Новый эффективный подход для получения рекомбинантных белков основного фактора роста фибробластов (FGF-2) и лиганд-связывающего внеклеточного домена рецептора II типа TGF-β (TβRII-ED) в E. coli тема диссертации и автореферата по ВАК РФ 03.01.04, кандидат биологических наук Елистратов, Павел Алексеевич

  • Елистратов, Павел Алексеевич
  • кандидат биологических науккандидат биологических наук
  • 2011, Москва
  • Специальность ВАК РФ03.01.04
  • Количество страниц 138
Елистратов, Павел Алексеевич. Новый эффективный подход для получения рекомбинантных белков основного фактора роста фибробластов (FGF-2) и лиганд-связывающего внеклеточного домена рецептора II типа TGF-β (TβRII-ED) в E. coli: дис. кандидат биологических наук: 03.01.04 - Биохимия. Москва. 2011. 138 с.

Оглавление диссертации кандидат биологических наук Елистратов, Павел Алексеевич

Содержание

Список используемых сокращений

1. Введение

2. Цели и задачи работы

3. Литературный обзор

3.1. Общая характеристика факторов роста

3.2. Основной фактор роста фибробластов РОБ

3.2.1. Общая характеристика РОР

3.2.2. Взаимодействие РОР-2 с рецепторами

3.2.3. Изоформы РОР

3.2.4. Структура ТО¥~

3.2.5. Биологическая активность и функции РОР

3.3. Трансформирующий фактор роста (31 (ГСР-р1) и его рецептор типа II (ТРЯП)

3.3.1. Суперсемейство белков ТОР-Р

3.3.2. Структура ГСР-р

3.3.3. Рецепторы и механизмы внутриклеточных сигнальных путей

ТвР-Р

3.3.4. Биологическая активность и функции ТОР-р

3.4. Экспрессия и ренатурация рекомбинантных белков

3.4.1. Слитные рекомбинантные белки

3.4.2. Экспрессия рекомбинантных белков

3.4.3. Расщепление слитных белков

3.4.4. Ренатурация рекомбинантных белков

4. Материалы и методы

4.1. Материалы

4.2. Методы

4.2.1. Конструирование плазмидной ДНК

4.2.2. Сайт-направленный мутагенез

4.2.3. PIPES-трансформация, приготовление компетентных клеток E.coli штамма XL-1 Blue

4.2.4. Получение компетентных клеток E.coli BL21(DE3)

4.2.5. Трансформация клеток E.coli плазмидной ДНК

4.2.6. Выделение плазмидной ДНК

4.2.7. Электрофоретический анализ ДНК в агарозном геле

4.2.8. Определение концентрации белка в растворе

4.2.9. Электрофоретический анализ белков в полиакриламидном

4.2.10. Экспрессия белка FGF-2 и его мутантного варианта и белка

TßRII

4.2.11. Очистка и расщепление белка FGF

4.2.12. Идентификация белков по N-концевой последовательности

4.2.13. Метод оценки жизнеспособности клеток с метилтиазолтетразолием (МТТ-тест)

4.2.14. Очистка, ренатурация и расщепление белка TßRII-ED

4.2.15. Очистка TßRII-ED с помощью метода обратнофазной HPLC хроматографии

4.2.16. MALDI-TOF масс-спектрометрия

4.2.17. Метод спектроскопии кругового дихроизма

4.2.18. !НЯМР -спектроскопия

4.2.19. Исследование связывания белка-рецептора TßRII-ED с лигандом TGF-ßl методом ELISA

5. Результаты и обсуждение

5.1. Синтез генов FGF-2 и TßRII-ED и клонирование их в экспрессионные векторы

5.2. Экспрессия слитного белка Trx/FGF2 в E.coli

5.3. Очистка слитного белка Trx/FGF

5.4. Расщепление слитного белка Trx/FGF-2 энтеропептидазой и очистка целевого белка FGF

5.5. Исследование физико-химических свойств полученного рекомбинантного белка FGF

5.6. Введение C78S и C96S мутаций в ген FGF-2 и получение экспрессирующего вектора pET32a/FGF-2/C78S/C96S

5.7. Экспрессия и очистка мутантного варианта FGF-2/C78S/C96S

5.8. Проверка биологической активности очищенного препарата FGF-2 и его мутантного варианта FGF-2/C78S/C96S на культуре клеток

5.9. Преимущества разработанной методики получения и очистки рекомбинантного FGF

5.10. Экспрессия слитного белка Trx/TßRII-ED в E.coli

5.11. Очистка и расщепление слитного белка Trx/TßRII-ED энтеропептидазой и очистка целевого белка TßRII-ED

5.12. Исследование физико-химических свойств полученного рекомбинантного белка TßRII-ED

5.13. Исследование связывания белка-рецептора TßRII-ED с лигандом TGF-ßl методом ELISA

5.14. Преимущества разработанной методики получения и очистки рекомбинантного белка-рецептора TßRII-ED

6. Выводы

Рекомендованный список диссертаций по специальности «Биохимия», 03.01.04 шифр ВАК

Заключение диссертации по теме «Биохимия», Елистратов, Павел Алексеевич

6. Выводы

1. Получен штамм-продуцент Е. coli BL21(DE3)/pET-32a/FGF-2 для получения фактора роста фибробластов FGF-2 и его мутантного варианта FGF-2/C78S/C96S. Целевые белки экспрессировали в составе слитного белка с тиоредоксином.

