Водородно-связанные интермедиаты и механизмы реакций с переносом протона в химии гидридов переходных металлов тема диссертации и автореферата по ВАК РФ 02.00.08, доктор химических наук Белкова, Наталия Викторовна

  • Белкова, Наталия Викторовна
  • доктор химических наукдоктор химических наук
  • 2011, Москва
  • Специальность ВАК РФ02.00.08
  • Количество страниц 299
Белкова, Наталия Викторовна. Водородно-связанные интермедиаты и механизмы реакций с переносом протона в химии гидридов переходных металлов: дис. доктор химических наук: 02.00.08 - Химия элементоорганических соединений. Москва. 2011. 299 с.

Заключение диссертации по теме «Химия элементоорганических соединений», Белкова, Наталия Викторовна

выводы

1. Развито новое научное направление исследования механизма реакций с переносом протона с участием гидридных комплексов переходных металлов, позволяющее выявлять структуру водородно-связанных интермедиатов, термодинамические и кинетические параметры отдельных стадий реакций и факторы воздействия на процесс и реакционную способность гидридов переходных металлов. Разработанный подход включает комбинированное экспериментальное (методами молекулярной спектроскопии (ИК, УФ, ЯМР) в широком диапазоне температур) и квантово-химическое исследование особенностей строения интермедиатов и поверхности потенциальной энергии.

2. Впервые представлен двуямный энергетический профиль реакции переноса протона, протекающей с образованием комплекса с молекулярным водородом через диводородную связь (МЫ-•■НА). Показано, что он имеет общий характер для протонирования гидридов переходных металлов, а образование диводородной связи вносит существенный вклад в энергетику процесса.

3. Установлено, что неклассические продукты протонирования стабилизированы за счёт образования Н-связи между диводородным лигандом и гомосопряженным анионом кислоты, [M(r|2-H2)]+—[ROHOR]. Показано, что термодинамические параметры образования молекулярного и ионного водородно-связанных комплексов возрастают симбатно.

4. Для близких к линейным диводородных связей установлена корреляция между расстоянием г(Н--Н) и рассчитанной энтальпией образования этих комплексов. На основании экспериментальных данных и результатов квантово-химических расчётов показано, что структура ДВС комплексов электронобогатых переходных металлов может отклоняться от линейной из-за присутствия дополнительного взаимодействия с атомом металла. Вклад последнего растёт вниз по группе и для гидридов металлов третьего переходного ряда создаёт возможность прямого переноса протона к атому металла.

5. Показано, что перенос протона происходит внутрикомплексно и в реакции принимает участие вторая молекула протонодонора: МН—НА + НА - МН-НА--НА ^—~ [М(л-Н2)]т[АНА] . Кинетика процесса подчиняется общему уравнению, однако наблюдаемый характер зависимости констант скорости от концентрации НА определяется величинами констант равновесия образования диводородно-связанных интермедиатов.

6. Установлено, что свободная энергия активации переноса протона (AG*pt) линейно уменьшается с ростом прочности диводородной связи (AH°dhb)- Большое отрицательное значение энтропии активации переноса протона (ЛБ^т) свидетельствует об упорядоченном переходном состоянии и определяет уменьшение Ав^рт при понижении температуры.

7. Установлен механизм изомеризации кинетических продуктов переноса протона [М(т12-Н2)]+ в термодинамические [М(Н)г]+. Показано, что образование транс-[Ср*М(Н)2(с1рре)]+ (М = Ре, 11и, Об) требует диссоциации водородно-связанных ионных пар и происходит внутримолекулярно через высокоэнергетическое тригонально-бипирамидальное Переходное СОСТОЯНИе. АН^ош не зависит от природы металла, тогда как величины энтропии активации (АБ^ош) увеличиваются вниз по группе, определяя уменьшение барьера (ДО*,3от) от Ре к Об. Низкобарьерная трансформация [М(г|2-Н2)]+ в [М(Н)2]+ является обратимой и не требует значительного изменения геометрии катиона и диссоциации ионных пар, например, для [Ср*Мо(г12-Н2)(Ъ)(Р2)]+ (Ь = СО, (Н)г; Рг = арре, (РМез)г).

8. Разработан подход к экспериментальному разделению неспецифического (изменение полярности) и специфического (протоноакцепторная/протонодонорная способность) влияния среды. Экспериментально и теоретически установлено, что протонодонорные растворители усиливают диводородно-связанные комплексы за счёт кооперативного эффекта, понижают барьер переноса протона и смещают равновесие в сторону ионных форм. Возможность останавливать реакцию за счет изменения природы растворителя на стадии комплекса с молекулярным водородом либо классического дигидрида показана на примере протонирования Ср*МоН(СО)(РМе3)2 сильной кислотой НВр4-Е1:20 в ТГФ или СН2С12, соответственно, и определяется различиями в специфической сольватации ионных пар.

9. Принципиальная возможность направлять реакцию в сторону образования классического полигидрида или продукта выделения водорода, варьируя температуру, полярность и координирующую способности среды, показана на примере протонирования Ср*Мо(с1рре)Н3 трифторуксусной кислотой. Определены активационные параметры выделения Н2, которые свидетельствуют о диссоциативном характере этой стадии.

Список литературы диссертационного исследования доктор химических наук Белкова, Наталия Викторовна, 2011 год

1. Jeffrey, G. A., An Introduction to Hydrogen Bonding. Oxford University Press: New York, 1997.

2. Reichardt, C., Solvents and Solvent Effects in Organic Chemistry. 3 ed.; WILEY-VCH: Weinheim, 2003; p 653.

3. Scheiner, S., Hydrogen Bonding. A Theoretical Perspective. Oxford University Press: New York, 1997; p 375.

4. Kebarle, P., "Gas phase ion thermochemistry based on ion-equilibria from the ionosphere to the reactive centers of enzymes." Int. J. Mass Spectr. 2000, 200, 313-330.

5. Meot-Ner, M., "The Ionic Hydrogen Bond." Chem. Rev. 2005,105, 213-284.

6. Эпштейн, JI. M, Иогансен, А. В., "Современные представления о влиянии среды на кислотно-основные равновесия. Водородные связи в газе и растворе." Успехи химии 1990, 59, 229-257.

