Математическое моделирование многодоменных структур при воздействии дифрагирующих лазерных пучков на нелинейно поглощающую среду тема диссертации и автореферата по ВАК РФ 05.13.18, кандидат физико-математических наук Выслоух, Андрей Викторович
- Специальность ВАК РФ05.13.18
- Количество страниц 110
Оглавление диссертации кандидат физико-математических наук Выслоух, Андрей Викторович
ВВЕДЕНИЕ.
Глава 1. Постановка задач воздействия дифрагирующих лазерных пучков на абсорбционно оптически бистабильную систему на основе полупроводника.
§1.1. Точечная модель. Условия существования оптической бистабильности.
§1.2. Постановка задачи нестационарного воздействия дифрагирующего светового излучения на сплошной полупроводник и разностные схемы для её решения. Координаты (z,t,x).
1.2.1. Случай слабой дифракции. Пространственно одномерный случай. Координаты (t,x).
1.2.2. Случай развитой дифракции.
§1.3. Постановка задачи и численные методы для задачи нестационарного воздействия дифрагирующего светового излучения на сплошной полупроводник в координатах (z,t,r).
§1.4. Краткие выводы.
Глава 2. Компьютерное моделирование формирования многодоменных структур в оптически бистабильной сплошной среде.
§2.1. Слабодифрагирующие пучки.
§2.2. Щелевые пучки. Координаты (z,t,x).
§2.3. Формирование неподвижных многодоменных локализованных структур в сплошной нелинейной среде. Координаты (z,t,r).
2.3.1 Трубчатые пучки.
2.3.2. Гауссовы пучки.
2.3.3. Гипергауссовые пучки.
§2.5. Индуцирование доменом высокого поглощения дополнительного движущегося домена. Координаты (z,t,r).
2.5.1. Распространение трубчатого пучка.
2.5.2 Коллимированный гауссов пучок.
§2.6. Исследование неустойчивости светового пучка при его распространении в нелинейно поглощающей среде.
§2.7. Краткие выводы.
Глава 3. Компьютерное моделирование прохождения светового пучка среды с нелинейно поглощающими слоями.
§3.1. Постановка задачи прохождения лазерного импульса слоистой нелинейной среды.
3.1.1. Случай слоистой среды вдоль продольной координаты.
3.1.2. Случай сегментированной среды.
§3.2. Численные эксперименты по прохождению оптического излучения слоистой среды вдоль продольной координаты.
§3.3. Компьютерное моделирование записи информации в сегментированную среду.
Координаты (z, t, г).
§3.4. Краткие выводы.
ОСНОВНЫЕ РЕЗУЛЬТАТЫ.
Рекомендованный список диссертаций по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК
Динамика намагниченности и волновые процессы в тонкопленочных магнитоупорядоченных структурах2005 год, доктор физико-математических наук Шутый, Анатолий Михайлович
Статические магнитооптические эффекты в многодоменных кристаллах ферродиэлектриков1984 год, доктор физико-математических наук Семенцов, Дмитрий Игоревич
Численное моделирование нелинейных явлений в газоразрядной плазме и взаимодействия лазерного излучения со средой2000 год, доктор физико-математических наук Петрушевич, Юрий Васильевич
Математическое моделирование распространения фемтосекундных лазерных импульсов в среде с нестационарной нелинейностью2007 год, кандидат физико-математических наук Волков, Алексей Генрихович
Магнитооптические эффекты в ферродиэлектриках с доменной структурой и границами раздела сред2002 год, кандидат физико-математических наук Гисмятов, Ильнур Фаезрахманович
Введение диссертации (часть автореферата) на тему «Математическое моделирование многодоменных структур при воздействии дифрагирующих лазерных пучков на нелинейно поглощающую среду»
Начиная с 1980 года в литературе широко изучается явление оптической биста-бильности (ОБ) и мультистабильности [1-64]. Суть явления оптической бистабильности состоит в возможности реализации двух устойчивых состояний системы оптическое излучение-среда при одной и той же входной интенсивности светового пучка. Если таких состояний больше двух, то имеет место оптическая мультистабильность.
Следует подчеркнуть, что данное явление находит все большее применение в различных системах передачи информации (интернет) и обработки информации, в частности в созданном недавно фирмой Lenslet первого оптического процессора [65]. Весьма перспективным это явление представляется как для длительного хранения информации (трехмерные оптические диски), так и для создания оперативной памяти на полностью оптической основе [66,67].
