Численное исследование нестационарного турбулентного закрученного течения в воздушно-центробежном классификаторе тема диссертации и автореферата по ВАК РФ 01.02.05, кандидат физико-математических наук Хайруллина, Виктория Юрьевна
- Специальность ВАК РФ01.02.05
- Количество страниц 149
Оглавление диссертации кандидат физико-математических наук Хайруллина, Виктория Юрьевна
Введение.
Глава 1. Современное состояние численного моделирования закрученных турбулентных течений в пневматических центробежных аппаратах.
Глава 2. Физическая и математическая постановка задач.
2.1. Физическая постановка задач аэродинамики в исследуемых пневматических центробежных аппаратах.
2.2. Математическая постановка задач.
2.2.1. Уравнения Рейнольдса в цилиндрической системе координат.
2.2.2. Уравнения Рейнольдса в ортогональной криволинейной системе координат вращения.
2.2.3. Модель турбулентности Уилкокса «к - со».
Глава 3. Методы численного решения рассматриваемых задач.
3.1. Решение в физических переменных «скорость - давление».
3.2. Решение в переменных «вихрь - функция тока».
3.3. Классический и обобщенный неявный метод переменных направлений.
3.4. Экспоненциальная схема аппроксимации конвективно-диффузионных членов уравнения переноса.
3.5. Построение алгоритма для решения нестационарной задачи.
Глава 4. Исследование стационарного турбулентного закрученного течения в сепарационных элементах воздушно—центробежных аппаратов.
4.1. Численное моделирование ламинарного течения в центробежном классификаторе с двумя плоскопараллельными дисками.
4.1.1. Численное моделирование движения вязкой жидкости при ламинарном режиме течения.
4.1.2.Тестовые исследования и анализ полученных результатов.
4.2. Численное моделирование закрученного турбулентного течения в центробежном классификаторе с учетом влияния подвода и отсоса.
4.2.1. Безразмерная форма уравнений и граничные условия.
4.2.2. Достоверность полученных результатов.
4.2.3. Исследование влияния режимных параметров и дополнительного подвода и отвода газа через проницаемые дисковые элементы на аэродинамику при турбулентном режиме течения.
4.3. Численное моделирование аэродинамики в центробежном классификаторе с профилированным верхним диском.
4.3.1. Методика численного расчета.
4.3.2. Анализ полученных результатов.
Глава 5. Исследование нестационарного турбулентного закрученного течения в сепарационных элементах воздушно—центробежных аппаратов.
5.1. Анализ полученных результатов для нестационарного течения в центробежном классификаторе с двумя плоскопараллельными дисками
5.2. Анализ полученных результатов для периодического течения в центробежном классификаторе с профилированным верхним диском.
5.3. Моделирование движения одиночной твердой частицы в турбулентном закрученном течении.
5.3.1. Физическая и математическая постановка задачи о движении одиночной частицы.
5.3.2. Численное решение задачи о движении одиночной частицы
5.3.3. Анализ полученных результатов.
Рекомендованный список диссертаций по специальности «Механика жидкости, газа и плазмы», 01.02.05 шифр ВАК
Моделирование гидродинамики и процессов разделения порошковых материалов в пневматических центробежных аппаратах2011 год, кандидат физико-математических наук Садретдинов, Шамиль Рахибович
Моделирование турбулентного закрученного течения и процессов разделения тонкодисперсных порошков в пневматических центробежных аппаратах2009 год, кандидат физико-математических наук Чепель, Антон Геннадьевич
Численное моделирование пространственных закрученных турбулентных течений применительно к аппаратам порошковой технологии2003 год, кандидат физико-математических наук Артёмов, Игорь Леонидович
Гидродинамические процессы в рабочих элементах ротационных сепараторов1984 год, доктор физико-математических наук Шиляев, Михаил Иванович
Теоретическое исследование аэродинамики и процессов разделения твердых частиц в дисковых элементах ротационных сепараторов1983 год, кандидат физико-математических наук Арбузов, Валерий Николаевич
Введение диссертации (часть автореферата) на тему «Численное исследование нестационарного турбулентного закрученного течения в воздушно-центробежном классификаторе»
Интенсивное развитие таких перспективных направлений в промышленности как порошковая металлургия, электроника и приборостроение, создание новых материалов, тесно связано с достижениями в области получения порошков заданного гранулометрического состава. Наиболее эффективными и экологически чистыми способами получения таких порошков являются пневматические методы переработки. Для процессов фракционной классификации порошковых материалов наиболее перспективным является использование вихревых камер, циклонных и ротационных сепараторов, воздушно-центробежных классификаторов. Первые конструкции аэродинамических классификаторов были запатентованы в начале прошлого века в Германии. Сразу же сформировалось два направления в создании классифицирующего оборудования. В одном из них разделение основывалось на противодействии аэродинамических сил и сил тяжести (гравитационные классификаторы), в другом - аэродинамических сил и центробежных сил инерции (центробежные классификаторы). Опыт их использования в различных технологических процессах дал настолько хорошие результаты, что длительное время теория и практика классификации развивались по экстенсивному пути - расширения объема использования классификаторов и усложнения технологических схем, в частности, путем использования многоступенчатого разделения. Лишь начиная примерно с середины прошлого века, усилились исследования, направленные на повышение эффективности разделения и компактности классифицирующих аппаратов как средства интенсификации технологических процессов /58/.
Совершенствование и технологическое развитие пневматических методов переработки дисперсных сред и создание новых более совершенных и эффективных аппаратов порошковой технологии может быть осуществлено лишь на основе глубоких фундаментальных исследований в области 5 аэродинамики однофазных и многофазных сред. Экспериментальные исследования в этом направлении связаны с большими техническими трудностями и высокой себестоимостью. На сегодняшний день перспективным способом получения наиболее полной информации о рассматриваемом физическом процессе является численное моделирование. Разработка математических моделей течения закрученного двухфазного турбулентного потока в сепарационной зоне центробежного аппарата позволит глубже разобраться в сложном физическом процессе классификации частиц и создать предпосылки для получения новых идей при разработке оригинальных способов и конструкций центробежных аппаратов.
Теоретические исследования движения гетерогенных сред в различных каналах в настоящее время интенсивно развиваются. Большой вклад в развитие фундаментальных исследований гетерогенных потоков внесли Р.И. Нигматуллин, В.А. Шваб, С.Г. Телетов, С. Буссройд, С. Coy, И.М. Васенин, В. Барт, Н. А. Фукс, З.Р. Горбис, М. А. Гольдштик, С.С. Кутетеладзе, Г.Д. Бабуха и др. Тем не менее, решение задач имеющих практическое применение в конкретных технологических процессах возможно только с некоторыми упрощениями.
