2006", октябрь

2006, Дубна, Россия, S The 2nd FUNMIG annual workshop, ноябрь 2006, Стокгольм, Швеция, S International Conference "37Journecs des Actinides", март 2007, Сесимбра, Португалия,

S Научная конференция Ломоносовские чтения, секция "Химия", апрель 2007, Москва, Россия.

Результаты работы были представлены на молодежных конференциях "Ломоносов" на секциях Радиохимия и Материаловедение в 2005 и 2006 годах (все три представленных доклада были отмечены жюри призовыми местами), па семинаре Межведомственного Совета по Радиохимии (май 2005), па семинаре кафедры радиохимии Университета Гстебурга, Швеция (октябрь 2005) и па семинаре Института Обращения с Радиоактивными Отходами Исследовательского Центра Карлсруэ, Германия (ноябрь 2006).

Доклад "Перспективы использования соединений обедненного урана для создания противомиграционных барьеров в местах захоронения радиоактивных отходов: исследование взаимодействия U02+x с нептунием" был удостоен III места в конкурсе работ молодых ученых по радиохимии 2006, проводимом Межведомственным Советом по Радиохимии при президиуме РАН и РОСАТОМН. Автор диссертации была удостоена премии академика имени В.А. Легасова за исследования в области химии и технологии новых неорганических материалов в апреле 2007 г.

Автор диссертационной работы принимала участие во Всероссийской Школе по Радиохимии и Ядерным Технологиям в августе 2004 г. в Озерске, а также летних школах по радиохимии, организованных в рамках Европейской программы исследований в обрасти актинидов АСТШЕТ в июле 2006 г. в Сакле, Франция и Институтом Трансурановых Элементов в июне 2007 г. в Карлсруэ, Германия.

Диссертационная работа была выполнена при финансовой поддержке Международного Научпо-Технического Центра (грант 2694), Российского Фонда Фундаментальных Исследований (грант 05-03-33028-а), совместной программы в области химии актинидов Министерства Энергетики США и Российской Академии Наук (грант КиС2-20008 М0-04), Европейской программы исследований в области актинидов АСТШЕТ (грант 02-10). С августа по декабрь 2006 г. автор проходила стажировку в Институте Обращения с Радиоактивными Отходами Исследовательского Центра Карлсруэ, Германия, выполняя исследования по теме диссертационной работы, стажировка была поддержана грантом ДААД (Германской службы академических обменов).

Похожие диссертационные работы по специальности «Радиохимия», 02.00.14 шифр ВАК

Заключение диссертации по теме «Радиохимия», Батук, Ольга Николаевна

выводы

1. Установлено, что при нейтральных значениях рН исследованные образцы диоксида урана проявляют высокую сорбционную способность по отношению к Ир(У), Ыр(1У) и Тс(1У) и могут являться дополнительным противомиграциоииым барьером для этих радионуклидов.

2. В результате исследования взаимодействия промышленно полученного диоксида урана с нептунием было установлено, что при значениях рН < 3,5 происходит восстановление Ир(У) до Ыр(1У) за счет преимущественного выщелачивания и(У1) с частично окисленной поверхности 1Ю2+Х. При рН > 5,5 нептуний сорбируется в пятивалентной форме по механизму комплекеообразования с гидроксильными группами поверхности диоксида урана, причем именно группы =и(1У)-ОП отвечают за сорбцию Ыр(У).

3. При взаимодействии диоксида урана с Тс(1У) наблюдается его необратимая сорбция, и переход системы в окислительные условия не приводит к окислению до Тс(УП) и десорбции.

4. Установлено, что при контакте диоксида урана с модельным раствором природной воды протекают два конкурирующих процесса: объемное окисления и образование наночастиц вторичных фаз, предотвращающих объемное окисление. Основным фактором, определяющим преобладание одного из процессов, является температура.

5. В гидротермальных условиях взаимодействие нептуния с диоксидом урана протекает не по механизму комплекеообразования с гидроксильными группами, как это происходит при комнатной температуре, а за счет включения в структуру вторичных фаз, либо за счет образования малораетворимого ИрОгпНгО.

6. Для моподисперсиых кристаллических наночаетиц экспериментально показано уменьшение плотности энергетических состояний и вероятности перехода 2рз/2 6й с уменьшением размера кластеров для оксидов актинидов.

Список литературы диссертационного исследования кандидат химических наук Батук, Ольга Николаевна, 2007 год

1. Dyer J.R., Voegele M.D., The Yucca Mountain site characterization project for the United States, geological challenges in radioactive waste isolation, Third Worldwide Review edited by P.A. Witherspoon, G.S. Bodvarsson, LBNL-49767, 2001.

2. Johnson L., Ferry C., Poinssot Ch., Lovera P., Spent fuel radionuclide source-term model for assessing spent fuel performance in geological disposal, J. Nucl. Mater. 2005, V. 346, P. 56-65.

3. Wermc L.O., Spahiu K., Direct disposal of spent nuclear fuel: comparison between experimental and modeled actinide solubilutics in natural waters, J. Alloys and Compounds 1998, V. 271-273, P. 194-200.