К настоящему времени известно много различных механизмов и схем реализации ОБ. Условно их можно разделить на два больших класса: резонаторные и безрезонаторные оптические бистабильные устройства. Отдельно можно выделить еще и оптически биста-бильные схемы, реализованные на основе фотонных кристаллов [68,69,70]. В первом из них используются резонаторы, внутри которых находится нелинейный элемент. Во втором классе - применяются схемы взаимодействия, основанные на прохождении световым пучком нелинейной среды. Необходимо подчеркнуть, что при изучении безрезонаторных оптически бистабильных систем, как правило, пренебрегают дифракцией оптического излучения. Это оправдано лишь на первом этапе исследований, когда необходимо выявить принципиальную возможность реализации оптической бистабильности. Однако известно, что при распространении светового пучка в среде в случае реализации оптической бистабильности из-за нелинейного поглощения световой энергии в его профиле образуются локальные провалы в интенсивности, особенно существенные на начальном этапе взаимодействия оптического излечения с нелинейно поглощающей средой. В свою очередь, изменение профиля пучка оптического излучения приводит к его дальнейшей трансформации вследствие дифракции [71,72]. Это может привести к возрастанию интенсивности в толще среды. В результате, этого система оптическое излечение-среда может снова переключиться в верхнее состояние вблизи сечения достижения нового максимума интенсивности пучка, т.е. появится ложное переключение (или ложная запись информации) [73]. Поэтому изучение реализации безрезонаторной оптической бистабильности, основанной на возрастающем поглощении, при воздействии дифрагирующих световых пучков представляет собой актуальную проблему.
Следует также подчеркнуть, что в литературе отсутствовало достаточно адекватное описание реализации модуляционной неустойчивости светового пучка при наличии поглощения среды. В прозрачных средах анализ модуляционной неустойчивости интенсивно исследуется [74-77] в связи с важностью данного вопроса, например для проблем передачи информации.
Цель работы состояла в изучении на основе математического моделирования закономерностей реализации абсорбционной оптической бистабильности при воздействии дифрагирующих световых пучков, в частности, в изучении возможности формирования многодоменных неподвижных и движущихся структур в однородной и слоистых средах; в построении адекватного описания развития модуляционной неустойчивости световых пучков при их распространении в поглощающих нелинейных средах.
Научная новизна работы состоит в том, что в ней на основе математического моделирования предсказано формирование движущихся и неподвижных доменов высокого поглощения при воздействии дифрагирующих световых пучков на нелинейно поглощающую среду в условиях реализации абсорбционной оптической бистабильности. Изучены различные механизмы формирования многодоменных структур высокого поглощения в однородных и слоистых средах с нелинейным поглощением, в частности полупроводниках. Предложен подход к адекватному учету влияния поглощения нелинейной среды при анализе модуляционной неустойчивости световых пучков, на основе которого показано, что поглощение приводит к расширению интервала неустойчивости по сравнению с ранее имевшейся в литературе оценкой этого интервала.
Так как рассматриваемые процессы описываются нелинейным уравнением Шре-дингера совместно с нелинейным уравнением относительно концентрации свободных электронов полупроводника, то основным методом исследования является компьютерное моделирование, выполненное на основе конечно-разностных методов [78-82] с использованием метода суммарной аппроксимации. Правильность результатов компьютерного моделирования контролировалась с помощью расчетов на последовательности сеток. Также проводилось сравнение результатов моделирования и аналитического решения при распространении оптического излучения в линейной среде. В случае же нелинейного распространения для контроля получаемых в компьютерном эксперименте результатов использовались аналитические решения точечной модели, в которой получены интенсивности переключения системы из одного состояния в другое и соответствующие им значения концентрации свободных электронов.
В первой главе выполнена постановка задач воздействия на полупроводник лазерных пучков в случае нелинейной зависимости его поглощения от концентрации свободных электронов полупроводника. Параграф 1.1 содержит вывод точечной модели, связь безразмерных и физических параметров, характеризующих полупроводники и описание условий существования оптической бистабильности. Выявление закономерностей взаимодействия оптического излучения с полупроводником на начальном этапе изучения целесообразно проводить именно в рамках точечной модели. В параграфе 1.2 приведены постановки задач воздействия дифрагирующего светового излучения на сплошной полупроводник и разностные схемы для их решения. Для выявления роли дифракции рассматривается также распространение слабо дифрагирующих пучков. В пункте 1.2.1 представлен пространственно одномерный и двумерный случай (оптически тонкий и толстый слой). Сформулированы соответствующие дифференциальные задачи и записаны для них разностные схемы. Для наиболее полного описания процессов происходящих в системе «световой пучок- среда» необходимо перейти к квазиоптическому приближению. В этом случае учитывается дифракция светового излучения и диффузия по двум пространственным координатам. Этому посвящен пункт 1.2.2, записана соответствующая система уравнений относительно комплексной амплитуды оптического излучения и концентрации свободных электронов. Изложен метод ее численного решения. В параграфе 1.3 рассматривается постановка задачи нестационарного воздействия дифрагирующего светового излучения на сплошную среду и сформулированы разностные схемы для ее решения в случае наличия аксиальной симметрии оптического излучения.