Анализ научной литературы, посвященной вопросам воздушно-центробежной классификации порошков, показал, что наиболее существенным параметром, оказывающим влияние на процесс разделения частиц по размерам, является объёмная концентрация твёрдой фазы в газовом потоке. Экспериментальные и теоретические исследования показывают, что только при малых значениях объёмной концентрации твёрдой фазы может достигаться высокая эффективность процесса фракционного разделения частиц по размерам. Это обстоятельство позволяет существенно упростить математическую постановку рассматриваемого явления. При небольших концентрациях твёрдой фазы можно не учитывать взаимодействие твёрдых частиц между собой и пренебречь обратным силовым влиянием частиц на несущий поток /74, 111/.
Также необходимо учитывать, что на практике в большинстве случаев течения в пневматических центробежных аппаратах, использующих закрутку потока, сильно турбулизированы. На сегодняшний день выделяют три основных подхода моделирования турбулентных течений это прямое численное моделирование (Direct Numerical Simulation, DNS), моделирование крупных вихрей (Large Eddy Simulation, LES) и решение осредненных по Рейнольдсу уравнений Навье-Стокса (Reynolds Averaged Navier-Stokes, RANS). Однако DNS и LES требуют мощных вычислительных ресурсов и ограничиваются расчетами течений с довольно простой геометрией и относительно малыми числами Рейнольдса. Поэтому при решении практических задач пользуются, в основном, уравнениями Рейнольдса, для замыкания которых применяют полуэмпирические модели турбулентности. Наиболее известными и часто используемыми являются модели турбулентности: «к-со» /157/ и «к-е» /65/.
Повышение надёжности конструкций и получение оптимальных показателей работы технологических систем приводят к необходимости детального изучения протекающих в них физических процессах.
Одной из характерных особенностей аэродинамики закрученных турбулентных течений является наличие эффектов нестационарности, вызванных неустойчивостью, периодичностью, а также спецификой функционирования технологических аппаратов /14, 21, 51, 55, 76/. Нестационарный режим течения несущей среды приводит к значительному отклонению параметров одно- и двухфазных течений и может существенно изменить протекание динамических, тепловых и массообменных процессов. В ряде случаев нестационарные режимы турбулентных течений влияют на определение прочностных характеристик конструкций /22, 27, 44, 48/.
Если различные аспекты проблем для нестационарных однофазных и стационарных двухфазных течений широко представлены в ряде монографий и работах обзорного характера /10, 17, 27, 33, 48, 61, 92, 127/, то результаты исследования нестационарных двухфазных потоков представлены лишь единичными публикациями /23, 47, 55/.
Таким образом, в настоящее время численное исследование нестационарных турбулентных течений в центробежных аппаратах, использующихся для классификации и сепарации частиц, еще не получило своей полной разработки и освещения в научной литературе. Настоящая диссертационная работа посвящена математическому моделированию нестационарного турбулентного закрученного течения и анализу движения одиночных мелкодисперсных твердых частиц в различных сепарационных камерах воздушно-центробежного классификатора (ВЦК).
В первой главе представлен современный обзор научной литературы, касающийся вопросов моделирования аэродинамики закрученных турбулентных течений однофазных и двухфазных сред. В этой же главе также рассмотрены работы, связанные с нестационарными и периодическими течениями газовой фазы при ламинарном и турбулентном режиме.
Вторая глава диссертационной работы посвящена физической и математической постановке задач осесимметричного закрученного турбулентного течения несущей среды в сепарационных элементах центробежных аппаратов. В начале раздела рассматривается новая постановка задач течения несущей среды в воздушно-центробежном классификаторе с плоскопараллельными и профилированными дисковыми элементами. Далее описана математическая постановка этих задач. Для математического описания турбулентного течения в рассматриваемых сепарационных схемах центробежных аппаратов используется система уравнения Рейнольдса, замыкаемая «кч.о» моделью турбулентности.
В третьей главе рассматриваются методы численного решения установившихся и нестационарных турбулентных закрученных течений. Численное решение уравнений Рейнольдса проводилось в естественных переменных «скорость-давление», с использованием оригинальной итерационной методики.
В четвертой главе представлены результаты численных расчётов стационарного турбулентного закрученного однофазного течения в рассматриваемых сепарационных элементах ВЦК. Достоверность работы определялась тестовыми исследованиями на сеточную и итерационную сходимость, а также сравнением полученных решений с имеющимися экспериментальными и численными данными других авторов. В этом разделе получены новые результаты аэродинамики турбулентного закрученного потока, а также показано влияние геометрических и режимных параметров на закономерности распределения радиальной, окружной и осевой составляющих вектора скорости в сепарационных камерах ВЦК.
В пятой главе проведено математическое моделирование неустановившегося и периодического турбулентного закрученного потока в оригинальных сепарационных камерах воздушно-центробежного классификатора, разработанного в ТГУ. Исследовались закономерности аэродинамики вихревой камеры и получены новые результаты по влиянию критериев закрутки газа, а также амплитуды, фазы и частоты периодических колебаний на нестационарное закрученное турбулентное течение в воздушно-центробежном классификаторе. Далее в диссертационной работе рассмотрено движение одиночной твердой тонкодисперсной частицы в периодическом поле несущей среды, а также получены результаты расчетов траекторий одиночных частиц. Определен граничный размер частиц для рассматриваемого режима течения. Проведено исследование влияния периода колебаний, амплитуды и фазового угла на движение мелкодисперсных твёрдых частиц.
В заключении приведены основные выводы диссертационной работы. Научная новизна работы.
1. Впервые проведено математическое моделирование нестационарного и периодического турбулентного закрученного потока в оригинальных сепарационных камерах воздушно-центробежных классификаторов, разработанных в Томском госуниверситете. Получены новые результаты 9 по влиянию частоты, амплитуды и фазового угла колебаний на аэродинамику нестационарного турбулентного закрученного течения в сепарационных элементах пневматических центробежных аппаратов.
2. Получены новые результаты в более общей постановке задачи для установившегося по времени закрученного турбулентного течения между профилированными, а также между проницаемыми плоскопараллельными дисками при дополнительном притоке и отводе несущей среды через эти проницаемые диски.
3. На основе численных исследований движения одиночных частиц в нестационарном закрученном турбулентном потоке впервые определена принципиальная возможность уменьшения «времени пребывания» частиц граничного размера в сепарационной камере за счёт создания колебательного режима течения с периодом, близким, но несколько большим времени динамической релаксации частицы.