7. Graton, J., Berthelot, M., Laurence, C., "Hydrogen-bond basicity рКНв scale of secondary amines." J. Chem. Soc., Perkin Trans. 2 2001, 2130-2135.

8. Bagno, A., Scorrano, G., "Site of ionization of polyfunctional bases and acids. 1. Ab initio proton affinities." J. Phys. Chem. 1996, 100,1536-1544.

9. Maksic, Z. В., Vianello, R., "Quest for the origin of basicity: initial vs final state effect in neutral nitrogen bases." J. Phys. Chem. A 2002,106, 419-430.

10. Chan, В., Del Bene, J. E., Elguero, J., Radom, L., "On the relationship between the preferred site of hydrogen bonding and protonation." J. Phys. Chem. A 2005, 109, 55095517.

11. Shubina, E. S., Belkova, N. V., Epstein, L. M., "Novel types of hydrogen bonding with transition metal 7t-complexes and hydrides." J. Organomet. Chem. 1997, 536-537, 17-29.

12. Braga, D., Grepioni, F., Tedesco, E., Biradha, K., Desiraju, G. R., "Hydrogen bonding in organometallic crystals. 6. X-H—M hydrogen bonds and M—(H-X) pseudo-agostic bonds." Organometallics 1997, 16, 1846-1856.

13. Brammer, L., "Metals and hydrogen bonds." Dalton Trans. 2003, 3145-3157.

14. Angelici, R. J., "Basicities of transition metal complexes from studies of their heats of protonation: A guide to complex reactivity." Acc. Chem. Res. 1995, 28, 51-60.

15. Эпштейн, JI. M., Шубина, Е. С., "Общие закономерности образования внутримолекулярных водородных связей с атомами переходных металлов." Металлоорг. хим. 1992, 5, 61-74.

16. Shubina, Е. S., Krylov, A. N., Kreindlin, A. Z., Rybinskaya, М. I., Epstein, L. М., "Intermolecular hydrogen bonds with d-electrons of transition metal atoms. H-complexes with metallocenes of the iron subgroup." J. Mol. Struct. 1993, 301, 1-5.

17. Epstein, L. M., Krylov, A. N., Shubina, E. S., "Novel types of hydrogen-bonds involving transition-metal atoms and proton-transfer (XH.M; MH.+.B; [MH]+.A')." J. Mol. Struct. 1994,322, 345-352.

18. Kazarian, S. G., Hamley, P. A., Poliakoff, M., "Is intermolecular hydrogen bonding to uncharged metal centers of organometallic compounds widespread in solution?" J. Am. Chem. Soc. 1993, 115, 9069-9079.

19. Brammer, L., McCann, M. C., Bullock, R. M., McMullan, R. K., Sherwood, P., "Et3NH+Co(CO)4-: hydrogen-bonded adduct or simple ion pair? Single-crystal neutron diffraction study at 15 K." Organometallics 1992,11, 2339-2341.

20. Brammer, L., Zhao, D., "A hydrogen-bonded chain involving bothN-H.N and N-H.Co hydrogen bonds. Low-temperature X-ray crystal structure of (NMP)3Ii2. [Co(CO)4]2 (NMP = N-Methylpiperazine)." Organometallics 1994,13, 1545-1547.

21. Zhao, D., Ladipo, F. T., Braddock-Wilking, J., Brammer, L., Sherwood, P., "Strengthening ofN-H-Co hydrogen bonds upon increasing the basicity of the hydrogen bond acceptor (Co)." Organometallics 1996,15, 1441-1445.

22. Brammer, L., Mareque Rivas, J. C., Zhao, D., "Unexpectedly lengthened N-H—Co hydrogen bonds?" Inorg. Chem. 1998, 37, 5512-5518.

23. Brammer, L., Mareque Rivas, J. C., Spilling, C. D., "An intramolecular N—H.Co hydrogen bond and a structure correlation study of the pathway for protonation of the Co(CO)3L" anion (L = CO, PR3)." J. Organomet. Chem. 2000, 609, 36-43.

24. Alkorta, I., Rozas, I., Elguero, J., "Transition metals as hydrogen bond acceptors: a theoretical study." J. Mol. Struct. (THEOCHEM) 2001, 537, 139-150.

25. Powel, J., Sawyer, J. F., Smith, S. J., "Bridge vs. terminal protonation of isostructural Mo-Pt and W-Pt heterobimetallic compounds." J. Chem. Soc., Chem. Commun. 1985, 1312-1313.

26. Kubas, G. J., "Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage." Chem. Rev. 2007,107, 4152-4205.

27. Van Der Ylugt, J. I., Rauchfuss, T. B., Whaley, C. M„ Wilson, S. R, "Characterization of a diferrous terminal hydride mechanistically relevant to the Fe-only hydrogenases." J. Am. Chem. Soc. 2005,127, 16012-16013.

28. Kresge, A. J., "What makes proton transfer fast." Acc. Chem. Res. 1975, 8, 354-360.

29. Kristjansdottir, S. S., Norton, J. R., "Acidity of hydrido transition metal complexes in solution." In Transition Metal Hydrides, Dedieu, A., Ed. YCH: New York, 1992; p 309.

30. Hodali, H. A., Shriver, D. F., Ammlung, C. A., "ja-Carbonyl-p-hydrido-decacarbonyltriferric acid, H2Fe3(CO)n." J. Am. Chem. Soc. 1978,100, 5239-5240.

31. Pribich, D. C., Rosenberg, E., "Kinetic deuterium isotope effects in the protonations of (|0.-H)M3(CO)n." (M = iron, ruthenium, osmium)." Organometallics 1988, 7, 1741-1745.

32. Rosenberg, E., "Kinetic deuterium-isotope effects in transition-metal hydride clusters." Polyhedron 1989, 8, 383-405.

33. Stevens, R. E., Guettler, R. D., Gladfelter, W. L., "Electrophilic attack on a cluster-coordinated nitrosyl ligand: crystal and molecular structure of Ru3(NOCH3)(CO)io and observation of an O-H to M-H tautomerization." Inorg. Chem. 1990, 29, 451-456.

