Морфогенез и его регуляция в культуре эпидермальных клеток человека тема диссертации и автореферата по ВАК РФ 03.03.04, доктор биологических наук Воротеляк, Екатерина Андреевна
- Специальность ВАК РФ03.03.04
- Количество страниц 305
Оглавление диссертации доктор биологических наук Воротеляк, Екатерина Андреевна
Введение.
1. Обзор литературы.
1.1 Структурно-функциональная организация эпидермиса.
1.2 Эпидермальные стволовые клетки.
1.3 Волосяной фолликул.
1.3.1 Волосяной фолликул - придаток кожи.
1.3.2 Мезенхимные клетки волосяного фолликула.
1.4 Эпителиальный морфогенез.
1.4.1 Формирование стратифицированного эпидермиса.
1.4.2 Морфогенез волосяного фолликула.
1.4.3 Моделирование морфогенеза волосяного фолликула.
1.4.4 Эпителиальный тубулогенез.
1.5 Культивирование эпидермальных кератиноцитов.
1.6 Пролиферация и дифференцировка эпидермальных клеток в культуре и их регуляция.
1.7 Клеточная миграция.
1.7.1 Коллективная миграция.
1.7.2 Эпителизация раневой поверхности.
1.7.3 Регуляция миграции.
1.7.4 Факторы роста и миграция.
1.7.5 Моделирование миграции.
1.8 Использование культивированных кератиноцитов в регенеративной медицине.
2. Матриалы и методы.
3. Результаты и обсуждение.
3.1 Формирование многослойного эпителиального пласта в культуре.
3.1.1 Самоорганизация популяции кератиноцитов человека.
2.1.2 Коллективная миграция эпидермальных клеток человека.
3.1.3 Клеточная структура мигрирующих колоний кератиноцитов. Клеточные механизмы коллективной миграции.
3.1.4 Выбор направления движения колоний. Возможная связь с пролиферацией клеток.
3.1.5 Эффект факторов роста на миграцию. Базальный уровень миграции.
3.2 Структурно-функциональная организация эпителия in vitro.
3.2.1 Длительно сохраняющие метку клетки в эпидермальном пласте.
3.2.2 Маркеры стволовых и прогениторных эпидермальных клеток в культуре.
3.3. Морфогенез эпидермиса в ходе эпителио-мезенхимных взаимодействий.
3.3.1. Эпителизация коллагенового матрикса.
3.3.1.1 Характер роста первичных кератиноцитов человека на коллагеновом геле.
3.3.1.2 Характер роста кератиноцитов первого пассажа на коллагеновом геле.1^
3.3.1.3 Миграция эпидермальных клеток по коллагеновому гелю.
3.3.2 Дермальная папилла (волосяной сосочек) - резервуар специализированных мезенхимных клеток, индуцирующих эпидермальный морфогенез.
3.3.3 Клетки дермалыюй папиллы индуцируют эпидермальный морфогенез in vitro.
3.3.4 Структура тубулярных выростов.
3.3.5 Влияние факторов роста на морфогенез кератиноцитов человека in vitro.
Рекомендованный список диссертаций по специальности «Клеточная биология, цитология, гистология», 03.03.04 шифр ВАК
Клетки волосяного фолликула in vitro2008 год, кандидат биологических наук Чермных, Элина Сергеевна
Клеточные механизмы репарации тканевых повреждений2003 год, доктор биологических наук Васильев, Андрей Валентинович
Клетки дермальной папиллы из нервного гребня в морфогенезе волосяного фолликула2011 год, кандидат биологических наук Гнедева, Ксения Юрьевна
Миграция эпидермальных клеток человека в культуре1998 год, кандидат биологических наук Воротеляк, Екатерина Андреевна
Морфогенез кожи и волосяных фолликулов мутантных мышей we/we wal/wal с постнатальной алопецией2014 год, кандидат наук Риппа, Александра Леонидовна
Введение диссертации (часть автореферата) на тему «Морфогенез и его регуляция в культуре эпидермальных клеток человека»
В последние несколько десятилетий клеточная биология и биология развития значительно продвинулись в понимании закономерностей регенерации и морфогенеза в многоклеточных организмах. Одним из инструментов, позволивших сделать это, явилось развитие техники культивирования клеток и тканей. При этом выяснилось, что с одной стороны эти подходы могут быть с успехом применены в фундаментальных исследованиях, а с другой - открывают совершенно новые перспективы для биологии и регенеративной медицины.
Эпидермис - это наружный слой кожи, который является первым защитным барьером организма. В течение жизни целостность эпидермиса неоднократно нарушается, он подвергается постоянным неблагоприятным воздействиям: ультрафиолетовому излучению, механическим повреждениям, контактам с микроорганизмами. Непрерывная регенерация эпидермиса противостоит этим воздействиям, обеспечивая регенерацию и удаление старых и поврежденных клеток. От эффективности этой регенерации зависит благополучие всего организма.
Эпидермис был одной из первых тканей, которые начали культивировать in vitro. В нашей лаборатории была впервые в России освоена технология культивирования эпидермальных кератиноцитов человека. Проведен ряд оригинальных исследований биологии эпидермальных клеток, участником которых был и автор данной работы.
Способность эпидермальных клеток к реконструкции многослойного пласта с последующим встраиванием в нормальные ткани после пересадки позволил применять культивированные кератиноциты для закрытия ожоговых дефектов кожи и ран (Терских В.В., Васильев A.B., 1995). Первые успешные трансплантации выращенных в культуре кератиноцитов были проведены
Ховардом Грином в 1980 году (Green Н., 1980, 2008). Это послужило стимулом для исследований в двух направлениях. Во-первых, возникла новая область на стыке биотехнологии и клеточной биологии 6 регенеративная медицина, которая достигла впечатляющих результатов уже через 10 лет после успешных экспериментов Грина. Во-вторых, появился большой интерес к изучению кожи и, в частности, эпидермиса.
Появились новые инструменты и подходы к изучению фундаментальных особенностей биологии эпидермальных клеток. При этом наибольшее число исследований касалось пролиферативной активности эпидермальных клеток и ее стимуляции, а также закономерностей дифференцировки. Связано это, прежде всего, с большим количеством травм и заболеваний кожи у человека, сопровождающихся гиперпролиферацией и нарушением программы дифференциации. С другой стороны, поиск стимулирующих пролиферацию агентов позволял повысить эффективность культивирования эпидермальных клеток.
Формирование концепции стволовых клеток началось с кроветворных органов. Эпидермис длительное время оставался мало изученным объектом.
Работы последних 20 лет существенно расширили наше представление о структуре эпидермиса и свойствах эпидермальных стволовых клетках работы под руководством Р.А^ай и Е.РисЬэ). С ростом интереса к проблеме стволовых клеток появилась серия исследований, посвященных структурнофункциональной организации эпидермиса и регенеративному потенциалу различных клеточных компартментов, его составляющих. Однако, подавляющее большинство подобных работ было проведено с использованием лабораторных животных, часто генетически модифицированных. При кажущейся гистологической однородности эпидермиса оказалось, что его функционирование поддерживается сложной иерархической системой клеток. До сих пор кинетическую структуру этой ткани нельзя считать окончательно выясненной. Еще меньше ясного относительно развития этой системы в онтогенезе и ее восстановлении в ходе регенерации. При этом закономерности регенерации и морфогенеза эпидермиса у человека вообще мало исследуются. Между тем, на наш взгляд, подходы с использованием культуры клеток, могут многое прояснить в этой 7 области. Восстановление многослойной структуры эпидермального пласта в культуре с возможностью его длительного культивирования указывает на прохождение процессов регенерации, которые, в общем смысле, представляют собой вторичное развитие. Возможность реконструкции в культуре начальных этапов регенерации более сложно устроенных структур - придатков кожи человека - до последнего времени вообще не рассматривалась. А ведь такие исследования могут значительно продвинуть нас в понимании закономерностей развития, а также патогенетической основы ряда заболеваний.
В то же время, накоплен значительный массив данных относительно развития и функционирования придатков кожи, в частности волосяных фолликулов. У мыши исследование данного объекта оказалось чрезвычайно плодотворным в плане определения механизмов эпителио-мезенхимного взаимодействия в ходе морфогенеза и регенерации. Выяснилось также, что волосяной фолликул, вероятно, содержит несколько популяций стволовых клеток разного происхождения. Потенциал этих клеток кажется сегодня настолько широким, что кожу можно рассматривать в качестве весьма перспективного источника клеточного материала для регенеративной медицины. Однако закономерности эпителио-мезенхимных взаимодействий, регенерации и морфогенеза, а также структура и потенциал клеточных популяций волосяного фолликула у человека невозможно изучить с помощью хорошо разработанных методов, используемых на лабораторных животных. Здесь необходим поиск новых подходов и идеологии исследований.
БЛАГОДАРНОСТИ
Автор выражает глубокую признательность своему научному консультанту, заведующему лабораторией проблем клеточной пролиферации Василию Васильевичу Терских за многолетнее мудрое руководство, постоянную помощь, поддержку и понимание. Автор также считает своей приятной обязанностью поблагодарить заместителя директора Института биологии развития РАН Андрея Валентиновича Васильева за сотрудничество, материальную поддержку в проведении исследований, терпимость и плодотворное обсуждение результатов. Автор приносит благодарность всем бывшим и настоящим сотрудникам лаборатории за всестороннюю помощь и сотрудничество.
Автор также признателен сотрудникам ИБР РАН Г.П. Сатдыковой, Т.А. Тортуновой, Е.Б. Цитрину и всем, кто помогал в проведении данной работы. Искренне благодарю В.И. Попенко и О.Г. Леонову (Институт молекулярной биологии им. В.А. Энгельгарта) за проведение электронно-микроскопического исследования эпидермальных выростов и помощь в обработке фотографий, В.В. Ашапкина (НИИ ФХБ им. А.Н. Белозерского) за проведение анализа транскриптома, а также Т.Н. Власик (НИИ Экспериментальной кардиологии Российского кардиологического научно-производственного комплекса) за сотрудничество в работе по мечению клеток кожи лентивирусными конструкциями.
Отдельную благодарность автор выражает всем своим студентам и апирантам, а особенно Э.С. Чермных и К.Ю. Гнедевой, за совместные плодотворные усилия в научной работе.
Искреннюю благодарность автор выражает оппонентам и рецензентам данной работы.
1. Обзор литературы
Похожие диссертационные работы по специальности «Клеточная биология, цитология, гистология», 03.03.04 шифр ВАК
Реконструкция зачатка волосяного фолликула человека в культуре с использованием постнатальных клеток2018 год, кандидат наук Калабушева, Екатерина Павловна
Реконструкция эпителиальных дефектов уретры и трахеи кролика с помощью живого эквивалента кожи2013 год, кандидат наук Роговая, Ольга Сергеевна
Дифференцировочный и регенеративный потенциал постмиграторных клеток нервного гребня в составе волосяного фолликула2019 год, кандидат наук Косых Анастасия Валерьевна
Обогащение культуры кератиноцитов человека стволовыми клетками путем селективной адгезии к белкам внеклеточного матрикса2008 год, кандидат биологических наук Спичкина, Ольга Георгиевна
Выделение и анализ стволовых клеток из зачатков пульпы третьего моляра человека2012 год, кандидат биологических наук Блатт, Наталия Львовна
Заключение диссертации по теме «Клеточная биология, цитология, гистология», Воротеляк, Екатерина Андреевна
выводы
1. Кератиноциты in vitro сохраняют способность к образованию гистотипических структур, сходных с межфолликулярным эпидермисом. Они обладают пролиферативной активностью и формируют кластеры, аналогичные структурно-функциональным единицам эпидермиса in vivo.
2. Для коллективной миграции кластеров эпидермальных клеток на плоском субстрате in vitro характерна зависимость от пролиферации отдельных клеток: на ведущем крае мигрирующего кластера находятся клетки, обладающие высокой пролиферативной активностью; миграция эпидермального пласта in vitro осуществляется за счет кооперативной миграционной активности первых нескольких рядов клеток. Существует базальный уровень миграции, не зависимый от подавления пролиферации и действия факторов роста и обеспечивающий быстрый ответ клеток эпидермиса на появление свободного края.
3. На модели эпителизации коллагенового геля выявлена морфогенетическая роль мезенхимных клеток. При миграции эпидермальных кератиноцитов человека в коллагеновом геле происходит образование тубулярных структур. Этот морфогенетический процесс сходен с ранними стадиями развития волосяного фолликула. Предложенная модель может служить для определения морфогенетического потенциала клеток in vitro.
4. Мезенхимные стволовые клетки, находящиеся в волосяном сосочке (дермальной папилле) волосяного фолликула, в культуре индуцируют эпидермальный морфогенез. Факторы роста HGF, EGF и KGF могут частично заменить указанное действие клеток дермальной папиллы.
5. Культивируемые клетки дермальной папиллы обладают свойством дифференцироваться в остеогенном, нейрогенном, и, в меньшей степени, адипогенном направлениях. Они способны реорганизовывать внеклеточный матрикс, стимулировать ангиогенез, формировать псевдопапиллы.
6. В процессе культивирования клеток дермальной папиллы человека происходит значительное повышение уровня транскрипции генов ВMP6, FGFR1 и NDP и понижение уровня транскрипции генов ALPL, FGF10 и TWIST 1.
7. Культивированные клетки волосяного фолликула человека могут быть использованы для разработки новых технологий для регенеративной медицины как легкодоступный источник клеток, обладающих широкими дифференцировочными и функциональными возможностями для стимуляции эпителизации, ангиогенеза и фолликулогенеза.