4. Разработана численная методика решения нелинейного уравнения переноса скалярной субстанции для нестационарного режима течения, позволяющая сократить время расчета.
Практическая значимость диссертационной работы состоит в следующем:
1. Созданные методики расчета и полученные результаты могут использоваться при моделировании нестационарного и установившегося режимов закрученного турбулентного течения в сепараторах, гидроциклонах и других подобных аппаратах. Особую ценность представляют созданные методики расчета закрученных нестационарных турбулентных течений для инженеров при моделировании процессов классификации тонкодисперсных порошков, при оптимизации режимных и геометрических параметров существующих центробежных установок, при создании новых способов и конструкций пневматических центробежных аппаратов.
2. На основе численных экспериментов определены физические особенности периодического режима течения, который получен колебанием расхода несущей среды с периодом, близким к времени динамической релаксации частицы граничного размера. Такой режим течения способствует более эффективному процессу разделения частиц по размерам, и, таким образом, показывает перспективность использования патента /68/, разработанного в Томском госуниверситете.
3. Получен акт внедрения методики расчета закрученного турбулентного течения в аппаратах центробежного типа на основе работы по гос. контракту «фонда содействия развития малых форм предприятий в научно-технической сфере» №6301 р/ 8888 от 09.12.2008 для ООО «Мипор». Результаты работы использовались в проекте «Создание математической модели и выполнение численного расчета процесса прессования таблеток» в рамках хоз. договора № 17/10 от 01.09.2010 г. на основании которого получен акт внедрения методики расчета процесса прессования таблеток на ОАО «Новосибирский завод химических концентратов».
4. Исследования, изложенные в диссертационной работе, проводились при поддержке гранта РФФИ №11-08-00931-а «Моделирование закрученных двухфазных турбулентных потоков применительно к пневматическим центробежным аппаратам порошковой технологии», в рамках программы У.М.Н.И.К. фонда содействия развитию малых форм предприятий в научно-технической сфере: «Разработка математического, алгоритмического и программного обеспечения для моделирования классификации тонкодисперсных частиц в рабочей зоне воздушно-центробежного классификатора при нестационарном закрученном турбулентном режиме течения с целью повышения эффективности фракционного разделения порошков», а также при поддержке стипендии Президента Российской Федерации на 2011/2012 учебный год. п
Основные положения, выносимые автором на защиту
1. Математическая модель нестационарного и установившегося по времени закрученного турбулентного течения в сепарационной камере воздушно-центробежного классификатора между плоскопараллельными и профилированными дисковыми элементами, решение которой проводится на основе системы уравнений Рейнольдса и модели турбулентности Уилкокса, полученных в цилиндрической и адаптированной к зоне сепарации ортогональной криволинейной системы координат вращения.
2. Результаты численных исследований аэродинамики несущей среды при турбулентном установившемся по времени режиме течения в рабочих элементах ВЦК по влиянию: геометрии профилированного диска; отводе и подводе дополнительного газа через пористые поверхности дисковых элементов и других режимных параметров.
3. Результаты математического моделирования нестационарного турбулентного закрученного течения газа в сепарационных элементах воздушно-центробежного классификатора с плоскопараллельными дисками и с профилированным верхним диском.
4. Численное моделирование и результаты расчёта движения одиночной тонкодисперсной твердой частицы, находящейся в поле действия периодического закрученного турбулентного потока. Определение времени пребывания частиц в сепарационной зоне ВЦК. Исследование влияния частоты, фазы и амплитуды гармонических колебаний несущего потока на траекторию движения частиц различного размера. Особенности процесса разделения частиц граничного размера.
5. Численная методика решения нелинейного уравнения переноса скалярной субстанции для случая нестационарного режима течения, позволяющая сократить время расчета задачи.
Апробация работы
Материалы диссертации докладывались и обсуждались на Всероссийских конференциях «Физика и химия высокоэнергетических систем» (Томск,
12
2008-2010); на VI Всероссийской конференции «Фундаментальные и прикладные проблемы современной механики» (Томск, 2008); на Всероссийской конференции «Неравновесные процессы в сплошных средах» (Пермь, 2009); на XVI Всероссийской научной конференции «АСФ России» (Волгоград, 2010); на Всероссийской молодежной научной конференции «Актуальные проблемы механики сплошных сред» (Томск, 2010); на X юбилейной Всероссийской научной конференции молодых ученых "Наука. Технологии. Инновации" (Новосибирск, 2010); на VII Всероссийской конференции «Фундаментальные и прикладные проблемы современной механики» посвященной 50-летию полета Ю.А. Гагарина и 90-летию со дня рождения основателя и первого директора НИИ ПММ ТГУ А.Д. Колмакова (Томск, 2011).
Основные результаты работы, полученные в диссертации, опубликованы в журналах: «Прикладная механика и техническая физика», «Теоретические основы химической технологии» и «Известия ВУЗов. Физика».
Всего по теме диссертации опубликовано 14 работ. Структура и объем работы
Диссертация состоит из введения, пяти глав, заключения, списка литературы и приложения. Диссертация изложена на 149 страницах машинописного текста, содержит 47 рисунков, библиография включает 158 наименований.
Похожие диссертационные работы по специальности «Механика жидкости, газа и плазмы», 01.02.05 шифр ВАК
Моделирование двухфазного турбулентного закрученного течения в вихревой камере пневматического центробежного аппарата2023 год, кандидат наук Турубаев Роман Ринатович
Математическое моделирование двухфазных пространственных течений в каналах и камерах сгорания1997 год, доктор физико-математических наук Старченко, Александр Васильевич
Структура и гидродинамическая устойчивость закрученных потоков с зонами рециркуляции2009 год, доктор технических наук Ахметов, Вадим Каюмович
Математическое моделирование горения внутренних закрученных потоков и формирования огненных смерчей2009 год, кандидат физико-математических наук Руди, Юрий Анатольевич
Гидродинамика и разделительная способность течений в гидромеханических устройствах и аппаратах2003 год, доктор технических наук Фафурин, Виктор Андреевич
Заключение диссертации по теме «Механика жидкости, газа и плазмы», Хайруллина, Виктория Юрьевна
Выводы по пятой главе. В пятой главе впервые проведено численное моделирование неустановившегося и периодического закрученного течения газа при ламинарном и турбулентном режиме в оригинальных сепарационных камерах воздушно-центробежного классификатора,
127 разработанного в ТГУ. Проведено численное моделирование движения одиночной тонкодисперсной твердой частицы в поле действия периодического закрученного турбулентного потока несущей среды. На основе этих численных исследований впервые определена принципиальная возможность уменьшения «времени пребывания» частиц граничного размера в сепарационной камере за счёт создания колебательного режима течения с периодом, близким, но несколько большим времени динамической релаксации частицы. Исследованы закономерности аэродинамики вихревой камеры и получены новые результаты по влиянию критериев закрутки газа, числа гомохронности (периода), а также амплитуды и фазового угла периодических колебаний расхода несущей среды на нестационарное закрученное турбулентное течение в сепарационных элементах пневматических центробежных аппаратов и на траекторию движения частиц различного размера в поле несущей среды.