34. Gladfelter, W. L., Stevens, R. E., "O-Methylation and O-protonation of coordinated nitric oxide. Observation of an anion-assisted O-H to M-H tautomerization." J. Am. Chem. Soc. 1982,104, 6454-6457.

35. Lokshin, B. V., Kazarian, S. G., Ginzburg, A. G., "IR Study of Hydrogen Bonds formed by 7T-complexes of Transition Metals in Liquid Xenon Solution." J. Mol. Struct. 1988, 174, 29-34.

36. Abad, M. M., Atheaux, I., Maisonnat, A., Chaudret, B., "Control of proton transfer by hydrogen bonding in the protonated forms of the binucleophilic complex {r|5-C5H4CH(CH2)4NMe}Ir(PPh3)H2." Chem. Commun. 1999, 381-382.

37. Шубина, E. С., Белкова, H. В., Ионидис, А. В., Голубев, H. С., Смирнов, С. Н., Шах-Мохаммеди, П., Эпштейн, JI. М., "Взаимодействие гидрида рения (г|5-C5Me5)ReH(CO)(NO) с фторированными спиртами." Изв. АН, сер. хим. 1997, 14051407.

38. Jia, G., Lau, C.-P., "Structural, acidity and chemical properties of some dihydrogen:hydride complexes of Group 8 metals with cyclopentadienyls and related ligands." Coord. Chem. Rev. 1999,190-192, 83-108.

39. Mebi, C. A., Frost, B. J., "Effect of pH on the biphasic catalytic hydrogenation of benzylidene acetone using CpRu(PTA)2H." Organometallics 2005, 24, 2339-2346.

40. Rossin, A., Gonsalvi, L., Phillips, A. D., Maresca, O., Lledos, A., Peruzzini, M-, "Water-assisted H-H bond splitting mediated by CpRu(PTA)2Cl. (PTA=l,3,5-triaza-7-phosphaadamantane). A DFT analysis." Organometallics 2007, 26, 3289-3296.

41. Chinn, M. S., Heinekey, D. M., "Dihydrogen complexes of ruthenium. 2. Kinetic and thermodynamic considerations affecting product distribution." J. Am. Chem. Soc. 1990, 112, 5166-5175.

42. Albeniz, A. C., Heinekey, D. M., Crabtree, R. H., "Dihydrogen complexes in catalysis: isotope exchange reactions." Inorg. Chem. 1991, 30, 3632-3635.

43. Ayllon, J. A., Sayers, S. F., Sabo-Etienne, S., Donnadieu, B., Chaudret, B., Clot, E., "Proton transfer in aminocyclopentadienyl ruthenium hydride complexes." Organometallics 1999,18, 3981-3990.

44. Esteruelas, M. A., Lopez, A. M., Onate, E., Royo, E., "Sequential protonation and methylation of a hydride-osmium complex containing a cyclopentadienyl ligand with a pendant amine group." Inorg. Chem. 2005, 44, 4094-4103.

45. Henry, R. M., Shoemaker, R. K., DuBois, D. L., DuBois, M. R., "Pendant bases as proton relays in iron hydride and dihydrogen complexes." J. Am. Chem. Soc. 2006, 128, 30023010.

46. Forde, C. E., Landau, S. E., Morris, R. PI., "Dicationic iron(II) complexes with dihydrogen trans to 7r-acid ligands: trans-Fe(r|2-H2)(L)(dppe)2.2+ (L = CO or CNH). Is there Fe-H2 Ti-back bonding?" J. Chem. Soc., Dalton Trans. 1997, 1663-1664.

47. Ileinekey, D. M., Oldham, W. J., "Coordination chemistry of dihydrogen." Chem. Rev. 1993, 93 913-926.

48. Jessop, P. G., Morris, R. H., "Reactions of transition-metal dihydrogen complexes." Coord. Chem. Rev. 1992,121 155-284.

49. Parkin, G., Bercaw, J. E., "Direct Protonation of the W-H bonds of bis(pentamethylcyclopentadienyl)tungsten dihydride." J. Chem. Soc., Chem. Commun. 1989, 255-257.

50. Jordan, R. F., Norton, J. R., "Kinetic and thermodynamic acidity of hydrido transition-metal complexes. 1. Periodic trends in group 6 complexes and substituent effects in osmium complexes." J. Am. Chem. Soc. 1982,104, 1255-1263.

51. Kristjansdottir, S. S., Norton, J. R., "Acidity of hydrido transition metal complexes in solution. In Transition Metal Hydrides, Dedieu, A., Ed. VCH: New York, 1991; pp 309359.

52. Kuhlman, R., "Site selectivity in reactions of metal hydride halide complexes with acids." Coord. Chem. Rev. 1997,167, 205-232.

53. Oglieve, K. E., Henderson, R. A., "Protonation at hydrido ligands in WH4(PMePh2)4." J. Chem. Soc., Chem. Commun. 1992, 441 443.

54. Papish, E. T., Rix, F. C., Spetseris, N., Norton, J. R., Williams, R. D., "Protonation of CpW(CO)2(PMe3)H: is the metal or the hydride the kinetic site?" J. Am. Chem. Soc. 2000,122, 12235-12242.

55. Crabtree, R. H., Siegbahn, P. E. M., Eisenstein, O., Rheingold, A. L., "A new intermolecular interaction: Unconventional hydrogen bonds with element-hydride bonds as proton acceptor." Acc. Chem. Res. 1996, 29, 348.

56. Sini, G., Eisenstein, O., Yao, W., Crabtree, R. H., "Intermolecular Re-H.H-X hydrogen bonding (X = N, C) involving ReH5(PPh3)3." Inorg. Chim. Acta 1998, 280, 26.

57. Poliakoff, M., Howdle, S. M., Kazarian, S. G., "Vibrational spectroscopy in supercritical fluids: from analysis and hydrogen bonding to polymers and synthesis." Angew. Chem. Int. Ed. Engl. 1995, 34, 1275-1295.

58. Lee, J. C., Peris, E., Rheingold, A., Crabtree, R. H., "An unusual type of H---H interaction: Ir-H—H-0 and Ir-H—H-N hydrogen bonding and its involvement in a-bond metathesis." J. Am. Chem. Soc. 1994,116 11014-11019.