2. Разработаны методы очистки, позволившие получить примерно 100 мг белка FGF-2 и 120 мг FGF-2/C78S/C96S из 1 литра культуры клеток.

3. Показано, что полученные препараты FGF-2 и FGF-2/C78S/C96S обладают одинаково высокой стабильностью и пролиферативной активностью по отношению к фибробластам мыши.

4. Получен штамм-продуцент Е. coli BL21(DE3)/pET-32a/TßMI-ED для экспресии лиганд-связывающего домена рецептора II типа цитокина TGFD в составе гибридного белка тиоредоксин/TßRII-EDD □

5. Разработаны методы ренатурации и очистки, позволившие получить примерно 140 мг стабильного белка TßRÜ-ED из 1 литра культуры клеток.

6. Показано, что полученный гомогенный препарат TßRII-ED имеет столь же высокую лиганд-связывающую активность по отношению к TGFß, как и аналогичный рецептор, полученный из клеток млекопитающих.

Список литературы диссертационного исследования кандидат биологических наук Елистратов, Павел Алексеевич, 2011 год

1. Allendorph G.P., Vale W.W., Choe S., Structure of the ternary signaling complex of a TGF-beta superfamily member, PNAS, 2006; 103: 7643 7648.

2. Avivi A., Yayon A., Givol D., A novel form of fibroblast growth factor receptor-3 using an alternative exon in the immunoglobulin domain-Ill, FEB S Lett., 1993; 330:249-252.

3. Baird A., Schubert D., Ling N., Guillemin R., Receptor- and heparin-binding domains of basic fibroblast growth factor, Proc. Natl. Acad. Sci. U.S.A., 1988;85:2324 2328.

4. Barnett V.J., Moustakas A., Lin W., Wang X.-F., Lin H.Y., Galper J.B., Maas R.L., Cloning and Developmental Expression of the Chick Type II and Type III TGFP Receptors, Developmental Dynamics, 1994; 199: 12 -27.

5. Basilico C., Moscatelli D., The FGF family of. growth factors and oncogenes, Adv. Cancer Res., 1992; 59: 115 165.

6. Beck L.S., Deguzman L., Lee W.P., TGF-beta 1 accelerates wound healing: reversal of steroid-impaired healing in rats and rabbits, Growth Factors, 1991; 5: 295-304.

7. Beck L.S., Deguzman L., Lee W.P., Rapid publication, TGFbeta 1 induces bone closure of skull defects, J. Bone Miner. Res., 1991; 6: 1257 1265. (II)

8. Bikfalvi A., Significance of angiogenesis in tumour progression and metastasis, Eur. J. Cancer, 1995; 31A: 1101 1104.

9. Bikfalvi A., Klein S., Pintucci G., Rifkin D.B., Biological roles of Fibroblast growth factor-2, Endocr. Rev. 1997; 18: 26 45.

10. Blobe G.C., Schiemann W.P., Lodish H.F., Role of transforming growth factor beta in human disease, N. Engl. J. Med., 2000; 342 (18): 1350 1358.

11. Blottner D., Wolf N., Lachmund A., Flanders K.C., Unsicker K., TGF-beta rescues target-deprived preganglionic sympathetic neurons in the spinal cord, Eur. J. Neurosci., 1996; 8: 202 210.

12. Bocharov E.V., Korzhnev D.M., Blommers M.J., Arvinte T., Orekhov V.Y., Billeter M., Arseniev A.S., Dynamics-modulated biological activity of transforming growth factor beta3, Journal of Biological Chemistry, 2002; 277: 46273-46279.

13. Boesen C.C., Radaev S., Motyka S.A., Patamawenu A., Sun P.D., The 1.1 A° Crystal Structure of Human TGF-p Type II Receptor Ligand Binding Domain, Structure, 2002; 10: 913 919.

14. Bohlen P., Baird A., Esch F., Ling N., Gospodarowicz D., Isolation and partial molecular characterization of pituitary fibroblast growth factor, Proc. Natl. Acad. Sci. USA, 1984; 81: 5364 5368.

15. Brown M.A., Zhao Q., Baker K.A., Naik C., Chen C., Pukac L., Singh M., Tsareva T., Parice Y., Mahoney A., Crystal structure of BMP-9 and functional interactions with pro-region and receptors, Journal of Biological Chemistry, 2005; 280:25111-25118.