Представленное исследование показало, что организация периодического турбулентного закрученного течения с заданной частотой и амплитудой позволяет избирательно оказывать влияние только на частицы граничного размера (и близких к нему) в сепарационной камере, что, в конечном счёте, способствует повышению эффективности фракционного разделения частиц в пневматических центробежных аппаратах.
ЗАКЛЮЧЕНИЕ
1. Проведено математическое моделирование установившегося закрученного турбулентного течения и получены новые результаты численных исследований аэродинамики несущей среды между плоскопараллельными и профилированными вращающимися дисками с учётом входной области в новой постановке задачи. Полученные численные данные позволили уточнить закономерности закрученного турбулентного потока в зоне сепарации и установить влияние дополнительного подвода и отсоса газовой фазы и других режимных и геометрических параметров. Достоверность проведённых исследований подтверждается сопоставлением с известными экспериментальными и численными данными для закрученных турбулентных течений.
2. Впервые проведено математическое моделирование неустановившегося и периодического турбулентного закрученного потока в оригинальных сепарационных камерах воздушно-центробежного классификатора, разработанного в ТГУ. Исследованы закономерности аэродинамики вихревой камеры и получены новые результаты по влиянию критериев закрутки газа, а также амплитуды, фазы и частоты периодических колебаний на нестационарное закрученное турбулентное течение в воздушно-центробежном классификаторе.
3. В результате оригинальных численных исследований по движению одиночной частицы в нестационарном закрученном турбулентном потоке в сепарационной камере установлено, что выбором амплитуды и периода гармонических колебаний несколько большим времени динамической релаксации частицы граничного размера можно добиться существенного сокращения времени пребывания их в сепарационной камере и, следовательно, уменьшить вероятность эффекта жгутообразования.
4. Разработана численная методика решения нелинейного уравнения переноса транспортабельной скалярной субстанции для нестационарного режима течения, позволяющая на каждом временном слое ускорить итерационный процесс и, тем самым, сократить общее время численного расчета задачи.
Список литературы диссертационного исследования кандидат физико-математических наук Хайруллина, Виктория Юрьевна, 2012 год
1. A.C. 542574 (СССР). Центробежный классификатор / Шваб В.А., Росляк А.Т., Бирюков Ю.А. - Опубл. в Б.И., 1977, № 2.
2. A.C. 740305 (СССР). Центробежный классификатор / Шваб В.А., Росляк А.Т., Зятиков П.Н., Бирюков Ю.А., Никульчиков В.К., Лаврентьев Л.Н. -Опубл. вБ.И., 1980, №22.
3. A.C. 614830 (СССР). Воздушно-центробежный классификатор порошковых материалов / Шваб В.А., Росляк А.Т., Бирюков Ю.А., Зятиков П.Н. -Опубл.вБ.И., 1978, №26.
4. Абрамович Г.Н. Теория турбулентных струй / Г.Н. Абрамович, Т.А. Гиршович, С.Ю. Крашенинников, А.Н. Секундов, И.П. Смирнова.—М.: Наука, 1984.-716 с.
5. Алексеенко C.B. Закрученные потоки в технических приложениях (обзор) / C.B. Алексеенко, В.Л. Окулов // Теплофизика и аэромеханика. -1996. -Т.З. -№2. -С. 101-138.
6. Арбузов В.Н. Турбулентное течение жидкости между вращающимися дисками / В.Н. Арбузов, М.И. Шиляев // Исследования по гидродинамике и теплообмену. Новосибирск ИТФ СО РАН СССР. -1976. - С. 162-170.
7. Артемов И. JI. Численное моделирование пространственных закрученных турбулентных течений применительно к аппаратам порошковой технологии: Дис. . канд. физ.-мат. наук. Томск, 11 У, 2004.
8. Асланен Г.С. Моделирование гидродинамики и процесса горения вцилиндрических камерах сгорания / Г.С. Асланен, И.Л. Майков //131
9. Теплоэнергетика. 1998. -№12. -С. 39-43.
10. Бабуха Г.Л., Шрайбер A.A. Взаимодействие частиц полидисперсного материала в двухфазных потоках. Киев: Наукова думка. 1972. 175 с.
11. Бай-Ши-и. Турбулентное течение жидкостей и газов. -М.: ИН-ИЛ, 1962.
12. Байбиков A.C. Метод расчета турбулентного течения в изменяющемся по радиусу осевом зазоре между вращающимся диском и осесимметричным корпусом // ИФЖ. 1998. - № 6. - С. 1107-1115/
13. Барский М.Д. Фракционирование порошков. М.: Недра, 1980. - 327 с.
14. Брацун Д. А., Теплов В. С. О параметрическом возбуждении вторичного течения в вертикальном слое жидкости в присутствии мелких твердых частиц// Прикладная механика и техническая физика. 2001. № 1. - Т. 42.
15. Брендаков В.Н. Влияние гидродинамики и турбулентной диффузии на процессы разделения в центробежных и гравитационных аппаратах порошковой технологии / В.Н. Брендаков, A.B. Шваб // Изв. Высш.Учеб. Зав. Физика. 1993. -Т.36.-№4.-С. 69-80.
16. Брэдшоу П. Введение в турбулентность и её измерение. М.: Мир, 1974. -288 с.
17. Бусройд Р. Течение газа со взвешенными частицами. — М.: Мир. 1975.379 с.
18. Бэтчелор Дж. Введение в динамику жидкости. М.: Мир, 1973. - 760 с.
19. Вараксин А. Ю. Турбулентные течения газа с твердыми частицами. М.: Физматлит, 2003. 192 с.
20. Вараксин А. Ю. Столкновения в потоках газа с твердыми частицами. -М.: Физматлит, 2008. 312 с.
21. Васенин И.М., Васенина Т.В., Глазунов А. А. Исследование газодинамических процессов при двухфазном течении в МГД-генераторах// Прикладная механика и техническая физика. 2003. № 3.1. С. 12-17.
22. Васильев А.П., Кудрявцев В.М., Кузнецов В.А. и др. Основы теории и расчёта жидкостных двигателей. — М.: Высшая школа. 1975. — 656 с.