59. Lee, J. C., Rheingold, A., Muller, B., Pregosin, P. S., Crabtree, R. H., "Complexation of an amide to iridium via an iminol tautomer and evidence Ir-H.H-0 hydrogen bond." J. Chem. Soc. Chem. Commun. 1994, 1021-1022.

60. Peris, E., Lee, J. C., Rambo, J. R., Eisenstein, O., Crabtree, R. H., "Factors affecting the strength ofN-H—H-Ir hydrogen bonds." J. Am. Chem. Soc. 1995,117 3485-3491.

61. Rivas, J. C. M., Brammer, L., "Hydrogen bonding in substituted-ammonium salts of the tetracarbonylcobaltate(-I) anion: some insights into potential roles for transition metals m organometallic crystal engineering." Coord. Chem. Rev. 1999,183 43-80.

62. Bakhmutov, V. I., Dihydrogen bonds: Principles, Experiments and Applications. Joh11 Willey & Sons, Inc.: Hoboken, New Jersey, 2008; p 241.

63. Messmer, A., Jacobsen, H., Berke, H., "probing regioselective intermolecular hydrogen bonding to Re(CO)H2(NO)(PR3)2. complexes by NMR titration and equilibrium NMR methodologies." Chem. Eur. J. 1999, 5, 3341-3349.

64. Lokshin, B. V., Kazarian, S. G., Ginzburg, A. G., "IR Study of hydrogen bonds formed by 7i-complexes of transition metals in liquid xenon solution." J. Mol. Struct. 1988, 1 29-34.

65. Orlova, G., Scheiner, S., "Intermolecular MH.HR bonding in monohydride Mo and ^ complexes." J. Phys. Chem. A 1998,102,260-269.

66. Ayllon, J. A., Sabo-Etienne, S., Chaudret, B., Ulrich, S., Limbach, H.-H., "Modulation °f quantum mechanical exchange couplings in transition metal hydrides through hydro bonding." Inorg. Chim. Acta 1997,259, 1-4.

67. Иогансен, А. В., "Правило призведения кислотно-основных функций молекул при образовании водородных связей в растворе в CCI4." Теор. эксп. химия 1971, 7, 302311.

68. Иогансен, А. В., "Оценка влияния среды на свойства водородных связей по правилу произведения кислотно-основных функций молекул." Теор. эксп. химия 1971, 7,312-317.

69. Iogansen, А. V., "Direct proportionality of the hydrogen bonding energy and the intensification of the stretching v(XH) vibration in infrared spectra." Spectrochim. Acta A 1999,55, 1585-1612.

70. Besora, M., Lledos, A., Maseras, F., "Protonation of transition-metal hydrides: a not so simple process." Chem. Soc. Rev. 2009, 38, 957-966.

71. Field, L. D., Hambley, T. W., Yau, В. С. K., "Formation of ruthenium thiolates via complexes of molecular hydrogen." Inorg. Chem. 1994,33, 2009-2017.

72. Chinn, M. S., Heinekey, D. M., "Synthesis and properties of a series of ruthenium dihydrogen complexes." J. Am. Chem. Soc. 1987,109, 5865-5867.

73. Morgan, S. O., Lowry, H. H., "Dielectric polarization of some pure organic compounds in the dissolved, liquid, and solid states." J. Phys. Chem. 1930, 34, 2385-2432.

74. Golubev, N. S., Shenderovich, I. G., Smirnov, S. N., Denisov, G. S., Limbach, H. H., "Nuclear scalar spin-spin coupling reveals novel properties of low-barrier hydrogen bonds in a polar environment." Chem. Eur. J. 1999, 5, 492-497.

75. Denisov, G. S., Kulbida, A. T., Micheev, V. A., Rumynskaja, I. C., Schreiber, V. M., "The reorganization of the medium in the reversible proton transfer." J. Mol. Liq. 1983, 26, 159-168.

76. Bianchini, C., Perez, P. J., Peruzzini, M., Zanobini, F., Vacca, A., "Classical and nonclassical polyhydride ruthenium(II) complexes stabilized by the tetraphosphine P(CH2CH2PPh2)3." Inorg. Chem. 1991, 30, 279-287.

77. Heinekey, D. M., van Roon, M., "Dihydride complexes of the cobalt and iron group metals: an investigation of structure and dynamic behavior." J. Am. Chem. Soc. 1996,118 12134-12140.

78. Shubina, E. S., Krylov, A. N., Kreindlin, A. Z., Rybinskaya, M. I., Epstein, L. M., "Hydrogen-bonded complexes involving the metal atom and protonation of metallocenes of the iron subgroup." J. Organomet. Chem. 1994, 465, 259-262.

79. Shubina, E. S., Krylov, A. N., Kreindlin, A. Z., Rybinskaya, M. I., Epstein, L. M., "Intermolecular hydrogen-bonds with d-electrons of transition-metal atoms: H-complexes with metallocenes of the iron subgroup." J. Mol. Struct. 1993, 301, 1-5.

80. Baba, H., Matsuyama, A., Kokubun, H., "Proton transfer in p-nitrophenol-triethylamine system in aprotic solvents." Spectrochim. Acta Part A: Mol. Spectr. 1969, 25, 1709-1722.

81. Dega-Szafran, Z., Sokolowska, E., "Prototropic equilibrium in complexes of N-methylmorpholine betaine with phenols studied by NMR and UV spectroscopy." J. Mol. Struct. 2001,565-566, 17-23.

82. Nesterowicz, M., Korewa, R., "Basic properties of 4-arylazo-phenols and 4-arylazo-amsoles." Polish J. Chem. 1981, 55, 1085-1092.

83. Bordwell, F. G., "Equilibrium acidities in dimethyl sulfoxide solution." Acc. Chem. Res. 1988, 21, 456-463.

84. Bautista, M. T., Earl, K. A., Maltby, P. A., Morris, R. H., Schweitzer, C. T., Sella, A.,ry 2

85. Estimation of the H-H distances of rj -H2 ligands in the complexes /ram-M(r| -H2)(H)(PR2CH2CH2PR2)2.+ [M Fe, Ru, R = Ph; M = Os, R = Et] by solution NMR methods." J. Am. Chem. Soc. 1988, 110, 7031-7036.