16. Burrus L.W., Zuber M.E., Lueddecke B.A., Olwin B.B., Identification of a cysteine-rich receptor for fibroblast growth factors, Mol. Cell Biol., 1992; 12: 5600 5609.

17. Cao D., Ashfaq R., Goggins M.G., Hruban R.H., Kern S.E., Iacobuzio-Donahue C.A., Differential expression of multiple genes in association with MADH4/DPC4/SMAD4 inactivation in pancreatic cancer, Int. J. Clin. Exp., 2008; 1:510-517.

18. Casadaban M.J., Martinez-Arias A., Shapira S.K., Chou J., p-galactosidase gene fusion for analyzing gene expression in Escherichia coli and yeast, Methods Enzymol., 1983; 100: 293-308.

19. Cavallo M.G., Rozzilli P., Thorpe R., Cytokines and autoimmunity, Clin. Exp. Immunol., 1994; 96 (1): 1 7.

20. Chen C.H., Poucher S.M., Lu J., Henry P.D., Fibroblast growth factor 2: from laboratory evidence to clinical application, Curr. Vase. Pharmacol, 2004; 2: 33-43.

21. Chin D., Boyle G.M., Parsons P.G., Coman W.B., What is transforming growth factor-beta (TGF-p)?, The British Association of Plastic Surgeons, 2004; 57:215-221.

22. Clark D.A., Coker R., Transforming growth factor-beta (TGF-p), The International Journal of Biochemistry & Cell Biology, 1998; 30: 293 298.

23. Dell K.R., Williams L.T., A novel form of fibroblast growth factor receptor 2. Alternative splicing of the third immunoglobulin-like domain confers ligand binding specificity, J. Biol. Chem., 1992; 267: 21225 21229.

24. Dennis P., Saksela O., Harpel P., Rifkin D.B., a2-macroglobulin is a binding protein for basic fibroblast growth factor, J. Biol. Chem., 1989; 264: 7210 -7216.

25. Dennler S., Goumans M.-J., ten Dijke P., Transforming growth factor p signal transduction, Journal of Leukocyte Biology, 2002; 71: 731 740.

26. Derynck R., Miyazono M., TGF-p and the TGF-P family, Cold Spring Harbor Laboratory Press, 2008; vol. 50: 29 44.

27. Derynck R., Zhang Y., Intracellular signalling. The Mad way to do it, Current Biol., 1996; 63: 1226-1229.

28. Eswarakumar V.P., Lax I., Schlessinger J., Cellular signaling by fibroblast growth factor receptors. Cytokine & Growth Factor Reviews. 2005; 16: 139 — 149.

29. Emori Y., Yasuoka A., Saigo K., Identification of four FGF receptor genes in Medeka fish (Oryzies latipes), FEBS Lett., 1994; 314: 176 178.

30. Ensoli B., Sgadari C., Barillari G., Monini P., The fibroblast growth factors. In The Cytokine Handbook. Academic Press, 2003; 748 781.

31. Ericksson A.E., Cousens L.S., Weaver L.H., Matthews B.W., Three dimensional structure of human basic fibroblast growth factor, Proc. Natl. Acad. Sci. USA, 1991; 88: 3441 -3445.

32. Estape D., Van den Heuvel J., Riñas U., Susceptibility towards intramolecular disulphide-bond formation affects conformational stability and folding of human basic fibroblast growth factor, Biochem. J., 1998; 335: 343 -349.

33. Faham S., Hileman R.E., Fromm J.R., Linhardt R.J., Rees D.C., Heparin structure and interactions with basic Fibroblast growth factor, Science 1996; 271: 1116-1120.

34. Faler J.B., Macsata R.A., Plummer D., Mishra L., Sidawy A.N., Transforming Growth Factor-P and Wound Healing, Perspectives in Vascular Surgery and Endovascular Therapy, 2006; 18: 5 — 62.

35. Feige J.J., Baird A., Basic fibroblast growth factor is a substrate for protein phosphorylation and is phosphorylated by capillary endothelial cells in culture, Proc. Natl. Acad. Sci. USA, 1989; 86: 3174 3178.

36. Finklestein S.P., Plomaritoglou A., Growth factors, Head Trauma: Basic, Preclinical, and Clinical Directions, 2001; 165 187.

37. Flamme I., Risau W., Induction of vasculogenesis and hema-topoiesis in vitro. Development, 1992; 116: 435 -439.

38. Flanders K.C., Burmester J.K. Medical applications of transforming growth factor-beta, Clin. Med. Res., 2003; 1: 13 -20.

39. Fox G.M., Schiffer S.G., Rohde M.F., Tsai L.B., Banks A.R., Arakawa Т., Production, biological activity, and structure of recombinant basic fibroblast growth factor and an analog with cysteine replaced by serine, J. Biol. Chem., 1988; 263: 18452-18458.

