Термофильные гидрогеногенные карбоксидотрофные прокариоты тема диссертации и автореферата по ВАК РФ 03.00.07, доктор биологических наук Соколова, Татьяна Геннадиевна
- Специальность ВАК РФ03.00.07
- Количество страниц 283
Оглавление диссертации доктор биологических наук Соколова, Татьяна Геннадиевна
ЧАСТЬ 1. ВВЕДЕНИЕ
Актуальность проблемы.
Цель и задачи работ.
Научная новизна и значимость работы.
Основные защищаемые положения диссертации.
Публикации.
Структура и объем.
ЧАСТЬ 2. МОНОКСИД УГЛЕРОДА В ПРИРОДНЫХ МЕСТООБИТАНИЯХ И ОКИСЛЕНИЕ ЕГО МИКРООРГАНИЗМАМИ
Глава 2.1. Химические и токсические свойства оксида углерода.
Глава 2.2. Круговорот оксида углерода.
Глава 2.3. Оксид углерода в гидротермальных местообитаниях.
Глава 2.4. Теоретически возможные реакции преобразования
СО в гидротермальных местообитаниях.
Глава 2.5. Аэробные СО-окисляющие прокариоты.
2.5.1. История открытия и разнообразие СО-окисляющих аэробных прокариот.
2.5.2. Метаболизм аэробных СО-окисляющих прокариот.
2.5.3. Функциональные гены аэробных СО-окисляющих прокариот.
2.5.4. Распространение аэробных СО-окисляющих прокариот.
Глава 2.6. Анаэробные карбоксидотрофные прокариоты.
2.6.1. Биоразнообразие анаэробных прокариот способных к росту за счет анаэробного окисления СО.
2.6.2. Термофильные гомоацетатные бактерии способные к росту за счет окисления СО.
2.6.3. Термофильные СО-использующие метанобразующие археи.
2.6.4. Термофильные СО-использующие сульфатредуцирующие бактерии и археи.
2.6.5. Анаэробные гидрогеногенные карбоксидотрофные прокариоты.
Глава 2.7. Ключевые ферменты метаболизма анаэробных карбоксидотрофных прокариот.
2.7.1. СО дегидрогеназа и ацетил-КоА-синтаза.
2.7.2. Гидрогеназа. Роль гидрогеназ семейства ЕсИ в метаболизме анаэробных прокариот.
Резюме.
ЧАСТЬ 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Глава 3.1. Материалы и методы исследования.
3.1.1. Объекты исследования и места отбора проб.
3.1.2. Культивирование анаэробных термофильных гидрогеногенных карбоксидотрофов.
3.1.3. Определение численности микроорганизмов в пробах.
3.1.4. Исследование морфологии и тонкого строения клеток.
3.1.5. Методы, использованные для характеристики роста анаэробных термофильных гидрогеногенных карбоксидотрофов.
3.1.6. Биохимические и молекулярно-биологические методы, примененные в ходе исследования.
3.1.7. Определение кинетики трансформации СО микробным сообществом горячего источника.
3.1.8. Оценка потенциальной активности и определение основных продуктов анаэробной термофильной трансформации СО микробными сообществами горячих источников.
Глава 3.2. Краткая характеристика и основные черты метаболизма термофильных гидрогеногенных карбоксидотрофных прокариот.
Глава 3.3. Экология термофильных гидрогеногенных карбоксидотрофных прокариот.
3.3.1. Распространение гидрогеногенных карбоксидотрофных прокариот.
3.3.2. Кинетика трансформации СО термофильными микробными сообществами гидротерм.
3.3.3. Пути трансформации СО микробными сообществами гидротерм.
3.3.4. Численность анаэробных термофильных карбоксидотрофных прокариот в горячих источниках.
Глава 3.4. Описание новых гидрогеногенных карбоксидотрофных термофильных прокариот.
3.4.1. Род Carboxydothermus (Bacteria; Firmicutes;
Clostridia;CIostridiales; Peptococcaceae).
3.4.2. Род Thermincola (Bacteria; Firmicutes; Clostridia; Clostridiales; Peptococcaceae).
3.4.3. Род Carboxydocella (Bacteria; Firmicutes; Clostridia; Clostridiales
Syntrophomonadaceae).
3.4.4. Род Thermosinus (Bacteria; Firmicutes; Clostridiales; Acidaminococcaceae).
3.4.5. Карбоксидотрофные гидрогеногенные представители рода Caldanaerobacter (Thermoanaerobacteriales; Thermoanaero-bacteriaceae).
3.4.6. Род Thermolithobacter (Bacteria; Firmicutes; Thermolithobacteria; Thermolithobacterales;
Thermolithobacteraceae).
3.4.7. Гидрогеногенный карбоксидотрофный представитель рода Dictyoglomus.
3.4.8. Гидрогеногенный представитель рода Thermococcus (Archaea; Euryarchaeota).
3.4.9. Гидрогеногенный представитель рода Thermofilum. (Archaea; Crenarchaeota).