86. Heinekey, D. M., Luther, T. A., "Synthesis, characterization, and reactivity of dicationic dihydrogen complexes of osmium." Inorg. Chem. 1996, 35, 4396-4399.

87. Nesterowicz, M., Korewa, R., Lasinska, E., "UV-Vis absorption-spectra and acid-base properties of 2 4-para-(para-x-phenylazo)-phenylazo.-phenols (X = H, NO2)." Polish J. Chem. 1987, 61, 573-580.

88. Lee, K. H., Lee, H.-Y., Lee, D. H., Hong, J.-I., "Fluoride-selective chromogenie sensors based on azophenol." Tetrahedron Lett. 2001, 42, 5447-5449.

89. Barone, V., Cossi, M., "Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model." J. Phys. Chem. A 1998,102, 1995-2001.

90. Cossi, M., Rega, N., Scalmani, G., Barone, V., "Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model." J. Comput. Chem. 2003, 24, 669-681.

91. Jeffrey, G. A., Säender, W., Hydrogen Bonding in Biological Structures. SpringerVerlag: Berlin, 1991.

92. Karpfen, A., "Cooperative effects in hydrogen bonding" Adv. Chem. Phys. 2002, 123, ■ 469-510.

93. Hamon, P., Toupet, L., Hamon, J.-R., Lapinte, C., "Novel diamagnetic and paramagnetic . , iron(ii), iron(iii), and iron(iv) classical and nonclassical hydrides. X-ray crystal structure of Fe(C5Me5)(dppe)D.PF6." Organometallics 1992,11, 1429-1431.

94. Guan, H., Iimura, M., Magee, M. P., Norton, J. R., Zhu, G., "Ruthenium-catalyzed ionic hydrogenation of iminium cations, scope and mechanism." J. Am. Chem. Soc. 2005, 127, 7805-7814.

95. Jia, G., Ng, W. S., Yao, J., Lau, C.-P., Chen, Y., "Synthesis and characterization of dihydrogen and dihydride complexesof CpMH2(diphosphine).+ (M = Fe, Os)."

96. Organometallics 1996,15, 5039-5045.

97. Gelabert, R., Moreno, M., Lluch, J. M., Lledos, A., Pons, V., Heinekey, D. M., "Synthesis and properties of compressed dihydride complexes of iridium: theoretical and spectroscopic investigations." J. Am. Chem. Soc. 2004, 126, 8813.

98. Sabo-Etienne, S., Chaudret, B., "Quantum mechanical exchange coupling in polyhydride and dihydrogen complexes." Chem. Rev. 1998, 98, 2077.

99. Egbert, J. D., Bullock, R. M., Heinekey, D. M., "Cationic dihydrogen/dihydride complexes of osmium: structure and dynamics." Organometallics 2007, 26,2291-2295.

100. Shi, F., "Theoretical investigation on the nature of intramolecular interactions in aminocyclopentadienyl ruthenium hydride complexes." Organometallics 2006, 25, 40344037.

101. Wilson, R. D., Koetzle, T. E., Hart, W. D., Kvick, A., Tipton, D. L., Bau, R., "X-ray and neutron diffraction studies on dicyclopentadienyltrihydroniobiiam and dicyclopentadienyltrihydrotantalum." J. Am. Chem. Soc. 1977, 99, 1775-1781.

102. Girling, R. B., Grebenik, P., Perutz, R. N., "Vibrational spectra of terminal metal hydrides: solution and matrix-isolation studies of (r|-C5H5)2MHn.x+ (M = Re, Mo, W, Nb, Ta; n = 1-3; x = 0, 1)." Inorg. Chem. 1986, 25, 31-36.

103. Sauvageot, P., Sadorge, A., Nuber, B., Kubicki, M. M., Leblanc, J.-C., Mortise, C., "Formation and reactivity of the Cp'2Ta(H)2.+ cation (Cp* = r|5-tBuC5H4)." Organometallics 1999, 18, 2133-2138.

104. Baya, M., Houghton, J., Daran, J.-C., Poli, R., "Formation and structure of a sterically protected molybdenum hydride complex with a 15-electron configuration: (1,2,4-C5H2/Bu3)Mo(PMe3)2H.+." Angew. Chem., Int. Ed. Engl. 2007, 46, 429-432.

105. Sakaba, H., Hirata, T., Kabuto, C., Kabuto, K., "Synthesis, structure, and dynamic behavior of tungsten dihydride silyl complexes Cp*(CO)2W(H)2(SiHPhR) (R = Ph, H, CI)." Organometallics 2006, 25, 5145-5150.

106. Sacconi, L., Bertini, I., "Low- and. high-spin five-coordinate cobalt(II) and nickel(II) complexes with tris(2-diphenylphosphinoethyl)amine." J. Am. Chem. Soc. 1968, 90, 5443-5446.

107. Morassi, R., Bertini, I., Sacconi, L., "Five-coordination in iron(II); cobalt(II) and nickel(II) complexes." Coord. Chem. Rev. 1973,11, 343-402.

108. Mealli, C., Ghilardi, C. A., Orlandini, A., "Structural flexibility and bonding capabilities of the ligand np3 toward the transition metals." Coord. Chem. Rev. 1992,120, 361-387.287

109. Bianchini, C., Meli, A., Peruzzini, M., Vizza, F., Zanobini, F., "Tripodal polyphosphine ligands control selectivity of organometallic reactions." Coord. Chem. Rev. 1992, 120, 193-208.

110. Gusev, D. G., Berke, H., "Hydride fluxionality in transiton metal complexes: an approach to the understanding of mechanistic features and structural diversities." Chem. Ber. 1996, 129, 1143-1155.

111. Jia, G., Lough, A. J., Morris, R. H., "Some rhenium hydride complexes with tetradentate phosphine co-ligands: the crystal structure of Re(H2BEt2)(racemic-tetraphos)." J. Organomet. Chem. 1993,461, 147-156.

112. Bianchini, C., Peruzzini, M., Zanobini, F., Magon, L., Marvelli, L., Rossi, R., "Synthesis and characterization of rhenium polyhydrides stabilized by the tripodal ligand MeC(CH2PPh2)3." J. Organomet. Chem. 1993, 451, 97-106.