4. Burns P.C., Finch R.J., Wronkiewicz D.J., Direct investigations of the immobilization of radionuclides in the alteration phases of spent nuclear fuel, Project Report, ID Number 59960.

5. Ewing R.C., Corrosion of spent nuclear fuel: the long-term assessment, Final Report Environmental Management Science Program DE-FG07-97ER14816 Projcct ID Number: 73751.

6. Broczkowski M.E., Noel J.J., Shoesmith D.W., The inhibiting effects of hydrogen on the corrosion of uranium dioxide under nuclear waste disposal conditions, J. Nucl. Mater. 2005, V. 346, P. 16-23.

7. Neck V., Kim J.I., Solubility and hydrolysis of tctravalent actinides, Forschungszcntrum Karlsruhe GmbH, Karlsruhe, 1999.

8. Neck V., Kim J.I., Solubility and hydrolysis of tetravalent actinides, Radioehim. Acta 2001, V. 89, P. 1-16.

9. Rai D., Fenny A.R., Ryan J.L., Uranium (IV) hydrolysis constants and solubility product of U02-xH20(am), Inorg. Chem. 1990, V. 29, P. 260-264.

10. Rai D., Fenny A.R., Sterner S.M., Moore D.A., Mason M.J., Novak C.F., The solubility of Th(IV) and U(IV) hydrous oxides in concentration NaCl and MgCl2 solutions, Radioehim. Acta 1997, V. 79, P. 239-247.

11. Fanghacnel Th., Neck V., Aquatic chemistry and solubility phenomena of actinide oxides/hydroxides, Pure Appl. Chem. 2002, V. 74, N. 10, P. 1895-1907.

12. Runde W., The chemical interactions of actinides in the environment, Los Alamos Science 2000, N. 26, P. 392-411.

13. Shoesmith D.W., Fuel corrosion processes under waste disposal conditions, J. Nucl. Mater. 2000, V. 282, P. 1-31.

14. Shoesmith D.W., Sunder S., Hocking W.H., chapter 6 in Electrochcmistry of Novel Materials, edited by J. Lipkowski, P.N. Ross, VCH, New York, 1994, P. 297-337.

15. Neck V., Altmaicr M., Fanghaencl Th., Solubility of plutonium hydroxides/hydrous oxides under reducing conditions and in the presence of oxygen, doi: 10.1016/j .crci.2007.02.011.

16. Воронов U.M., Софроиова P.M., Воитехова E.A. Высокотемпературная химия окислов урана и их соединении, Атомиздат, М., 1971.

17. Gray W.J., Thomas L.E., Einziger R.E., Source term for the activity release from a repository for spent LWR fuel, Mater. Res. Soc. Symp. Proc. 1993, V. 294, P. 47.

18. Tait J.C., Luht J.M., Dissolution rates of uranium from unirradiated UO2: uranium and radionuclides from used CANDU fuel using the single-pass low-through apparatus, Ontario Hydro Report N. 06819-REP-0I200- OOO6-ROO, 1997.

19. Clarcns F., Gimcncz J., dc Pablo J., Casas I., Rovira M., Dies J., Quinones J., Martincz-Esparza A., Influence of ß radiation on UO2 dissolution at different pi I values, Radiochim. Acta 2005, V. 93, P. 533-538.

20. Rondinella V.V., Matzke Hj., Cobos J., Wiss Т., Leaching behavior of U02 containing a-emitting actinides, Radiochim. Acta 2000, V. 88, P. 527-531.

21. Matzke Hj., Radiation damage-enhanced dissolution of UO2 in water, J. Nucl. Mater. 1992, V. 190, P. 101-106.

22. Jegou С., Muzcau В., Broudic V., Peuget S., Poulesquen A., Roudil D., Corbel C., Effect of external gamma irradiation on dissolution of the spent UO2 fuel matrix, J. Nucl. Mater. 2005, V. 341, P. 62-82.

23. Ядерная энциклопедия под ред. А.А. Ярошинской, Благотворительный фонд Ярошипской, Москва, 1996.

24. Reed D.T., Van Konynenburg R.A., Effect of ionizing radiation on moist air systems Mater. Res. Soc. Symp. Proc. 1987, V. 112, P. 393-404.

25. База данных http://www.fiz-karlsruhe.de/ecid/Intemet/en/DB/icsd/.

26. Conradson S.D., Manara D., Wastin F., Clark D.L., Lander G.I I., Morales L.S., Rebizant J., Rodinella V.V., Local structure and charge distribution in the UO2-U4O9 system, Inorg. Chcm. 2004, V. 43, P. 6922-6935.

27. Masaki N., Doi K., Analysis of the superstructure of U4O9 by neutron diffraction, Acta Cryst. 1972, V. B28, P. 785-791.

28. Bevan D.J.M., Grey I.E., Willis B.T.M., The crystal structure of U409.y, J. Solid State Chem. 1986, V.61,P. 1-7.

29. Lauriat J.P., Chevricr G., Bouchcrle J.X. Space group of U4O9 in the beta phase, J. Solid State Chem. 1989, V. 80, P. 80-93.

