Устойчивость пологих складчатых оболочек при больших перемещениях тема диссертации и автореферата по ВАК РФ 05.23.17, кандидат технических наук Поварова, Ирина Борисовна

  • Поварова, Ирина Борисовна
  • кандидат технических науккандидат технических наук
  • 2008, Санкт-Петербург
  • Специальность ВАК РФ05.23.17
  • Количество страниц 105
Поварова, Ирина Борисовна. Устойчивость пологих складчатых оболочек при больших перемещениях: дис. кандидат технических наук: 05.23.17 - Строительная механика. Санкт-Петербург. 2008. 105 с.

Оглавление диссертации кандидат технических наук Поварова, Ирина Борисовна

Введение

Глава 1. Обзор литературы и современное состояние вопроса

1.1. Общие проблемы устойчивости тонких оболочек при малых перемещениях

1.2. Учет больших перемещений при оценке устойчивости гладких оболочек

1.3. Призматические оболочки с изломами срединной поверхности в одном направлении

1 .4. Складчатые многогранные оболочки с изломами срединной поверхности в двух направлениях

1.5. Оценка устойчивости пологих оболочек с изломами срединной поверхности с помощью обобщенных функций

1.6. Геометрически нелинейные задачи устойчивости оболочки с изломами срединной поверхности. Задачи, рассмотренные в диссертации

Глава 2. Система разрешающих уравнений устойчивости складчатых оболочек при больших перемещениях

2.1. Уравнения равновесия геометрически нелинейной теории пологих оболочек

2.2. Уравнения совместности деформаций нелинейной теории пологих оболочек

2.3. Система разрешающих уравнений геометрически нелинейной теории устойчивости складчатых оболочек

Глава 3. Устойчивость пологой складчатой оболочки при больших перемещениях

3.1. Решение геометрически нелинейной задачи об устойчивости пологой складчатой оболочки

3.2. Устойчивость квадратной в плане пологой складчатой оболочки при поперечной нагрузке

3.3. Исследование устойчивости пологих складчатых оболочек—

Глава 4. Уточнение решения геометрически нелинейной задачи об устойчивости складчатой оболочки

4.1. Общая схема решения задачи об устойчивости складчатой оболочки во втором приближении метода Бубнова-Галеркина

4.2. Решение поставленной задачи во втором приближении

Основные результаты работы

Рекомендованный список диссертаций по специальности «Строительная механика», 05.23.17 шифр ВАК

Введение диссертации (часть автореферата) на тему «Устойчивость пологих складчатых оболочек при больших перемещениях»

Пространственные конструкции, образованные из тонких оболочек, сочетают в себе легкость с высокой прочностью, что обеспечивают им широкое применение в строительстве, судостроении, авиастроении и в других областях техники.

Применение для изготовления оболочек материалов большой прочности, таких как титановые сплавы, высокопрочный бетон и др. выдвигает на передний план расчета тонкостенных конструкций, какими являются тонкие оболочки, проблемы устойчивости. Эти проблемы длительное время решались в рамках линейной теории оболочек при использовании недеформированных расчетных схем, когда перемещения точек срединной поверхности оболочки считались малыми по сравнению с толщиной оболочки. Однако в реальных тонкостенных оболочечных конструкциях эти перемещения сравнимы с толщиной оболочки, а в некоторых случаях могут быть больше её.

Многочисленные экспериментальные исследования показали, что расчеты оболочек на устойчивость по линейной теории дают завышенные значения критических нагрузок, т.е. оболочка теряет устойчивость при нагрузке гораздо меньшей, чем расчетная по линейной теории. Поэтому дальнейшие исследования в области устойчивости оболочек развивались по пути учета больших перемещений.

Учет больших перемещений при оценке устойчивости оболочек приводит к геометрически нелинейным задачам теории оболочек, решения которых сопровождается значительными математическими трудностями. Поэтому тему данной диссертации, посвященной решению геометрически нелинейной задачи об устойчивости одного типа оболочек, широко применяемых в строительстве, а именно, пологих складчатых оболочек, следует считать актуальной.

Одной из конструктивных форм тонких оболочек являются пологие оболочки, которые нашли широкое применение в строительстве для перекрытия больших площадей без сооружения промежуточных опор.

Поверхность таких оболочек может быть гладкой, образованной путем непрерывного бетонирования по сложным конструкциям опалубки, а может быть складчатой, выполненной из плоских плит заводского изготовления. Складчатые оболочки представляют собой выпуклые многогранники с кривизнами срединной поверхности, сконцентрированными на линиях пересечения их плоских граней.

Неоспоримыми преимуществами складчатых оболочек перед гладкими является простота изготовления плоских плит - граней оболочки в заводских условиях, индустриальные методы монтажа, удобство эксплуатации подвесного транспорта в перекрываемом пространстве, повышенная жесткость конструкции и многие другие.

Формы складчатых оболочек весьма разнообразны, а возможности применения их в строительных конструкциях довольно широки. Они применяются в конструкциях покрытий промышленных и общественных зданий больших пролетов, для покрытий над трибунами спортивных стадионов и ангаров, для сооружения промышленных объектов в виде складчатых конструкций градирен, бункеров, резервуаров и других конструкций. По форме образования поверхности эти оболочки делятся на два типа:

- призматические оболочки с изломами срединной поверхности в одном направлении (рис. 1), которые при увеличении количества граней стремятся к цилиндрической поверхности нулевой гауссовой кривизны;

- складчатые оболочки в форме выпуклого многогранника с изломами срединной поверхности в двух взаимно перпендикулярных направлениях (рис. 2), которые при увеличении количества граней стремятся к поверхности положительной гауссовой кривизны (двоякой кривизны).