Глава 2 посвящена результатам компьютерного моделирования по формированию многодоменных структур в оптически бистабильной сплошной среде. Для выявления роли дифракции светового пучка в параграфе 2.1 рассматривается распространение слабоди-фрагирующих пучков.
В параграфе 2.2 анализируется распространение щелевых пучков: координаты (z,t,x). В данном классе задач в трехмерном случае при прохождении поглощающего пита пучок может приобрести эллиптический профиль. Далее в этом параграфе, в результате компьютерного моделирования получены движущиеся кинки (области с сильно различающимися свойствами среды) в случае воздействия сфокусированных на заднюю часть кристалла пучков.
В параграфе 2.3 описывается формирование неподвижных многодоменных структур в сплошной нелинейной среде при описании взаимодействия в координатах (z,t,r). Моделирование проводилось как для трубчатых, так и гауссовых и гипергауссовых пучков.
Параграф 2.4 содержит результаты моделирования движущихся доменов высокого поглощения при воздействии коллимированных пучков, т.е. имеющих на входе в среду плоский волновой фронт. Показано, что при использовании коллимированного трубчатого пучка можно получить аналогичные результаты, что и при воздействии сфокусированных гауссовых пучков, которые широко обсуждались в литературе, в том числе и при использовании физического эксперимента.
В параграфе 2.5 описан эффект индуцирования доменом высокого поглощения дополнительного движущегося домена при использовании как трубчатых, так и коллимированных гауссовых пучков. В процессе распространения трубчатых и гауссовых пучков, при определенных параметрах среды и излучения, возможно формирование одного основного неподвижного и второго движущегося домена высокого поглощения. Причиной формирования подобных пространственных конфигураций является самофокусировка начального профиля оптического излучения на индуцированных им структурах из-за учета в модели дифракции светового излучения.
Параграф 2.6 посвящен исследованию модуляционной неустойчивости светового пучка при его распространении в нелинейно поглощающей среде. Здесь записаны соответствующие системы ОДУ относительно малых возмущений начального распределения оптического излучения, найдены последовательные приближения по коэффициенту поглощения и приведено сравнение с имеющим место в литературе подходом. Здесь показано, что имеющийся в литературе подход дает значительно заниженные оценки по частотному интервалу развития неустойчивости.
В главе 3 представлена постановка задачи и результаты моделирования прохождения светового излучения среды состоящей из нелинейно поглощающих слоев. Здесь рассматриваются две практически важные задачи: прохождение светового излучения через регулярно расположенные нелинейно поглощающие сплошные диски, или в свою очередь, разделенные на поглощающие и прозрачные кольца. Данные задачи важны для выявления роли дифракции и слоистости среды при записи информации в трехмерных оптических винчестерах.
Параграф 3.1 содержит постановку задачи прохождения лазерного излучения через регулярную слоистую нелинейную среду. В этом параграфе приводится постановка дифференциальных задач для двух конфигураций среды при распространении трубчатого и первоначально коллимированного гауссового пучка. Первая конфигурация - это чередование нелинейно поглощающих и прозрачных слоев вдоль продольной оси распространения светового излучения. Вторая - чередование поглощающих и прозрачных сегментов по двум координатам: продольной и поперечной.
В параграфе 3.2 изложены результаты компьютерных экспериментов по прохождению оптического излучения слоистой вдоль продольной координаты среды. При компьютерном моделировании использовалось два набора параметров оптического излучения и свойств поглощающих слоев. При этих наборах параметров, в случае сплошной нелинейно поглощающей среды, рождались и циклически двигались домены от задней границы среды, а также к образованию двух продольных стационарных доменов высокого поглощения. В процессе моделирования варьировались значения длины поглощающих слоев и расстояния между ними, при этом фиксировались остальные параметры среды и светового излучения. Для подтверждения дифракционной природы формирования доменов высокого поглощения в нескольких, идущих один за другим слоях, исследованы распределения интенсивности в нескольких сечениях по поперечной координате. Их анализ продемонстрировал чередование трубчатых и гауссовых профилей, в которые трансформируется первоначально трубчатый пучок по мере своего распространения через слоистую среду.