30. Cooper R.I., Willis B.T.M., Refinement of the structure of P-U4O9, Acta Cryst. 2004, V. A60, P. 322-325.

31. West A.R., Basic Solid State Chemistry, second edition, copyright by J. Wiley and Sons, 1999, P. 214-215.

32. McEachern R.J., Taylor P., A review of the oxidation of uranium dioxide at temperatures below 400°C, J. Nucl. Mater. 1998, V. 254, P. 87-121.

33. Aronson S., Roof R.B. Jr., Belle J. Kinetic study of the oxidation of uranium dioxide, J. Chem. Phys. 1957, V. 27, P. 137-144.

34. Blackburn P.E., Weissbart J., Gulbranscn E.A., Oxidation of uranium dioxide, J. Phys. Chem. 1958, V. 62, P. 902-908.

35. Hockstra H.R., Santoro A., Siegel S., The low temperature oxidation of U02 and U409, J. Inorg. Nucl. Chem. 1961, V. 18, P. 166-178.

36. Thomas L.E., Elinziger R.E., Buchanan П.С., Effect of fission products on air-oxidation of LWR spent fuel, J. Nucl. Mater. 1993, V. 201, P. 310-319.

37. Westrum E.F., Gronvold F., Triuranium hcptaoxidcs: Heat capacitics and thermodynamic properties of a- and P-U3O7 from 5 to 350 K, J. Phys. Chem. Solids. 1962, V. 23, P. 39-53.

38. Allen G.C., Holmes N.R., A mechanism for the UO2 to а-и308 phase transformation, J. Nucl. Mater. 1995, V. 223, P. 231-237.

39. Nowicki L., Turos A., Garrido F., Choffel C., Thome L., Jagielski J., Matzke Hj. Lattice location of oxygen atoms in U02 single crystal leached in water, Nucl. Instr. and Meth. in Phys. Res. 1998, V. В136-138, P. 447-452.

40. Rousseau G., Desgranges L., Chariot F., Millot N., Niepce J.C., Pijolat M., Valdivieso F., Baldinozzi G., Berar J.F., A detailed study of U02 to U3Oa oxidation phases and the associated rate-limiting steps, J. Nucl. Mater. 2006, V. 355, P. 10-20.

41. Peakall K.A., Antill J.E., Oxidation of uranium dioxide in air at 350-1000° C, J. Nucl. Mater. 1960, V. 2, P. 194-195.

42. McEachern R.J., A review of kinetic data on the rate of U3O7 formation on U02, J. Nucl. Mater. 1997, V. 245, P. 238-247.

43. McEachern R.J., Choi J.W., Kolar M., Long W., Taylor P., Wood D.D., Determination of the activation energy for the formation of U3O8 on U02, J. Nucl. Mater. 1997, V. 249, P. 58-69.

44. Cox D.S., Iglesias F.C., Hunt C.E.L, Barrnad R.D., Keller N.A., Mitchell J.R, O'Connor R.F., Report NUREG/CP-0078, 1987.

45. Taylor P., Thermodynamic and kinctic aspects of U02 fuel oxidation in air at 400-2000 K, J. Nucl. Mater. 2005, V. 344, P. 206-212.

46. Roth O., Bonnemark Т., Jonsson M., The influence of particle size on the kinetics of U02 oxidation in aqueous powder suspensions, doi:10.1016/j.jnucmat.2006.03.005.

47. Химия актинидов в 3-х томах под ред. Дж. Каца, Г. Сиборга, Л. Морсса, Мир, М., 1991.

48. McEachern R.J., Doern D.C., Wood D.D., The effect of rare-earth fission products on the rate of U308 formation on U02, J. Nucl. Mater. 1998, V. 252, P. 145-149.

49. You G.-S., Kim K.-S., Min D.-K., Ro S.-G., Oxidation kinctic changes of U02 by additive addition and irradiation, J. Nucl. Mater. 2000, V. 277, P. 325-332.

50. Colle J.Y., Hiernaut J.-P., Papaioannou D., Ronchi C., Sasahara A., Fission product release in high-burn-up U02 oxidized to U308, J. Nucl. Mater. 2006, V. 348, P. 229-242.

51. Taylor 1\, Wood D.D., Owen D.G., Crystallization of U308 and hydratcd U03 on U02 fuel in aerated water near 200°C, J. Nucl. Mater. 1991, V. 183, P. 105-114.

52. Scnanayakc S.D., Rousseau R., Colcgravc D., ldriss H., The reaction of water on polycrystalline U02: Pathways to surface and bulk oxidation, J. Nucl. Mater. 2005, V. 342, P. 179-187.

53. Hocking W.H., Betteridge J.S., Shoesmith D.W., The cathodic reduction of oxygen on uranium oxide in dilute aqueous solution, Atomic Energy of Canada Ltd. Report, AECL-10402, 1991.

54. Prcsnov V.A., Trunov A.M., Electrochemical surface properties of Co304 clcctrodcs Electrokhimiya 1975, V. 11, P. 77-84.

55. Hocking W.ll., Betteridge J.S., Shoesmith D.W., The cathodic reduction of oxygen on uranium oxide in dilute aqueous solution, Atomic Energy of Canada Ltd. Report, AECL 10402, 1991.

56. Shoesmith D.W., Sunder S., An elcctrochcmistry-bascd model for the dissolution of U02, Atomic Energy of Canada Ltd. Report, AECL 10488, 1991.