40. Gabrilove J., White K., Rahman Т., Wilson E.L., Stem cell factor and basic fibroblast growth factor are synergistic in augmenting committed myeloid progenitor cell growth, Blood, 1994; 83: 907- 910.

41. Gao G., Goldfarb M., Heparin can activate a receptor tyrosine, kinase, EMBO J., 1995; 14: 2183-2190.

42. Garke G., Deckwer W.D.j Anspach F.B., Preparative two-step purification of recombinant human basic fibroblast growth factor from high-cell-density cultivation of Escherichia coli, J. Chromatogr. B. Biomed. Sci. Appl., 2000; 737: 25-38.

43. Gasparian M.E., Ostapchenko V.G., Schulga A.A., Dolgikh D.A., Kirpichnikov M.P., Expression, purification, and characterization of human enteropeptidase catalytic subunit in Escherichia coli, Protein Expr. Purif., 2003; 31(1): 133-139.

44. Geng Z.M., Zheng J.B., Zhang X.X., Tao J., Wang L., Role of transforming growth factor-beta signaling pathway in pathogenesis of benign biliary stricture, World J. Gastroenterol., 2008; 14: 4949 4954.

45. Gilbert E., Del Gatto F., Champion-Arnaud P., Gesnel M.C., Breathnach R., Control of BEK and K-SAM splice sites in alternative splicing of the fibroblast growth factor receptor 2 pre-mRNA, Mol. Cell Biol., 1993; 13: 5461 5468.

46. Gilbert F.S., Developmental Biology, Eighth Edition, 2006; Chapter 6, Cell-cell communication in development.

47. Gilboa L., Wells R.G., Lodish H.F., Henis Y.I., Oligomeric structure of type I and type II TGF-b receptors: Homo-dimers form in the ER and persist at the plasma membrane, J. Cell Biol., 1998; 140: 767 777.

48. Gospodarowicz D., Purification of a Fibroblast growth factor from bovine ituitaiy, J. Biol. Chem. 1975; 250: 2515 2520.i

49. Gospodarowicz D., Baird A., Cheng J., Lui G.M., Esch F., Bohlen P., Isolation of fibroblast growth factor from bovine adrenal gland: physicochemical and biological characterization, Endocrinology, 1986; 118: 82 90.

50. Gospodarowicz D., Neufeld G., Schweigerer L. Fibroblast growth factor, Mol. Cell Endocrinol., 1986; 46: 187 204. (II)

51. Goumans M.J., Valdimarsdottir G., Itoh S., Lebrin F., Larsson J., Mummery C., Karlsson S., ten Dijke P., Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling, Mol. Cell., 2003; 12(4): 817-828.

52. Greenwald J., Groppe J., Gray P., Waiter E., Kwiatkowski W., Vale W., Choe S., The BMP7/ActRII extracellular domain complex provides new insightsinto the cooperative nature of receptor assembly, Molecular Cell, 2003; 11: 605 -617.

53. Greenwald J., M.E. Vega, G.P. Allendorph, W.H. Fischer, W. Vale, S. Choe, A flexible activin explains the membrane-dependent cooperative assembly of TGF-beta family receptors, Molecular Cell, 2004; 15: 485 489.

54. Griffith D.L., Keck P.C., Sampath T.K., Rueger D.C., W.D. Carlson, Three-dimensional structure of recombinant human osteogenic protein 1: structural paradigm for the transforming growth factor beta superfamily, PNAS, 1996; 93: 878-883.

55. Halaban R., Fan B., Ahn J., Funasaka Y., Gitay-Goren H., Neufeld G., Growth factors, receptor kinase and protein tyrosine phosphatase in normal and malignant melanocytes, J. Immunopathol, 1992; 12: 154 -161 and 121: 505 514.

56. Hanahan D., Weinberg R.A., The hallmarks of cancer, Cell, 2000; 100: 5770.

57. Harrington A.E., Morris-Triggs S.A., Ruotolo B.T., Robinson C.V., Ohnuma S., Hyvonen M., Structural basis for the inhibition of activin signaling by follistain, EMBO Journal, 2006; 25: 1035 1045.

58. Hart P.J., Deep S., Taylor A.B., Shu Z., Hinck C.S., Hinck A.P., Crystal structure of the human TbetaR2 ectodomain-TGF-beta3 complex, Nature Structural Biology, 2002; 9: 203 208.

59. Hayes S., Chawla A., Corvera S., TGF beta receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2, J. Cell Biol., 2002; 158(7): 1239-1249.

60. He W.W., Gustafson M.L., Hirobe S., Donahoe P.K., Developmental expression of four novel serine/threonine kinase receptors homologous to the activin/transforming growth factor-beta type II receptor family, Dev. Dyn., 1993; 196(2): 133 142.

61. Heldin C.-H., Miyazono K., ten Dijke P., TGF-P signalling from cell membrane to nucleus through SMAD proteins, Nature, 1999; 390(4): 465 471.