113. Shanan-Atidi, H., Bar-Eli, K. H., "A convenient method for obtaining free energies of activation by the coalescence temperature of an unequal doublet." J. Phys. Chem. 1970, 74, 961-963.

114. Friebolin, H., Basic One- and Two-Dimensional NMR Spectroscopy. 4 ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, 2005; p 430.

115. Kost, D., Carlson, E. H., Raban, M., "The validity of approximate equations for kc in dynamic nuclear magnetic resonance." J. Chem. Soc. D: Chem. Comm. 1971, 656-657.

116. Luo, X.-L., Crabtree, R. H., "Synthesis and spectroscopic characterization of ReH5(triphos). and [ReH6(triphos)]+ [triphos = PPh(CH2CH2PPh2)2].*' J. Chem. Soc., Dalton Trans. 1991, 587-590.

117. Michos, D., Luo, X.-L., Crabtree, R. H., "Synthesis and characterization of some rhenium complexes with the new mixed phosphorus-nitrogen donor ligand NPh(CH2CH2PPh2)2." J. Chem. Soc., Dalton Trans. 1992, 1735-1738.

118. Yandulov, D. V., Huang, D., Huffman, J. C., Caulton, K. G., "Structural distortions in mer-M(II)3(NO)L2 (M = Ru, Os) and their influence on intramolecular fluxionality and quantum exchange coupling." Inorg. Chem. 2000, 39, 1919-1932.

119. Bianchini, C., Meli, A., Peruzzini, M., Vizza, F., Bachechi, F., "Crystal structure of the cis hydride acetyl complex {N(CH2CH2PPh2)3}Rh(H)(COMe).BPh4. One-pot synthesis of (c-acyl)metal complexes from aldehydes." Organometallics 1991, 10, 820-823.

120. Dapporto, P., Midollini, S., Sacconi, L., "Tetrahedro-tetraphosphorus as monodentate ligand in a nickel(O) complex." Angew. Chem. Intern. Ed. Engl. 1979,18, 469-469.

121. Bau, R., Schwerdtfeger, C. J., Garlaschelli, L., Koetzle, T. F., "Neutron diffraction study of/ac-prH3(PPh2Me)3.MeOH." J. Chem. Soc., Dalton Trans. 1993, 3359-3362.

122. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th Edition. John Wiley & Sons Inc.: New York, 1997.

123. Bakhmutov, V. I., Practical NMR Relaxation for Chemists. John Wiley & Sons, Ltd: 2005; p 202.

124. Gutiérrez-Puebla, E., Monge, A., Paneque, M., Poveda, M. L., Taboada, S., Trujillo, M., Carmona, E., "Synthesis and properties of TpMe2IrH4 and TpMe2IrH3(SiEt3): Ir(V) polyhydride species with C3v geometry." J. Am. Chem. Soc. 1998,121, 346-354.

125. Webster, C. E., Singleton, D. A., Szymanski, M. J., Hall, M. B., Zhao, C., Jia, G., Lin, Z., "Minimum energy structure of hydridotris(pyrazolyl)borato iridium(v) tetrahydride is not a C3v capped octahedron." J. Am. Chem. Soc. 2001,123, 9822-9829.

126. Maseras, F., Lledys, A., Clot, E., Eisenstein, O., "Transition metal polyhydrides: from qualitative ideas to reliable computational studies." Chem. Rev. 2000,100, 601-636.

127. Bianchini, C., Moneti, S., Peruzzini, M., Vizza, F., "Synthesis and reactivity of the labile dihydrogen complex {MeC(CH2PPh2)3}Ir(H2)(H)2.BPh4." Inorg. Chem. 1997, 36, 58185825.

128. Salomon, M. A., Braun, T., Krossing, I., "Iridium derivatives of fluorinated aromatics by C-H activation: isolation of classical and non-classical hydrides." Dalton Trans. 2008, 5197-5206.

129. Heinekey, D. M., Lledos, A., Lluch, J. M., "Elongated dihydrogen complexes: what remains of the H-H bond?" Chem. Soc. Rev. 2004, 33, 175-182.

130. Gelabert, R., Moreno, M., Lluch, J. M., Lledos, A., Pons, V., Heinekey, D. M., "Synthesis and properties of compressed dihydride complexes of iridium: theoretical and spectroscopic investigations." J. Am. Chem. Soc. 2004, 126, 8813-8822.

131. Shin, J. H., Parkin, G., "The Syntheses, structures and reactivity of some mononuclear and dinuclear pentamethylcyclopentadienyl molybdenum complexes." Polyhedron 1994, 13, 1489-1493.

132. SpinWorks, http://www.umanitoba.ca/chemistrv/nmr/spinworks/.

133. Kubas, G. J., "Metal-dihydrogen and sigma-bond coordination: the consummate extension of the Dewar-Chatt-Duncanson model for metal-olefin bonding." J. Organomet. Chem. 2001, 635, 37-68.

134. Horwitz, C. P., Shriver, D. F., "C- and O-bonded metal carbonyls: formation, structures, and reactions." Adv. Organometal. Chem. 1984, 23, 219-305.

135. Quadrelli, E. A., Kraatz, H.-B., Poli, R., "Oxidation and protonation of transition metal hydrides: role of an added base as proton shuttle and nature of protonated water in acetonitrile." Inorg. Chem. 1996, 35, 5154-5162.

136. Sanders, J. R., "Hydrido-complexes of ruthenium and iron containing diphenylphosphine ligands." J. Chem. Soc. Dalton Trans. 1972, 1333-.

137. Shin, J. H., Churchill, D. G., Parkin, G., "Carbonyl abstraction reactions of Cp*Mo(PMe3)3H with C02; (CH20)n; HC02H; and MeOH: the synthesis of Cp*Mo(PMe3)2(CO)H and the catalytic decarboxylation of formic acid." J. Organomet. Chem. 2002, 642, 9-15.

138. Legrand, N., Bondon, A., Simonneaux, G., Jung, C., Gill, E., "substrate interactions in cytochrome-P-450 correlation between C-13 nuclear-magnetic-resonance chemical-shifts and C-0 vibrational frequencies." FEBSLetters 1995, 364, 152-156.