Параграф 3.3 содержит результаты компьютерного моделирования записи информации в сегментированную среду. Получены результаты демонстрирующие, что в сегментированной среде имеют место дифракционные многодоменные структуры, аналогичные структурам, полученным в слоистой среде. В основе этих явлений также лежит трансформация профиля интенсивности светового излучения при прохождении им нелинейно поглощающих сегментов среды. Продемонстрированная возможность формирования многодоменных дифракционных структур (в том числе ложной записи информации) может играть существенную роль при решении задачи создания систем 3"х-мерной записи информации на оптических носителях. В конце диссертации сформулированы ее основные результаты. Они опубликованы в работах [83-92]. Отдельные результаты работы докладывались на семинарах лаборатории математического моделирования в физике факультета вычислительной математики и кибернетики МГУ им. М.В. Ломоносова.
Автор выражает глубокую признательность научному руководителю д.ф.-м.н., проф. Трофимову Вячеславу Анатольевичу за постоянную поддержку и ценные рекомендации, коллективу лаборатории математического моделирования в физике факультета вычислительной математики и кибернетики МГУ им. М.В. Ломоносова за творческую обстановку.
Похожие диссертационные работы по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК
Математическое моделирование нестационарного встречного взаимодействия световых пучков в средах с кубичной нелинейностью1998 год, кандидат физико-математических наук Никитенко, Константин Юрьевич
Математическое моделирование переноса электромагнитного излучения в многослойных структурах с различными нелинейными зависимостями диэлектрической проницаемости от поля2006 год, кандидат физико-математических наук Красикова, Екатерина Михайловна
Туннелирование световых волновых пакетов в плоскослоистых диэлектрических периодических структурах2019 год, кандидат наук Шестаков Павел Юрьевич
Многоэтапный итерационный процесс для реализации консервативных разностных схем при моделировании 2D и 3D полупроводниковой плазмы, индуцированной оптическим импульсом2023 год, кандидат наук Егоренков Владимир Александрович
Управление параметрами оптического излучения с использованием магнитных дифракционных решеток2010 год, кандидат физико-математических наук Шадрин, Геннадий Анатольевич
Заключение диссертации по теме «Математическое моделирование, численные методы и комплексы программ», Выслоух, Андрей Викторович
ОСНОВНЫЕ РЕЗУЛЬТАТЫ.
1. На основе математического моделирования предсказан эффект ложной записи информации в безрезонаторных оптических бистабильных системах, реализуемых на основе возрастающего поглощения, обусловленный дифракцией светового пучка. Он состоит в формировании движущихся и неподвижных нескольких областей высокого поглощения.
2. Обнаружены различные сценарии формирования многодоменных (и однодомен-ных) движущихся и неподвижных структур в оптических бистабильных системах, реализуемых на основе возрастающего поглощения в однородных и слоистых средах.
3. Предложен новый подход к учету влияния нелинейного поглощения на частотный интервал модуляционной неустойчивости при распространении светового излучения в поглощающей среде с кубичной нелинейностью. Показано, что по сравнению с имеющимся в литературе подходом предложенный способ более точно учитывает влияние поглощения, что приводит к расширению частотного интервала неустойчивости.
Список литературы диссертационного исследования кандидат физико-математических наук Выслоух, Андрей Викторович, 2006 год
1. Гиббс X. М. Оптическая бистабильность. Управление светом с помощью света. / Пер. с англ. М.: Мир. 1988. 518 с.
2. Розанов Н.Н. Оптическая бистабильность и гистерезис в распределенных нелинейных системах. М.: Наука. 1997. 334 с.
3. Transverse patterns in nonlinear optics. / Eds. Rosanov N. N. Proc. of SPIE. 1992. V.1840.
4. Nonlinear Optics Phenomena and Coherent Optics in Information Technologies. / Eds. Chesnokov S.S., Kandidov V.P., KoroteevN.I. Proc. of SPIE. 1999. V. 3733.