4. Заключение.
Формирование эпителиального пласта в культуре после ферментативного разобщения клеток сопровождается регенеративными процессами, в числе которых агрегация, клеточная миграция, пролиферация, а также установление кинетического и структурно-функционального гомеостаза в иерархической популяции эпидермальных клеток.
Наши исследования с очевидностью показали, что эпидермальные кератиноциты человека способны реконструировать in vitro паттерн структурно-функциональной организации эпидермиса. В культуре кератиноциты практически сразу же формируют аналоги структурно-функциональных единиц - многоклеточные кластеры. Изучение коллективной миграции таких кластеров обнаружило активацию транзиторного компартмента эпидермиса, а также позволило выявить неизученный ранее механизм миграции многоклеточных колоний. Оказалось также, что миграция относительно небольшого числа клеток в составе колоний зависит от пролиферативного статуса культуры, в то время как базальная миграция без факторов роста и митогенов конфлуентного эпидермального пласта может проходить и в условиях блока пролиферации. Миграция эпидермальных клеток продолжается при необратимом подавлении пролиферации. Наличие базального уровня миграции может свидетельствовать об аутокринной регуляции миграции. Такая регуляция может иметь место не только при трансформации эпидермальных клеток, но также в процессе нормальной миграции регенерации. В опытах по инициации миграции клеточных кластеров удалось показать, что непролиферирующие клетки никогда не находятся на лидирующем крае колонии.
Способность к миграции является характерной чертой эпителиальных клеток. Миграция in vivo свойственна эпителию в онтогенезе и активно возобновляется в процессе регенерации поврежденного эпителия. Миграция при регенерации - это естественная, присущая эпителию реакция на образование свободного края. В процессе раневого заживления происходит не только перераспределение клеток в результате перемещения, но и приобретение ими новых свойств - их активация, которая заключается в перестройке цитоскелета, активизации пролиферации. Кератиноциты в культуре могут быть сопоставлены с кератиноцитами раневого ложа, имеющими миграционный фенотип. Формирование особого подвижного фенотипа имеет место и при трансформации эпидермальных клеток и их метастазированию. Оказалось, что трансформированные клетки сохраняют способность к коллективной миграции.
В мигрирующей колонии кератиноцитов одновременно проходят по крайней мере три процесса: миграция, пролиферация, и дифференциация. В связи с этим колония представляет собой трехмерную структуру, которая, однако, перемещается по субстрату с высокой скоростью, сопоставимой со скоростью миграции отдельной клетки. При визуальном наблюдении создается впечатление, что колония движется как единое целое и клетки внутри нее не изменяют своего положения относительно частей колонии. Однако проведенный нами ультраструктурный анализ позволяет предположить, что хотя в колонии и не происходит центробежной миграции клеток, их относительное местоположение со временем меняется. Это связано с тем, что не все клетки колонии имеют одинаковую способность к миграции. Наиболее активно мигрируют клетки, которые по морфологии могут быть отнесены к кератиноцитам шиповатого слоя или к дифференцированным элементам базального. Они сосредотачиваются в ведущем крае колонии и интенсивно синтезируют ДНК. Слабодифференцированные клетки базального слоя локализуются в центральной части колонии и не проявляют признаков миграции. Известно, что кератиноциты этого компартмента эпидермиса находятся в состоянии покоя или медленно продвигаются по клеточному циклу. Однако они обладают большим пролиферативным потенциалом, т.е. способны дать начало большому числу клеток (стволовые клетки эпидермиса). Клетки транзиторной популяции базального слоя и кератиноциты шиповатого слоя интенсивно пролиферируют. В дальнейшем в процессе дифференциации снова происходит удлинение клеточного цикла. Можно предположить, что in vivo к активной миграции в процессе регенерации способны клетки супрабазальных слоев, подвергшиеся некоторой дифференциации. Они активируются в ответ на появление свободного края и обеспечивают краевую эпителизацию ран.
Связь процессов миграции и пролиферации проявляется не только на уровне общей активации клеток. Хорошо известно, что многие факторы, оказывающие воздействие на пролиферацию кератиноцитов, модулируют также и их подвижность. При изучении действия факторов роста на миграцию эпидермальных клеток мы выяснили, что воздействие одного и того же фактора может приводить к разным митогенным и мотогенным эффектам. Хотя взаимодействие клетки с фактором роста осуществляется через один рецептор, внутриклеточные пути передачи сигнала для активации миграции и пролиферации могут различаться. Эти два процесса могут происходить одновременно или быть диссоциированы. Усиление миграции под действием фактора роста может проходить без интенсификации пролиферации, а миграция может быть ингибирована без подавления пролиферации. Это пример диссоциации пролиферации и миграции.
Способность кератиноцитов к морфогенезу проявляется по-разному в зависимости от микроокружения (субстрата, факторов роста, наличия клеток соединительной ткани). Способность к формированию тубулярных структур проявляется на плоском субстрате в образовании длинных тяжей клеток. Многоклеточные мигрирующие колонии на плоском субстрате могут быть соотнесены с цистами, формирование которых было показано в коллагеновом геле (Шинин, 2000).
Изучение эпителио-мезенхимных взаимодействий в ходе эпителизации коллагенового матрикса позволило нам разработать несколько моделей, одна из которых послужила основанием для разработки модели эпидермального морфогенеза в культуре. Параллельно мы выяснили некоторые закономерности миграции эпидермальных клеток по трехмерному матриксу. При конструировании тканеинженерных эквивалентов стоит учитывать, что плотность матрикса может драматически менять поведение эпидермальных клеток и модулировать эпителизацию субстрата.
В некоторых первых опытах мы использовали фибробласты эмбриона человека, которые весьма активно влияют на поведение кератиноцитов. Следует отметить, что под «фибробластами эмбриона» подразумеваются все клетки дермы эмбриона человека. Дерма эмбриона содержит многочисленные физиологически очень активные клетки, выделяющие большое количество факторов роста, цитокинов и гормонов. Эти клетки очень активны в отношении индукции морфогенеза, потому что, прежде всего, содержат популяцию мезенхимных клеток из эмбриональных волосяных фолликулов. В дальнейшем мы поставили задачу по получению культуры клеток дермальной папиллы (ДП) волосяного фолликула, которые в эмбриогенезе индуцируют формирование придатков кожи. На основании проведенных нами исследований можно с уверенностью заключить, что волосяной фолликул кожи человека является источником специализированных мультипотентных стволовых клеток. Мы продемонстрировали, что клетки ДП волосяного фолликула могут быть эффективно выделены, культивированы и использованы для моделирования эпидермального морфогенеза у человека, изучения эпигенетических изменений, происходящих в клетках, в том числе стволовых, в процессе культивирования, а также, вероятно, в прикладных исследованиях, направленных на реконструкцию волосяного фолликула и/или стимуляцию собственных фолликулов. Эти клетки обладают остеогенным, нейрогенным и, в меньшей степени, адипогенным потенциалом. Они реорганизуют внеклеточный матрикс, стимулируют ангиогенез и проявляют склонность к самоорганизации и формированию псевдопапилл. Под действием клеток ДП, а точнее растворимых факторов, которые они выделяют, эпидермальные кератиноциты способны особым образом реализовывать имеющийся у них морфогенетический потенциал и формируют эпидермальные выросты. Нам представляется, что эта модель является удобной альтернативой применяемым в настоящее время подходам для определения фолликул-индуцирующих способностей мезенхимных клеток. Наиболее распространенным является использование трансплантации бестимусным мышам смешанной суспензии кератиноцитов и исследуемых клеток. Очевидно, что это весьма дорогостоящий и длительный метод. Поиск способов продления сроков культивирования клеток ДП с сохранением их специфических фолликул-стимулирующих свойств, несомненно, предполагает их проверку. Кроме того, эта модель может быть удобной, на наш взгляд, для определения закономерностей дифференциации кератиноцитов на начальных стадиях формирования фолликулов.
Вопрос о сохранении стволовых клеток в культуре кератиноцитов человека открыт. За счет чего поддерживается постоянный клеточный состав и восстанавливается структура пласта после трансплантации на раневое ложе? Обнаружение сохраняющих метку клеток в культивированном живом эквиваленте кожи указывает на возможность долговременной физиологической регенерации культуры и существование покоящихся клеток, способных к отложенному регенеративному ответу.
Как судить о регенеративных возможностях культуры? Одним их маркеров функционального состояния культуры может стать кератин 19. Неслучайно его присутствие в волосяном фолликуле матриксе и верхней трети наружного корневого влагалища фолликула - в структурах, содержащих клетки с высоким регенеративным потенциалом. Экспрессия кератина 19 в культивированных кератиноцитах может указывать на пластичность этих клеток, которые при культивировании (в условиях регенеративного микроокружения) приобретают черты активно пролиферирующих элементов.
Когда-то разработка методов культивирования клеток позволила осуществить значительный прогресс в клеточной биологии. Затем постепенно стало ясно, что при культивировании часть свойств и параметров клетки сильно изменяется. Однако за время применения культуры клеток в исследованиях она сама стала отдельным биологическим объектом и все шире применяется в медицине и биотехнологии. Задача стоит в управлении свойствами культивированных клеток: обнаружении закономерностей поведения клеток в культуре, поиск тех элементов, которые аналогичны организму и определение факторов, которые могут модулировать поведение клеток. Особенно актуально это в отношении клеток человека. Представленная работа демонстрирует, что в культуре клеток кожи человека возможна реконструкция ключевых моментов начальных этапов морфогенеза - компактизация клеток, миграция, дифференцировка и формирование многоклеточных трехмерных структур в матриксе. Во многом, эти события отражают внутренние, присущие кератиноцитам свойства, а для реализации некоторых из них необходимо присутствие компетентных мезенхимных клеток.
Кожа - легкодоступный источник двух основных типов клеток (эпителиальных и мезенхимных). Это первый после костного мозга орган, подвергшийся тканеинженерной (клеточной) реконструкции. Проведенные исследования позволяют воспользоваться свойствами клеток кожи и особенностями их поведения в культуре для моделирования фундаментальных процессов морфогенеза и тканевого гомеостаза, а также для создания новых технологий регенерационной медицины.
Список литературы диссертационного исследования доктор биологических наук Воротеляк, Екатерина Андреевна, 2012 год
1. Горелик Ю. В., Дьяконов И. А., Кухарева JI. В., Блинова М. И., Пинаев Г. П. Влияние элементов внеклеточного матрикса на псевдоподиальную активность кератиноцитов крыс. //Цитология. 1998. Т. 40. N 12. С. 1037-1044.
2. Летучая Ф. М., Кетлинский С.А. Становление «функциональных единиц» эпидермиса крыс в процессе его гистогенеза // Цитология. 1980. Т. 22. С. 176-180.
3. Малахов С. Ф., Терских В. В., Баутин Е. А., Васильев А. В., Парамонов Б. А. Аутотрансплантация выращенных вне организма эпидермальных кератиноцитов с целью лечения обширных ожогов // Вестн. хирургии им. Грекова. 1993. № 4. С. 59-62.
4. Терских В.В., Васильев A.B. Эпидермальные кератиноциты человека и животных: Проблемы культивирования и трансплантации. Москва. Наука. 1995. 104 с.
5. Терских В.В., Зосимовская А.И. Изучение параметров митотического цикла в однослойной культуре клеток китайского хомячка// Цитология. 1971. Т. 13. по. 11. С. 1388-1395.
6. Хрущов Г.К., Бродский В.Я. Орган и клетка (некоторые проблемы цитологии и гистологии) // Успехи совр. биол. 1961. Т. 52. №2. С. 181-207.
7. Abella J.V., Parachoniak C.A., Sangwan V., Park M. Dorsal ruffle microdomains potentiate Met RTK signalling and downregulation // J. Biol. 2010. V. 285. P. 24956-24967.
8. O.Adams J.C., Furlong R.A., Watt F.M. Production of scatter factor by ndk, a strain of epithelial cells, and inhibition of scatter factor activity by suramin// J.Cell Sci. 1991. V.98.Pt.3.P. 385-394.
9. Albers K.M., Setzer R.W., Taichman L.B. Heterogeneity in the replicating population of cultured human epidermal keratinocytes // Differentiation. 1986. V. 31. No. 2. P. 134-140.
10. Albrecht-Buehler G. The phagokinetic tracks of 3T3 cells // Cell. 1977. V. 11(2). P. 395-404.
11. Albrecht-Buehler G. The motile behavior of virus-transformed 3T3 cells // Scan Electron Microsc. 1986. (Pt4). P. 1427-1436.
12. Allen T.D., Potten C.S. Fine stractural identification and organization of the epidermal proliferative unit // J. Cell Sci. 1974. V. 15. P. 291-319.
13. Aman A., Piotrowski T. Wnt/13-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression // Dev. Cell. 2008. V. 15. P. 749-761.
14. Andresen J.L., Ledet T., Ehlers N. Keratinocyte migration and peptide growth factors: The effect of PDGF, bFGF, EGF, IGF-1, aFGF and TGF-beta on human keratinocyte migration in a collagen gel // Curr.Eye Res. 1997. V. 16. No. 6. P. 605-613.
15. Andl T., Reddy S.T., Gaddapara T., Millar S.E. WNT signals are required for the initiation of hair follicle development // Dev Cell. 2002. V. 5 P. 643-53.
16. Araki T., Naklo H., Takeuchi I., Maeda Y. Cell-cycle-dependent sorting in the development of Dictyostelium cells// Dev. Biol. 1994. V. 162. P. 221-228.