62. Henis Y.I., Moustakas A., Lin H.Y., Lodish H.F., The types II and in transforming growth factor-b receptors form homo-oligomers, J. Cell Biol., 1994; 126: 139-154.

63. Jaye M., Schlessinger J., Dionne C.j Fibroblast growth factor receptor for acidic and basic fibroblast growth factors, Biochim. Biophys. Acta, 1992; 1135: 185-199.

64. Kan M., Wang F., Xu J., Crabb J.W., Hou J., McKeehan W.-L., An essential heparin-binding domain in the fibroblast growth factor receptor kinase, Science, 1993; 259:1918-1921.

65. Kang, J.S., Liu C., Derynck R., New regulatory mechanisms of TGF-p receptor function, Trends Cell Biol., 2009; 198: 385 394.

66. Kirsch T., Sebald W., Dreyer M.K., Crystal structure of the BMP-2-BRIA ectodomain complex, Nature Structural Biology, 2000; 7: 492 496.

67. Klagsbrun M., Baird A., A dual receptor system is required for basic fibroblast growth factor activity, Cell, 1991; 67:229 231.

68. Kondo S., Isobe K., Ishiguro N., Nakashima I., Miura T., Transforming growth factor-pl enhances the generation of allospecific cytotoxic T-lymphocytes, Immunology, 1993; 79: 459 464.

69. Kretzschmar M., Doody J., Massague J., Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smadl, Nature, 1997; 389: 618-622.

70. Kretschmer A., Moepert K.5 Dames S., Sternberger M., Kaufmann J., Klippel A., Differential regulation of TGF-beta signaling through Smad2, Smad3 and Smad4, Oncogene, 2003; 22: 6748 6763.

71. Maina C.V., Riggs P.D., Grandea A.G., Slatko B.E., Moran L.S.,

72. Tagliamonte J.A., McReynolds L.A., di Guan C., An Escherichia coli vector toexpress and purify foreign proteins by fusion to and separation from maltose-binding protein, Gene, 1988; 74: 365 373.

73. Massague J., TGF-fUn cancer, Cell, 2008; 134: 215 230.

74. Massague, J., TGF-p signal transduction, Annu. Rev. Biochem., 1998; 67: 753-791.

75. Massague J., Cheifetz S., Laiho M., Transforming growth factor-beta, Cancer Surv., 1992; 12: 81 103.

76. Massague J., Wotton D., Transcriptional control by the TGF-beta/Smad signaling system, Embo. J., 2000; 19: 1745 1754.

77. McKeehan W.-L., Hou J., Adams P., Wang F., Yan G.C., Kan M., Heparin-binding fibroblast growth factors and prostate cancer, Adv. Exp. Med. Biol., 1993; 330: 203-213.

78. Mitchell H., Choudhury A., Pagano R.E., Leof E.B., Ligand-dependent and independent transforming growth factor-beta receptor recycling regulated by clathrin-mediated endocytosis and Rabll, Mol. Biol. Cell, 2004; 15(9): 4166 -4178.

79. Mitraki A., King J., Protein folding intermediates and inclusion body formation, Biotechnology, 1989; 7: 690 697.

80. Mittl P.R.E., Priestle J.P., Cox, D.A., Mcmaster G., Cerletti N., Grutter M.G., The crystal structure of TGF-J33 and comparison to TGF-P2: implications for receptor binding, Protein Sci., 1996; 5: 1261-1271.

81. MourskaiaA.A., Dong Z., Ng S., Banville M., Zwaagstra J.C., O'Connor-McCourt M:D., Siegel P.M., Transforming growth factor-betal is the predominant isoform required for breast cancer cell outgrowth in bone, Oncogene 2009; 28: 1005- 1015.

82. Moustakas A., Lin H.Y., Henis Y.I., Plamondon J., O'Connor-McCourt M.D., Lodish H.F., The transforming growth factor b receptors types I, II, and III form hetero-oligomeric complexes in the presence of ligand, J. Biol. Chem., 1993; 268:22215-22218.

83. Moyen Y., Kan M., Sao G.H., McKehan W.L., Sato J.D., Bifunctional e€ects of transforming growth factor-p (TGF-p) on endothelial cell growth correlate with phenotypes of TGF-P binding sites, Exp. Cell Res., 1990; 191: 229 -304.

84. Murphy S.J., Doré J.J., Edens M., Coffey R:J., Barnard J.A., Mitchell' H., Wilkes M., Leof E.B., Differential trafficking of transforming growth factor-beta receptors'and ligand in polarized epithelial cells, Mol. Biol: Cell; 2004; 15(6): 2853-2862.

85. Nagaraj N.S., Datta P.K., Targeting the transforming growth factor-beta signaling pathway in human cancer, Expert Opin. Investig. Drugs, 2010; 19: 77 , 91.