5. Optical information processing. / Eds. Gulyaev Yu. V., Pape D. R. Proc. of SPIE. 1993. V. 2051.
6. Розанов H.H., Сутягин A.H., Ходова Г.В. Двумерные и трехмерные схемы оптической бистабильности. // Известия Академии наук СССР. Серия физическая. 1984. Т.48. №7. С. 1437-1440.
7. Taghizadeh M.R., Janossy I., Smith S.D. Optical bistability in bulk ZnSe due to increasing absoption and self-focusing. // Application Phys. Letters. 1985. Vol. 6. № 4. P. 331333.
8. Гуляев Ю.В., Дементиенко B.B., Львова M.B., Меш М.Я., Проклов В.В., Шлифер A.JL, Юдин Г.А. Волоконно-оптический элемент хранения информации. // Письма в ЖТФ. 1986. Т. 12. Вып. 6. С.350-354.
9. Lindberg М., Koch S.W., Haug Н. Structure, formation and motion of kinks in increasing-absorption optical bistability. // Physical review. 1986. Vol. 33. № 1. P.407-415.
10. Розанов H.H., Ходова Г.В. Развитие локальных выбросов и формирование волн переключения в бистабильных системах. // Квантовая электроника. 1988. Т.13. №2. С. 368-377.
11. И. Shmelev V.M., Margolin A.D. Absorptive bistability of carbon monoxide initiated by resonance radiation.// Journal of modern optics. 1988. Vol. 35. №10. P.1619-1634.
12. Вандышев Ю.В., Днепровский B.C., Шень Ли, Окороков Д.К. Изменение пространственного профиля светового пучка в абсорбционном бистабильном элементе. Препринт физич. ф-та. МГУ. 1988. №19. 4 с.
13. Segard В., Маске В. Self-Pulsing in Intrinsic Optical Bistability with Two-Level Molecules. //Physical Review Letters. 1988. Vol. 60. №5. P.412-415.
14. Segard В., Zemmouri J., Маске В. Switching delays in optical bistability: as experimental study .//Optics Communications. 1986. Vol.60. №5. P.323-327.
15. Westlake H. J., Adams M. J., O'Majony M. J. Optical bistability in semiconductor laser amplifiers: assessment of switching speed.// Ext. abstract of 18th Conference on solid state devices and material, Tokyo. 1986. P. 161-164.
16. Dutta Gupta S., Agarwal G. S., Dispersive bistability in coupled nonlinear Fabry-Perot resonators.// Journal Optical Society of America. 1987. Vol.4. №5. P.691-695.
17. Borshch A., Brodin M., Volkov V., Kukhtarov N., Starkov V. Optical hysteresis and bistability in phase conjugation by generate six-photon mixing.// Journal Optical Society of America. 1984. Vol.1. №1. P.40-44.
18. Borshch A., Volkov V. Cavity-less optical bistability in semiconductors.// Phys. stat. sol. (b) 150.1988. C. 471-475.
19. Балкарей Ю.И., Григорьянц A.B., Ржанов Ю.А. Автоколебания, поперечная диффузионная неустойчивость и пространственные диссипативные структуры при оптической бистабильности и мультистабильности.// Квантовая электроника. 1987. Т. 14. №1. С. 128-134.
20. Васнецов М.В., Петропавловский А.И. Бистабильность связанных резонаторов.// Квантовая электроника. 1987. Т. 14. №9. С. 1914-1916.
21. Воеводкин Г.Г., Дианов Е.М., Кузнецов А.А., Нефедов С.М., Парфенов А.В. Обратная связь в устройствах на основе оптически управляемого модулятора.// Квантовая электроника. 1988. Т. 15. №4. С. 805-810.
22. Staromlynska J., Miller A., Clay R.A. An electrically addressable nonlinear optical bistable device.// Optics communications. 1987. V. 61. №6. P. 415-420.
23. Стадник B.A., Хасанов И.Ш. Оптическая бистабильность в ионно-имплантированном полупроводнике.// Письма в ЖТФ. 1987. Т. 13. Вып.6. С. 336340.
24. Борщ А.А., Бродин М.С., Семиошко В.И. Поперечная оптическая бистабильность при самофокусировке встречных световых пучков в нелинейной среде.// Письма в ЖТФ. 1986. Т. 12. Вып.6. С. 345-349.
25. Борщ А.А., Бродин М.С., Лукомский В.П., Семиошко В.И. Поперечная оптическая бистабильность при самодефокусировке встречных пучков в нелинейной среде.// Квантовая электроника. 1987. Т. 14. №.4. С. 736-742.