17. Baghdiguian S., Fantini J. Suramin: A molecule with a broad spectrum of biological and therapeutic properties// Cancer J. 1997. V. 10. No. l.P. 31-37.
18. Basson M.D., Modlin I.M., Madri J.A. Human enterocyte (Caco-2) migration is modulated in vitro by extracellular matrix composition and epidermal growth factor // J. Clin. Invest. 1992. V. 90. P. 15-23.
19. Barrandon Y., Green H. Cell size as a determinant of the clone-forming ability of human keratinocytes // Proc. Natl. Acad. Sci. US. 1985. V.82. P. 5390-5394.
20. Barrandon Y., Green H. Three clonal types of keratinocyte with different capacities for multiplication // Proc.Natl. Acad. Sci. US. 1987a. V. 84. P. 2302-2306.
21. Barrandon Y., Green H. Cell Migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor a and epidermal growth factor// 1987b. Cell. V. 50. N. 7. P. 1131-1137.
22. Barrientos S., Stojadinovic O., Golinko M.S., Brem H., Tomic-Canic M., Growth factors and cytokines in wound healing // Wound Rep. Reg. 2008. V. 16. P. 585601.
23. Basset-Segium N., Escot C., lanchard J.M. et al. High levels of c-fos proto-oncogene expression in normal human adult skin // J. Invest. Dermatol. 1990. V. 94. P. 418-422.
24. Bates R.C., Buret A., van Helden D.F., Horton M.A., Burns G.F. Apoptosis induced by inhibition of intercellular contact// J. Cell Biol., 1994. V. 125. P. 403-415.
25. Bell E, Ehrlich H.P, Sher S., Merrill C, Sarber R, Hull B, Nakatsuji T, Church D, Buttle D.J. Development and use of a living skin equivalent // Plast. Reconstr. Surg. 1981. V. 67. P. 386-392.
26. Bennett W.R, Crew T.E, Slack J.M.W, Ward A. Structural-proliferative units and organ growth: effects of insulin-like growth factor 2 on the growth of colon and skin // Development. 2003. V. 130. P. 1079-1088.
27. Beretta C, Chiarelli A, Testoni B, Mantovani R, Guerrini L. Regulation of the cyclin-dependent kinase inhibitor p57Kip2 expression by p63 // Cell Cycle. 2005. V. 4. P. 1625-1631.
28. Bernot KM, Coulombe PA, McGowan KM. Keratin 16 expression defines a subset of epithelial cells during skin morphogenesis and the hair cycle. J. Invest Dermatol. 2002. V. 119(5). P. 1137-1149.
29. Bertolero F., Kaighn M.E, Camalier R.F, Saffiotti U. Effects of serum and serum-derived factors on growth and differentiation of mouse keratinocytes// In Vitro. 1986. V. 22. No. 7. P. 423-428.
30. Bickenbach J.R. Identification and behaviour of label-retaining cells in oral mucosa and skin//J. Dent. Res. 1981. V. 60. P. 1611-1620.
31. Bickenbach J, Mackenzie I. Identification and localization of label retaining cells in hamster epithelium // J. Invest. Dermatol. 1984. V. 82. P. 618-22.
32. Bickenbach J.R, McCutecheon J, Mackenzie I.C. Rate of loss of tritiated thymidine label in basal cells in mouse epithelial tissues. Cell Tissue Kinet. 1986. V. 19(3). P. 325-333.
33. Blanpain C, Fuchs E. Epidermal stem cells of the skin // Annu Rev Cell Dev Biol. 2006. V. 22. P. 339-73.
34. Blanpain C. and Fuchs E. p63: reviving up epithelial stem-cell potential // Nat. Cell Biol. 2007. Vol. 9. No. 7. P. 731-733.
35. Blanpain C., Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin // Nat Rev Mol Cell Biol. 2009. V. 10(3). P. 207-217.
36. Blanpain C., Lowry W.E., Pasolli H.A., and Fuchs E. Canonical notch signaling functions as a commitment switch in the epidermal lineage // Genes & Development. 2006. V. 20. P. 3022-3035
37. Blay J., Brown K. D. Epidermal growth factor promotes the chemotactic migration of cultured rat intestinal epithelial cells // J. Cell. Physiol. 1985. V. 124. P. 107112.
38. Botchkarev V.A. Bone morphogenetic proteins and their antagonists in skin and hair follicle biology // J. Invest. Dermatol. 2003. V. 120. P. 36-47.
39. Botchkarev V.A., Botchkareva N.V., Nakamura M. et al., Noggin is required for induction of the hair follicle growth phase in postnatal skin. FASEB J. 2001. V. 15. P. 2205-2214.
40. Botchkarev V.A., Kishimoto J. Molecular control of epithelio-mesenchymal interactions during hair follicle cycling // J. Invest. Dermat. 2003. V. 8. P. 46-55.
41. Botchkarev V.A. and Paus R. Molecular biology of hair morphogenesis: development and cycling // J. Exp. Zool. (Mol. Dev. Evol.). 2003. V. 298B. P. 164-180.
42. Bottaro D.P., Rubin J.S., Faletto D.L. et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product // Science. 1991. V. 251(4995). P. 802-804.
43. Boudreau N., Werb Z., and Bissel M.J. Suppression of apoptosis by basement membrane requires three-dementional tissue organization and withdrawal from the cell cycle // Proc.Natl. Acad. Sci. USA. 1996. V. 93. P. 3509-3513.
44. Boudreau N., Sympson C., Werb Z., Bissell M.J. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix // Science. 1995. V. 267. P. 891-893.
45. Brachmann R., Lindquist P.B., Nagashima M., Kohr W., Lipari T., Napier M., Derynck R. Transmembrane TGF-a precursors activate EGF/TGF-a receptors// Cell. 1989. V. 56. P. 691-700.
46. Braun K.M., Niemann C., Jensen U.B., Sundberg J.P., Silva-Vargas F.M. Manipulation of stem cell proliferation and lineage commitment: visualization of label-retaining cells in wholemounts of mouse epidermis // Development. 2003. V. 130. P. 5241-55.
47. Brinkmann V., Foroutan H., Sachs M., Weidner K.M., Birchmeier W. Hepatocyte growth factor/scatter factor induces a variety of tissue-specific morphogenic programs in epithelial cells //J Cell Biol. 1995. V. 131(6 Pt 1). P. 1573-86.
48. Brown R.M., Middleton C.A. Contact-induced spreading in cultures of corneal epithelial cells//J. Cell Sci. 1981. V. 51. P. 143-152.
49. Byrne C., Tainsky M., Fuchs E. Programming gene expression in developing epidermis // Development. 1994. V. 120. P. 2369-2383.
50. Candi E., Oddi S., Paradisi A., Terrinoni A., Ranalli M., Teofoli P., Citro G., Scarpato S., Puddu P., Melino G. Expression of transglutaminase 5 in normal and pathological humal epidermis // J. Invest. Dermatol. 2002. V. 119. P. 670-677.
51. Carmona-Fontaine C. Matthews H.K., Kuriyama S., Moreno M., Dunn G.A., Parsons M., Stern C.D., Mayor R. Contact inhibition of locomotion in vivo controls neural crest directional migration // Nature. 2008. V. 456. P. 957-961.
52. Carpenter P. M., Nguyen H. P. Mammary epithelium induced motility of MCF-7 cells. //Anticancer Res. 1998. V. 18 (2A). P. 1063-1068.
53. Carroll D.K., Carroll J.S., Leong C.O., Cheng F., Brown M., Mills A.A., Brugge J.S. and Ellisen L.W. p63 regulates an adhesion programme and cell survival in epithelial cells //Nat Cell Biol. 2006. V. 8. P. 551-561.
54. Celli J., Duijf P., Hamel B.C., Bamshad M. et al. Heterozygous germline mutations in the p53 homologue p63 are the cause of EEC syndrome // Cell. 1999. V. 99. P. 143-153.
55. Cha D., Obrien P., Otoole E.A., Woodley D.T., Hudson L.G. Enhanced modulation of keratinocyte motility by transforming growth factor-alpha (TGF-alpha) relative to epidermal growth factor (EGF) // J.Invest.Dermatol. 1996. V. 106. No. 4. P. 590-597.
56. Chen Ph., Gupta K., and Wells A. Cell movement elicited by epidermal growth factor receptor requires kinase and autophosphorylation but is separable from mitogenesis// J.Cell Biol. 1994. V. 124. No. 4. P. 547-555.
57. Chung Ch.Y., Murphy-Ullrich J.E., and Erickson H.P. Mitogenesis, cell migration, and loss of focal adhesions induced by tenascin-C interacting with its cell surface receptor, annexin II //Mol.Biol.Cell. 1996. V. 7. P. 883-892.
58. Clark P. Modulation of scatter factor/hepatocyte growth factor activity by cell-substratum adhesion //J Cell Sci. 1994. V. 107 ( Pt 5). P. 1265-1275.
59. Claudinot S., Nicolas M., Oshima H., Rochat A., Barrandon Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells // Proc. Natl. Acad. Sci. 2005. V. 102. P. 14677-14682.
60. Clayton E., Doupe D.P., Klein A.M., Winton D.J., Simons B.D., Jones P.H. A single type of progenitor cell maintains normal epidermis // Nature. 2007. V. 446. P. 185-189.
61. Collins C.A. and Watt F.M. Dynamic regulation of retinoic acid-binding proteins in developing, adult and neoplastic skin reveals roles for (3-catenin and Notch signaling // Dev. Biol. 2008. V. 324. P. 55-67.
62. Collins M.K., Perkins G.R., Rodriguez-Tarduchy G., Nieto M.A., Lopez-Rivas A. Growth factors as survival factors: regulation of apoptosis // Bioessays. 1994. V. 16(2). P. 133-138.
63. Compton C.C. Current concepts in pediatric burn care: The biology of cultured epithelial autografts: an eight-year study in pediatric burn patients // Europ.J. Pediat .Surg. 1992. V. 2. P. 216-222.
64. Cook P.W., Pittelkow M.R., Shipley G.D. Growth factor-independent proliferation of normal human neonatal keratinocytes: production of autocrine- and paracrine-acting mitogenic factors// J.Cell.Physiol. 1991. V. 146. No. 2. P. 277-289.
65. Cotsarelis G. Epithelial stem cells: a folliculocentric view // J. Investig. Dermatol. 2006a. V. 126. P. 1459-1468.
66. Cotsarelis G. Gene expression profiling gets to the root of human hair follicle stem cells // J. Clin. Invest. 2006b. V. 116.- P. 19-22.
67. Cui C.Y., Kunisada M., Childress V., Michel M., Schlessinger D. Shh is required for Tabby hair follicle development // Cell Cycle. 2011. V. 10(19). P. 3379-3386.
68. Dale B.A., Holbrook K.A., Kimball J.R., Hoff M. and Sun T.-T. Expression of epidermal keratins and filaggrin during human fetal skin development // J. Cell Biol. 1985. V. 101. 1257-1269.
69. Danjo Y., Gipson I.K. Specific transduction of the leading edge cells of migrating epithelia demonstrates that they are replaced during healing // Exp Eye Res. 2002. V. 74(2). P. 199-204.
70. Defize L.H.K., Boonstra J., Meisenhelder J. et al. Signal transduction by epidermal growth factor occurs through the subclass of high affinity receptors // J.Cell Biol. 1989. V. 109. No. 5. P. 2495-2507.
71. Delescluse C., Stohr M., Prunieras M., Goerttler K. Microflowfluorometric evaluation of homeostasis in cultured epidermal cells // Cell Biol Int Rep. 1979. V. 3(8). P. 685-690.
72. De Rosa L., Antonini D., Ferone G., Russo M.T., Yu P.B., Han R., Missero C. p63 suppresses non-epidermal lineage markers in a bone morphogenetic protein-dependent manner via repression of Smad7 // J. Biol. Chem. 2009. V. 284. No. 44. P. 30574-30582.
73. DeRouen M.C., Oro A.E. The primary cilium: a small yet mighty organelle // J. Invest Dermatol. 2009. V. 129(2). P. 264-265.
74. Devenport D. and Fuchs E. Planar polarization in empryonic epidermis orchestrates global asymmetric morphogenesis of hair follicle //Nature Cell Biol. 2008. V. 10. P. 1257-1268.
75. Dhimolea E, Maffini MV, Soto AM, Sonnenschein C. The role of collagen reorganization on mammary epithelial morphogenesis in a 3D culture model // Biomaterials. 2010. Y. 31(13). P. 3622-3630.
76. Donaldson J.D., Mahan J.T. Keratinocyte migration and the extracellular matrix// J.Invest.Dermatol. 1988. V. 5. P. 623-628.
77. Dover R., Potten C.S. Heterogenity and cell cycle analysis from tme-lapse studies of human keratinocytes in vitro II J.Cell Sci. 1988. V 89. P. 359-364.
78. Driskell R.R., Clavel C., Rendl M., Watt F.M. Hair follicle dermal papilla cells at a glance // J Cell Sci. 2011. V. 124(Pt 8). P. 1179-1182
79. Dunn G.A., Brown A.F. Alinment of fibroblasts on grooved surfaces described by simple geometric transformation// J.Cell Sci. 1986. V. 83. P. 313-340.
80. Eccles S.A., Box C., Court W. Cell migration/invasion assays and their application in cancer drug discovery. Biotechnol Annu Rev. 2005. V. 11. P.391-421.