86. Nakao A., Imamura T.5 Souchelnytskyi S., Kawabata M., Ishisaki A., Oeda E., Tamaki K., Hanai J., Heldin C.H., Miyazono K., ten Dijke P., TGF-beta receptor-mediated signalling through Smad2; Smad3 and Smad4, EMBO J., 1997; 16(17): 5353 -5362.

87. Nickel J., Kotzsch A., Sebald W., Mueller T.D., A single residue of GDF-5 defines binding specificity to BMP" receptor IB, Journal- of Molecular Biology, 2005;349:933-947.

88. Nugent M.A., Iozzo R.V., Fibroblast growth factor. The InternationalJournal of Biochemistry & Cell Biology 2000; 32: 115 120:

89. O'Kane S., Ferguson M.W., Transforming' growth; factor beta and wound healing, Int. J: Biochem. Cell Biol.', 1997; 29: 63 78.

90. Ohnishi' S., Takano K., Amyloid fibrils from1 the viewpoint of protein folding, Cell Mol. Life Sci:, 2003; 61(5): 511 524.

91. Olwin B.B., Rapraeger A.C., Repression of myogenic differen-tiation by aFGF, bFGF, and k-FGF is dependent on cellular heparan sulfate, J. Cell Biol., 1992; 118: 631-639.

92. Ornitz D:M., Herr A.B., Nilsson M., Westman J., Svahn C-M., Waksman G., FGF binding and FGF receptor activation by synthetic heparan-derived di- and trisaccharides, Science, 1995; 268: 432 436.

93. Ornitz D.M., Itoh N., Fibroblast growth factors, Genome Biol., 2001; 2: 130.

94. Ornitz D.M., Leder P., Ligand specificity and heparin depen-dence of fibroblast growth factor receptor -1 and -3, J. Biol. Chem., 1992; 267: 16305 -16311.

95. Ornitz D.M., Xu J., Colvin J.S., McEwen D.G., MacArthur C.A., Coulier F., Gao G., Goldfarb M., Receptor specificity of the fibroblast growth factor family, J Biol. Chem., 1996; 271: 15292 15297.

96. Ornitz D.M., Yayon A., Flanagan J.G., Svahn C.M., Levi E., Leder P., Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells, Mol. Cell Biol., 1992; 12: 240 -247.(11)

97. Parekh T., Saxena B., Reibman J., Cronstein B.N., Gold L.I., Neutrophil Chemotaxis in response to TGF-ß isoforms (TGF-ß 1, TGF-ß2, TGF-ß3) is mediated by fibronectin, J. Immunol., 1994; 152: 2456 2466.

98. Pinkas J., Teicher B.A., TGF-ß in cancer and as a therapeutic target, Biochem. Pharmacol., 2006; 72: 523 529.

99. Prehn J.H., Peruche B., Unsicker K., Krieglstein J., Isoformspecific effects of transforming growth factors-beta on degeneration of primary neuronal cultures induced by cytotoxic hypoxia or glutamate, J. Neurochem., 1993; 60: 1665 -1672.

100. Presta M., Rusnati M., Maier J.A., Ragnotti G., Purification of basic fibroblast growth factor in the rat brain: identification of a Mr 22,000 immunoreactive form, Biochem. Biophys. Res. Commun., 1988; 155: 1161 -1172.

101. Presta M., Statuto M., Rusnati M., Dell'Era P., Ragnotti G., Characterization of a Mr 25,000 basic fibroblast growth factor form in the adult, regenerating, and fetal rat liver, Biochem. Biophys. Res. Commun., 1989; 164: 1182-1189.

102. Provencher S.W., Contin a General-Purpose»Constrained Regularization Program»for Inverting' Noisy Linear Algebraic and- Integral-Equations,. Сотр. Phys. Commun., 1982; 27: 213 - 227, 229 - 242.

103. Rapraeger A.C., Krufka A., Olwin B.B., Requirement of heparan sulfate for bFGF-mediated fibroblast growtband myoblast differ-entiation, Science, 1991; 252: 1705-1708.

104. Ranganathan P., Agrawal A., Bhushan R., Chavalmane A.K., Reddy Kalathur R.K., Takahashi Т., Kondaiah P., Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells, BMC Genomics, 2007; 8: 98.

105. Roberts A.B., Frolik C.A., Anzano M.A., Sporn M.B., Transforming growth factors from neoplastic and nonneoplastic tissues, Fed. Proc., 1983; 42: 2621 -2626.

106. Roghani M., Mansukhani A., DeU'EraP:, Bellosta P.', Basilico C., Rifkin D.B., Moscatelli D., Heparin increases the affinity of basic fibroblast growth factor for its receptor but is not required, for binding, J. Biol. Chem., 1994; 269: 22156-22162.