57. Cobos J., Papaioannou D., Spino J., Coquercllc M., Phase characterization of simulated high burn-up UO fuel, J. Alloys and Compounds 1998, V. 271-273, P. 610-615.

58. Unc K., Tominaga Y., Kashibe S., Oxygen potentials and lattice parameter of irradiated BWR fuels, J. Nucl. Sci. Tech. 1991, V. 28(5), P. 409-417.

59. Amaya M., Hirai M., Sakurai II., Ito K., Sasaki M., Nomato T., Kamimura K., Iwasaki R., Thermal conductivities of irradiated U02 and (U,Gd)02 pellets, J. Nucl. Mat. 2002, V. 300, P. 57-64.

60. Lucuta P.G., Matzke Ilj., Vcrrall R.A., Palmer B.J., A pragmatic approach to modelling thermal conductivity of irradiated U02 fuel: Review and recommendations, J. Nucl. Mater. 1991, V. 178, P. 48-60.

61. Davics J.H., Ewart F.T., Oxygen potential measurements in high burnup LWR U02 fuel, J. Nucl. Mater. 1971, V. 41, P. 143-149.

62. Sunder S., Miller N.H., XPS and XRD studies of (Th,U)02 fuel corrosion in water, J. Nucl. Mater. 2000, V. 279, P. 118-126.

63. Kurosaki K., Ohshima R., Uno M., Yamanaka Sh., Yamamolo K., Namekawa T., Thermal conductivity of (U,Ce)02 with and without Nd or Zr, J. Nucl. Mater. 2001, V. 294, P. 193-197.

64. Ekcroth E., Jonsson M., Oxidation of UO2 by radiolytic oxidants, J. Nucl. Mater. 2003, V. 322, P. 242-248.

65. Sunder S., Miller N.I I., Shoesmith D.W., Corrosion of uranium dioxide in hydrogen peroxide solutions, Corrosion Scicncc 2004, V. 46, P. 1095-1 111.

66. Amine M., Bors W., Michel C., Stell Maier K., Rasmussen G., Betti M., Effects of Fe(II) and hydrogen peroxide interaction upon dissolving U02 under Geologic Repository Conditions, Environ. Sci. Tcchnol. 2005, V. 39, P. 221-229.

67. Shoesmith D.W., Sunder S., An clcctrochcmistry-bascd model for the dissolution of U02, Atomic Energy of Canada Ltd. Report, AECL 10488, 1991.

68. Santos B.G., Noel J.J., Shoesmith D.W., The influence of calcium ions on the development of acidity in corrosion product deposits on SIMFUEL, U02, J. Nucl. Mater. 2006, V. 350, P. 320-331.

69. Pepcr Sh.M., Brodnax L.F., Field S.E., Zehnder R.A., Valdez S.N., Runde W.H., Kinetic study of the oxidative dissolution of U02 in aqueous carbonatc media, Eng. Chcm. Res. 2004, V. 43, P. 8188-8193.

70. Guilbert S., Guittet M. J., Barrc N., Troccllicr P., Gauticr-Soycr M., Andriambololona Z., Dissolution of uranium dioxide in simulated Boom clay water, Radiochim. Acta 2002, V. 90, P. 75-80.

71. Romer J., Plaschke M., Beuchle G., Kim J.I., In situ investigation of U(IV)-oxidc surface dissolution and remineralization by electrochemical AFM, J. Nucl. Mater. 2003, V. 322, P. 80-86.

72. Ian A.H.H., Grimes R.W., Owens S., Structures of U02 and Pu02 surfaces with hydroxide coverage, J. Nucl. Mater. 2005, V. 344, P. 13-16.

73. Abramowski M., Grimes R.W., Owens S., Morphology of U02, J. Nucl. Mater. 1999, V. 275, P. 12-18.

74. Uranium: Mineralogy, Geochemistry and the Environment edited by P. C. Burns and R. Finch. Reviews in Mineralogy, V. 38. Mineralogical Society of Amcrica, Washington, DC, 1999.

75. Friese J.I., Douglas M., McNamara B.K., Clark S.B., Hanson B.D., Np Behavior in Synthesized Uranyl Phases: Results of Initial Tests, PNNL-14856.

76. Trocellier P., Cachoir Ch., Guilbert S., A simple thermodynamical model to describe the control of the dissolution of uranium dioxide in granitic groundwater by secondary phase formation, J. Nucl. Mater. 1998, V. 256, P. 197-206.

77. Vochten R, van Haverbeke L, Transformation of shoepite into the uranyl oxide hydrates: becquerelitc, billictitc and woelsendorfite, Mineral. Petrol. 1990, V. 43, P. 65-72.

78. Wronkicwicz D.J., Bates J.K., Wolf S.F., Buck E.C., Ten-year results from unsaturated drip tests with U02 at 90°C: implications for the corrosion of spent nuclear fuel, J. Nucl. Mater. 1996. V. 238, P. 78-95.

79. Buck E.C., Wronkiewicz D.J., Finn P.A., Bates J.K., A new uranyl oxide hydrate phase derived from spent fuel alteration, J. Nucl. Mater. 1997, V. 249, P. 70-76.