26. Schlulzgen A., Hennebergen F., Rossmann Н. Cavityless dispersive bistability and optical addressing using a nonlinear prism.// Phys. stat. sol. (b) 150. 1988. C. 495-499.
27. Arimondo E., Dangoisse D., Gabbanini C., Menchi E., Papoff F. Dynamic behavior of bistability in a laser with a saturable absorber.// J. Opt. Soc. Am. 1987. Vol. 4. No.6. P. 892-899.
28. Ананасевич С.П., Карпушко Ф.В., Ляхнович A.B., Синицын Г.В., Оптически управляемые волны переключения в бистабильных тонкослойных интерферометрах.// Изв. РАН Сер. физическая. 1988. Т. 52. №.2. С. 369-373.
29. Mandel P., Erneux Т. Nonlinear control in optical bistability.// IEEE J. of Quantum electronics. 1985. Vol. QE-21. №.9. P. 1352-1355.
30. Rosanov N.N, Fedorov A.V., Khodova G.V. Effects of spatial distributivity in semiconductor optical bistable systems.// Phys.stat. sol. (b) 150. 1988. P. 545-555.
31. Boiko B.B., Petrov N.S., Shakin V.A., Zimin A.B. Optical bistability under condition of total reflection.//Phys.stat. sol. (b) 150.1988. P. 527-531.
32. Gainer A.V., Surdutovich G.I. New mechanism if intrinsic bistability of nonlinear slugged structures under the action of repetitive pulse excitation.// Phys. Stat. Sol. (b) 150 1988. P.539-543.
33. Blau W. Low power optical bistability and phase conjugation in polydiacetylene. // Optics Communications. 1987. Vol. 64. No. 1. P.85-88.
34. Henneberger F., Rossmann H. Resonatorless optical bistability based on increasing nonlinear absorption. //Phys. Stat. Sol. 1984. Vol. 121. P.685-693.
35. Koepke Cz. Optical nonlinearities and bistability in semiconductors. // Acta Physica Polonica. 1989. Vol. A73. №2. P. 279-231.
36. Есипов С.Э. Нелинейная волна сильного поглощения в оптически бистабильном полупроводнике. //ЖЭТФ. 1998. Т.94. Вып. 7. С.118-129.
37. Гуназе О. А., Трофимов В. А. О формировании "обратного" кинка в оптически бис-табильных системах на основе возрастающего поглощения. // Письма в ЖТФ. 1997. Т. 23. Вып. 21. С. 69-73.
38. Никитенко К. Ю., Трофимов В. А. Оптическая бистабильность на основе нелинейного наклонного отражения световых пучков от экрана с отверстием на его оси. // Квантовая электроника. 1999. Т. 26. N2. С. 147-150.
39. Бондаренко О. С., Трофимов В. А. Двухцветная оптически бистабильная безрезо-наторная система. // Письма в ЖТФ. 1998. Т.24. Вып. 8. С.25-32.
40. Бондаренко О. С., Трофимов В. А. Релаксационная оптическая бистабильность -новый класс оптически бистабильных элементов. // ДАН. 1999. Т.364. N 5. С. 599603.
41. Bjorkholm J.E., Smith P.W., Tomlison W.J. Optical bistability based on self-focusing: an approximate analisys. / IEEE J. of Quantum Electronics. 1982. V. QE-18. N12. P.2016-2022.
42. Захарова И. Г., Трофимов В. А. О реализации оптической бистабильности при встречном взаимодействии двух волн. // Письма в ЖТФ. 1996. Т.22. Вып. 1. С.79-84.
43. Поляков С. В., Трофимов В. А. Об одной интегральной абсорбционной оптически бистабильной схеме на основе полупроводниковых элементов.// ЖТФ. 1996. Т. 66. Вып. 12. С. 144-150.
44. Трофимов В. А., Шобухов А. В. Об условиях реализации абсорбционной оптической бистабильности в схеме с боковым ответвлением сигнала. // Оптика и спектроскопия. 1997. Т.82. N5. С.817-824.
45. Бондаренко О. С., Поляков С. В., Трофимов В. А. Волновые процессы в полупроводниках, стимулированные оптическим излучением в условиях температурной зависимости времени релаксации носителей заряда. // ФТТ. 1994. Т.36. N1. С. 152163.
46. Бондаренко О. С., Трофимов В. А. Аддитивное увеличение пространственной частоты лазероиндуцированных волн в оптически бистабильных безрезонаторных системах. // ДАН. 1998. Т.360. N 6. С. 740-744.