81. Eham R., Ishimatsu-Tsuji Y., Iriyama S., Ideta R., Soma T., Yano K. et al. Hair follicle regeneration using grafted rodent and human cells // J. Invest. Dermatol. 2007. V. 127. P. 2106-2115.
82. Ehrlich H.P., Buttle D.J., Nakatsuji T. Living tissue formed in vitro and accepted as skin equivalent tissue of full thickness // Science. 1981. V. 211. No. 4486. P. 1052-1054.
83. Ettensohn C.A. Gastrulation in the sea urchin embryo is accompanied by the rearrangement of invaginating epithelial cells // Dev. Biol. 1985. V. 107. P. 66-74.
84. Ezratty E.J., Stokes N., Chai S., Shah A.S., Williams S.E., Fuchs E. A role for the primary cilium in Notch signaling and epidermal differentiation during skin development // Cell. 2011. V. 145(7). P. 1129-1141.
85. Farooqui R. and Fenteany G. Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement // J. Cell Sci. 2005. V. 118. P. 51-63.
86. Fell P.E., Grobstein C. The influence of extra-epithelial factors on the growth of embryonic mousepancreatic epithelium. // Exp Cell Res. 1968. V. 53(1). P.301- 304.
87. Fibbi G., Magnelli L., Pucci M., and Rossso M.D. Interaction of urokinase A chain with the receptor of human keratinocytes stimulates release of urokinase-like plasminogen activator// Exp. Cell Res. 1990. V. 187. P. 33-38.
88. Finch P.W., Rubin J.S., Miki T., Ron D., and Aaronson S.A. Human KGF is EGF-related with properties of a paracrine effector of epithelial cell growth// Science. 1989. V. 245. P. 752-755.
89. Fischer R.S., Gardel M., Ma X., Adelstein R.S. & Waterman C.M. Local cortical tension by myosin II guides 3D endothelial cell branching // Curr. Biol. 2009. V. 19. P. 260-265.
90. Fleischmajer R., MacDonald E.D. 2nd, Contard P., Perlish J.S. Immunochemistry of a keratinocyte-fibroblast co-culture model for reconstruction of human skin. //J Histochem Cytochem. 1993. V. 41(9). P. 1359-1366.
91. Fleming T.P., Matsui T., Molloy C.J., Robbins K.C., and Aaronson S.A. Autocrine mechanism for v-sis transformation requires cell surface localization of internally activated growth factor receptors// Proc.Natl.Acad.Sci. 1989. V. 86. P. 8063-8067.
92. Fong C. J., Sutkowski D. M., Kozlowski J. M., Lee C. Utilization of the Boyden chamber to further characterize in vitro migration and invasion of benign and malignant human prostatic epithelial cells// Invasion Metastasis. 1992. V. 12. P. 264-274.
93. Friedl P. and Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer // Nat. Rev. Mol. Cell Biol. 2009. V. 10. P. 445-457.
94. Friedl P., Noble P.B., Walton P.A., Laird D. E., Chauvin P.J., Tabah R.J., Black M., Zanker K.S. Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro // Cancer Res. 1995. V. 55. P. 45574560.
95. Frisch S.M., Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis // J.Cell Biol.V. 1994. V. 124. P. 619-626.
96. Frye M, Fisher A.G, Watt F.M. Epidermal stem cells are defined by global histone modifications that are altered by Myc-induced differentiation // PlosOne. 2007. No. 8. e763.
97. Fuchs E. Finding one's niche in the skin. Cell Stem Cell // 2009. V. 4(6). P. 499-502.
98. Fuchs E, Nowak J.A. Building epithelial tissues from skin stem cells // Cold Spring Harb Symp Quant Biol. 2008. V. 73. P. 333-350.
99. Fujuchi S, Ohsaki Y, Kikuchi K. Suramin inhibits the growth of non-small-cell lung cancer cells that express the epidermal growth factor receptor// Oncology. 1997. V. 54. No. 2. P. 134-140.
100. Galbraith C.G, Sheetz M.P. Forces on adhesive contacts affect cell function // Curr Opin Cell Biol. 1998. V. 10. P. 566-571.
101. Gallico G.G, O'Connor N.E. Cultured epithelium as a skin substitute// Clinics in Plast. Surg. 1985. V. 12. P. 149-157.
102. Gallico G.G, O'Connor N.E, Compton C.C, Kehinder O, Green H. Permanent coverage of large burn wounds with autologous cultured human epithelium // New Engl. J. Med. 1984. V. 311. P. 448-454.
103. Gandarillas A, Goldsmith L.A, Gschmeisner S, Leigh I.M, and Watt F.M. Evidence that apoptosis and terminal differentiation of epidermal keratinocytes are distinct processes // Exp. Dermatol. 1999. V. 8. P. 71-79.
104. Garlick J. A., Taichman L.B. Fate of human keratinocytes during reepithelialization in an organotypic culture model // Lab. Invest. 1994. V. 70. P. 916-924.
105. Ghabrial A.S. and Krasnow M.A. Social interactions among epithelial cells during tracheal branching morphogenesis //Nature. 2006. V. 441. P. 746-749.
106. Ghazizadeh S., Taichman L.B. Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin // EMBO J. 2001. V. 20. P. 1215-1222.
107. Gherardi E., Stoker M. Hepatocyte growth-scatter factor: mitogen, motogen and met// Cancer Cells. 1991. V. 3. P. 227-232.
108. Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V: Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5 // Science. 1997. V. 277. P. 225-228.
109. Gilchrest B.A., Marshall W.L., Karassik R.L., Weinstein R., Maciag T. Characterization and partial purification of keratinocyte growth factor from the hypothalamus // J Cell Physiol. 1984. V. 120(3). P. 377-383.
110. Green H. The keratinocyte as differentiated cell type// Harvey Lectures. 1980. V. 74. P. 101-139.
111. Green H. The birth of therapy with cultured cells / BioEssays.2008. V. 30. P. 897-903.
112. Greif F., Soroff H.S., Setzer R.W., Taichman L.B. The effect of growth-promoting agents on replication and cell cycle withdrawal in cultures of epidermal keratinocytes // In Vitro. 1988. V. 24. P. 985-989.
113. Grinnell F. The activated keratinocyte: up regulation of cell adhesion and migration during wound healing// J.Trauma.1990. V. 30. No. 12. S144-149.
114. Grinnell F. Wound repair, keratinocyte activation and integrin modulation // J Cell Sci. 1992. V. 101 (Pt 1). P. 1-5.
115. Gumbriner B.M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis // Cell. 1996. V. 84. P. 345-357.
116. Guo M., Toda K.-I., Grinnell F. Activation of human keratinocyte migration on type I collagen and fibronectin // J.Cell Sci. 1990. V. 96. P. 197-205.
117. Guo N., Hawkins C., and Nathans J. Frizzled6 controls hair patterning in mice // PNAS. 2004. V. 101, No. 25. P. 9277-9281.
118. Hahn A.W.A., Kern F., Jonas U., John M., Buhler F.R., and Resink T.J., Functional aspects of vascular tenascin-C expression // J.Vasc.Res. 1995. V. 32. P. 162-174.
119. Hall P.A., Watt F.M. Stem cells: the generation and maintenance of cellular diversity//Development. 1989. V. 106. P. 619-633.
120. Halprin K.M. Epidermal "turnover time" a re-examination // Br. J. Dermatol. 1972. V. 86. P. 14-19.
121. Hardy M. The Secret life of the hair follicle // Trends in Genetics. 1992. V. 8. No. 2. P. 55-61.
122. Hashiro M., Matsumoto K., Okumura H. et al. Growth inhibition of human keratinocytes by antisense c-myc oligomer is not coupled to induction of differentiation //Biochem. and Biophys. Res. Commun. 1991. V. 174. No. 1. P. 287-292.
123. Havlickova B., Biro T., Mescalchin A., Arenberger P., Paus R. Towards optimization of an organotypic assay system that imitates human hair follicle-like epithelial-mesenchymal interactions // Br. J. Dermatol. 2004. V. 151. P. 753-765.
124. Heckman C.A., Oravecz K.I., Schwab D., Ponten J. Ruffling and locomotion: role in cell resistance to growth factor-induced proliferation // J.Cell Physiol. 1993. V. 154. P. 554-565.
125. Hegerfeldt Y., Tusch M., Brocker E.B., Friedl P. Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, □ 1-integrin function and migration strategies // Cancer Res. 2002. V. 62. P. 2125-2130.
126. Heenen M., De Graef Ch., Galand P. Kinetics of the calcium induced stratification of human keratinocytes in vitro // Cell Prolif. 1992. V. 25. P. 233240.
127. Hennighausen L. and Robinson G.W. Information networks in the mammary gland //Nat. Rev. Mol. Cell Biol. 2005. V. 6. P. 715-725.
128. Herrera R. Modulation of hepatocyte growth factor-induced scatterring of HT29 colon carcinoma cells. Involvement of the MAPK pathway //J. Cell Sci. 1998. V. 111 (pt 8). P. 1039-1049.
129. Hertle M.D., Kubler M.D., Leigh I.M., Watt F.M. Aberrant integrin expression during epidermal wound healing and in psoriatic epidermis // J. Clin. Invest. 1992. V. 89. P. 1892-1901.
130. Hesse M., Franz T., Tamai Y., Taketo M.M., Magin T.M. Targeted deletion of keratins 18 and 19 leads to trophoblast fragility and early embryonic lethality // EMBO J. 2000. V. 19. P. 5060 5070.
131. Higa K., Shimmura S., Miyashita H., Shimazaki J. and Tsubota K. Melanocytes in the corneal limbus interact with K19-positive basal epithelial cells // Exp. Eye Res. 2005. V. 81. P. 218-223.
132. Hinck L. The versatile roles of "axon guidance" cues if tissue morphogenesis // Dev. Cell. 2004. V. 7. P. 783-793.
133. Hirai Y. Molecular cloning of human epimorphin: identification of isoforms and theirunique properties // Biochem. Biophys. Res. Commun. 1993. 191(3). P. 1332-1337.
134. Hodilava K.J., Watt F.M. Evidence that cadherins play a role in the downregulation of integrin expression that occurs during keratinocyte terminal differentiation// J. Cell Biol. 1994. V. 124. P. 589-600.
135. Hodges G.M., Livingston D.C., Franks L.M. The localization of trypsin in cultured mammalian cells // J Cell Sci. 1973. V. 12(3). P. 887-902.
136. Hogan B.L.M., Morphogenesis // Cell. 1999. V. 96. P. 225-233
137. Hoogduijn M.J., Gojup E., Genever P.G. Comparative characterization of hair follicle dermal stem cells and bone marrow mesenchymal stem cells // Stem Cell Dev. 2006. V. 15. P. 49-60.
138. Horowitz A., Simons M. Branching morphogenesis // Circ. Res. 2008. V. 103. P. 784-795.
139. Huelsken J., Vogel R., Erdmann B., Cotsarelis G., Birchmeier W. (3-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin // Cell. 2001. V. 105. P. 533-545.
140. Humes H.D., Cieslinski D.A. Interaction between growth factors and retinoic acid in the induction of kidney tubulogenesis in tissue culture //Exp Cell Res. 1992. V. 201(1). P. 8-15.
141. Hynes R.O., Fibronectins, Springer-Verlag, New York, 1990.
142. Ignotz R.A. and Massague J. Cell adhesion protein receptors as targets for transforming growth factor-beta action// Cell. 1987. V. 51. P. 189-197.
143. Iida M., Ihara S., Matsuzaki T. Hair cycle-dependent changes of alkaline phosphatase activity in the mesenchyme and epithelium in mouse vibrissal follicles. Develop. Growth Differ. 2007. V. 49. P. 185-195.
144. Inamatsu M., Matsuzaki T., Iwanari H., Yoshizato K. Establishment of rat dermal papilla cell lines that sustain the potency to induce hair follicles from afollicular skin // J. Invest. Dermatol. 1998. V. 111. P. 767-775.
145. Inyang A.L., Tobelem G. Tssue-plasminogen activator stimulates endothelial cell migration in wound assays// Biochem. Biophys. Res. Com. 1990. V. 171. No. 3.P. 1326-1332.
146. Ito M., Liu Y., Yang Z., Nguyen J., Liang F., Morris R.J. Cotsarelis G. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis //Nat. Med. 2005. V. 11. P. 1351-1354.
147. Jahoda C.A.B. Induction of follicle formation and hair growth by vibrissa dermal papillae implanted into rat ear wounds: vibrissa-type fibres are specified // Development. 1992. V. 115. P. 1103-1109.
148. Jahoda C.A., Home K.A., Oliver R.F. Induction of hair growth by implantation of cultured dermal papilla cells. Nature. 1984. V. 311. P. 560-562.
149. Jahoda C.A., Oliver R.F. Vibrissa dermal papilla cell aggregative behaviour in vivo and in vitro // J Embryol Exp Morphol. 1984. V. 79. P. 211-224.
150. Jahoda C.A., Reynolds A.J. Hair follicle dermal sheath cells: unsung participants in wound healing // Lancet. 2001. V. 358. P. 1445-1448.
151. Jamora R., DasGupta, Kocieniewski P., Fuchs E. Links between signal transduction, transcription and adhesion in epithelial bud development // Nature. 2003. V. 422 P. 317-322.
152. Jarecki J., Johnson E. and Krasnow M.A. Oxygen regulation of airway branching in Drosophila is mediated by branchless FGF // Cell. 1999. V. 99. P. 211-220.
153. Jensen K.B., Watt F.M. Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrigl is a regulator of stem cell quiescence // Proc Natl Acad Sci USA. 2006. V. 103. P. 11958-11963.