80. Ewing R.C., The long-term performance of nuelcar waste forms: natural materials -three case studies, Scientific basis of nuclear waste management XVI, lnterrante C.G., Pabalan R.T. (Eds), Mater. Res. Soc. Symp. Proc. 1993, V. 294, P. 559-568.

81. Finch R.J., Ewing R.C., Alteration of natural U02 under oxygen conditions from Shinkolobwe, Katanga, Zaire: A natural analogue for corrosion of the spent fuel, Radiochim. Acta 1991, V. 52/53, P. 395-401.

82. Isobe II., Murakami T., Ewing R.C., Alteration of uranium minerals in the Koongarra deposit, Australia: Unwcathcred zone, J. Nucl. Mater. 1992, V. 190, P. 174-187.

83. Jensen K.A., Palenik C.S., Ewing R.C., U6+ phases in the weathering zone of the Bangombe U-deposit: observed and predicted mineralogy, Radiochim. Acta 2002, V. 90, P. 761-769.

84. Wronkiewicz D.J., Bates J.K., Gerding T.J., Veleckis E., Tani B.S., Uranium release and secondary phase formation during the unsaturated testing of U02 at 90°C, J. Nucl. Mater. 1992, V. 190, P. 107-127.

85. Forsyth R.S., Wermc L.O., Spent fuel corrosion and dissolution, J Nucl. Mater. 2002, V. 190, P. 3-19.

86. McNamara B., Hanson B., Buck E., Soderquis Ch., Corrosion of commercial spent nuclear fuel: 2. Radiochemical analyses of metastudtite and leachates, Radiochim. Acta 2005, V. 93, P. 169-175.

87. Hanson B., McNamara B., Buck E., Fricse J., Jcnson E., Krupka K., Arey B., Corrosion of commercial spent nuclear fuel: 1. Formation of studtite and metastudtite, Radiochim. Acta 2005, V. 93, P. 159-168.

88. Totemeier T.C., Characterization of uranium corrosion products involved in a uranium hydride pyrophoric event, J. Nucl. Mater. 2000, V. 278, P. 301-311.

89. Corbel C., Sattonnay G., Guilbert S., Garrido F., Barthe M.-F., Jegou C., Addition versus radiolytic production effects of hydrogen peroxide on aqueous corrosion of U02, J. Nucl. Mater. 2006, V. 348, P. 1-17.

90. Clarens F., DePablo J., Dias-Perez I., Casas I., Gimenez J., Rovira M., Formation of studtite during the oxidative dissolution of U02 by hydrogen peroxide: A SFM Study, Environ. Sci. Tcchnol. 2004, V. 38, P. 6656-6661.

91. Wang Y., Xu II., Coffinization of uraninite: SEM/AFM investigation and geochemical modeling, Radioactive Waste Management and Environmental Remediation-ASME1999.

92. Amme M., Wiss T., Thicle II., Boulet P., Lang II., Uranium secondary phase formation during anoxic hydrothermal leaching processes of U02 nuclear fuel, J. Nucl. Mater. 2005, V. 341, P. 209-223.

93. Choppin G.R., Liljenzin J.-O., Rydbcrg J., Behavior of radionuclides in the environment. In Radiochemistry and Nuclear Chemistry. Oxford: Butterworth-Ileinemann, 1995.

94. Handbook on the Physics and Chemistry of Rare Earths. Edited by К. Л. Gschneidner. and L. Eyring. New York: North-Holland Publishing Co, 1986.

95. Choppin, G.R., Rizkalla E.N., The chcmistry of actinidc Behaviour in Marine Systems, Aquatic Geochemistry 1998, V. 4, N. 1, P. 77-101.

96. Choppin G.R., Solution chemistry of the actinides. Radiochim. Acta 1983, V. 32, P. 43-53.

97. Meinrath G., Aquatic chemistry of uranium: A review focusing on aspccts of environmental chcmistry, Freiberg on-line gcoscicnce, V. 1, 1998.

98. Ilascke J., Allen Т., Morales L., Reaction of plutonium dioxide with water: formation and properties of Pu02+x, Scicncc 2000, V. 287, P. 285-287.

99. Browninga L, Murphy W.M., Mancpally Ch., Fedors R., Reactive transport model for the ambient unsaturated hydrogcochcmical system at Yucca Mountain, Nevada, Computers & Geosciences 2003, V. 29, P. 247-263.

100. Wcscfurd D., Rundc W., Banar J., Janccky D.R., Kazuba J.P., Palmer Ph.D., Roensch F.R., Drewtait C., Neptunium and plutonium solubilities in a Yucca Mountain groundwater, Environ. Sci. Technol. 1998, V. 32, P. 3893-3900.

101. Shannon R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenidcs, Acta Cryst. 1976, V. 32A, P. 751-767.

102. Burns P.C., Evving R.C., Miller M.L., Incorporation mechanisms of actinide elements into the structures of U 6+ phases formed during the oxidation of spent nuclear fuel, J. Nucl. Mater., V. 245, P. 1-9.

103. Григорьев M.C., Яновский А.И., Фсдоссев A.M., Будаппева П.А., Стручков Ю.Т., Крот II.II., Синтез, кристаллическая и молекулярная структуры комплексного сульфата нептуния (V) CsNp02(S04)2.-2II20, Радиохимия 1991, Т. 33 (2), С. 17-19.