Рис. 1. Срединная поверхность призматической оболочки.

Рис. 2. Срединная поверхность складчатой оболочки в форме выпуклого многогранника

Оболочки второго типа, а именно, складчатые оболочки, имеют большие преимущества перед призматическими, так как перекрестные сопряжения граней, выполняющие роль ребер жесткости, обеспечивают им большую пространственную устойчивость, чем у призматических оболочек.

Изучение устойчивости оболочек с многогранной поверхностью связано со значительными трудностями, заключающимися в необходимости решения сложных задач о сопряжении граней. Применение в последнее время метода расчета таких оболочек, основанного на использовании обобщенных функций в описании кривизны складчатой поверхности, позволило избежать решения задач сопряжения граней. Однако анализ опубликованных научных работ, посвященных устойчивости оболочек с изломами срединной поверхности, показал, что такие задачи в линейной и геометрически нелинейной постановке решены в основном для призматических оболочек с изломами срединной поверхности в одном направлении. Более сложные задачи устойчивости складчатых оболочек в двух взаимно перпендикулярных направлениях решались лишь в линейной постановке.

Цель данной диссертации - используя обобщенные функции в описании кривизны срединной поверхности, решить задачу об устойчивости при поперечной нагрузке складчатой пологой оболочки с изломами срединной поверхности в двух взаимно перпендикулярных направлениях (рис. 2) с учетом больших перемещений, т.е. в геометрически нелинейной постановке. Полученное решение использовать для исследования устойчивости таких оболочек. Разработать методику расчета устойчивости складчатых оболочек для практического применения.

Автор диссертации выражает глубокую благодарность научному руководителю, доктору технических наук, профессору Л.Н. Кондратьевой, а также коллективу кафедры «Прочность материалов и конструкций» ПГУПС за помощь, внимание и постоянную поддержку в работе над диссертацией.

Похожие диссертационные работы по специальности «Строительная механика», 05.23.17 шифр ВАК

Заключение диссертации по теме «Строительная механика», Поварова, Ирина Борисовна

ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ

1. С помощью обобщенных функций выражены условные кривизны срединной поверхности пологих складчатых оболочек с изломами в двух направлениях, допускающих большие перемещения под нагрузкой, и записана соответствующая система геометрически нелинейных дифференциальных уравнений устойчивости при изгибе.

2. Получено решение системы нелинейных дифференциальных уравнений устойчивости пологих складчатых оболочек, загруженных нормальной распределенной нагрузкой д с использованием двух последовательных приближений метода Бубнова - Галеркина, которое представлено в виде нелинейного алгебраического выражения зависимости «нагрузка — прогиб в середине оболочки».

3. Разработана методика определения критической нагрузки цкр в первом и втором приближениях метода Бубнова - Галеркина.

Проведенные на основе этой методики исследования показали, что решение нелинейной задачи об устойчивости пологой складчатой оболочки во втором приближении позволяет существенно уточнить величину критической нагрузки (порядка 16% - 18%).Решение в первом приближении дает завышенное значение критической нагрузки, ориентироваться на которые в практических расчетах не рекомендуется.

4. Уточнение величины критической нагрузки во втором приближении тем существеннее, чем меньше кривизна оболочки, т.е. для более гибких оболочек с увеличением кривизны увеличивается жесткость оболочки, критическая нагрузка возрастает, и поправки к ее величине во втором приближении уменьшаются.

5. Анализ полученного решения геометрически нелинейной задачи об устойчивости при поперечном изгибе пологой складчатой оболочки показал, что увеличение количества граней складчатой оболочки приближает ее срединную поверхность к поверхности гладкой оболочки. При этом величина критической нагрузки складчатой оболочки значительно больше (до 20%) критической нагрузки соответствующей параметрам гладкой оболочки.

6. Исследование устойчивости складчатых оболочек с прямоугольным планом при различном соотношении сторон (у = 1; 1,3; 1,5) показало, что с увеличением отношения у жесткость оболочки уменьшается и соответственно уменьшается критическая нагрузка дкр. Наиболее рациональным с позиций устойчивости оболочки является отношение у = 1, т.е. квадратная в плане оболочка.

7. Критическая нагрузка пологих складчатых оболочек существенно зависит от их кривизны: уменьшается по мере уменьшения кривизны. При этом, как показали исследования, для каждой оболочки со своими геометрическими размерами имеет место минимальное значение кривизны, при которой не происходит типичной потери устойчивости оболочки с образованием выхлопа, и на графиках «нагрузка - прогиб» вместо максимума имеет место точка перегиба кривой. Это -пограничный тип оболочек между тонкой пологой оболочкой и слабо искривленной тонкой плитой. Критическая нагрузка, как и в плите при изгибе, отсутствует. Прогиб после точки перегиба монотонно возрастает.

8. Проведенное исследование устойчивости оболочек при больших перемещениях показало значительное преимущество складчатых оболочек перед гладкими. Многогранная поверхность складчатой оболочки способна выдержать большую нагрузку в докритическом состоянии, чем поверхность такой же по размерам гладкой оболочки, что удовлетворительно согласуется с результатами многочисленных экспериментальных исследований, опубликованных в литературщлх источниках.