154. Jensen K.B., Collins C.A., Nascimento E., Tan D.W., Frye M., Itami S., Watt F.M. Lrigl expression defines a distinct multipotent stem cell population in mammalian epidermis // Cell Stem Cell. 2009. V. 4(5). P. 427-39.
155. Jensen P.K.A., Pedersen S., Bolund L. Basal-cell subpopulations and cell-cycle kinetics in human epidermal explant culture // Cell and Tissue Kinet. 1985. V. 18. No. 2. P. 201-215.
156. Jensen P.K., Bolund L., Low Ca2+ stripping of differentiating cell layers in human epidermal cultures: an in vitro model of epidermal regeneration // Exp. Cell Res. 1988. V. 175. P. 63-73.
157. Jensen P.K., Fey S.J., Larsen P.M., Norgard J.O., Bolund L. Morphological differentiation and changes in polypeptide synthesis pattern during regeneration of human epidermal tissue developed in vitro // Differentiation. 1991. V. 47(1). P. 3748.
158. Jensen P.J., John M., Baird J. Urokinase and tissue type plasminogen activators in human keratinocyte culture// Exp. Cell Res. 1990. V. 187. P. 162-169.
159. Jensen U.B., Lowell S., and Watt F.M. The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: A new view based on whole mount labeling and lineage analysis // Development. 1999. V. 126. P. 2409-2418.
160. Jiang S.T., Chiu S.J., Chen H.C., Chuang W.J., Tang M.J. Role of alpha3betal integrin in tubulogenesis of Madin-Darby canine kidney cells. // Kidney Int. 2001. V. 59(5). P. 1770-1778.
161. Jones P.H. Epithelial stem cells // BioEssays. 1997. V. 19. P. 683-690.
162. Jones P.H., Harper S., Watt F.M. Stem cell patterning and fate in human epidermis // Cell. 1995. V.80. P. 83-93.
163. Jones P.H., Watt F.M. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression // Cell. 1993. V. 73. P. 713-724.
164. Jones P.H., Simons B.D., Watt F.M. Sic transit gloria: farewell to the epidermal transit amplifying cell? // Cell Stem Cell. 2007. V. 1(4). P. 371-381.
165. Kadoya Y, Nomizu M, Sorokin LM, Yamashina S, Yamada Y. Laminin alpha 1 chain G domain peptide, RKRLQVQLSIRT, inhibits epithelial branching morphogenesis of cultured embryonic mouse submandibular gland //Dev Dyn. 1998. V. 212(3). P. 394-402.
166. Karihaloo A., O'Rourke D.A., Nickel C., Spokes K., Cantley L.G. Differential MAPK pathways utilized for HGF- and EGF-dependent renal epithelial morphogenesis //J Biol Chem. 2001. V. 276(12). P. 9166-9173.
167. Karlsson L., Bondjers C. and Betsholtz C. Roles for PDGF-A and sonic hedgehog in development of mesenchymal components of the hair follicle // Development. 1999. V. 126. P. 2611-2621.
168. Karp G.C., Solursh M. Dynamic activity of the filopodia of sea urchn embryonic cells and their role in directed migration of the primary mesenchyme in vitro // Dev.Biol. 1985. V. 112. P. 276-283.
169. Kartha S., Toback F.G . Adenine nucleotides stimulate migration in wounded cultures of kidney epithelial cells// J Clin Invest. 1992. V. 90(1). P. 288-292.
170. Kaur P. Interfollicular epidermal stem cells: identification, challenges, potential //J. Invest. Dermatol. 2006. V. 126. P. 1450-1458.
171. Kim HJ, Tinling SP, Chole RA. Expression patterns of cytokeratins in cholesteatomas: evidence of increased migration and proliferation // J Korean Med Sci. 2002. V. 17(3). P. 381-388.
172. Kim J.P., Zhang K., Chen J.D., Kramer R.H., Woodley D.T. Yitronectin-driven human keratinocyte locomotion is mediated by the av (35 integrin receptor// J. Biol. Chem. 1994. V. 269. P. 26926-26932.
173. Kirfel G. and Herzog V. Migration of epidermal keratinocytes: mechanisms, regulation, and biological significance // Protoplasma. 2004. V. 223. P. 67-78.
174. Kishimoto J., Burgeson R.E., Morgan B.A. Wnt signaling maintains the hair-inducing activity of the dermal papilla // Genes Dev. 2000. V. 14. P. 1181-1185.
175. Khalil A. A., Friedl P. Determinants of leader cells in collective cell migration // Integr Biol (Camb). 2010. V. 2(11-12). P. 568-574.
176. Klebe R.J., Escobedo L.V., Bentley K.L., Thompson L.K. Regulation of cell motility, morphology, and growth by sulfated glycosaminoglycans //Cell Motil. Cytoskeleton. 1986. V. 6. N 3. P. 273-281
177. Klein-Soyer C., Archipoff G., Beretz A., Cazenave J.P. Opposing effects of heparin with TGF-beta or aFGF during repair of a mechanical wound of human endothelium. Influence of cAMP on cell migration // Biol Cell. 1992. Y. 75(2). P.155-162.
178. Kleinman HK, Jacob K. Invasion assays. Curr Protoc Cell Biol. 2001. Chapter 12:Unit 12.2.
179. Kobayashi K, Rochat A, Barrandon Y. Segregation of keratinocyte colony-forming cells in the bulge of the rat vibrissa // Proc. Natl. Acad. Sci. USA. 1993. V. 90. P. 7391-7395.
180. Kobayashi H, Yasudo H, Ohkawara A, Dosaka H, Ogiso Y, Kuzumaki N. Enhanced expression of ras gene products in psoriatic epidermis // Arch. Dermatol. Res. 1988. V. 280. P. 259-263.
181. Koike T, Yasugi S. In vitro analysis of mesenchymal influences on the differentiation of stomach epithelial cells of the chicken embryo // Differentiation. 1999. V. 65(1). P. 13-25.
182. Kolega J. The movement of cell clusters in vitro: morphology and directionality //J.Cell Sci. 1981. V. 49. P. 15-32.
183. Kolodka T.M, Garlick J, Taichman L.B. Evidence for keratinocyte stem cells in vitro: Long term engraftment and persistence of transgene expression from retrovirus-transduced keratinocytes // Proc. Natl. Acad. Sci. USA. 1998. V. 95. P. 4356-4361.
184. Kondo H, Matsuda R, and Yonezawa Y. Autonomous migration of human fetal skin fibroblasts into a denuded area in a cell monolayer is mediated by basic fibroblast growth factor and collagen// In Vitro Cell.Dev.Biol. 1993. V. 29A. P. 929-935.
185. Koster M.I, Roop D.R. The role of p63 in development and differentiation of the epidermis // J. Dermatol. Sci. 2004. V. 34. P. 3-9.
186. Koster M.I. and Roop D.R. Mechanisms Regulating Epithelial Stratification // Annual Review of Cell and Developmental Biology. 2007. V. 23. P. 93-113.
187. Koster M.I, Dai D, Marinari B, Sano Y, Costanzo A, Karin M, Roop D.R. p63 induces key target genes required for epidermal morphogenesis // Proc. Natl. Acad. Sci. USA. 2007. V. 104. No. 9. P. 3255-3260.
188. Koster M.I., Kim S., Huang J., Williams T., Roop D.R. TAp63alpha induces AP-2gamma as an early event in epidermal morphogenesis // Dev. Biol. 2006. V. 289. P. 253-261.
189. Koster M. I., Kim S., Mills A.A. et al. p63 is the molecular switch for initiation of an epithelial stratification program // Genes Development. 2004. V. 18. P. 126131.
190. Krawczyk W.S. A pattern of epidermal cell migration during wound healing// J.Cell Biol. 1971. V. 49. P. 247-263.
191. Krohn P.L. Review lectures on senescence. II. Heterochronic transplantation in the study of ageing // Proc R Soc Lond B Biol Sci. 1962.V. 157. P. 128-147.
192. Kubo M., Kan M., Isemura M., Yamane I., Tagami H. Effects of extracellular matrices on human keratinocyte adhesion and growth and on its secretion and deposition of fibronectin in culture//J. Invest. Dermatol. 1987. V. 88. P. 594-601.
193. Kupfer A., Louvard D., Singer S.J. Polarization of the Golgi apparatus and the mcrotubule-organizing center in cultured fibroblasts at te edge of an experimental wound//Proc.Natl.Acad.Sci. 1982. V. 79. P. 2603-2607.
194. Lako M., Armstrong L., Cairns P.M., Harris S., Hole N., Jahoda C.A. Hair follicle dermal cells repopulate the mouse haematopoietic system // J Cell Sci. 2002. V. 115. P. 3967-3974.
195. Landry J., Bernier D., Ouellet C., Goyette R., Marceau N. Spheroidal aggregate culture of rat liver cells: Histotypic reorganization, biomatrix deposition, and maintenance of functional activities // J. Cell Biol. 1985. V. 101. P. 914-923.
196. Latijnhouwers M, Bergers M, Ponec M, Dijkman H, Andriessen M, Schalkwijk J. Human epidermal keratinocytes are a source of tenascin-C during wound healing // J Invest Dermatol. 1997. V. 108(5). P. 776-83.
197. Lauffenburger D.A., Horwitz A.F. Cell migration: a physically integrated molecular process // Cell. 1996. V. 84(3). P. 359-369.
198. Laurikkala J., Mikkola M.L., James M., Tummers M., Mills A.A. and Thesleff I. p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation // Development. 2006. V. 133. P. 1553-1563.
199. Lavker R.M., Cotsarelis G., Wei Z.G., Sun T.T. Stem cells of pelage, vibrissae, and eyelash follicles: the hair cycle and tumor formation // Ann N Y Acad Sci.-1991. V. 642. P. 214-24.
200. Lavker R.M., Sun T.T: Epidermal Stem Cells // J. Invest Dermatol. 1983. V. 81. P. 1215-1275.
201. Lecaudey V. and Gilmour D. Organizing moving groups during morphogenesis // Curr. Opin. Cell Biol. 2006. V. 18. P. 102-107.
202. Lecaudey V., Cakan-Aktogan G., Norton W.H.J, and Gilmour D. Dynamic Fgf signaling couples morphogenesis and migration in the zebrafish lateral line primordium // Development. 2008. V. 135. P. 2695-2705.
203. Lee J., Ishihara A., Jacobson K. How do cells move along surfaces? // Trends Cell Biol. 1993.V. 3. P. 366-370.
204. Lee J., Leonard M., Oliver T., Ishihara A., Jacobson K. Traction forces generated by locomoting keratinocytes // J.Cell Biol. 1994. V. 127. P. 1957-1964.
205. Legue E., Nicolas J.-F. Hair follicle renewal: organization of stem cells in the matrix and the role of stereotyped lineages and behaviors // Development. 2005. V. 132. P. 4143-4154.
206. Lehman J.M., Laag E., Michaud E.J., Yoder B.K. An essential role for dermal primary cilia in hair follicle morphogenesis // J. Investig. Dermatol. 2009. V. 129. P. 438-448.
207. Levy V., Lindon C., Zheng Y., Harfe B.D., Morgan B.A. Epidermal stem cells arise from the hair follicle after wounding // FASEB J. 2007. V. 21. P. 1358-1366.
208. Li J., Tzu J., Chen Y., Zhang Y.-P., Nguyen N. T., Gao J., Bradley M., Keene D. R., Oro A. E., Miner J. H. and Marinkovich M.P. Laminin-10 is crucial for hair morphogenesis // The EMBO J. 2003. V. 22. No. 10. P. 2400-2410.
209. Li Y., Fan J., Chen M., Li W., Woodley D.T. Transforming growth factor-alpha: a major human serum factor that promotes human keratinocyte migration // J. Investig. Dermatol. 2006. V. 126. P. 2096-105
210. Lichti U., Weinberg W.C., Goodman L., Ledbetter S., Dooley T., Morgan D., Yuspa S.H. In vivo regulation of murine hair growth: insights from grafting defined cell population onto nude mice // J. Invest. Dermatol. 1993. V. 101. 124S-129S.
211. Liu Y., Lyle S., Yang Z., Cotsarelis G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge // J. Invest. Dermatol. 2003. V. 121. P. 963-968.
212. Lohrum M.A.E., Vousden K.H. Regulation and function of the p53-related proteins: same family, different rules // Trends Cell Biol. 2000. V. 10. P. 197-202.
213. Long B.H., Willson J.K.V., Brattain D.E., Musial S., Brattain M.G. Effects of mitomycin on human colon carcinoma cells// J.Natl.Cancer Inst. 1984. V. 73. No. 4. P. 787-792.
214. Lowell S., Jones P., Le Roux I., Dunne J., Watt F.M. Stimulation of human epidermal differentiation by Delta-Notch signaling at the boundaries of stem-cell clusters // Curr. Biol. 2000. V. 10. P. 491-500.
215. Lubarsky B. and Krasnow M.A. Tube morphogenesis: Making and Shaping Biological Tubes // Cell. 2003. V. 112. P. 19-28.
216. Luscher B., Eisenman R.N. New light on myc and myb: l.Myc // Genes and Develop. 1990. V. 4. No. 12a. P. 2025-2035.
217. Lyle S., Christofidou-Solomidou M., Liu Y., Elder D.E., Albelda S., Cotsarelis G. The C8/144B monoclonal antibody recognizes cytokeratin 15 // J. Cell Sci. 1998. V. 111. P. 3179-3188.