104. Григорьев М.С., Чарушиикова И.А., Федосеев A.M., Будапцева Н.А., Батурин II.А., Рсгсл Л., Радиохимия 1991, Т. 33(4), С. 19.

105. Григорьев М.С., Чарушиикова И.А., Крот Н.Н., Яновский А.И., Стручков Ю.Т., Журнал Неорганической Химии 1994, Т. 39, С. 179.

106. Томилин С.В., Волков Ю.Ф., Мелкая Р.Ф., Спиряков В.И., Капшуков И.И., Кристаллическая структура нептуния(У) с церием CsNpC^Chi^O), Радиохимия 1986, Т. 28, С. 695-701.

107. Лычев А.А., Маширов Л.Г., Смолин Ю.И., Шепелев Ю.Ф., Уточнение кристаллической структуры CS3NPO2CI4, Радиохимия 1988, Т. 30, С. 412-415.

108. Alcock N.W., Roberts М.М., Brown D., Caesium tetrachlorodioxoneptunate(V), Acta Cryst. 1982, V. B38, P. 1805-1806.

109. Alcock N.W., Flanders D.J., Bagnall K.W., Ahmed I., Actinide structural studies: 9-Chlorodioxo (trichloroacetato) bis (triphenylphosphine oxide)uranium dichloromethane solvate, Acta Cryst. 1986, V. C42, P. 634-636.

110. Forbes T.Z., Burns P.C., Ba(Np02)(P04)(H20), its relationship to the uranophane group, and implications for Np incorporation in uranyl minerals, American Mineralogist 2006, V. 91, P. 1089-1093.

111. Kim S.R., Lee .1.11., Kim Y.T., Riu D.I I., Jung S.J. Lee Y.J., Chung S.C. Kim Y.ll., Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials 2003, V. 24, P. 1389-1398.

112. Smith J.V., Brown W.L., Feldspar Minerals: 1. crystal structures, physical, chemical and microtextural Properties. Springer-Verlag. Berlin, 1988.

113. Сницын В.И., Кузина А.Ф., Технеций, Наука, М. 1981.

114. Chen F., Burns P.C., Ewing R.C., Ncar-feld behavior of 99Tc during the oxidative alteration of spent nuclear fuel, J. Nucl. Mater. 2000, V. 278, P. 225-232.

115. Burns P.C., Dccly K.M., Kanthakumar S., Neptunium incorporation into uranyl compounds that form as alteration products of spent nuclcar fuel: Implications for geologic repository performance, Radiochim. Acta 2004, V. 92, P. 151-159.

116. Dougas M., Clark S.B., Friese J.I., Arcy B.W., Buck E.C., Hanson B.D., Ncptunium(V) partitioning to uranium(VI) oxide and peroxide solids, Environ. Sci. Tcchnol. 2005, V. 39, P. 4117-4124.

117. Buck E.C., Douglas M., McNamara B.K., Hanson B.D., Possible Incorporation of Neptunium in Uranyl (VI) Alteration Phases, PNNL-14277.

118. Douglas M., Clark S.B., Friese J.I., Arey B.W., Buck E.C., Hanson B.D., Utsunomiya S., Ewing R.C., Microscalc characterization of uranium(VI) silicatc solids and associated neptunium(V), Radiochim. Acta 2005, V. 93, P. 265-272.

119. Тананасв И.Г., Дзибепко В.И., Радиохимия 1988, Т. 30, С. 842-845.

120. Albinsson Y., Nilsson H., Jakobsson A.-M, Studies of 50ф1.'0п of Th and Np on U02 and Ti02, Mat. Res. Soc. Symp. Proc. 2001, V. 663, P. 1109.

121. Wruek D.A., Brachmann A., Sylvvester E.R., Allen P.G., Palmer С. E.A., Sorption ofNp(V) by U(IV) Hydroxide, Reprint UCRL-JC-13579I.

122. Kim Ch.-W., Wronkiewicz D.J., Pinch R.J., Buck E.C., Incorporation of ccrium and neodymium in uranyl phases, J. ofNucl. Mater. 2006, V. 353, P. 147-157.

123. Матюха B.A., Матюха C.B., Оксалаты редкоземельных элементов и актинидов, 2-е издание, Эпергоатомиздат, М. 2004.

124. Dzombak D.A., Morel М.М., Surface complexation modeling, John Wiley & Sons Publication, 1990.

125. Margaritondo G., Elements of Synchrotron Light for biology, chemistry and medical research, Oxford University Press, 2002.

126. Зубавичус Я.В., Cjioboxotob ЮЛ., Рентгеновское синхротроннос излучение в физико-химических исследованиях, Успехи химии 2001, Т. 70(5), С. 429-463.

127. Novikov А.Р., Kalmykov St.N., Utsunomiya S. Ewing R.C., Horreard F„ Merkulov A., Clark S.B. Tkachev V.V., Myasoedov B.F., Colloid Transport of plutonium in the far-field of the Mayak Production Association. Russia, Science 2006, V. 314, P. 638-641.