23. Венгерский Э.В., Морозов В.А., Усов Г.Л. Гидродинамика двухфазных потоков в системах питания энергетических установок. — М.: Машиностроение. 1982. 128с.
24. Волков К.Н. Течения газа с частицами / К.Н. Волков, В.Н. Емельянов. -М.: Физматлит, 2008. 600 с.
25. Волков К.Н. Течения и теплообмен в каналах и вращающихся полостях / К.Н. Волков, В.Н. Емельянов. М.: Физматлит, 2010. - 488 с.
26. Волчков Э.П. Аэродинамика вихревой камеры с торцевым и боковым вдувом / Э.П. Волчков, И.И. Смульский // ТОХТ. 1983. - Т. 17, № 2. - С. 214-219.
27. Галицейский Б.М., Рыжов Ю.А., Якуш Е.В. Тепловые и гидродинамические процессы в колеблющихся потоках. М.: Машиностроение. 1977. 256 с.
28. Гесснер. Модель напряжений Рейнольдса для турбулентного обтекания угла. 4.1. Построение модели / Гесснер, Эмери // ТОГО. 1976. - Т.98. - № 2. - С. 225-233.
29. Гесснер. Модель напряжений Рейнольдса для турбулентного обтекания угла. 4.2. Сравнение теории с экспериментом / Гесснер, Эмери // ТОИР. -1976. -Т.98. № 2. - С. 233-242.
30. Гиргидов A.A. Численное моделирование трехмерного поля скорости в циклоне / Ватин H.H., Стрелец К.Н. // Инженерно-строительный журнал. 2011. - №5, С.5-9.
31. Гольдин Е.М. Устойчивость потока между тарелками сепаратора // Изв. Ан СССР. МЖГ. 1966. - № 2. - С. 152-155.
32. Гольдштик М.А. Вихревые потоки. Новосибирск: Наука, 1981. - 366 с.
33. Горбис З.Р. Теплообмен и гидромеханика дисперсных сквозных потоков. -М.: Энергия. 1970. 423 с.
34. Горин А.Б. Ламинарное течение жидкости между вращающимися дисками / А.Б. Горин, М.И. Шиляев // Изв. АН СССР, МЖГ. 1976. - № 2. - С. 60-66.
35. Госмен А.Д. Численные методы исследования течения вязкой жидкости / А.Д. Госмен, В.М. Пан, А.К. Ранчел, Д.Б. Сполдинг, М. Вольфштейн. -М.:Мир, 1972. 323 с.
36. Гупта А. Закрученные потоки / А. Гупта, Д. Лилли, Н. Сайред. М.: Мир, 1987. -588 с.
37. Гурченков A.A. Неустановившееся движение вязкой жидкости между вращающимися параллельными стенками при наличии поперечного потока // Прикладная механика и техническая физика. 2001, Том 42, №4, С.48-51.
38. Давлетшин И.А. Гидравлическое сопротивлениегладкой трубы на пульсирующих режимах течения газа / Михеев Н.И., Гольцман А.Е.// Труды Академэнерго. 2011, №1, С.22-30.
39. Ден Г.Н. Течение газа между параллельными вращающимися дисками // ИФЖ. 1961.-ТА- №9.-С. 24-31.
40. Дик И.Г. Моделирование гидродинамики и сепарации в гидроциклоне / И.Г. Дик, О.В. Матвиенко, Т. Нессе // Теоретические основы химической технологии. 2000. - Т.34. - № 5. - С. 478-488.
41. Дыбан Е.П. Тепломассобмен и гидродинамика турублизированных потоков / Е.П. Дыбан, Э.Я. Эпик. Киев: Наукова думка, 1985. - 296 с.
42. Еникеев Р.Д. Модель нестационарного течения с закруткой для расчета газообмена поршневого ДВС/ Черноусов A.A. // Изв. ВУЗов. Авиационная техника. 2009. №3, С. 12-16.
43. Зайчик Л.И. Статистические модели движения частиц в турбулентной жидкости / Л.И. Зайчик, В.М. Алипченков. М.: Физматлит, 2007. 312 с.
44. Злобин В.В. Экспериментальное исследование течения смеси газа и частиц в трубе// Инж. физ. журн. 1977. - Т. 33. - № 4. - С. 611 - 616.
45. Капинос В.М. Исследование теплоотдачи при центростремительном течении воздуха между вращающимся диском и неподвижной стенкой / В.М. Капинос, В.Н. Пустовалов, А.П. Рудько // Энерг. машиностр. 1987. -№44.-С.36-41.
46. Квон В.И., Чернышева Р.Т. Численное решение задачи о неустановившемся турбулентном течении несжимаемой жидкости в трубе// Численные методы механики сплошной среды. Новосибирск: Изд-во СО АН СССР. 1976. Т. 7. - № 2. - С. 32 - 43.
47. Крайко А.Н., Стернин JI.E. К теории течений двухскоростной среды с твёрдыми и жидкими частицами// Прикл. мат. и мех. — 1965. — Т. 29. — Вып. 3. —С. 418-430.
48. Крейц Ф. Конвективный теплообмен во вращающихся системах // Успехи теплопередачи. М.: Мир, 1971. - С. 144-279.
49. Кутателадзе С.С. Аэродинамика и тепломассообмен в ограниченных вихревых потоках / С.С. Кутателадзе, Э.П. Волчков, В.И. Терехов. — Новосибирск: ИТФ СО АН СССР. 1987. 282 с.
50. Леонтьев А.И., Фафурин A.B. Нестационарный турбулентный пограничный слой в начальном участке трубы// Инж. физ. журн. — 1973. — Т. 25.-№3.-С. 389-402.
51. Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1987. - 840 с.
52. Л он дер Б. Э. Обобщенная алгебраическая модель переноса напряжений // РТК.-1982.- №4.-С.131-132.
53. Лондер. Расчет турбулентного пограничного слоя на вращающихся и криволинейных поверхностях / Лондер, Приддин, Шарма // ТОИР. 1977. -№ 1. -С. 322-340.
54. Марков С.Б. Экспериментальное исследование скоростной стругауры и гидравлических сопротивлений в неустановившихся напорных турбулентных потоках// Изв. АН СССР. МЖГ. 1973. № 2. - С. 65 - 74.
55. Мел лор. Обзор моделей для замыкания осредненного турбулентного течения / Меллор, Херринг // РТК. 1973. - Т.П. - № 5. - С. 17-29.
56. Методы расчёта турбулентных течений: Пер. с англ. / Под ред. В. Колльмана. М.: Мир, 1984. - 464 с.