Список литературы диссертационного исследования кандидат технических наук Поварова, Ирина Борисовна, 2008 год

1. Бартенев, B.C. Железобетонные ортотропные оболочки двоякой кривизны Текст. / B.C. Бартенев // Изв. ВУЗов. Стр-во и архитектура. 1964. - №4. - С. 21-28.

2. Бартенев, B.C. Практический способ • расчета пологих железобетонных оболочек положительной гауссовой кривизны на прямоугольном плане Текст. 1 B.C. Бартенев // Тонкостенные железобетонные пространственные конструкции. — М- 1970. — С. 39-70:

3. Вайнберг, Д.В., Ройтфарб, И.З. Расчет пластин и оболочек с разрывными параметрами Текст. / Д.В. Вайнберг, И.З. Ройтфарб // Расчет пространственных конструкций. М. — 1965. — Вып. 10. - С. 39-80.

4. Васильков, Б.С. Расчет складчатых систем и оболочек Текст. / Б.С.- Васильков // Инженер, журн. 1961.- Т.1 - №4. -С. 214-230.

5. Васильков, Б.С. Расчет оболочек с несимметричным контуром Текст. / Васильков, Б.С. // Госстройиздат -М.— 1962. 120 с.

6. Васильков, Б.С. К расчету оболочек, ограниченных по поверхности гиперболического параболоида и поверхностям переноса Текст. / Васильков Б.С. // Исследования по расчету оболочек, стержневых и массивных конструкций-М. 1963. - С. 104-114.

7. Васильков Б.С., Власов В.З., Бознев И.Л. Расчет многоволновых ребристых складок на прямоугольном плане {Текст. / Б.-С. Васильков, В.З Власов, И.Л. Бознев // Практические методы расчета оболочек: и складчатых покрытий. — М — 1970. С. 54-96.

8. Васильков, Б.С., Волошихин, Л.А. Расчет складок с продольной- кривизной {Текст. / Б.С. Васильков, Л.А. Волошихин // Строительные конструкции. Теория и методы расчета. М. - 1970. — с. 105-110.

9. Васильков, Б.С. Применение метода конечных элементов к расчету пространственных систем Текст. / Б.С. Васильков // Проблемы расчета пространственных конструкций —Тр. Моск. инженер,-строит. ин-та. М. - 1980. - №2- С. 10-17.

10. Векуа, И.Н. Об одном методе расчета призматических оболочек Текст. / И.Н. Векуа // Тр. Тбилис. мат. ин-та. 1955. - Т.21. — С. 191-195.

11. Виноградов, Г.Г., Горенштейн, Б.В., Коробов, JI.A., Чиченков, Ю.В. Оболочки двоякой кривизны из крупноразмерных панелей Текст. / Г.Г. Виноградов, Б.В. Горенштейн, JI.A. Коробов, Ю.В Чиченков // Бетон и железобетон 1968. - №2. - С. 1-5.

12. Власов, В.З. Тонкостенные пространственные системы. Текст. / В.З. Власов //- М. 1964 - 472 с.

13. Власов, В.З. Новый практический метод расчета складчатых покрытий и оболочек Текст. / В.З. Власов // Строит, пром-сть. -1932.- №11.-С. 2-8.

14. Власов, В.З. Новый метод расчета тонкостенных призматических складчатых покрытий и оболочек. Текст. / В.З. Власов // Госстройиздат M. - JI. - 1993. - 215 с.

15. Власов, В.З. Расчет тонкостенных призматических оболочек // Прикладная математика и механика Текст. / В.З. Власов // 1944. -Т,8 —Вып. 5.-с. 148-160.

16. Власов, В.З. Приближенная теория тонкостенных изгибаемых призматических систем и пластинок и расчет их на колебания и устойчивость Текст. / В.З. Власов // Исследования по динамике сооружений. М. - 1947. - С. 5-73.

17. Власов, В.З. Общая теория оболочек и ее приложение к технике. Текст. / В.З. Власов // Гостехтеориздат-М; ~ JI. -1949. 784 с.

18. Власов, В.З. Тонкостенные пространственные системы Текст. / В.З Власов // Госстройиздат.-М.: 1958.-502 с.

19. Власов, В.З. Строительная механика тонкостенных пространственных систем. Текст. / В.З. Власов //Стройиздат. М. -1949.-260 с.

20. Вольмир, A.C. Гибкие пластинки и оболочки. Текст. / A.C. Вольмир //-М. — Гостехтеориздат- 1959.-420 с.

21. Вольмир A.C. Устойчивость упругих систем. Текст. / A.C. Вольмир // Физматгиз. М.-1963. - 880 с.

22. Галеркин, Б.Г. Об устойчивости цилиндрической оболочки И Прикладная математика и механика. Текст. / Б.Г. Галеркин //- 1943. Т. 7- Вып. 1. - С. 68-90.

23. Галлетели, Г.О. О выпучивании пологих сферических куполов под действием равномерного внешенго давления Текст. / Г.О. Галлетели // Ракетн. техника и космонавтика. 1976. - Т. 14 - №9. — С. 214.

24. Гальперин ,И. Введение в теорию обобщенных функций. Текст. / И. М Гальперин //Изд-во иностр. лит. 1954. - 350 с.

25. Гаянов, Ф.Ф. О расчете конструкций тонкостенных пространственных покрытий с ребрами и изломами в двух направлениях Текст. / Ф.Ф. Гаянов // Совершенствование методов расчета и исследование новых типов железобетонных конструкций. -JL, 1991.-С. 77-82.