128. Bakker M., Anderson E.I., Olsthoorn T.N., Strackd O.D.L., Regional groundwater modeling of the Yucca Mountain site using analytic elements, J. Hydrology 1999, V. 226, P. 167-178.

129. Browning L., Murphy W.M., Manepallya Ch., Fedors R., Reactive transport model for the ambient unsaturated hydrogcochcmical system at Yucca Mountain, Nevada, Computers & Geosciences 2003, V. 29, P. 247-263.

130. Михайлов B.A., Аналитическая химия нептуния, Наука, М. 1971.

131. Рекомендации МКРЗ. Спектры распада радионуклидов. Энергия и интенсивность излучеиия под ред. А.А. Моисеева, часть 2, книга 2, Эпергоатомиздат, М., 1987.

132. Руководство к практическим занятиям по радиохимии под ред. А.Н. Несмеянова, Химия, М., 1980.

133. Чоинин Г.Р., Бонд А.Х., Определение форм существования акгииидов в различных степенях окисления, Журнал аналитической химии 1996, Т. 12, С. 1240-1251.

134. Джигирханов М.С.-А., Абрамов А.А., Иофа Б.З., Экстракция Tc(VII) растворами солей тетраоктиламмоиия в толуоле и хлороформе, Радиохимия 2002, Т. 44(1), С. 14-17.

135. Баронов С.Б., Бердоносов С.С., Солдатов Е.А., Методическое руководство к курсу "Основы Радиохимии и Радиоэкологии": Основы определения погрешности результата, Химический факультет МГУ, М. 2004.

136. Grun M., Ungcr K.K., Matsumoto A., Tsutsumi K., Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology, J. Microporous and Mesoporous Materials 1999, V. 27, P. 207-216.

137. Zhao D., Feng J., Huo Q., Mclosh N., Frcdrickson G.I I., Chmelka B.F., Stucky G.D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 1998, V. 279, P. 548-552.

138. Kim Y.-J., Kang J.G., Lim S.-H., Song J.I I., Facile synthesis of monodispcrscd PdO nanoparticles within mesoporous silica with sonication, Bull. Korean Chem. Soc. 2005, V. 26, P. 1129-1131.

139. Kim J.G., Han К.П., Jenog J.Y., Lee J.S., Qin X.Y., Shin K.I I., Crystal structure analysis of uranium oxides, J. Korean Ceramic Society 2001, V. 38, P. 967-972.

140. Willis B.T.M., The dcfcct structure of hyper-stoichiometric uranium dioxide, Acta Cryst. 1978, V. A34, P. 88-90.

141. Cooper, R.L, Willis B.T.M., Refinement of the structure of P-U4O9, Acta Crystallographica 2004, V. A60, N. 4, P. 322-325.

142. Bcvan D.J.M., Grey I.E., Willis B.T.M., The crystal structure of beta-U409.y, J. Solid State Chem. 1986, V. 61, P. 1-7.

143. Belbeoch В., Piekarski C. and Pério P., Structure de U409, Acta Cryst. 1961, V. 14, P. 837-843.

144. Bclbboch В., Stucturc d'U409, Bulletin de la Société Française de Mincralogie et de Cristallographie 1960, V. 83, P. 206-208.

145. Bclbboch В., The transition of U409 at about 70°C, J. Appl. Cryst. 1974, V. 7, P. 247-250.

146. Taylor J.C., Bannister M.J., Masaki N., Analysis of the superstructure of U4O9 by neutron diffraction, Acta Crystallographica B, V. 28, P. 785-791

147. Doi K., Masaki N., Analysis of the superstructure of U4O9 by neutron diffraction, Acta Crystallographica V. B28, P. 2995-2999.

148. Lauriat J.P., Chevrier G., Boucherle J.X., Space group of U409 in the beta phase, J. Solid State Chem. 1989, V. 80, P. 80-93.

149. Garrido P., Ibberson R.M., Novvicki L., Willis B. T. M., Cuboctahedral oxygen clusters in U307, J. Nucl. Mater. 2003, V. 322, P. 87-89.

150. Teterin Yu.A., Teterin A.Yu., The structure of X-ray photoelectron spectra of light actinide compounds, Russ. Chem. Rev. 2004, V. 73, P. 541-580.

151. Teterin Yu.A., Kulakov V.M., Baev A.S., Nevzorov N.B., Melnikov I.V., Streltsov V.A., A Study of synthetic and natural uranium oxides by X-Ray photoelectron spectroscopy, Phys. Chem. Minerals 1981, V. 7, N. 4, P. 151-158.

152. Olsson M., Jakobsson A.-M., Albinsson Y., Surface charge densities of two actinide(IV) oxides: U02 and Th02, J. of Colloid and Interface Science 2002, V. 256, P. 256-261.

153. Choppin G.R., Rao L.F., Complexation of pentavalent and hexavalcnt actinides by. fluoride, Radiochim. Acta 1984, V. 37, P. 143-146.

154. Efurd D.W., Runde W., Banar J.C. Janecky D.R., Kaszuba J.P., Palmer P.D., Roensch F.R., Tait C.D., Neptunium and Plutonium Solubilities in a Yucca Mountain Ground Water, Environ. Sci. Tech. 1998, V. 32(24), P. 3893-3900.