107. Rosenberg R.D., Shworak N.W., Liu J., Zhang L., Heparan Sulfate Proteoglycans of the Cardiovascular System., J. Clin. Invest., 1997; 99: 2062 -2070.

108. Sannes P.L., Burch K.K., Khosla J., Immunohistochemical localization of epidermal growth factor and acidic and basic fibroblast growth factor in postnatal developing and adult lung, Am. J. Res. Cell. MoL Biol., 1992; 7: 230 237.

109. Schein C.H., Production of soluble recombinant proteins in bacteria, Biotechnology, 1989; 7: 1141 1149.

110. Scheufler C., Sebald' W., Hulsmeyer Mi, Crystal^ structure of human bone morphogenetic protein-2 at 2.7 A, resolution, Journal' of Biological1 Chemistry,-1999; 287: 103-115.

111. Schlunegger M:P., Grutter M.G., An unusual feature revealed by the crystal structure at 2.2 angstrom resolution of human transforming growth factor-p2, Nature, 1992; 358: 430 -434.

112. Schulz M.W., Chamberlain C.G., de Iongh R.U., McAvoy J.W., Acidic and basic FGF in ocular media and lens: implications for lens polarity and growth patterns, Development, 1993; 118: 117 126.

113. Shaw M., Foreman D.M., Ferguson M.W., Neutralization of TGF-(31 and TGF-p2 or exogenous, addition of TGF-03 to cutaneous rat wound reduces scarring, J. Cell Sci., 1995; 108: 985 1002'.

114. Sheng Z., Chang' S.B., Chirico W.J., Expression' and purification of a biologically active basic fibroblast growth factor fusion protein, Prot. Expr. and Purif., 2003; 27(2): 267 271.

115. Shimasaki S., Moore R.K., Otsuka F., Erickson G.F., The bone morphogenetic protein system in mammalian reproduction, Endocrine Reviews, 2004; 25:72-101.

116. Slack J.M.W., Darlington B.G., Heath J.K., Godsave G., Heparin-binding growth factors as agents of mesoderm induction in early Xenopus embryo, Nature, 1987; 326: 197-200.

117. Smith D.B., Johnson» K.S., Single-step purification* of polypeptides expressed ins Escherichia. coli\ as fusions with* glutathione S-transferase, Gene, 1988; 67:31 -40:

118. Sorensen V., Nilsen T., Wiedlocha A., Functional diversity of FGF-2 isoforms by intracellular sorting; BioEssays, 2006; 28: 504 514. '

119. Sporn M.B., Roberts* A.B., Transforming growth factor-beta: recent progress and,new challenges, J. Cell Biol., 1992; 119: 1017 1021.

120. Stader J:A., Silhavy T.J., Engineering Escherichia- coli to- secrete heterologous gene products, Methods in Enzymol, 1990; 165: 166.- 187.

121. Steegmaier M., Levinovitz A., Isenmann S., Borges E., Lenter M., Kocher P., Kleuser B., Vestweber D., The E-selectin-ligand* ESL-1 is a variant of a receptor for fibroblast growth factor, Nature, 1994; 373: 615 620.

122. Steinbrech D.S., Mehrara B.J., Rowe N.M., Gene expression of TGF-beta, TGF-beta receptor, and extracellular matrix proteins during membranous bone healing in rats, Plast. Reconstr. Surg., 2000; 105: 2028 2038.

123. Stockwell B.R., Schreiber S.L., Probing the role of homomeric and heteromeric receptor interactions in TGF-beta signaling using small molecule dimerizers, Curr. Biol., 1998; 8: 761 770.

124. Stormo G.D., Schneider T.D., Gold L., Characterization of translation initiation sites in E. coli, Nucl. Acids Res., 1982; 10: 2971 2996.

125. Streuli C.H., Schmidhauser C., Kobrin M., Bissell M.J., Derynck R., Extracellular matrix regulates expression of the TGF-betal gene, J. Cell Biol., 1993; 120: 253-260.

126. Sun P.D., Davies D.R., The cysteine-knot growth- factor superfamily, Annu. Rev. Biophys. Biomol. Struct, 1995; 24: 269 291.

127. Sun D., Piez K.A., Ogawa Y., Davies D.R., Crystal structure of TGF-p2: an unusual fold for the superfamily, Science, 1992; 257: 369 373.

128. Taipale J., Saharinen J., Keski-Oja J., Extracellular matrix associated transforming growth factor-beta: role in cancer cell growth and invasion, Adv. Cancer Res., 1998; 75: 87-134.

129. Taylor E.P., FGF-2-FGFR-Heparin (2:2:2) Complex, The University of Michigan, 2005.

130. Thompson' L.D., Pantoliano M.W., Springer B.A., Energetic characterization of the basic fibroblast growth factor-heparin interaction: identification of the heparin binding domain, Biochemistry 1994; 33: 3831 3840.

131. Thompson S.A., The disulfide structure of bovine pituitary basic fibroblast growth factor, J. Biol. Chem., 1992; 267: 2269 2273.