26. Гельфонд, И.М., Шилов, Г.Е. Обобщенные функции и действия над ними. Текст. / И.М. Гельфонд, Г.Е. Шилов // Физматгиз М. 1958.- 380 с.

27. Гарсеванов, Н.М. Функциональные прерыватели в строительной механике и их применение к расчету ленточных фундаментов Текст. / Н.М. Гарсеванов // Тр. Всесоюз. ин-та оснований и фундаментов. 1933. - Сб.№1. - С. 10-34.

28. Гольденблат, И.И., Ратц, Э.Г. Расчет складчатых конструкций из граней, имеющих различные статические схемы Текст. / И.И.

29. Гольденблат, Э.Г. Ратц // Сборник статей по складчатым конструкциям. Киев . - 1934. - С. 25-40.

30. Гольденвейзер, А.Л. Теория упругих тонких оболочек. Текст. / А.Л. Гольденвейзер // М. — Наука. - 1976. - 512 с.

31. Гольденвейзер, А.Л. О геометрической теории устойчивости оболочек Текст. / А.Л Гольденвейзер // Изв. АН СССР. -Механика твердого тела. 1983. - №6. - С. 143-154.

32. Горенштейн, Б.В., Виноградов, Г.Г. Крупнопанельные оболочки, монтируемые без лесов Текст. / Б.В. Горенштейн, Г.Г.Виноградов // Стр-во и архитектура Ленинграда. 1962, - №7. - С. 12-13.

33. Градштейн , В.В., Рыжик , И.М. Таблицы интегралов, сумм, рядов и произведений. Текст. / В.В. Градштейн , И.М. Рыжик // Физматгиз -М.-1963.-1100 с.

34. Григолюк, Э.И. Нелинейные колебания и устойчивость пологих оболочек и стержней Текст. / Э.И. Григолюк // Изв. АН СССР. Отд-ние техн. наук. Механика и машистроение. 1955. — №3. - С. 33-68.

35. Григолюк, Э.И., Чулков, П.П. Устойчивость и колебания трехслойных оболочек. Текст. / Э.И. Григолюк, П.П. Чулков // Машиностроение М. - 1973. - 72 с.

36. Григолюк, Э.И., Кабанов, В.В. Устойчивость оболочек. Текст. / Э.И. Григолюк, В.В Кабанов //-М.- Наука-1978.-360 с.

37. Дембовский, Н.ф. К выбору конструктивных схем покрытия большепролетных зданий из сборного железобетона Текст. / Н.Ф. Дембовский // Пром. стр-во. 1961. - № 12. - С. 38-41.

38. Дишингер, Ф. Оболочки. Тонкостенные железобетонные купола и своды. Текст. / Ф.Дишингер // М. Л. -Госстройиздат-1932. -270 с.

39. Жуковский, Э.З., Корековцев, Н.П., Чиненков, Ю.В. Сборные железобетонные оболочки в виде гиперболических параболоидов 6x18 м. для покрытия промышленных зданий Текст. / Э.З.

40. Жуковский, Н.П. Корековцев, Ю.В. Чиненков // Пром. стр-во.1961.- №10.-С. 54-58.

41. Жуковский, Э.З., Кулячин, A.A. О сборно монолитных железобетонных оболочках двоякой кривизны из крупноразмерных панелей Текст. / Э.З. Жуковский , A.A. Кулячин, // Пром. стр-во.—1962.- №12.-С. 14-20.

42. Завриев, К.С. Основы теории функциональных прерывателей в применении к строительной механики Текст. / К.С. Завриев // Тр. Тбилис. ин-та инженеров ж.-д. трансп. 1938 - Вып.6. - С. 16-31.

43. Золотов, О.Н., Милейковский, И.Е. Об использовании уточненных уравнений моментной теории пологих оболочек при негладких поверхностях Текст. / О.Н Золотов, И.Е. Милейковский, // Строительная механика и расчет сооружений. 1972. - №2. - С. 4044.

44. Иванов, С.П. Устойчивость физически нелинейных призматических оболочек при больших перемещениях Текст. / С.П. Иванов // Динамика и прочность машин. 1988. - №47. - С. 40-45.

45. Исанбаева, Ф.С. Определение нижней критической нагрузки цилиндрической оболочки при всестороннем сжатии Текст. / Ф.С. Исанбаева // Изв. Казан, фил. АН СССР. 1955. - Т.7 - С. 51-59.

46. Итцхаки, Д. Расчет призматических и цилиндрических оболочек покрытий. Текст. / Д.Итцхаки // Госстройиздат. М — 1963. - 354 с.

47. Каджая, Д.И. Сборная железобетонная оболочка покрытия Дворца спорта в Тбилиси Текст. / Д.И. Каджая // Бетон и железобетон. — 1961.- №10.-С. 18-20.

48. Кантор, Я.Б. Нелинейные задачи теории неоднородных пологих оболочек. Текст. / Я.Б. Кантор // Наук, думка-Киев.-1971. 136 с.

49. Каплан, Э. Потеря устойчивости сферическими оболочками Тонкостенные оболочечные конструкции. Текст. / Э.Каплан // — М. 1980.-С. 260-302.

50. Кармишин ,А.В., Лясковец, В.А., Мяченко, В.И., Фролов, А.Н. Статика и динамика тонкостенных оболочечных конструкций. Текст. / А.В. Кармишин, В.А. Лясковец, В.И. Мяченко, А.Н. Фролов // Машиностроение М. - 1975. - 376 с.