47. Бондаренко О. С., Трофимов В. А. Автоосцилляции домена высокого поглощения в оптически бистабильной системе на основе полупроводника. // Письма в ЖТФ. 1996. Т.22. Вып. 19. С.6-9.
48. Захарова И. Г., Трофимов В. А. Пространственная неустойчивость дифрагирующего пучка при прохождении границы домена сильного поглощения. // Письма в ЖТФ. 1995. Т.21. Вып. 16. С.43-48.
49. Стадник В. А. Неустойчивость домена сильного поглощения в полупроводнике. // Письма в ЖЭТФ. 1987. Т.45. Вып.З С. 142-144.
50. Белотицкий В.И., Кузин Е.А., Петров М.П., Спирин В.В. Бистабильные динамические кольцевые структуры на основе вынужденного рассеяния света. // ЖТФ. 1988. Т. 58. №7. С. 1325-1330.
51. Стадник В. А. Теплопроводностный режим движения домена сильного поглощения в селениде цинка при действии лазерного излучения. // Физика твердого тела. 1987. Т.29. Вып. 12. С. 3594-3602.
52. Стадник В. А. Домены (автоволны) экситонного поглощения в сульфиде кадмия.// Письма в ЖЭТФ. 1989. Т.49. С. 633-636.
53. Гуназе О. А., Трофимов В. А. Формирование многодоменной пространственной структуры в химически активной газовой смеси под действием дифрагирующего лазерного пучка.//Изв. РАН. Сер. физическая. 1996. Т.60. N6. С. 65-74.
54. Балкарей Ю.И., Григорьянц А.В., Ржанов Ю.А., Автоколебания, поперечная неустойчивость и пространственные диссипативные структуры при оптической бистабильности.// Квантовая электроника. 1987. Т. 14. N1. С. 128-134.
55. Стадник В.А. Оптическая бистабильность, эффект пульсаций и домены (волны) поглощения в GaSe. // ФТТ. 1988. Т. 30. N12. С.3571-3577.
56. Рыбкин Н.Н. Оптическая бистабильность в полупроводниках. // Физика и техника полупроводников. 1985. Т. 19. N 1. С. 3-27.
57. Smith S.D. Optical bistability, photonic logic, and optical computation. // Applied optics. 1986. Vol. 25. №10. P. 1550-1564.
58. Esipov S.E., Stadnik V.A. Optical bistability and formation of localized and moving high absorption domains in ZnSe and ZnCdS. // Phys. Stat. Sol. (b)1988. Vol. 150. P.501-505.
59. Арнольд Н.Д., Кириченко Н.А., Лукьянчук Б.С., Шелудяков А.В. Продольная бис-табильность и бегущие импульсы при распространении лазерного излучения в средах с нелинейным поглощением./ Препринт N35 И ОФАН СССР. М. 1989 г. 25 С.
60. Yanik M.F., Fan S., Soljacic M., Joannopoulos J.D. All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry.// Optics Letters. 2003.V28. N 24. P.2506-2508.
61. Markowicz P.P., Tiryaki H., Pudavar H., Prasad P.N., Lepeshkin N.N., Boyd R.W. Dramatic enhancement of third-harmonic generation in three- dimensional photonic crystals. // Phys. Rev. Lett. 2004. V 98. N 8. 083903.
62. Бондаренко O.C., Лысак T.M., Трофимов B.A. Оптическая бистабильность и неустойчивость в полупроводнике при температурной зависимости времени релаксации свободных носителей заряда и их равновесной концентрации. // ФТП. 2000. Т.34. Вып. 9. С. 1073-1085.
63. Yanik M.F., Fan S., Soljacic M. High-contrast all-optical bistable switching in photonic crystal microcavities. //Applied Physics Letters. 2003. V. 83. N 14. P.2741-2744
64. Интернет-сайт фирмы Lenslet. www.lenslet.com.
65. Rentzepis P.M. US Patent No 5, 268, 862. 1993.
66. Dvornikov A.S., Cokgor I., Mc Cormic FB McCormick, R. Piyaket, SC Esener, and PM Rentzepis. Molecular transformation as a means for 3D optical memory devices.// Opt. Commun. 1996. V. 128. P. 205-210.
67. Lidorikis E., Soukoulis C.M. Pulse-driven Switching in One-dimensional Nonlinear Photonic band-gap Materials: A Numerical Study. // Phys.Rev. E. 2000. V.61. N. 5. P. 5825-5859.