218. Ma E.Y., Raible D.W. Signaling pathways regulating zebrafish lateral line development // Curr Biol. 2009. V. 19(9). R381-386.
219. Maas-Szabowski N., Stark H-J., Fusenig N.E. Keratinocyte growth regulation in defined organotypic cultures through IL-1-induced keratinocyte growth factor expression in resting fibroblasts // J. Invest. Dermatol. 2000. V. 114. P. 1075-1084.
220. Mackenzie I.C., Bickenbach J.R. Label-retaining keratinocytes and Langerhans cells in mouse epithelia // Cell Tissue Res. 1985.V. 242. P. 551-556.
221. Madri J.A., Pratt B.M., Tucker A.M. Phenotypic modulation of endothelial cells by transforming growth factor-(3 depends upon the composition and organization of the extracellular matrix//J.Cell Biol. 1988. V. 106. P. 1375-1381.
222. Magee A.I., Lytton N.A., and Watt F.M. Calcium -induced changes in cytoskeleton and motility of cultured human keratinocytes //Exp. Cell Res. 1987. V. 172. P. 43-53.
223. Mahan J.T., Donaldson D.J. Events in the movement of newt epidermal cells across implanted substrates// J. Exper. Zool. 1986. V. 237. No.l. P. 35-44.
224. Malcovati M., Tenchini M.L. Cell density affects spreading and clustering, but not attachment, of human keratinocytes in serum-free medium // J. Cell Sci. 1991. V. 99. P. 387-395.
225. Mansbridge J.N., Knuchel R., Knapp A.M., Sutherland R.A., Modulation of EGF signal transduction by cell-cell contacts and microenvironments: Involvement of tyrosine phosphatases// J.Cell.Physiol. 1992. V. 151. P. 433-442.
226. Mansbridge J.N., Knapp A.M. Changes in keratinocyte maturation during wound healing // J. Investig. Dermatol. 1987. V. 89. P. 253-263.
227. Marchese C., Chedid M., Dirsh O.R. et al. Modulation of keratinocyte growth factor and its receptor in epithelializing human skin // J. Exp. Med. 1995. V. 182. P. 1369-1376.
228. Martin P. Wound healing: aiming for perfect skin regeneration // Science. 1997. V. 276. P. 75-81.
229. Martin P. and Parkhurst S.M. Parallels between tissue repair and embryo morphogenesis // Development. 2004. V. 131. P. 3021-3034.
230. Matsumoto K., Hashimoto K., Hashiro M. et al. Modulation of growth and differentiation in normal human keratinocytes by transforming growth factor 3 // J. Cell.Physiol. 1990. V. 145. No. 1. P. 95-101.
231. Matsumoto K., Hashimoto K., Yoshikawa K., Nakamura T. Marked stimulation of growth and motility of human keratinocytes by hepatocyte growth factor // Exp. Cell Res. 1991. V. 196. P. 114-120.
232. McCarthy J.B., Sas D.F., Furcht L.T. Mechanisms of parenchymal cell migraton into wounds// In: "The Molecular and Cellular Biology of Wound Repair", Ed.: Clark & Henson. 1988. P. 281-319.
233. McConkey D.J., Orrenius S. Signal transduction pathways to apoptosis //Trends in Cell. Biol. 1994. V. 4. P. 370-375.
234. McElwee K.J., Kissling S., Wenzel E., Huth A., Hoffman R. Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla // J. Invest. Dermatol. 2003. V. 121. P. 1267-1275.
235. McGaw W.T., Ten Cate A.R. A role for collagen phagocytosis by fibroblasts in scar remodeling: an ultrastructural stereologic study // J Invest Dermatol. 1983. V. 81(4). P. 375-378.
236. McMinn J.M.H., Pritchard J.J. Tissue Repair. Academic Press, N. Y., 1972, pp. 1-76.
237. McNeill H., Jensen P.J. A high-affinity receptors for urokinase plasminogen activator on human keratinocytes: characterization and potential modulation during migration// Cell Regulation. 1990. V. 31. P. 843-852.
238. McNeil P.L., Muthukrishcan L., Warder E., D'Amore. Growth factors are released by mechanically wounded endothelial cells // J.Cell Biol. 1989. V. 109. P. 811-822.
239. Meili R. and Firtel R.A. Follow the leader // Dev. Cell. 2003. V. 4. P. 291-293.
240. Messenger A.G. Hair follicle tissue culture // Br J Dermatol. 1985. V. 113. P. 639-640.
241. Messenger A.G., Jennifer H.Sr., Bleehen S.S. The in vitro properties of dermal papilla cell lines established from human hair follicles. Br J Dermatol. 1986. V. 114. P. 425-430.
242. Michel M, L'Heureux N, Auger F.A, and Germain L. From newborn to adult: phenotypic and functional properties of skin equivalent and human skin as a function of donor age // J. Cell. Physiol. 1997. V. 171. P. 179-189.
243. Mildner M, Eckhart L, Lengauer B, Tschachler E. Hepatocyte growth factor/scatter factor inhibits UVB induced apoptosis of human keratinocytes via the PI-3-kinase pathway // J Invest Dermatol. 1999. V. 113(6). P. 11361137.
244. Millar S.E. Molecular mechanisms regulating hair follicle development // J. Investig. Dermatol. 2002. V. 118. P. 216-225.
245. Mills A.A, Zheng B.H, Wang X.J. et al. P63 is a p53 homologue required for limb and epidermal morphogenesis //Nature. 1999. V. 398. P. 708-713.
246. Milo G.E, Ackerman C.A, Noyes J. Growth and ultrastructural characterization of proliferating human keratinocytes in vitro without added extrinsic factors // In Vitro. 1980. V. 16. P. 20-30.
247. Moll R, Franke W.W, Schiller D.L. et al. The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells // Cell. 1982. V. 31. P. 11-24.
248. Moll R, Moll I, and Wiest W. Changes in the pattern of cytokeratin polypeptides in epidermis and hair follicles during skin development in human fetuses // Differentiation. 1982. V. 23. P. 170-178.
249. Montell D.J. Border cell migration. The race is on // Nat. Rev. Mol. Cell Biol. 2003. V. 4. P. 13-24.
250. Montell D.J. Morphogenetic cell movements: diversity from modular mechanical properties // Science. 2008. V. 322. P. 1502-1505.
251. Montell D.J., Rorth P., Spradling A.C. Slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila C/EBP // Cell. 1992. V. 71. P. 51-62.
252. Montesano R, Matsumoto K, Nakamura T, Orci L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor //Cell. 1991a. V. 67(5). P. 901-908.
253. Montesano R, Schaller G, Orci L. Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors //Cell. 1991b. V. 66(4). P. 697-711.
254. Morris R.J., Liu Y., Maries L., Yang Z., Trempus C., Li S., Lin J.S., Sawicki J.A., Cotsarelis G. Capturing and profiling adult hair follicle stem cells // Nat. Biotech. 2004. V. 22. P. 411-417.
255. Morton D.M., and Tchao R. Regulation of motility and cytoskeleton organization of rat bladder carcinoma cells by cyclic AMP. //Cell Motility and Cytoskeleton. 1994. V. 29. P. 375-382.
256. Murphy G., Gavrilovic J. Proteolysis and cell migration: creating a path? // Curr Opin Cell Biol. 1999. 11. P. 614-621.
257. Murphy-Ullrich J.E., Lightner V.A., Aukhil I., Yan Y.Z., Erickson H.P., and Hook M. Focal adhesion integrity is downregulated by the alternatively spliced domain of human tenascin//J.Cell Biol. 1991. V. 115. P. 1127-1136.
258. Nabeshima K., Shimao Y., Inoue T., Itoh H., Kataoka H., Kooono M. Hepatocyte growth factor /scatter factor induces not only scatterring but also cohort migration of human colorectal-adenocarcinoma cells //Int. J. Cancer. 1998. V. 78. N. 6. P. 750-759.
259. Nakamura T., Nawa K., Ichihara A. et al. Purification and subunit structure of hepatocyte growth factor from rat platelets // FEBS. 1987. V. 224(2). P. 311-316.
260. Naldini L., Weidner K.M., Vigna E. et al. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor // EMBO J. 1991. V. 10(10). P. 2867-2878.
261. Natarajan E., Saeb M., Crum C. P., Woo S. B., McKee P. H., and Rheinwald J.
262. G. Co-Expression of pl6INK4A and Laminin 5 y2 by Microinvasive and Superficial Squamous Cell Carcinomas in Vivo and by Migrating Wound and Senescent Keratinocytes in Culture // Am. J Pathol. 2003. V. 163. No. 2. P. 477491.
263. Niemann C., Brinkmann V., Spitzer E., Hartmann G., Sachs M., Naundorf
264. H., Birchmeier W. Reconstitution of mammary gland development in vitro: requirement of c-met and c-erbB2 signaling for branching and alveolar morphogenesis // J Cell Biol. 1998. V. 143(2). P. 533-45.
265. Nguyen H., Rendl M., Fuchs E. Tcf3 Governs stem cell features and represses cell fate determination in skin // 2006. Cell. V. 127. P. 171-183.
266. Nishida T., Nakamura M., Ofuji K., Reíd T.W., Mannis M.J., and Murphy J. Synergetic effects of Substance P with insulin-like growth factor-1 on epithelial migration of the cornea // J.Cell.Physiol. 1996. V. 169. P. 159-166.
267. Nishikawa T., Kobayashi H., Yasuda H. et al. Ras gene expression in the regenerating epidermis// J. Invest. Dermatol. 1989. V. 92. P. 491.
268. Nose A., Nagafuchi A., Takeichi M. Expressed recombinant cadherins mediate cell sorting in model system // Cell. 1988. V 54. P. 993-1001.
269. Odland G., Ross R. Human wound repair. 1. Epidermal regeneration //J.Cell Biol. 1968.V. 39.P. 135-151.
270. Oakley C. and Brunette D.M. Response of single, pairs, and clusters of epithelial cells to substratum topography// Biochem.Cell Biol. 1995. V. 73. P. 473489.
271. O'Connor N.E., Mulliken J.B., Banks-Schlegel S., Kehinde O., Green H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells//Lancet. 1981. V. l.P.75-78.
272. Ogata R. Type IV collagen and laminin enhance the motility, adhesion, and proliferation of hepatoma cells. //Kurume Med J. 1998. V. 45. N 1. P. 11-20.
273. Oh H.S. and Smart R.C. An estrogen receptor pathway regulates the telogen-anagen hair follicle transition and influence epidermal cell proliferation // Proc. Natl. Acad. Sci. 1996; V. 93. P. 12525-12530.
274. Ojakian G.K., Schwimmer R. Regulation of epithelial cell surface polarity reversal by beta 1 integrins //J Cell Sci. 1994. V. 107. (Pt 3). P. 561-576.
275. O'Kane S., Ferguson M.W. Transforming growth factor beta s and wound healing // Int. J. Biochem. Cell Biol. 1997. V. 29 P. 63-78.
276. O'Keefe E.J., Payne R.E., Russell N. Keratinocyte growth-promoting activity from human placenta // J. Cell. Physiol., 1985a. V. 124. P. 439-445.
277. O'Keefe E. J., Payne R. E. Jr., Russell N., Woodley D. T. Spreading and enhanced motility of human keratinocytes on fibronectin //J. Invest. Dermatol. 1985b. V. 85 (2). P. 125-130.
278. Oliver R.F. The induction of hair follicle formation in the adult hooded rat by vibrissa dermal papillae // J. Embryol. Exp. Morphol. 1970. V. 23. P. 219-236.
279. Oliver R.F. Histological studies of whisker regeneration in the hooded rat // J. Embryol. Exp. Morphol. 1996. V. 16. P. 231-244.
280. Oliver, R.F. Whisker growth after removal of the dermal papilla and lengths of follicle in the hooded rat // J. Embriol. Exp. Morphol. 1966. V. 15. P. 331-347.
281. Ohyama M., Terunuma A., Tock C.L., Randonovich M.F., Pise-Masison C.A., Hopping S.B., Brady J.N., Udey M.C., Vogel J.C. Characterization and isolation of stem cell-enriched human hair follicle bulge cells // J. Clin. Invest. 2006. V.l 16. P. 249-260.
282. Ortonne J.P., Loning T., Schmitt D., Thivolet J. Immunomorphological and ultrastructural aspects of keratinocyte migration in epidermal wound healing // Virchows Arch A Pathol Anat Histol. 1981. V. 392(2). P. 217-230.
283. Oshima R.G. Apoptosis and keratin intermediate filaments // Cell Death and Differentiation. 2002. V. 9. P. 486-492.
284. Oshima H., Rochat A., Kedzia C., Kobayashi K., Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells // Cell. 2001. V. 104. P. 233-245.
285. Osorio KM, Lilja KC, Tumbar T. Runxl modulates adult hair follicle stem cell emergence and maintenance from distinct embryonic skin compartments // J Cell Biol. 2011. 193(1). P. 235-250.
286. Otoole E.A., Marinkovich M.P., Hoeffler W.K., Furthmayr H., Woodley D.T. Laminin-5 inhibits human keratinocyte migration// Exp.Cell Res. 1997. V. 233. No. 2. P. 330-339.
287. O'Toole E.A. Extracellular matrix and keratinocyte migration // Clin Exp Dermatol. 2001. V. 26. P. 525-530.
288. Pastor-Pareja J.C., Grawe F., Martin-Blanco E. and Garcia-Bellido A. Invasive cell behavior during Drosophila imaginal disc eversión is mediated by the JNK signaling cascade // Dev. Cell. 2004. V. 7. P. 387-399.