51. Кипиани, Г.О., Михайлов, Б.К., Москалева, В.Г. Устойчивость трехслойных оболочек и пластин с нарушениями сплошности в виде разрезов и отверстий Текст. / Г.О. Кипиани, Б.К. Михайлов, В.Г. Москалева // Казань . - 1992,. - № 25. - С. 115-120.

52. Колкунов,, Н.В. Основы расчета упругих оболочек. Текст. / Н.В. Колкунов //. М. - Высш. шк. -1987. — 256 с.

53. Колтунов, М.А. Изгиб прямоугольных пластинок с учетом больших прогибов Текст. / М.А. Колтунов // Инженер, сб. АН СССР. 1952. -№13.-С. 40-58.

54. Колтунов, М.А. Учет конечных перемещений в задаче об изгибе и устойчивости пластинок и пологих оболочек Текст. / М.А. Колтунов // Вестн. Моск. ун-та. Сер. Математика и механика. -1952.- №5.-С.28-53.

55. Колтунов, М.А. Уточненное решение задачи об устойчивости прямоугольных панелей гибких пологих оболочек Текст. / М.А. Колтунов // Вестн. Моск. ун-та. Сер. Математика и механика. -1961.- №3.-С. 37-45.

56. Кондратьева, Л.Н. Эффективность применения трехслойных плоских элементов в оболочках покрытий Текст. / Л.Н. Кондратьева // Региональные проблемы научно -технического прогресса и развитие новых технологий. — Благовещенск. 1987. - С. 13-14

57. Кондратьева, JI.H. Изгиб призматической складчатой оболочки Совершенствование методов строительства и эксплуатации зданий и сооружений. Текст. / Л.Н. Кондратьева // Сб. науч. тр. Дальневост. гос. аграр. ун-та. Благовещенск. - 1998. - С. 16-27.

58. Кондратьева, Л.Н. Напряженно деформированное состояние призматической складчатой оболочки при разных вариантах. Текст. / Л.Н. Кондратьева. // Актуальные проблемы современного строительства. - Благовещенск-1999. - с. 21.

59. Кондратьева , Л.Н. Анализ результата расчета гладких и складчатых оболочек на устойчивость Текст. / Л.Н. Кондратьева // Актуальные проблемы современного строительства. Благовещенск. - 1999. — с. 21.

60. Кондратьева, Л.Н. Формулы приведенных условных кривизн складчатой оболочки Текст. / Л.Н. Кондратьева // Строительство и природоустройство. Сб. науч. тр. ДальГАУ. Благовещенск. - 2001. -Вып. 5.-С. 80-85.

61. Кондратьева, Л.Н., Поварова, И.Б. Устойчиовсть пологих складчатых оболочек при больших перемещениях Текст. / Л.Н.

62. Кондратьева, И.Б. Поварова // Вестник гражданских инженеров СПбГАСУ. СПб. -2007. - №2(11). - С. 37-42.

63. Коршини, М.С. Нелинейные задачи теории пластин и оболочек и методы их решения. Текст. / М.С. Коршини //- М- Наука 1964. -312 с.

64. Коробов, Л.Н., Чиненков, Ю.В. К расчету многоволновых пологих оболочек по безмоментной теории Текст. / JI.H., Коробов, Ю.В. Чиненков // Строит, механика и расчет сооружений. — 1966. №4. — С. 23-26.

65. Косенко, A.B. Сборные предварительно напряженные железобетонные оболочки и складки для покрытий промышленных зданий Текст. / A.B. Косенко // Центр, ин-т науч. информации по стр-ву и архитектуре. 1962. - С. 15-18.

66. Краковский, Н.Б., Чиненков, Ю.В. О совместной работе оболочек положительной гауссовой кривизны с диафрагмамиТекст. / Н.Б.,Краковский, Ю.В. Чиненков // Строительная механика и расчет сооружений. 1968. - №6. - С. 3-7.

67. Кузнецов, О.Р., Губарева, Н.В. Выбор и построение систем аппроксимирующих функций при расчете замкнутых призматических оболочек. Саратов. Текст. / О.Р. Кузнецов, Н.В. Губарева // Саратовск. гос. тех. университет. -1996. 32 с.

68. Кузьмич, Т.А., Чиненков, Ю.В. Об особенностях работы оболочек положительной кривизны с переломами поверхностей Текст. / Т.А.,Кузьмич, Ю.В Чиненков// Строит, механика и расчет сооружений. 1972. - №6. - С. 35-40.

69. Кузьмич, Т. А. Изучение на моделях влияния переломов поверхности и ребер на работу пологих оболочек Текст. / Т.А. Кузьмич // Тр. Науч. исслед. ин-та бетона и железобетона. 1974. - Вып. 9. — С. 5974.

70. Либерман, А.Д., Стаковиченко, Е.И. Исследование короткой цилиндрической оболочки Текст. / А.Д. Либерман, Е.И. Стаковиченко // Бетон и железобетон. 1968. - №2. - С. 5-9.

71. Ляв., А. Математическая теория упругости. Текст. / А.Ляв // Физматгиз. -М. Л. - 1935 . - 201 с.

72. Масленников, А.М., Попов, P.A. Расчет пологих складчатых оболочек из крупноразмерных плоских плит при помощи матрицы жесткости Текст. / А.М. Масленников, P.A. Попов // Строительное проектирование промышленных предприятий. 1968. — №3. - С. 49-51.