57. Мизонов В.Е. Аэромеханическая классификация порошков / В.Е. Мизонов, С.Г. Ушаков. -М.: Химия, 1989.- 158 с.
58. Мисюра В.И. Ламинарное течение несжимаемой жидкости между двумя вращающимися дисками // Изв. АН СССР. Механика жидкости и газа.-1972. -№5.-С. 178-183.
59. Митрофанова О.В. Гидродинамика и теплообмен закрученных потоков в каналах ядерно-энергетических установок М.:Физматлит, 2010.-288с.
60. Михеев Н.И., Молочников В.М., Стинский Г.В., Феоктистова JI.A. Пространственно-временная взаимосвязь давления и скорости потока в трубе в условиях наложенной периодической нестационарности// Труды Академэнерго. Казань. 2006. - № 1.
61. Михин В.И. О незавершенности модели турбулентности / В.И. Михин, Л.Н. Фетисова // Препр. / Физ.-энерг. ин-т, Обнинск. 1996. - 2556, - С. 120.
62. Морс. Численный расчет турбулентного течения во вращающихся полостях. // Совр. Машиностроение. ~ 1989. № 4. - сер.А. - С. 129-141.
63. Мостафа A.A. Распространение запыленных струйных течений. Теоретическое и экспериментальное исследование / A.A. Мостафа, Х.Ц. Монджиа, В.Г. Макдоннелл, Г.С. Самуэлсен // Аэрокосмическая техника.- 1990 г. -№3.-С. 65-81.
64. Нагано. Усовершенствованная (к, е)- модель для пристеночных турбулентных сдвиговых течений / Нагано, Хисида // ТОИР. 1988. № 1.- С. 252 260.
65. Нигматулин Р.И. Динамика многофазных сред. Ч I М.: Наука, 1987, 464с.
66. Патанкар С. Численные методы решения задач теплообмена и динамики жидкости. М.: Энергоатомиздат, 1984. - 152 с.
67. Патент РФ № 2407601, ПК В07В7/083, Способ воздушно-центробежной136классификации порошков и устройство для его осуществления / Зятиков П.Н., Росляк А.Т., Васенин И.М., Шваб A.B., Демиденко A.A., Садретдинов Ш.Р. //опубл., Б.И. №36, 27.12.2010.
68. Патер. Определение режима течения между совместно вращающимися дисками / Патер, Краутер, Райе // ТОИР. 1974. - № 1. - С. 122-128.
69. Пейре Р. Вычислительные методы в задачах механики жидкости / Р. Пейре, Т.Д. Тейлор. Л.: Гидрометеоиздат, 1986. - 352 с.
70. Петунин A.M. Методы и техника измерений параметров газового потока. М.: Машиностроение, 1972. — 212с.
71. Рейнольде А.Д. Турбулентные течения в технических приложениях. М.: Энергия, 1977.- 408 с.
72. Росляк А.Т. Пневматические методы и аппараты порошковой технологии / А.Т. Росляк, Ю.А. Бирюков; В.Н. Пачин. Томск: Изд-во ТГУ, 1990. -273 с.
73. Росляк А.Т. Воздушно-центробежная классификация микропорошков /
74. A.Т. Росляк, П.Н. Зятиков. Томск: ТМЛ-Пресс, 2010. 224 с.
75. Росляк А.Т. Расчет рабочих и геометрических параметров воздушно-центробежного классификатора / А.Т. Росляк, П.Н. Зятиков, A.B. Шваб,
76. B.Н. Брендаков, Ш. Р. Садретдинов, ЕЛ. Зайцева // Сборник материалов VII всероссийской конференции «Фундаментальные и прикладные проблемы современной механики» Томск.-ТГУ 2011, С. 371-374
77. Роуч П. Вычислительная гидродинамика. М.: Мир, 1980. - 616 с.
78. Садретдинов Ш. Р. Численное моделирование закрученного течения в вихревой камере // Сборник тезисов, материалы XIV Всероссийской научной конференции студентов-физиков и молодых ученых. АСФ России, Уфа 2008. С. 523-524.
79. Садретдинов Ш.Р. Исследование процесса разделения частиц в вихревой камере // Сборник материалов IV Всероссийской конференции молодых ученых «Физика и химия высокоэнергетических систем» -Томск: ТГУ, 2008. С. 290-293.
80. Садретдинов Ш.Р. Исследование динамики движения частиц в вихревой камере / Ш.Р. Садретдинов, A.B. Шваб // Сборник материалов V Всероссийской конференции молодых ученых «Физика и химия высокоэнергетических систем». Томск: ТГУ, 2009. С. 360-363
81. Садретдинов Ш.Р. Метод расчета разделения частиц по фракциям в вихревой камере / Ш.Р. Садретдинов., A.B. Шваб // Материалы всероссийской конференции молодых ученых «Неравновесные процессы в сплошных средах» Пермь-2009, С. 220-223
82. Садретдинов Ш.Р. Численный расчет гидродинамики закрученного потока в воздушно-центробежном классификаторе с учетом дополнительной продувки газом // Материалы XVI всероссийской конференции молодых ученых физиков, Волгоград, АСФ России, 2010, С. 625-626
83. Самарский А. А. Теория разностных схем. М.: Наука, 1977. - 656 с.
84. Саньков П.И. О влиянии радиального расхода на переход к турбулентному режиму течения в зазоре между вращающимся и неподвижным дисками / П.И. Саньков, Е.М. Смирнов // Изв. АН СССР. Мех. жидкости и газа. 1986. - № 5. -С.175-179.
85. Семенов Е.В. О сходящемся ламинарном потоке жидкости между двумя вращающимися // Прикладная механика и теоретическая физика. 2000. -Т.41.-№2.-С.77-83.
86. Сима Н. Модель напряжений Рейнольдса для течения в пристеночных областях с низкими числами Рейнольдса // ТОИР. 1988. - № 4. - С.241-251.
87. Смирнов В.И. Курс высшей математики. В 2т. - М.: Изд. Техн.-теор. лит, 1954.
88. Смульский A.A. Аэродинамика и процессы в вихревых камерах. -Новосибирск: ВО «Наука». Сибирская издательская фирма, 1992 г.-301 с.
89. Сосновский Н.Д. Гидродинамика и процесс разделения тонкодисперсных частиц во вращающихся каналах с профилированными границами: Дис. . канд. физ.-мат. наук. Томск, ТГУ, 1989.
90. Стернин JI.E. Основы гидродинамики двухфазных течений в соплах. -М.: Машиностроение. 1974. 212 с.
91. Тукмаков A.J1. Численное моделирование процесса волновой сепарации твердых частиц при резонансных колебаниях газа в закрытой трубе / Акустический журнал. 2009. Т. 55. № 3. С. 342-349.