289. Patel G.K., Wilson C.H., Harding K.G., Finlay A.Y. Bowden P.E. Numerous keratinocyte subtypes involved in wound re-epithelialization // J. Investig. Dermatol. 2006. V. 126. P. 497-502.
290. Patel V.N., Rebustini I.T., Matthew P. Salivary gland branching morphogenesis //Differentiation. 2006. V. 74. P. 349-364.
291. Paus R., Hanjiski B., Eichmuller S., and Czarnetzki B.M. Chemotherapy-induced alopecia in mice. Induction by cyclophosphamide, inhibition by cyclosporine A, and modulation by dexamethasone // Am. J. Pathol. 1994. V. 144. P. 719-734.
292. Pays L., Hemming F.J., Saxod R. Regulation of the chick cutaneous innervation pattern in retinoic acid-induced ectopic feathers and in the naked neck mutant // Int J Dev Biol. 1997. V. 41(4). P. 575-579.
293. Pearton D.J., Yang Y., and Dhouailly D. Transdifferentiation of corneal epithelium into epidermis occurs by means of a multistep process triggered by dermal developmental signals // Proc. Natl. Acad. Sci. 2005. V. 102. No. 10. P. 3714-3719.
294. Peehl D.M., Ham R.G. Clonal growth of human keratinocytes with small amounts of dialyzed serum // In Vitro. 1980a. V.16(6). P. 526-540.
295. Peehl D.M., Ham R.G. Growth and differentiation of human keratinocytes without a feeder layer or conditioned medium // In Vitro. 1980b. V. 16(6). P. 516525.
296. Pellegrini G., Dellambra E., Golisano O., Martinelli E., Fantozzi I., Bondanza S., Ponzin D., McKeon F., De Luca M. p63 identifies keratinocyte stem cells // Proc Natl. Acad. Sci. USA. 2001. V. 98. P. 3156-3161.
297. Petersson M, Brylka H, Kraus A, John S, Rappl G, Schettina P, Niemann C. TCF/Lefl activity controls establishment of diverse stem and progenitor cell compartments in mouse epidermis // EMBO J. 2011. 30(15). P. 3004-3018.
298. Pittelkow M.R., Wille J.J.Jr., Scott R.E. Two functionally distinct classes of growth arrest states in human keratinocytes that regulate clonogenic potential //J. Invest. Dermatol. 1986. V. 86. P. 410-417.
299. Plowman G.D., Green J.M., McDonald V.L., Neubauer M.G., Disteche C.M., Todaro G.J., Shoyab M. The amphiregulin gene encodes a novel epidermal growth factor-related protein with tumor-inhibitory activity // Mol Cell Biol. 1990. V. 10(5). P. 1969-1981.
300. Pohl M., Sakurai H., Stuart R.O., Nigam S.K. Role of hyaluronan and CD44 in in vitro branching morphogenesis of ureteric bud cells //Dev Biol. 2000. V. 224(2). P. 312-325.
301. Potten C.S. The epidermal proliferative unit: the possible role of the central basal cell // Cell Tissue Kinet. 1974. V. 7. P. 77-88.
302. Potten C.S. Stem cells in epidermis from the back of the mouse // In: Stem Cells: Their Identification and Characterisation. 1983. P. 200-232. Ed. C.S. Potten.
303. Potten C.S., Wichmann H.E., Dobek K., Birch J., Codd T.M. Horrocks L., Pedrick M., Tickle S.P. Cell kinetic studies in the epidermis of mouse. Ill The percent labeled mitosis (PLM) technique // Cell Tissue Kinetics. 1982. V. 18. P. 59-70.
304. Potten C.S., Saffhill R., Maibach H.I. Measurement of the transit time for cells through the epidermis and stratum corneum of the mouse and guinea-pig // Cell Tissue Kinet. 1987. V. 20. P. 461-472.
305. Potten C.S. and Morris R.J. Epithelial stem cells in vivo // J. Cell Sci. Suppl. 1988. V. 10. P. 45-62.
306. Potten C.S., Hendry J. H. Clonogenic cells and stem cells in epidermis // Int. J. Radiat. Biol. 1973. V.24. P. 537-540.
307. Potten C.S. and Hendry J.H. Cryptogenic cells and proliferative cells in intestinal epithelium //Int J Radiat Biol Relat Stud Phys Chem Med. 1974. V. 6. P. 583-588.
308. Poujade M, Grasland-Mongrain E, Hertzog A, Jouanneau J, Chavrier P, Ladoux B, Buguin A, Silberzan P. Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl. Acad. Sci. 2007. V. 104. No. 41. P. 15988-15993.
309. Prunieras M, Regnier M, Woodley D. Methods of cultivation of keratinocytes with an air-liquid interface // J. Invest. Dermatol. 1983. V. 81. N 1. P.28s-33s.
310. Putnins EE, Firth JD, Lohachitranont A, Uitto VJ, Larjava H. Keratinocyte growth factor (KGF) promotes keratinocyte cell attachment and migration on collagen and fibronectin // Cell Adhes Commun. 1999. V. 7(3). P. 211-221.
311. Radice G.P. The spreading of epithelial cells during wound closure in Xenopus larvae // Developmental Biol. 1980. V. 76. P. 26-46.
312. Raff M. Social controls on cell survival and cell death // Nature. 1992. V. 356. P. 397-400.
313. Regauer S, Seiler G.R, Barrandon Y, Easley K.W, Compton C.C. Epithelial origin of cutaneous anchoring fibrils // J Cell Biol. 1990. V. 111. P. 2109-2115.
314. Reiss M, Dibble C.L, Narayanam R. Transcriptional activation of the c-myc protooncogene in murine keratinocytes enhances the response to epidermal growth factor//J. Invest. Dermatol. 1989. V. 93. P. 136-141.
315. Reiss M, Zhou Z.-L. Uncoupling of the calcium-induced terminal differentiation and the activation of membrane-associated transglutaminase in murine keratinocytes by type P transforming growth factor // Exp.Cell Res. 1989. V. 183. No. l.P. 101-111.
316. Rendl M, Polak L, Fuchs E. BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties // Genes Dev. 2008. V. 22. P. 543-557.
317. Reynolds A.J., Jahoda C.A.B. Hair follicle stem cells? A distinct germinative epidermal cell population is activated in vitro by the presence of hair dermal papilla cells // J. Cell Sci. 1991. V. 99. P. 373-385.
318. Rheinwald J.G., Green H. Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizating colonies from single cells // Cell. 1975. V. 6. P. 331-344.
319. Rheinwald J.G., Green H., Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes //Nature. 1977. V. 265. No. 5593. P. 421-424.
320. Riley P.A., Hola M. Transient intraclonal variation in interdivision time in relation to orientation of cytokinesis of GPK cells in layer culture // Cell and Tissue Kinet. 1983. V. 16. No. 2. P. 189-198.
321. Rizk-Rabin M., Pavlovich J.H. Epidermal calcium-binding protein: A marker of early differentiation of basal layer keratinocytes of rats // Cell and Tissue Res. 1993. V. 272. P.161-168.
322. Rochat A., Kobayashi K., Barrandon Y. Location of stem cells of human hair follicles by clonal analysis // Cell. 1994. V. 76. P. 1063-1073.
323. Rodeck U., Jost M., Kari C., Shih D.T., Lavker R.M., Ewert D.L., Jensen P.J. EGF-R dependent regulation of keratinocyte survival // J. Cell Sci. 1997. V. 110. P. 113-121.
324. Romano R.A., Birkaya B., Sinha S.A functional enhancer of keratin 14 is a direct transcriptional target of Delta.Np63 // J. Invest. Dermatol. 2007. V. 127(5). P. 1175-86.
325. Romano R.A., Ortt K., Birkaya B., Smalley K., Sinha S. An active role of the AN isoform of p63 in regulating basal keratin genes K5 and K14 and directing epidermal cell fate // PloS ONE. 2009. V. 4, e5623. 1-12.
326. Ronfard V., Rives J.M., Neveux Y., Carsin H., Barrandon Y. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix // Transplantation. 2000. V. 70. P. 1588-1598.
327. Rosario M., Birchmeier W. How to make tubes: signaling by the Met receptor tyrosine kinase // Trends Cell Biol. 2003. V. 13. P. 328-335.
328. Rosdy M., Bernard B.A., Schmidt R., Darmon M. Incomplete epidermal differentiation of A-431 epidermoid carcinoma cells// In Vitro Cell. & Dev. Biol. 1986. V. 22. No. 5. P. 295-300.
329. Rosen E.M., Meromsky L., Setter E., Vinter D.W., Goldberg I.D. Purified scatter factor stimulates epithelial and vascular endothelial cell migration // Proc. Soc. Exp. Biol. Med. 1990a. V. 195. P. 34-43.
330. Rosen E.M., Goldberg I.D., Liu D., Setter E., Donovan M.A., Bhargava M., Reiss M., Kacinski B. Tumor necrosis factor stimulates epithelial tumor cell motility//Cancer Res. 1991. V. 51. P. 5315-5321.
331. Rubin J.S., Osada H., Finch P.W., Taylor W.G., Rudikoff S., and Aaronson S.A. Purification and characterization of a newly identified growth factor specific for epithelial cell s// Proc.Natl.Acad.Sci. 1989. V. 86. P. 802-806.
332. Rufaut N.W., Goldthorpe N.T., Wildermoth J.E., Wallace O.A. Myogenic differentiation of dermal papilla cells from bovine skin // J Cell Physiol. 2006. V. 209. P. 959-66.
333. Sakurai H, Tsukamoto T, Kjelsberg CA, Cantley LG, Nigam SK. EGF receptor ligands are a large fraction of in vitro branching morphogens secreted by embryonic kidney. //Am J Physiol. 1997a. V. 273(3 Pt 2). P. 463472.
334. Sakurai H., Elvino J. Barros, Tsukamoto T. et al. An in vitro tubulogenesis system using cell lines derived from the embryonic kidney shows dependence on multiple soluble growth factors // Proc. Natl. Acad. Sci. 1997b. V. 94. P. 6279-6284.
335. Sancho E., Batlle E., Clevers H. Live and let die in the intestinal epithelium // Curr. Opin. Cell Biol. 2003. V. 15(6). P. 763-770.
336. Sanders E.J. The roles of epithelial-mesenchymal cell interactions in developmental processes // Biochem Cell Biol. 1988. V. 66(6). P. 530-40.
337. Santos O.F., Nigam S.K. HGF-induced tubulogenesis and branching of epithelial cells is modulated byextracellular matrix and TGF-beta // Dev Biol. 1993. V. 160(2). P. 293-302.
338. Santoro M.M., Gaudino G. Cellular and molecular facets of keratinocyte reepithelization during wound healing // Exp. Cell Res. 2005. V. 304. P 274286.
339. Sarret Y., Stamm C., Jullien D., Schmitt D. Keratinocyte migration is partially supported by the cell-binding domain of fibronectin and is RGDS-dependent. //J. Invest. Dermatol. 1992. V. 99. N 5. P. 656-659.
340. Schmidt G.H., Blount M.A., Ponder B.A. Immunochemical demonstration of the clonal organization of chimeric mouse epidermis // Development. 1987. V. 100. P. 535-541.
341. Schmidt-Ullrich R, Paus R. Molecular principles of hair follicle induction and morphogenesis // Bioassays. 2005. V. 27(3). P. 247-61.
342. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell // Blood cells. 1978. V. 4. P. 7-25.
343. Schmidt-Ullrich R. and Paus R. Molecular principles of hair follicle induction and morphogenesis // BioEssays. 2005. V. 27. P. 247-261.
344. Semenova E., Koegel H., Hasse S. et al., Overexpression of mIGF-1 in keratinocytes improves wound healing and accelerates hair follicle formation and cycling in mice. Am // J. Pathol. 2008. V. 173. No. 5. P. 1295-1310.
345. Senoo M., Pinto F., Crum C.P., and McKeon F., p63 is essential for the proliferative potential of stem cells in stratified epithelia // Cell. 2007. V. 129. P. 523-536.
346. Shaw T.J. and Martin P. Wound repair at a glance // J. Cell Sci. 2009. V. 122. P. 3209-3213.
347. Sherley J.L. Asymmetric cell kinetics genes: the key to expansion of adult stem cells in culture // Stem Cells. 2002. V. 20. P. 561-572.
348. Shimomura Y., Christiano A.M. Biology and genetics of hair // Annu Rev Genomics Hum Genet. 2010. V. 11. P. 109-132.
349. Shimomura Y., Wajid M., Shapiro L., Christiano A.M. P-cadherin is a p63 target gene with a crucial role in the developing human limb bud and hair follicle // Development. 2008. V. 135. P. 743-753.
350. Shipley G.D., Pittelkow M.R., Wille J.J.,Jr. et al. Reversible inhibition of normal prokeratinocyte proliferation by type (3 transforming growth factor -growth inhibitor in serum-free medium // Cancer Res. 1986. V. 40. P. 2068-2071.
351. Shirakata Y. Regulation of epidermal keratinocytes by growth factors // J. Dermatol Sci. 2010. V. 59. P. 73-80.
352. Shirakata Y., Ueno H., Hanakawa Y., Kameda K., Yamasaki K., Tokumaru S., et al. TGF-beta is not involved in early phase growth inhibition of keratinocytes by 1 alpha, 25(OH)2vitamin D3 // J. Dermatol Sci. 2004. V. 36. P. 41-50.