73. Микусинский уЯ., Сикорский, Р. Элементарная теория обобщенных функций. Текст. / Я. Микусинский , Р. Сикорский // Изд-во иностр. лит. -М.-1959. -78 с.

74. Милейковский, И.Е. Расчет оболочек и складок методом перемещений. Текст. / И.Е .Милейковский. // Стройиздат. —М. -1960. -174 с.

75. Милейковский, И.Е., Райзер ,В.Д. Некоторые практические методы расчета складок и оболочек покрытий. Текст. / И.Е. Милейковский, В.Д. Райзер // Стройиздат М.- 1966. - 16 с.

76. Милейковский, И.Е., Гречанинов, , И.П. Устойчивость прямоугольных в плане пологих оболочек Текст. / И.Е. Милейковский, И.П. Гречанинов // Расчет пространственных конструкций.-М.- 1969.-Вып. 12.-С. 168-175.

77. Милейковский, И.Е., Золотов, О.Н. Метод расчета сборных ребристых оболочек покрытий с ломаной формой поверхности Расчет пространственных конструкций. Текст. / И.Е. Милейковский, О.Н. Золотов // М. - 1974.Вып. 16. - С. 5-43.

78. Милейковский, И.Е., Трушинин, С.И. Расчет тонкостенных конструкций. Текст. / И.Е. Милейковский, С.И .Трушинин, // Стройиздат М. - 1989. - 200 с.

79. Михайлов, Б.К. Пластины и оболочки с разрывными параметрами. Текст. / Б.К. Михайлов // Изд-во Ленинг. ун-та Л. - 1980. - 196 с.

80. Михайлов, Б.К., Кипиани, Г.О. Устойчивость трехслойных пластин с вырезамиТекст. / Б.К. Михайлов, Г.О. Кипиани // Строит, механика и расчет сооружений. — 1989. — №4. С. 34-36.

81. Михайлов, Б.К., Азеддин, Б. Устойчивость оболочки, составленной из плоских элементов Текст. / Б.К. Михайлов, Б. Азеддин // Статические и динамические задачи расчета строительных конструкций. Л. — 1989. - С. 66-69.

82. Михайлов, Б.К., Кондратьева, Л.Н. Устойчивость призматической складчатой оболочки в геометрически нелинейной постановке Текст. / Б.К. Михайлов, Л.Н Кондратьева // Тр. молодых ученых СПбГАСУ. ч.З - 1998. - С. 1446-152.

83. Москалева, В.Г., Михайлов, Б.К., Кипиани, Г.О. Устойчивость оболочки, имеющей нарушения сплошности Текст. / В.Г. Москалева, Б.К. Михайлов, Г.О. Кипиани // Изв. ВУЗов. Стр-тво и архитектура. -1993. №3. - С. 28-30.

84. Михайлов, Б.К., Кипиани, Г.О. Деформированность и устойчивость пространственных пластинчатых систем с разрывными параметрами. Текст. / Б.К. Михайлов, Г.О. Кипиани // Стройиздат -СПб.-1996.- 442 с.

85. Муштари, Х.М., Галимов, К.З. Нелинейная теория упругих оболочек. Текст. / Х.М. Муштари, К.З Галимов // Тат. кн. изд-во. -Казань. 1957. - 431 с.

86. Мяченков, В.И. Устойчивость сферических оболочек при совместном действии внешнего давления и локальных осесимметричных нагрузок Текст. / В.И. Мяченков // Изв. АН СССР. Механика твердого тела. 1970. -№6. - С. 133-138.

87. Нагаев, В. А. Определение критической нагрузки цилиндрической оболочки при внешнем поперечном давлении Текст. / В. А. Нагаев // Изв. ВУЗов. Машиностроение. 1959. - №6. - С. 46-52.

88. Назаров, A.A. Основы теории и методы расчета пологих оболочек. Текст. / A.A. Назаров // Стройиздат — JI. — 1966. — 303 с.

89. Назаров, A.A. Функциональные прерыватели Н.М. Герсеванова и импульсные функции Текст. / A.A. Назаров // Изв. АН Арм. ССР. -1946.- №6. -С. 25-34.

90. Назаров, A.A. Определение импульсных функций двух переменных Текст. / A.A. Назаров // Докл. АН Арм ССР. 1947. - Т.7. -,№4.- С. 56-72.

91. Назаров, A.A. Импульсивные функции в приложении к задачам строительной механики Текст. / A.A. Назаров // Исследования по теории сооружений-. М. - 1949. -Вып.4. - С. 43-58.

92. Никиреев, В.М., Шадурский B.JI. Практические методы расчета оболочек. Текст. / В.М. Никиреев, B.JI. Шадурский // Стройиздат — М, 1966. - 270 с.

93. Новицкий, В.В. Решение некоторых задач строительной механики с помощью дельта-функции Текст. / В.В. Новицкий // Науч.-метод, сб. воен.-возд. инженер, акад. — 1957.-№13.— С.- 10-14.

94. Новицкий, В.В. Дельта-функция и ее применение в строительной механике Текст. / В.В. Новицкий // Расчет пространственных конструкций. М.- 1962. - Вып. 8. - С. 207-245.

95. Новожилов, В.В. Теория тонких оболочек. Текст. / В.В. Новожилов // Судостроение.- JI. 1962. - 431 с.