139. Potter, W. T., Hazzard, J. H., Choc, M. G., Tucker, M. P., Caughey, W. S., "Infrared-spectra of carbonyl hemoglobins characterization of dynamic heme pocket conformers." Biochemistry 1990, 29, 6283-6295.

140. Murphy, V. J., Hascall, T., Chen, J. Y., Parkin, G., "Hydrogen bonding to transition metal fluoride ligands: the synthesis and structure of the bifluoride complex Mo(PMe3)4H2F(FHF)." J. Am. Chem. Soc. 1996,118, 7428-7429.

141. Tuck, D. G., "Structures and properties of HX2" and HXY" anions." Progr. Inorg. Chem. 1968, 9, 161-194.

142. Nauta, K., Miller, R. E., Fraser, G. T., Lafferty, W. J., "The infrared spectrum and internal rotation barrier in HF-BF3." Chem. Phys. Lett. 2000, 322, 401-406.

143. Luksza, M., Kimmer, S., Malisch, W., "Dicarbonyl(ri5-cyclopentadienyl)(di-tert-butyl-A.4-arsanediyl)molybdenum and -tungsten the first complexes with a metal-arsenic double bond." Angew. Chem., Int. Ed. Engl. 1983, 22, 416-417.

144. Baker, R. T., Calabrese, J. C„ Harlow, R. L„ Williams, I. D., "New (ri-C5Me5)M(PR2)x complexes (M = Ta, Mo, and W): reversible P-H bond activation, sp3 C-H bond activation, and P-C bond formation." Organometallics 1993, 12, 830-841.

145. Poli, R., Quadrelli, E. A., "Experimental and computational studies of the stability and reactivity of a half-sandwich 16-electron spin triplet Mo(II) complex containing a terminal hydroxide ligand." New J. Chem. 1998, 22, 435-450.

146. Fettinger, J. C., Kraatz, H.-B., Poli, R., Quadrelli, E. A., "First mononuclear paramagnetic organometallics of Mo" and Mom containing terminal hydroxide ligands. X-ray structure of Mo(Ti5-C5H5)(OH)(PMe3)3.BF4." Chem. Commun. 1997, 889-890.

147. Castaneda, J. P., Denisov, G. S., Kucherov, S. Y., Schreiber, V. M., Shurukhina, A. V., "Infrared and ab initio studies of hydrogen bonding and proton transfer in the complexes formed by pyrazoles." J. Mol. Struct. 2003, 660, 25^10.

148. Le Grognec, E., Poli, R., Richard, P., "Dialkyl(butadiene)cyclopentadienyl-molybdenum(III) complexes. synthesis, characterization, and reactivity." Organometallics 2000, 19, 3842-3853.

149. Steiner, T., "Six-fold phenyl embrace in crystalline 3,3,3-triphenylpropionic acid." J. Chem. Crystallogr. 1999, 29, 1235-1237.

150. Эпштейн, JI. М., Сайткулова, Л. Н., Исаева, Л. С., Морозова, Л. Н., Кравцов, Д. Н., "Строение карбоксилатов никеля с фосфиновыми лигандами по данным молекулярной спектроскопии." Металлоорг. хим. 1991, 4, 439.

151. Kubas, G. J., "Molecular hydrogen complexes: coordination of a cj bond to transition metals." Acc. Chem. Res. 1988,27, 120-128.

152. Burdett, J. K., Eisenstein, O., Jackson, S. A., In Transition Metal Hydrides, Dedieu, A., Ed. VCH Publishers, Inc.: Deerfield Beach, FL, 1992.

153. Coustelcean, R., Jackson, J. E., "Dihydrogen bonding: Structures, energetic, and dynamic." Chem. Rev. 2001,101, 1963-1983.

154. Grabowski, S. J., "High-level ab initio calculations of dihydrogen-bonded complexes." J. Phys. Chem. A 2000,104, 5551-5557.

155. Alkorta, I., Elguero, J., Mo, O., Yanez, M., Del Bene, J. E., "Ab initio study of the structural, energetic, bonding, and ir spectroscopic properties of complexes with dihydrogen bonds." J. Phys. Chem. A 2002,106, 9325-9330.

156. Yao, W., Eisenstein, O., Crabtree, R. H., "Interactions between С—H and N—H bonds and d8 square planar metal complexes: hydrogen bonded or agostic?" Inorg. Chim. Acta 1997, 254, 105-111.

157. Klooster, W. Т., Koetzle, T. F., Siegbahn, P. E. M., Richardson, Т. В., Crabtree, R. H., "Study of the N-H—H-B dihydrogen bond including the crystal structure of BH3NH3 by neutron diffraction." J. Am. Chem. Soc. 1999,121, 6337-6343.

158. Patel, B. P., Yao, W., Yap, G. P. A., Rheingold, A. L., Crabtree, R. H., "Re-HH-N interactions in the second-coordination sphere of crystalline Re(PPh3)2(imidazole)." Chem. Commun. 1996, 991-992.

159. Bakhmutov, V. I., "Proton transfer to hydride ligands with formation of dihydrogen complexes: a physicochemical view." Eur. J. Inorg. Chem. 2005, 245-255.

160. Chojnowski, J., "Triethylphosphine, triethylarsine, and triethylstibine as hydrogen-acceptors in hydrogen bonds. 1. Association with pyrrole." Bull. Acad. Polon. Sci., Ser. Set Chim. 1970,18, 309-316.

161. Chojnowski, J., "Triethylphosphine, Triethylarsine, and Triethylstibine as Hydrogen-Acceptors in Hydrogen Bonds. 2. Association with Phenol and Methanol." Bull. Acad. Polon. Sci., Ser. Sci. Chim. 1970, 18, 317-322.

162. Погорелый, В. К., "Слабые водородные связи " Успехи химии 1977, 46, 602-638.

163. Epstein, L. М., Shubina, Е. S., "New types of hydrogen bonding in organometallic chemistry." Coord. Chem. Rev. 2002, 237, 165-181.

164. Ault, B. S., Steinback, E., Pimentel, G. C., "Matrix isolation studies of hydrogen bonding. Vibrational correlation diagram." J. Phys. Chem. 1975, 79, 615-620.