155. Kazuba J.P., Runde W.H., The Aqueous Geochemistry of Neptunium: Dynamic. Control of Soluble Concentrations with Applications to Nuclear Waste Disposal/ Environ. Sci. Tech. 1999, V. 33, P. 4427-4433.

156. Lundqvist B., The Sweden program for spent-fuel management, Geological Challenges in radioactive waste Isolation, Third Worldwide Review edited by P.A. Witherspoon, G.S. Bodvarsson, EBNE-49767, 2001.

157. Broczkowski M.E., Noel J.J., Shoesmith D.W., The inhibiting effects of hydrogen on the corrosion of uranium dioxide under nuclear waste disposal conditions, J. Nucl. Mater. 2005, V. 346, P. 16-23.

158. Vitorge P., Capdevila II., Thermodynamic data for modeling actinide speciation in environmental waters. Radiochim. Acta 2003, V. 91, P. 623-631.

159. Grenthe I., Fuger J., Konings R.J.M., Lcmirc R.J., Mullcr A.B., Cregu C.N.-T., Wanner II., Chemical Thermodynamics of Uranium, Nuclear Energy Agency (reprint of the 1992 review).

160. Allard В., Beall G.W., Krajcwski Т., The sorption of actinides on igneous rocks, Nucl. Technology 1980, V. 49, P. 474-480.

161. Хасапова А.Б., Щербина H.C., Калмыков C.I I., Тетерии Ю.А., Новиков A.I I., Сорбция Np(V), Pu(V) и Pu(IV) па коллоидных частицах оксидов и оксигидроксидов Fe(III) и Mn(IV), Радиохимия 2007, Т. 49,4, С. 367-372.

162. Соколова И.Д., Шульга Н.А., Проект национального хранилища в Юкка-Маунтин для захоронения облученного ядерного топлива и высокоактивных отходов в США, Атомная техника зарубежом, 2006, Т. 10, С. 3-12.

163. Clark S.B., Ewing R.C., Schaumloffel J.C., A method to predict free energies of formation of mineral phases in the U(VI)-Si02 -II20 system, J. Alloys and Compounds 1998, V. 271-273, P. 189-193.

164. Kubatko K.-A., Ilclean K., Navrotsky A., Burns P.C., Thermodynamics of uranyl minerals: Enthalpies of formation of uranyl oxide hydrates. American Mineralogist 2006. V. 91. P. 658-666.

165. Rai D., Felmy A.R., Hess N.J., LcGorc V.L., McCready D.E., Thermodynamics of the и(У1)-Са2+-СГ-0Н"-Н20 system: Solubility product of becquerelite, Radichim. Acta 2002, V. 90, P. 495-503.

166. Moll II., Geipel G., Matz W., Bcrnhard G., Nitschc П., Solubility and speciation of (U02)2Si04-2II20 in aqueous systems, Radiochim. Acta 1996, V. 74, P. 3-7.

167. Utsunomiya S., Ewing R.C., Wang L.-M., Radiation-induced decomposition of U(VI) phases to nanocrystals of U02, Earth and Planetary Science Letters 2005, V. 240, P. 521-528.

168. O'Loughlin E.J., Kelly Sh.D., Cook R.E., Csencsits R., Kemner K.M., Reduction of uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of U02 nanoparticles, Environ. Sci. Tcchnol. 2003, V. 37, P. 721-727.

169. Yasuda I., Hishinuma M., Electrical Conductivity and Chemical Diffusion Coefficient of Strontium-Doped Lanthanum Manganites, J. Solid State Chemistry 1996, V. 123, P. 382-390.

170. Berenov A.V., MacManus-Driscoll J.L., Kilner J.A., Oxygen tracer diffusion in undoped lanthanum manganites, Solid State Ionics 1999, V. 122, P. 41-49.

171. De Souza R.A., Kilner J.A., Oxygen transport in Lai.xSrxMni.jCojOj+g perovskites: Part II. Oxygen surface exchange, Solid State Ionics 1999, V. 126, P. 153-161.

172. Denecke M.A., Dardenne K., Marquardt C.M., Np(IV)/Np(V) valence determinations from Np L3 edge XANES/EXAFS, Talanta 2005, V. 65(4), P. 1008-1014.

173. Batuk O.N., Dcnecke M.A., EXAFS investigation of U02)x thin films synthesized at various conditions: effect of substrate, oxygen pressure and temperature, semi-annual ANKA report, 2007.

174. Allen G.C., Tempest P.A., Garner C.D., Ross I., Joncs D.J., EXAFS: A new approach to the structure of uranium oxides, J. Phys. Chem. 1985, V. 89, N.°8, P. 1334-1336.

175. Rothe J., Walter C., Denecke M.A., Fanghaenel Th., XAFS and LIBD investigation of the formation and structure of colloidal Pu(IV) hydrolysis products, Inorg. Chem. 2004, V. 43, P. 4708-4718.

176. Rothe J., Denecke M.A., Neck V., Mullcr R., Kim J.I., XAFS investigation of the structure of aqueous thorium(IV) species, colloids, and solid thorium(IV) oxide/hydroxide, Inorg. Chem. 2002, V. 41, P. 249-258.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.