353. Siekmann A.F. & Lawson N.D. Notch signaling limits angiogenic cell behaviour in developing zebrafish arteries // Nature. 2007. V. 445. P. 781-784.
354. Singer S.J., Kupfer A. The directed migration of eukaryotic cells // Ann.Rev. Cell Biol. 1986. V. 2. P. 337-365.
355. Slack J.M.W. Stem Cells in Epithelial Tissues // Science. 2000. V. 287. P. 1431-1433.
356. Smola H., Thiekotter G., and Fusenig N. E. Matual induction of growth factor gene expression by epidermal-dermal cell interaction. //J. Cell Biol. 1993. V. 122. P. 417-429.
357. Soriano J.V., Pepper M.S., Nakamura T., Orci L., Montesano R. Hepatocyte growth factor stimulates extensive development of branching duct-likestructures by cloned mammary gland epithelial cells //J Cell Sci. 1995. V. 108 (Pt 2). P. 413-430.
358. Soucy P.A., Romer L.H. Endothelial cell adhesion, signaling, and morphogenesis in fibroblast-derived matrix // Matrix Biol. 2009. V. 28. P. 273283.
359. Stasiak P.C., Purkis P.E., Leigh I.M. and Lane E.B. Keratin 19: predicted amino acid sequence and broad tissue distribution suggest it evolved from keratinocyte keratins // J. Invest. Dermatol. 1989. V. 92. P. 707-716.
360. Stocker M. Effect of scatter factor on motility of epithelial cells and fibroblasts. //J. Cell Phisiol. 1989. V. 139. P. 565-569.
361. Stoker M., Gherardi E., Rennyman M., Gray J. Scatter factor is a fibroblast-derived modulator of epithelial cell motility // Proc. Natl. Acad. Sci. USA. 1987. V. 327. P. 239-242.
362. Sudbeck B.D., Parks W.C., Welgus H.G., Pentland A.P. Collagen-stimulated induction of keratinocyte collagenase is mrdiated via tyrosine kinase and protein kinase C activities// J.Biol.Chem. 1994. V. 269. No. 47. P. 30022-30029.
363. Sutherland D., Samakovlis C. and Krasnow M. Branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching//Cell. 1996. V. 87. P. 1091-1102.
364. Sutherland J., Denyer M., Britland S. Motogenic substrata and chemokinetic growth factors for human skin cells // J Anat. 2005. V. 207(1). P. 67-78.
365. Tani H., Morris R.J., Kaur P. Enrichment for murine keratinocyte stem cells based on cell surface phenotype //'Proc. Nat. Acad. Sci. USA. 2000. V. 97. P. 10960-10965.
366. Tanner K, Ferris DR, Lanzano L, Mandefro B, Mantulin WW, Gardiner DM, Rugg EL, Gratton E. Coherent movement of cell layers during wound healing by image correlation spectroscopy // Biophys J. 2009. V. 97(7). P. 2098-106.
367. Taylor G., Lehrer M.S., Jensen P.J., Sun T.T., Lavker R.M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis // Cell.-2000.-V. 102.-P. 451-61.
368. TeepeR.G.C., Kreis R.W., Koebrugge E.J., Kempenaar J.A., Vloemans
369. A.F.P.M., Hermans R.P., Boxma H., Dokter J., Hermans J., Ponec M., Vermeer
370. B.J. . The use of cultured autologous epidermis in the treatment of extensive burn wounds // J.Trauma. 1990. V. 30. P. 269-275.
371. Terskikh V.V., Vasiliev A.V. Cultivation and transplantation of epidermal keratinocytes//Int. Rev. Cytol. 1999. V. 188. P. 41-72.
372. Thomas L.A., Yamada K.M. Contact stimulation of cell migration // J. Cell Sci. 1992. V. 103. P. 1211-1214.
373. Thompson C.H., Rose B.R., Cossart Y.E. Optimised growth of human epidermal cells in vitro without the use of a feeder layer or collagen substrate // Aust J Exp Biol Med Sci. 1985. V. 63. P. 147-156.
374. Tiede S., Kloepper J.E., Bodo E., Tiwari S., Kruse C., Paus R. Hair follicle stem cells: Walking the maze // Eur. J. Cell Biol. 2007. V. 86. P. 355-376.
375. Tong X. and Coulombe P.A. Keratin 17 modulates hair follicle cycling in a
376. TNFalpha-dependent fashion. Genes Dev 2006. V. 20. P. 1353-1364.
377. Trinkaus J.P. Cells into organs. The forces that shape the embryo // Prentice-Hall, Englewood Cliffs, New Jersey, 1984.
378. Truong A.B., Kretz M, Ridky T.W, Kimmel R, Khavari P.A. p63 regulates proliferation and differentiation of developmentally mature keratinocytes // Genes Dev. 2006. V. 20. P. 3185-3197.
379. Tsujioka M. Cell migration in multicellular environments // Dev Growth Differ. 2011. V. 53(4). P. 528-537.
380. Tucker S.P, Melsen L.R, Compans R.W. Migration of polarized epithelial cells through permeable membrane substrates of defined pore size// Eur.J.Cell Biol. 1992. V. 58. P. 280-290.
381. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry W.E, Rendl M, and Fuchs E. Defining the epithelial stem cell niche in skin // Science. 2004. V. 303. P. 359-363.
382. Turksen K, Youngsook C, Fuchs E. Transforming growth factor alpha induces collagen degradation and cell migration in differentiating human epidermal raft cultures // Cell Regulation. 1991. V. 2. P. 613-625.
383. Vainio S, Lehtonen E, Jalkanen M, Bernfield M, Saxen L. Epithelial-mesenchymal interactions regulate the stage-specific expression of a cell surface proteoglycan, syndecan, in the developing kidney // Dev. Biol. 1989. V. 134. P. 382-391.
384. Van Ruissen F., Van Erp P.E.J., De Jongh G.J. et al. Cell kinetic characterization of growth arrest in cultured human keratinocytes // J.Cell Sci. 1994. V. 10. P. 2219-2228.
385. Van Muijen G.N., Warnaar S.O., Ponec M. Differentiation-related changes of cytokeratin expression in cultured keratinocytes and in fetal, newborn, and adult epidermis // Exp Cell Res. 1987. V. 171. P. 331-345.
386. Vasiliev J.M., Gelfand I.M., Domina L.V., and Rappaport R.I. Wound healing processes in cell culture // Exp. Cell Res. 1969. V. 54. P. 83-93.
387. Vaughan P.B., Trinkaus J.P. Movement of epithelial cell sheets in vitro // J. Cell. Sci. 1996. V. 1. P. 227-234.
388. Vicente-Manzanares M., Choi C.K., Horwitz A.R. Integrins in cell migration -the actin connection // J. Cell Sci. 2009. V. 122(Pt 2). P. 199-206.
389. Vitorino P. and Meyer T. Modular control of endothelial sheet migration // Genes&Dev. 2008. V. 22. P. 3268-3281.
390. Vlodavsky I., Bar-Shavit R., Ishai-Michaeli R., Bashkin P., Fuks Z. Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? // Trends Biochem Sci. 1991. V. 16(7). P. 268-271.
391. Waseem A., Dogan B., Tidman N., Alam Y., Purkis P., Jackson S. et al. Keratin 15 expression in stratified epithelia: downregulation in activated keratinocytes // J. Invest. Dermatol. 1999. V. 112. P. 362-369.
392. Watt F.M. Selective migration of terminally differentiating cells from the basal layer of cultured human epidermis// J.Cell Biol. 1984. V. 98. P. 16-21.
393. Watt F. M. Influence of cell shape and adhesiveness on stratification and terminal differentiation of human keratinocytes in culture// J. Cell Sci. 1987. Suppl. 8. P. 313-326.
394. Watt F. Epidermal stem cells: markers, patterning and the control of stem cell fate // Philos Trans R Soc Lond B Biol Sci. 1998.V. 353(1370). P. 831-837.
395. Watt F.M., Hoggan BLM. Out of Eden: stem cells and their niches // Science. 2000. V 287. P 1427-1430.
396. Watt F.M., Jensen K.B. Epidermal stem cell diversity, quiescence and versatility // EMBO Mol. Med. 2009. 1(5). P. 260-267.
397. Watt F., Celso C.L., and Silva-Vargas V. Epidermal stem cells: an update // Curr Opinion in Gen & Dev. 2006. V. 16. P. 518-524.
398. Webb A., Li A., Kaur P. Location and phenotype of human adult keratinocyte stem cells of the skin // Differentiation. 2004. V. 72. P. 387-395.
399. Wessells N.K., Roessner K.D. Nonproliferation in dermal condensations of mouse vibrissae and pelage hairs // Develop. Biol. 1965. V. 12. P. 419-433.
400. Wheelock M.J., Jensen P.J. Regulation of keratinocyte intercellular junction organization and epidermal morphogenesis by E-cadherin// J. Cell Biol. 1992. V. 117. P. 415-425.
401. Wilke M.S., Hsu B.M., Scott R.E. Two subtypes of reversible cell cycle restriction points exist in cultured normal human keratinocyte progenitor cells // Lab.Invest. 1988. V. 58. No 6. P. 660-665.
402. Wilson P.D., Burrow C.R. Cystic diseases of the kidney: role of adhesion molecules in normal and abnormal tubulogenesis // Exp Nephrol. 1999. V. 7(2). P. 114-124.
403. Wilson A.J., Gibson P.R. Epithelial migration in the colon: filling in the gaps// Clin.Sci. 1997. V. 93. No. 2. P. 97-108.
404. Winkler M.E., O'Connor L., Winget M., Fendly B. Epidermal growth factor and transforming growth factor a bind differently to the epidermal growth factor receptor // Biochemistry. 1989. V. 28. P. 6373-6378.
405. Wolf K., Wu Y.I., Liu Y., Geiger J., Tam E., Overall C., Stack M.S., Friedl P. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion //Nature Cell Biol. 2007. V. 9. P. 893-904.
406. Woodley D.T., Bachmann P.M., O'Keefe E.J. Laminin inhibits human keratinocyte migration//J.Cell.Physiol. 1988. V. 136. P. 140-146.
407. Wu J.J., Liu R.Q., Lu Y.G., Zhu T.Y., Cheng B., Men X // Arch. Dermatol. Res. 2005. V. 297. P. 60-67.
408. Xia Y. and Karin M. The control of cell motility and epithelial morphogenesis by Jun kinases // Trends in Cell Biology. 2004. V. 14(2). P. 94-101.
409. Yamanishi K., Liew F.M., Hosokawa Y. et al. Growth advantage by overexpression of normal Harvey ras proto-oncogene in cultured at epidermal keratinocytes // Arch.Dermatol.Res. 1990. V. 282. P. 330-334.
410. Yang C.-C. and Cotsarelis G. Review of hair follicle dermal cells // J. Dermatol. Sei. 2010. V. 57. P. 2-11.
411. Yang A., McKeon F. p63 and p73: p53 mimics, menaces and more // Nature Rev: Molec. Cell Biol. 2000. V. 1. P. 199-207.
412. Yang A., Kaghad M., Wang Y. et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities // Molecular Cell.1998. V. 2. P. 305-316.
413. Yang A., Schweitzer R., Sun D., Kaghad M., Walker N., Bronson R.T., Tabin C., Sharpe A., Caput D., Crum C. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development //Nature. 1999. V. 398. P. 714-718.
414. Yang E.Y., Moses H.L. Transforming growth factor ßl-induced changes in cell migration, proliferatiion, and angiogenesis in the chiicken chorio allantoic membrane//J.Cell Biol. 1990. V. 111. P. 731-741.
415. Yung S., Davies M. Response of the human peritoneal mesothelial cell to injury: an in vitro model of peritoneal wound healing //Kidney Int. 1998. V. 54(6). P. 2160-2169.
416. Zahm J.M., Kaplan H., Herard A. L., Doriot F., Pierrot D., Somelette P., Puchelle E. Cell migration and proliferation during the in vitro wound repair of the respiratory epithelium // Cell Motil. & Cytoskel. 1997. V. 37. N. 1. P. 33-43.
417. Zegers M.M., O'Brien L.E., Yu W., Datta A., Mostov K.E. Epithelial polarity and tubulogenesis in vitro // Trends Cell Biol. 2003. V. 13. P. 169-176.
418. Zhang K., Kramer R.H. Laminin-5 deposition promotes keratinocyte motility // Exp Cell Res. 1996. V. 227. P. 309-322.
419. Zhao M., Song B., Pu J., Forrester J.V. and McCaig C.D. Direct visualization of a stratified epithelium reveals that wounds heal by unified sliding of cell sheets. FASEB J. 2003. V. 17. P. 397-406.
420. Zheng Y., Du X., Wang W., Boucher M., Parimoo S., Stenn K. Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cells // J. Invest. Dermatol. 2005. V. 124. P. 867-876.
421. Zheng J., Siren V., Vaher A. Keratinocyte growth factor enhances urokinase-type plasminogen activator activity in HPV16 DNA-immortalized human uterine exocervical epithelial cells // Europ.J.Cell Biol. 1996. V. 69. No. 2. P. 128-134.
422. Zieske J.D., Bukusoglu G., Gipson I.K. Enhancement of vinculin synthesis by migrating stratified squamous epithelium // J.Cell Biol. 1989. V. 109. P. 571-576.
423. Zuk P., Zhu M., Mizuno H., Huang J., Futrell J., Katz A., Benhaim P., Lorenz H., Hedrick M. Multilineage cells from adipose tissue: implication for cell-based therapies // Tissue Eng. 2001. V. 7. P. 211-228.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.