92. Турбулентность принципы и применения: Пер. с англ. / Под ред. У. Фроста, Т. Моулдена. М.: Мир, 1980. - 535 с.
93. Устименко Б.П. Процессы турбулентного переноса во вращающихся течениях. Алма-Ата: Наука КазССР, 1977. - 228 с.
94. Ушаков С.Г. Инерционная сепарация пыли / С.Г. Ушаков, Н.И. Зверев. -М.: Энергия, 1974.-169 с.
95. Флетчер К. Вычислительные методы в динамике жидкостей. В 2 т. - М.: Мир, 1991.
96. Фрик П. Г. Турбулентность: модели и подходы. Курс лекций. В 2 т. Пермь: изд-во Перм. Гос. Техн. Ун-та. - 1998.
97. Фу. Сравнение алгебраических и дифференциальных замыканий по вторым моментам для расчета осесимметричных турбулентных сдвиговых течений с закруткой и без закрутки / Фу, Хуан, Лондер // Совр. Машиностроение. -1989.-№3.-Сер.А.-С. 91-96.
98. Хайруллина В.Ю. Исследование турбулентного закрученного нестационарного течения в рабочей зоне воздушно-центробежного классификатора / В.Ю. Хайруллина, A.B. Шваб// Мат. Всерос. конф. «Неравновесные процессы в сплошных средах». Пермь.2009, С. 247-250.
99. Халатов A.A. Теплообмен и гидродинамика в полях центробежных и массовых сил / A.A. Халатов, A.A. Авраменко, И.В. Шевчук. Киев. Нац. Акад. Наук Укр. Инст. Тех. Теплофиз, В 4 т. 1996-2010 г.
100. Хауэрд. Расчет течения во вращающихся каналах с учетом силы Кориолиса в модели турбулентности / Хауэрд, Патанкар, Бординюк //140
101. ТОИР. 1980. - № 4. -С.134-139.
102. Хинце И. О. Турбулентность. М.: Физматгиз, 1963. - 680 с.
103. Чаймберс. Критическое исследование двухпараметрических моделей для замыкания систем уравнений турбулентного пограничного слоя / Чаймберс, Уилкокс // РТК. 1977. - Т. 15. - № 6. - С. 68-76.
104. Черный С.Г. Численное моделирование пространственных турбулентных течений несжимаемой жидкости на основе k-'эпсилон' моделей / С.Г. Черный, П.А. Шашкин, Ю.А. Грязин // Вычисл. технологии. 1999. - Т.4. - №. 2. - С. 74-94.
105. Шваб В.А. Аэромеханические методы в технологии производства порошковой продукции. -Томск: Изд-во Томск, ун-та, 1984. 160 с.
106. Шваб A.B. Влияние гидродинамики и турбулентной диффузии на процессы разделения в центробежных и гравитационных аппаратах порошковой технологии / A.B. Шваб, В.Н. Брендаков // Известия вузов. Физика. Томск 1993. №4, С. 69-80.
107. Шваб A.B. Численное моделирование процесса разделения частиц по фракциям в биконическом сепараторе / A.B. Шваб, А.Г. Чепель // Известия вузов. Физика. 2009. - № 7. С. 222-228.
108. Шваб A.B. Моделирование процесса фракционного разделения частиц в воздушно-центробежном классификаторе / A.B. Шваб, П.Н. Зятиков, Ш.Р. Садретдинов, А.Г. Чепель // Теоретические основы химической технологии. 2010. Т.44, №6, С. 641-650.
109. Шваб A.B. Исследование влияния входных условий и режимных параметров на аэродинамику в профилированной зоне воздушно-центробежного классификатора / A.B. Шваб, В.Ю. Хайруллина, Ш.Р.141
110. Садретдинов // Сборник материалов VII всероссийской конференции «Фундаментальные и прикладные проблемы современной механики» Томск.-ТГУ 2011, С. 386-388.
111. Шваб A.B. Исследование турбулентного течения между двумя проницаемыми вращающимися дисками / A.B. Шваб, В.Ю. Хайруллина// Сбор. мат. VI Всерос. конф. «Фундаментальные и прикладные проблемы современной механики».Томск.2008. С.397-398.
112. Шваб A.B. Моделирование турбулентного течения между двумя вращающимися плоскопараллельными проницаемыми дисками / A.B. Шваб, В.Ю. Хайруллина // Изв. ВУЗов. Физика. ТГУ 2008. Т.51, №8/2, С. 282-285.
113. Шваб A.B. Моделирование движения одиночной тяжелой частицы в нестационарном закрученном турбулентном потоке / A.B. Шваб, В.Ю. Хайруллина // Изв. ВУЗов. Физика. ТГУ 2009. Т.52, №7/2, С. 216-221.
114. Шваб A.B. Исследование влияния нестационарного закрученного турбулентного течения на движение одиночной твердой частицы / A.B. Шваб, В.Ю. Хайруллина// Прикладная механика и техническая физика. 2011. Т. 52, №1, С. 47-53.
115. Шваб А. В. Исследование закрученного турбулентного течения между вращающимися профилированными дисками / A.B. Шваб, В.Ю. Хайруллина// Теоретические основы химической технологии. 2011. Т.45, №5, С. 557-565.
116. Шевчук В.И. Интегральный метод расчета турбулентного центробежного течения в зазоре между параллельными вращающимися дисками при недокрутке потока // Промышленная теплотехника. 1997. - № 6. - С. 1824.
117. Шиляев М.И. Гидродинамическая теория ротационных сепараторов. -Томск: Изд-во Томск. Ун-та, 1983. 233 с.
118. Шиляев М.И. Устойчивость ламинарного течения между вращающимися дисками / М.И. Шиляев, В.Н. Арбузов // Методы аэродинамики итепломассобмена в технологических процессах: Материалы. Томск, 1984. - С. 38-49.
119. Ширази. Применение анизотропной (k-е) модели турбулентности для расчета турбулентного течения от источника между двумя вращающимися дисками / Ширази, Труман // Совр. машиностроение. 1989. - № 4. - С.113-121.
120. Шрайбер А.А. Турбулентные течения газовзвеси / А.А. Шрайбер, Л.Б. Гавин, В.А. Наумов, В.П. Яценко. Киев: Наукова думка, 1987. 238 с.
121. Штым А.Н. Аэродинамика циклонно-вихревых камер. Владивосток: Изд-во: Дальневост. Ун-та, 1985. - 199 с.
122. Щукин В.К. Теплообмен, массообмен и гидродинамика закрученных потоков в осесимметричных каналах / В.К. Щукин, А.А. Халатов. М.: Машиностроение, 1982.-200 с.