96. Огибалов, П.М. Вопросы динамики и устойчивости оболочек. Текст. /П.М. Огибалов // Изд -во Моск. ун-та — М. — 1963. — 418 с.

97. Огибалов, П.М., Колтунов, М.А. Оболочки и пластины. Текст. / П.М. Огибалов, М.А. Колтунов // Изд-во Моск. ун-та М. - 1969 -696 с.

98. Ониашвили, О.Д. Некоторые динамические задачи теории оболочек. Текст./О.Д. Ониашвили //Изд-во АН СССР. М.-1957.- 196 с.

99. Павилайнен, В.Я. Расчет многоволновых покрытий // Расчет пространственных конструкций. Текст. / В.Я. Павилайнен // М. -1970.- Вып. 13.- С. 3-67.

100. Павилайнен, В.Я. Расчет оболочек в многоволновых системах. Текст. / В.Я. Павилайнен // Стройиздат. Л - 1975. - 134 с.

101. Петров, В.В., Кузнецов, О.Р. Некоторые нелинейные задачи расчет прямых замкнутых призматических оболочек Текст. / В.В Петров, О.Р. Кузнецов // Сарат. гос. техн. университет. Саратов. - 1996. - С. 1-84.

102. Пастернак, В.Л. Практический расчет складок и цилиндрических оболочек с учетом изгибающихся моментов Текст. / В.Л. Пастернак // Проект и стандарт. 1933. - №2 - С. 12-21.

103. Попов, P.A., Ушаков, H.A. Пологие складчатые оболочки из крупноразмерных плоских плит Текст. / P.A. Попов, H.A. Ушаков // Строит, проектирование промышленных предприятий. Информ. вып. Серия 1 - 1968. - № 1.- С. 8-14.

104. Прочность, устойчивость, колебания: Текст. / Машиностроение. — М. 1968-Справ, в 3 т.

105. Рекач, В.Г. Основы расчета тонкостенных пространственных систем Текст. /В.Г. Рекач// Стройиздат-М,—1963. -135с.

106. Саченков, A.B. Об устойчивости цилиндрической оболочки при произвольных краевых условиях под действием поперечного давления. Текст. / A.B. Саченков // Изв. Казан, фил. АН СССР. -1958.-№12.-С. 127-132.

107. Санчис-Аркос, М. Оболочки. Железобетонные оболочки и складки. Текст. / М. Санчис-Аркос // Стройиздат М. - 1964. - 170 с.

108. Слезингер, И.Н. О вариационных методах расчета упругих призматических складок Текст. / И.Н. Слезингер // Расчет пространственных конструкций. М. -1974. - Вып. 16. - С. 88-95.

109. Справочник проектировщика промышленных, жилых и общественных зданий и сооружений расчетно-теоретический. Под ред. д.т.н., проф. A.A. Уманского. М: Гоестройиздат -1960.-1040с.

110. СНиП П-23-81*. Стальные конструкции Минстрой России. -ГПЦПП. — 1995 96 с.

111. Стельмах,С.И. Расчет металлических складчатых настилов Текст. / С.ИСтельмах // -М.: Госстройиздат. -1938. -116 с.

112. Стельмах, С.И. Применение теории конечных разностей к расчету многоволновых складчатых систем Текст. / С.И. Стельмах // Сб. тр. лаб. строит, механики. 1942. - С. 5-18.

113. Стельмах, С.И. Практические расчеты многоволновых складчатых систем Текст. ///Сб. тр. лаб. строит, механики. 1942. -С. 19-31.

114. Стругацкий Ю.Р. К расчету цилиндрических оболочек произвольного сечения Текст. / С.И. Стельмах // Расчет пространственных конструкций М — 1962. - Вып.8. - С. 309-324.

115. Тимашев, С.А. Устойчивость выпуклых оболочек с конструктивными отклонениями от теоретических форм Текст. / С.А. Тимашев // Сб. тр. Ур. политехи, ин-та. Строит, механика. -1968.-№158.-С.47-62.

116. Тимашев, С.А. Устойчивость подкрепленных оболочек. Текст. / С.А. Тимашев // М.: Стройиздат. — 1974. 256 с.

117. Тимошенко, С.П. Вопросы устойчивости упругих систем. Текст. / С.П. Тимошенко, // Л.: Стройиздат. — 1935. 117 с.

118. Тимошенко, С.П., Войновский-Кригер, С. Пластинки и оболочки. Текст. / С.П. Тимошенко, С. Войновский-Кригер // М.: Наука. — 1966.-635с.

119. Тимошенко, С.П. К вопросу об устойчивости упругих систем, Текст. / С.П. Тимошенко // —1914. раздел II.

120. Тимошенко, С.П. Устойчивость стержней, пластин и оболочек. Текст. / С.П. Тимошенко // М.: Наука. - 1971- 808 с.

121. Феодосьев, В.И. Об устойчивости сферической оболочки, находящейся под действием внешнего равномерно распределенногодавления Текст. / В.И. Феодосьев // Прикладная математика и механика. 1954. - Т. 18 - Вып. 1. - С. 35-42.

122. Филин, А.П. Прикладная механика твердого деформируемого тела. Текст. / А.П. Филин // М.: Наука. - 1981- Т.З. - 480 с.

123. Флюгге, В. Статика и динамика оболочек. Текст. / Флюгге, В. // -М.: Госстройиздат. 1961. - 306 с.