132. Thompson T.B., Woodruff T.K., Jardetzky T.S., Structures of an ActRIIB:activin A complex reveal a novel binding mode for TGF-beta ligand-receptor interactions, EMBO Journal, 2003; 22: 1555 1566.

133. Tsuboi R., Rifkin D.B., Recombinant bFGF stimulates wound healing in healing-impaired db/db mice, J. Exp. Med., 1990; 172: 245 251.

134. Vilgrain I., Baird A., Phosphorylation of basic fibroblast growth factor by a protein kinase associated with the outer surface of a target cell, Mol. Endocrinol., 1991; 5: 1003-1012.

135. Vilgrain I., Gonzales A.M., Baird A., Phosphorylation of basic fibroblast growth factor (FGF-2) in the nuclei of SK-Hep-1 cells, FEBS Lett., 1993; 331: 228-232.

136. Wang J., Hong A., Ren J.-S., Sun F.-Y., Shi Y.-J., Liu K., Xie Q.-L., Dai Y., Li Z.-Y., Chen Y., Biochemical properties of C78SC96S rhFGF-2: A doublepoint-mutated rhFGF-2 increases obviously its activity, Journal of Biotechnology, 2006; 121: 442 447.

137. Wang F., Kan M., Xu J., Yan G., McKeehan W.-L., Ligand specific structural domains in the fibroblast growth'factor receptor, J. Biol. Chem., 1995; 270: 1022-1030.

138. Wang X.F., Lin H.Y., Ng-Eaton E., Downward'J., Lodish H:F., Weinberg R.A., Expression cloning and characterization of the TGF-beta type III receptor, Cell, 1991; 67(4): 797-805.

139. Wang H.,- Song K., Krebs- T.L., Yang J., Danielpour D., Smad7 is inactivated through a direct physical interaction with the LIM protein Hic-5/ARA55, Oncogene, 2008; 27: 6791 6805.

140. Weis-Garcia F., Massague J., Complementation, between kinase-defective and activation-defective TGF-beta receptors reveals a novel form of receptor cooperativity essential for signaling, EMBO J., 1996; 15: 276 289.

141. Wells R.G., Gilboa L., Sun Y., Liu X., Henis Y.I., Lodish H.F., Transforming growth factor-beta induces formation of a dithiothreitol-resistant type I/Type Ilreceptor complex in live cells, J. Biol. Chem:,1999; 274: 5716 -5722.

142. Westall F.C., Rubin R., Gospodarowicz D., Brain-derived fibroblast growth factor: a study of its inactivation, Life Sci., 1983; 33: 2425 2429.

143. Wharton K., Derynck R., TGFbeta family signaling: novel insights in development and disease, Development, 2009; 136: 3691 3697.

144. Wrana J.L., Attisano L., Carcamo J., Zentella A., Doody J., Laiho M., Wang X.-F., Massague J., TGF-I signals through a heteromeric protein kinase receptor complex, Cell, 1992; 71: 1003 1014.

145. Wrana J.L., Attisano L., Wieser R., Ventura F., Massague J., Mechanism of activation of the TGF-beta receptor, Nature, 1994; 370(6488): 341-347.

146. Wu M.Y., Hill G.S., TGF-p superfamily signaling in embryonic development and homeostasis, Dev. Cell, 2009; 16: 329 343.

147. Yamashita H., ten Dijke P., Franzen P., Miyazono K.,. Heldin G.H., Formation of hetero-oligomeric complexes of type Is and type II receptors for transforming growth'factor-beta, J. Biol. Chem;, 1994; 269(31): 20172-20178.

148. Yan X., Liu Z;, Chen Y., Regulation of TGF-beta signaling by Smad7, Acta. Biochim. Biophys. Sin-., 2009; 41: 263 272.

149. Yayon A., Klagsbrun M., Esko J.D., Leder P., Ornitz D.M., Cell surface heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor, Cell 1991; 64: 841 848.

150. Zacchigna S., Lambrechts D., Carmeliet P., Neurovascular signalling defects in neurodegeneration, Nature Reviews Neuroscience, 2008; 9: 169 181.

151. Zhu X., Komiya H., Chirino A., Faham S., Fox G.M., Arakawa T., Hsu B.T., Rees D.C., Three-dimensional structure of acidic and basic fibroblast growth factors. Science 1991; 251: 90 93.

152. Zhu H.-J., Sizeland A.M., Extracellular Domain of the Transforming Growth Factor-beta receptor negatively regulates ligand-independent receptor activation, J. Biol. Chem., 1999; 274: 29220 29227.

153. Zimmer Y., Givol D., Yayon A., Multiple structural elements determine ligand binding of fibroblast growth factor receptors. Evidence that both Ig domain 2 and 3 define receptor specificity, J. Biol. Chem., 1993; 268: 7899 7903.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.