68. Joannopolulos J. D., Meade R.D., Winn J.N. / Photonic Crystal: Molding the Flow of Light. New York, Princeton. 1995.
69. Алиев Г.Н., Голубев В.Г., Дукин А.А., Курдюков Д.А., Медведев А.В., Певцов А.Б., Сорокин JI.M., Хатчисон Дж. Структурные фотонно-кристаллические и люминис-центные свойства композита опал-эрбий. //ФТТ. 2002. Т.44. №12. С.2125-2133.
70. Виноградова М. Б., Руденко О. В., Сухоруков А. П. Теория волн. М.: Наука, 1979. 183 с.
71. Аскарьян Г. А., Студенов В. В., Чистый И.Л. Тепловая самофокусировка в луче с уменьшенной интенсивностью вблизи оси ("банановая" самофокусировка). // УФН. 1970. Вып. 3. С. 518-520.
72. Агравал Г. Нелинейная волоконная оптика. / Пер. с англ. М.: Мир. 1996. 323 с.
73. Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М.: Наука. 1988. 451 с.
74. Беспалов В.И., Таланов В.И. О нитевидной структуре пучков света в нелинейной жидкости. // Письма в ЖЭТФ. 1966. Т.З. N 12. С. 471.
75. Розанов Н.Н., Смирнов В.А.// Квантовая электроника. 1980. Т.7. N2. С.410-4.
76. Самарский А. А. Теория разностных схем. М.: Наука. 1989. 653 с.
77. Самарский А. А., Гулин А. В. Численные методы. М.: Наука. 1989. 432 с.
78. Самарский А. А., Николаев Е. С. Методы решения сеточных уравнений. М.: Наука. 1978.589 с.
79. Марчук Г.И. Методы вычислительной математики. М.: Наука. 1980. 536 с.
80. Карамзин Ю.Н., Сухоруков А.П., Трофимов В.А. Математическое моделирование в нелинейной оптике. М.: Из-во моек, ун-та. 1989.154 с.
81. Trofimov V.A., Ivanova I.S., Vysloukh A.V. Modulation instability of laser beams and pulses in nonlinear absorption medium. // Abstract on ECLIM'98. Formia. Italy. 1998. WE/P/18.
82. Выслоух A.B. О формировании движущихся волн переключения коллимирован-ными трубчатыми пучками в оптически бистабильной безрезонаторной системе. // Тезисы доклада конференции молодых ученых «Оптика -99». С.-Петербург. 1999. С. 27.
83. Выслоух А.В., Трофимов В.А. Многодоменные пространственные структуры при воздействии узкоапертурных световых пучков. // Тезисы доклада международной конференции «Фундаментальные проблемы оптики.» С.-Петербург. 2000. С. 138.
84. Выслоух А.В., Трофимов В.А. Формирование движущихся кинков при воздействии коллимированных трубчатых пучков. // Оптика и спектроскопия. 2000. Т. 88. №5. С.802-805.
85. Выслоух А.В., Трофимов В.А. Формирование продольных многодоменных структур в оптически бистабильной системе под воздействии коллимированного трубчатого пучка.// Письма в ЖТФ. 2000. Т. 26. Вып. 3. С. 60-66.
86. Выслоух А.В., Трофимов В.А. О формировании нескольких продольных кинков высокого поглощения при воздействии коллимированных гауссовых световых пучков. // Письма в ЖТФ. 2000. Т. 26. Вып. 22. С. 44-49.
87. Выслоух А.В., Иванова И.С., Магницкий С.А., Трофимов В.А. Модуляционная неустойчивость световых пучков и импульсов при их распространении в поглощающих средах. / Оптика и спектроскопия. 2000. Т. 88. №3. С. 456-464.
88. Выслоух А.В., Трофимов В.А. Формирование много доменных продольных структур при воздействии гипергауссовых световых пучков на абсобционную оптически бистабильную систему. // Оптика и спектроскопия. 2002. Т. 91. №6. С. 963-970.
89. Выслоух А.В., Трофимов В.А. Индуцирование доменом высокого поглощения дополнительного движущегося домена при воздействии коллимированных световых пучков. // Оптика и спектроскопия. 2002. Т. 93. №1. С. 94-97.
90. Выслоух А.В., Трофимов В.А. Дифракционные продольные многодоменные структуры в слоистой нелинейно поглощающей среде. // Оптика и спектроскопия. 2003. Т. 95. №1. С.109-113.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.