165. NIST Chemistry WebBook. In NIST Standard Reference Database 69: 2005.

166. Kuejtt, A., Leito, I., Kaljurand, I., Soovaeli, L., Vlasov, V. M., Yagupolskii, L. M., Koppel, I. A., "A comprehensive self-consistent spectrophotometric acidity scale of neutral broensted acids in acetonitrile." J. Org. Chem. 2006, 71, 2829-2838.

167. Avramovic, N., Hock, J., Blacque, O., Fox, Т., Schmalle, PI. W., Berke, H., "ITydridic reactivity of W(CO)(H)(NO)(PMe3)3 dihydrogen bonding and H2 formation with protic donors." J. Organomet. Chem. 2010, 695, 382-391.

168. Baur, J., Jacobsen, H., Burger, P., Artus, G., Berke, H., Dahlenburg, L., "The chemistry of new nitrosyltungsten complexes with pyridyl-functionalized phosphane ligands." Eur. J. Inorg. Chem. 2000, 1411-1422.

169. Cook, J. L., Hunter, Christopher A., Low, Caroline M. R., Perez-Velasco, A., Vinter, J. G., "Preferential solvation and hydrogen bonding in mixed solvents." Angew. Chem. Int. Ed. 2008, 47, 6275-6277.

170. Cook, J. L„ Hunter, C. A., Low, C. M. R., Perez-Velasco, A., Vinter, J. G., "Solvent effects on hydrogen bonding." Angew. Chem. Int. Ed. 2007, 46, 3706-3709.

171. Arnett, E. M„ Joris, L„ Mitchell, E., Murty, T. S. S. R., Gorrie, T. M., Schleyer, P. v. R., "Hydrogen-bonded complex formation. III. Thermodynamics of complexing by infrared spectroscopy and calorimetry." J. Am. Chem. Soc. 1970, 92, 2365-2377.

172. Lopes, M. C. S., Thompson, H. W., "Hydrogen bonding between phenols and cyanides." Spectrochim. Acta A 1968, 24, 1367-1383.

173. Blatz, P. E., Tompkins, J. A., "Thermodynamic studies of hydrogen bonding and proton transfer between weak acids and bases in nonaqueous solvents as a model for acid-base reactions in proteins." J. Am. Chem. Soc. 1992,114, 3951-3956.

174. Page, M. I., Jencks, W. P., "Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect." Proc.Natl. Acad. Sci. USA 1971, 112, 1678-1683.

175. Labinger, J. A., Wong, K. S., "Mechanism of formation of (Ti5-C5H5)2NbH3 from the reaction of (r|5-C5H5)2NbCl2 with hydridoaluminate reducing agents." J. Organomet. Chem. 1979,170, 373-384.

176. Nikonov, G. I., Lemenovskii, D. A., Lorberth, J., "Facile insertion of ClPPh2 into Nb-H bonds as a synthetic route to new phosphino and phosphido derivatives of niobocene." OrganometalIics 1994, 13, 3127-3133.

177. Lee, D.-H., "Chloro- and hydrido complexes of (pentamethylcyclopentadienyl) bis(phosphine)ruthenium." J. Korean Chem. Soc. 1992, 36, 248-254.

178. C5Me5)Ru{(S,S)-Ph2PCH(CH3)CH(CH3)PPh2}Cl." Inorg. Chim. Acta 1998, 282, 163172.

179. Gross, C. L., Girolami, G. S., "Synthesis and characterization of osmium(ii) compounds of stoichiometry (C5Me5)OsL2Br, (C5Me5)OsL2H, and (C5Me5)Os(NO)Br2" Organometallics 1996, 15, 5359-5367.

180. Winter, M. WebElementsTM, the periodic table on the WWW. http://www.webelements.com/

181. Иогансен, А. В., Курочкин, Г. А., Фурман, В. М., Глазунов, В. П., Одиноков, С. Е., "Энергия водородной связи и протонодонорная способность фторированных спиртов." Журн. Прикл. Спектр. 1980, 33, 460.

182. Иогансен, А. В., Водородная связь, Соколов, Н. Д., "Наука": Москва, 1980; 134-152.

183. Lee, С. Т., Yang, W. Т., Parr, R. G., "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density." Phys. Rev. В 1988, 37, 785789.

184. Stephens, P., Devlin, F., Chabalowski, C., Frisch, M., "Ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields." J. Phys. Chem. 1994,98, 11623-11627.

185. Perdew, J. P., In Electronic Structure of Solids, Ziesche, P., Eschrig, H., Eds. Akademie Verlag: Berlin, 1991; p 11.

186. Perdew, J. P., "Density-functional approximation for the correlation-energy of the inhomogeneous electron-gas." Phys. Rev. B 1986, 33, 8822-8824.

187. Head-Gordon, M., Pople, J. A., Frisch, M. J., "MP2 energy evaluation by direct methods." Chem. Phys. Lett. 1988, J53, 503-506.

188. Krishnan, R., Pople, J. A., "Approximate fourth-order perturbation theory of the electron correlation energy." Int. J. Quantum Chem. 1978,14, 91-100.

189. Pople, J. A., Head-Gordon, M., Raghavachari, K., "Quadratic configuration interaction. A general technique for determining electron correlation energies." J. Chem. Phys. 1987, 87, 5968-5975.

190. Hay, P. J., Wadt, W. R., "Ab initio effective core potentials for molecular orbital calculations. Potentials for the transition metal atoms Sc to Hg." J. Chem. Phys. 1985, 82, 270-283.

191. Wadt, W. R., Hay, P. J., "Ab initio effective core potentials for molecular orbital calculations. Potentials for main group elements Na to Bi." J. Chem. Phys. 1985, 82, 284-298.

192. Boys, S. F., Bernardi, F., "The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors." Mol. Phys. 1970,19, 553 566.

193. Wiberg, K., "Application of Pople-Santry-Segal CNDO method to cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane." Tetrahedron 1968, 24, 1083-1096.

194. Glendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., Bohman, J. A., Morales, C., Weinhold, F. NBO 5.0, Theoretical Chemistry Institute, University of Wisconsin: Madison, 2001.

195. SHELXTL, 6.1; Bruker AXS Inc.: Madison, WI, USA, 2005.