123. Юрим Н.Ф. Аналитическое исследование кинематики движения твёрдой частицы при различных формах пульсаций жидкости// Химия и химическая технология. 1980. Вып. 2. - С. 55 - 58.
124. Armaly B.F. Experimental and theoretical investigation of backward-facing step flow/ Durst F., Pereira J.C.F., Schonung B. // Jornal of Fluid Mechanics. 1983. - vol.127, P. 473-496.
125. Bradshow P. James Engineering calculation methods for turbulent flow / P. Bradshow, T. Cebeci, H. Whitelaw. London: Academic Press, 1981. - 331 p.
126. Botte V. A Navier-Stokes solver for complex three-dimensional turbulent flows adopting non-linear modeling of the Reynolds stresses / V. Botte, A. Tourlidakis, R.L. Elder // Int. J. Numer. Meth. Fluids. 1998. - vol.28. - № 8. -P. 1139-1158.
127. Chen J.X. Heat transfer from air-cooled contra rotating disks / J.X. Chen, X. Gan, J.M. Owen //Trans. ASME. J. Turbomach. 1997. -№ 1. -P. 61-67.
128. Chorin A.J. Numerical solution of Navier-Stokes equation. // Math. Comput. 1968. V.22. P. 745-762.
129. Douglas J. A general formulation of alternating direction methods. Part I.143
130. Parabolic and hyperbolic problems / J. Douglas, J. E. Gunn // Numer. Math. -1964. vol.6. - P. 428-453.
131. Elena L. Turbulence modeling of confined flow in rotating disk systems / L. Elena, R. Shiestel // AIAA Journal. 1995. - vol. 33. - № 5. - P. 812-821.
132. Hill Roger W. Direct numerical simulations of turbulent forced convection between counter-rotating disks / R.W. Hill, K.S. Ball // Int. J. Heat and Fluid Flow. 1999. -vol. 20, №3. -P. 208-221.
133. Hogg S. Computation of highly swirling confined flow with a Reynolds stress turbulence model / S. Hogg, M.A. Leschziner // AIAA Journal. 1989. - vol. 27.-№ 1. -P.57-63.
134. Hoekstra A.J. An experimental and numerical study of turbulent swirling flow in gas cyclones / A.J. Hoekstra, J.J. Derksen, H.E.A. Van Den Akker // Chemical Engineering Science. 1999. -№ 54. -P. 2055-2065.
135. Hwang C.B. Improved low-Reynolds-number k-e model based on direct numerical simulation data / C.B. Hwang, C.A. Lin // AIAA Journal. 1998. -vol.36. -P. 38-43.
136. Gan X.P. Experimental study of the flow in the cavity between rotating disks // Experimental thermal and fluids science / X.P. Gan, S.A. MacGregor. 1995. -№10.- P.379-387.
137. Georgios H. Radial Inflow Within Two Flat Disks / H. Georgios, Vatistas // AIAA Journal. 1990. -vol. 28. - № 7. - P. 1308-1309.
138. Griffiths W.D. CFD and empirical modelling or the peRgormance of a number of cyclone samplers / W.D. Griffiths, F. Boysan // J. Aerosol Sci. 1996. - Vol. 98. - P. 281-304.
139. Killic M. Turbulent flow between two disks contrarotating at different speeds / M. Killic, X. Gan, J.M. Owen // Trans. ASME. J. Turbomach. 1996. -vol.H8.-№2.-P.408-413.
140. Kitamura O. Computation of turbulent flow in a cyclone chamber with a Reynolds stress model. 2nd Report, Numerical prediction of cyclone peRgormance / O. Kitamura, M. Yamamoto // Trans. JSME. 1994. - B60.144580. P. 4002-4009.
141. Launder B.E. Closure strategies for turbulent and transitional flows / B.E. Launder, N.D. Sandham. Cambridge Univ. Press, 2002. — 754 p.
142. Liu S. Analytical solution for laminar viscous flow in the gap between two parallel rotary disks / S. Liu, W. Yan // J. Beijing Inst. Technol. 1998. - vol. 7.-№2.-P.l 13-119.
143. Moin P. Direct numerical simulation: A tool in turbulence research / P. Moin, K. Mahesh // Annu. Rev. Fluid Mech. 1998. - Vol. 30. - P. 539-578.
144. Owen J. M. An approximate solution for the flow between a rotating and a stationary disc // ASME (Pap.) 1988. - № GT293. P. 1-13.
145. Pascau A. Calculation of confined swirling flows with a second moment closure / A. Pascau, W. P. Jones // Trans. ASME. J. Fluids. Eng. 1989. -vol.111. - № 3. -P. 248-255.
146. Serre E. Numerical simulation of the transition in three-dimensional rotating flows with walls: boundary layers instability / E. Serre, P. Bontoux, R. Kotarba // International Journal of Fluid Dynamics. -2001. -vol.5, -part. 2. -P. 17-30.
147. Shyy W. Study of three-dimensional gas-turbine combustor flows / W. Shyy, M. E. Braaten, D. L. Burrus // Int. J. Heat and Mass Transfer. 1989. - vol.32. -№>6.-P.l 155-1164.
148. Singh A. Investigations on inward flow between two stationary parallel disks / A. Singh, B.D. Vyas, U. S. Powle // Int. J. Heat and Fluid Flow. 1999. - vol. 20. -№4.-P.395-401.
149. Stankov P. Computer simulation of 3D complex turbulent flows: real needs, possibilities and perspectives // J. Theor. and Appl. Mech. 1997. - vol. 27. -№1.-P. 57-70.
150. Szeri A. Z. Flow between rotating discs. Part 1 / A. Z. Szeri, S. J. Schneider, F.1451.bbe, and H.N. Kaufman // J. Fluid Mech. 1983. - vol.134. -P. 103-110.
151. Tabatabai M. Turbulence in radial flow between parallel disks at medium and low Reynolds numbers / M. Tabatabai, A. Pollard // J. Fluid Mech. 1987. -Vol.185.-P. 483-502.
152. Wilcox D. C. Streamline curvature effects on turbulent boundary layers / D.C. Wilcox, T. L. Chambers // AIAA Journal. 1977. - vol. 15. - P. 574-580.
153. Wilcox D.C. Reassessment of the scale-determining equation for advanced turbulence models. // AIAA J. 1988. V. 26. № 11. P. 1299-1310.
154. Zitouni G. Purely accelerating and decelerating flows within two flat disks / G. Zitouni, G.H. Vatistas//Acta. Mech.-1997.-vol.123.-P. 151-161.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.