124. Хлебной, Я.Ф. Пространственные железобетонные конструкции. Расчет и конструирование. Текст. / Я.Ф. Хлебной // М.: Стройиздат. - 1977. - 224 с.

125. Циглер, Г. Основы устойчивости конструкции. Текст. / Г. Циглер //- М. Мир. - 1971. - 192 с.

126. Чиненков, Ю.В. Многоволновое покрытие промзданий из сборных оболочек положительной кривизны Текст. / Ю.В Чиненков // Бетон и железобетон. 1963 - №7.-С.14-16.

127. Чиненков, Ю.В. Методика исследования оболочек и складок покрытий на железобетонных моделях Текст. / Ю.В. Чиненков // Исследование пространственных конструкций. М. — 1974.- Вып. 9. - С.27-46.

128. Штаерман, И.Я. Устойчивость оболочек Текст. / И.Я. Штаерман // Тр. Киев, авиаинститута. 1936. - № 1. - С.5-21.

129. Brielmaier, A. Prismatic folded plates Техт./ A. Brielmaier // Journ. of the ACI. Proc. vol. 1962. - p.38.

130. Craemer, H. Scheiben und Faltwerke als neue Eis-enbetonbauTexr./ H. Craemer // Beton und Eisen. 1929. - №13,14. - S. 276.

131. Ehlers, G. Die Spannungsermittlung in Flächen tragwerken Техт./ G. Ehlers // Beton und Eisen. -1929. -.№ 13, 14 und Bauingenieur. -1930. -№8.-S. 281.

132. Gaafor, J.Hipped plate analyses considering joint displacement Техт./ J. Gaafor // Trans, of ASCE. 1954. - vol. 119 - p. 81.

133. Gruber, E. Berechnung prismatischer Scheibenwerke TexT. / E. Gruber // Zürich: Intern. Vereinig für Brückenbau und Hochbau. - Band 1. -1932.-S. 225.

134. Gruber, E. Die Berechnung äusserlich statisch unbestimmter prismatischer Scheibenwerke TexT. / E.Gruber // — Zürich: Intern. Vereinig für Brückenbau und Hochbau. -Band 3. —1935. — S. 134.

135. Grüning, G. Die Nebenspaunungen der prismatischen Faltwerke TexT./ G Grüning // Ing.-Arch. 1932. -Bd. 3 - S. 319.

136. Kaiman, Th., Sechler, E.E., Donnell L.H. The strength of thin plates in compression TexT. / Th. Karman , E.E. Sechler, L.H. Donnell // Trans. ASME. -1932. v. 54. - p. 53-57.

137. Karman Th., Tsien H.S. The buckling of spherical shells on external pressure TexT./// Journ. Aeron. Sei. 1939. -№7. - p. 43-60.

138. Karman Th., Tsien H.S. The buckling of then cylindrical shells under axial compression TexT. / Th Karman. H.S. Tsien // Journ. Aeron. Sei. — 1941.- 8.- №8.- p. 303-312.

139. Rao, G. Analysis of folded plates by iteration TexT. / G. Rao // The Indian Concr. Journ. 1962. — vol. 36. №10. ~ p. 16.

140. Reiffenstuhel, H. Beitrag zur Berechnung prismatischer Faltwerke TexT. / H. Reiffenstuhel // Beton Stahlbetonbau -1964 ~№3 S. 21.

141. Sharma, S., Goyal B. Analysis of continuous folded plates TexT./ S. Sharma, B. Goyal // The Indian Concr. Journ. -1963. -vol. 37. №12. — p. 45.

142. Simhson, H. The design of folded plate roofs Texx. / H. Simhson // Proc. ASCE. 1958. - paper № 1508. -vol. 84. -p. 65.

143. Southwell, R.V. On the collapse of tubes by external pressure TexT./ R.V. Southwell // Phylosoph. Magazine and Journ. of Science. 1913-Ser. 6. - vol. 25. - № 149. - pp. 687-698.

144. Stavridis, L.T., Armenakas, A. Analysis of shallow shells with rectangular projection: Theory TexT./ L.T. Stavridis, A. Armenakas //

145. Journ. Eng. Mech.1988, 114. № 6. - p. 923-942. - Applications. - p. 943-952.

146. Werfel, A. Exact theory of prismatic shells Texx. / A. Werfel // Association for bridge and struct, eng. 1954. - p. 58.

147. Winter, G. and Pei, M, Hipped plate construction Техт./ G. Winter, and M. Pei // Journ. of Amer. Coucr. Inst (ACI). 1947. - vol. 18.- p. 505.

148. Тюрин, A.B. Экспериментальные исследования сборной клеефанерной оболочки малого пролета Текст. / A.B. Тюрин // Инженерные конструкции. Краткие содержания докл. к XXV нач. конф. ЛИСИ. Л.- 1967. - С. 156-160.

149. Seide, Р., Weingarden, V.l. On the buckling of circular cylindrical shells under pure bending Техт. /Р. Seide, V.l. Weingarden // J. Appl. Mech. -vol. 28 E.-№1.-1961.- p. 38.

150. Mises, R. Der Kritische Aubendruck zylindrischer Rohre Техт. / R. Mises // Zeitschrift des Vereines deutscher Ingenieure. -1914. — Bd. 58--№ 19.-S. 750-755.

151. Lorenz, R. Dia nicht achsensymmetrische Knickung dünnwandiger Hohlzylinder Техт. / R. Lorenz // Physikalische Zeitschrift. -1911. -Bd. 12. -№ 7. — S.241-260.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.