Рекомендованный список диссертаций по специальности «Микробиология», 03.00.07 шифр ВАК
Гидрогеногенные карбоксидотрофные прокариоты в горячих источниках Камчатки2008 год, кандидат биологических наук Слепова, Татьяна Вячеславовна
Термофильные железовосстанавливающие прокариоты2008 год, доктор биологических наук Слободкин, Александр Игоревич
Анаэробные термоацидофильные микробные сообщества2006 год, кандидат биологических наук Прокофьева, Мария Игоревна
Молекулярная экология метаногенных и метанотрофных архей гидротермальных мест обитания2013 год, кандидат биологических наук Меркель, Александр Юрьевич
Молекулярная детекция и новые фенотипические свойства термофильных бактерий родов Thermoanaerobacter и Caldanaerobacter2008 год, кандидат биологических наук Козина, Ирина Владимировна
Введение диссертации (часть автореферата) на тему «Термофильные гидрогеногенные карбоксидотрофные прокариоты»
ЧАСТЬ 1. ВВЕДЕНИЕ Актуальность проблемы.
Оксид углерода - СО - широко известен как высоко токсичный газ для человека и животных. СО - один из важных малых газов атмосферы. Он присутствует в атмосфере в концентрации 0.06-0.15 ppm (IPCC). Значение СО определяется тем, что его участие в фотохимических реакциях в тропосфере приводит к усилению парникового эффекта (Crutzen, 1974, Bergamaschi et al., 2000). Предполагается, что атмосфера ранней Земли содержала СО в значительной концентрации (Holland, 1984; Kasting, 1990; Kharecha et al., 2005); ряд гипотез приписывает СО важную роль в происхождении жизни (Pinto et al., 1980; Chameides and Walker, 1981; Wachtershauser 1997; Miyakawa et al., 2002; Martin and Rüssel, 2003). Аналогами древних биоценозов считаются современные сообщества гидротерм (Заварзин, 1984; Stetter, 2006). Источниками СО в гидротермах являются вулканические газы, которые могут содержать до нескольких % СО по объему (Соколов, 1971; Symonds et al., 1994). СО также может быть продуктом термического разложения органического вещества (Conrad and Seiler, 1985; Schade et al., 1999; Hellebrand and Schade, 2008) и промежуточным метаболитом микробного синтеза или разложения ацетил-КоА по пути Вуда-Льюнгдаля (Conrad and Thaiier, 1983; Diekert et al, 1984; Eikmans et al, 1985; Ragsdale, 2004).
Окисление СО микроорганизмами было открыто в начале прошлого века (Bejerinck and van Delden, 1903; Kaserer, 1906; цит. по Заварзин, 1978). Аэробное окисление СО карбоксидобактериями по реакции: 2СО + 02 = 2С02 подробно изучено (Ножевникова, 1974; Заварзин, 1978; Meyer et al., 1990; Conrad, 1996; King and Weber, 2007). Среди аэробных карбоксидобактерий известно несколько умеренных термофилов (Lyons et al., 1984; Meyer and Schlegel, 1983; Krueger and Meyer 1984; Gadkari et al., 1990). До начала нашей работы было известно, что некоторые анаэробы - ацетогены, метаногены и сульфатредукторы - могут использовать СО как субстрат для роста с образованием ацетата, метана или сероводорода, соответственно. Среди них было известно лишь несколько термофильных представителей (Savage et al., 1987; Diekert and Thauer, 1978; Daniel et al., 1990; Daniels et al., 1977). Кроме того, был выделен один штамм мезофильной фототрофной несерной пурпурной бактерии Rhodocyclus (.Rubrivivaxj gelatinosus, способный расти в темноте в анаэробных условиях за счет окисления СО до С02, сопряженного с восстановлением воды до водорода (Uffen, 1976; 1983). В 1990 г. В.А. Светличным в гидротермальных местах обитания Курильских островов были обнаружены анаэробные СО-окисляющие бактерии с новым для термофилов типом метаболизма, использовавшие для роста энергию реакции: СО + Н20 = С02 + Н2 (AGo= - 20 кДж/моль) (Светличный и др., 1990; Svetlicnhy et al., 1991). К началу наших исследований ничего не было известно о филогенетическом и физиологическом разнообразии водородобразующих (гидрогеногенных) СО-окисляющих (карбоксидотрофных) прокариот, их распространении в гидротермальных местах обитания и роли в микробных сообществах гидротерм.
Интерес к термофильным гидрогеногенным карбоксидотрофным прокариотам носит и прикладной характер. Гидрогеногенные карбоксидотрофы могут быть использованы для получения высокоочищенного водорода при переработке синтез-газа. Синтез-газ, получаемый в результате паровой конверсии природного газа или газификации угля, является наиболее дешевым сырьем для получения водорода и содержит от 29 до 76 % водорода и от 5,6 до 60 % СО. Водород - экологически чистое средство аккумулирования, транспортировки и потребления энергии. Переработка синтез-газа с участием микроорганизмов, образующих водород как один из продуктов, может значительно увеличить выход водорода и одновременно избавляет от токсичного компонента - СО. Помимо этого, СО-трофы, как и все термофильные микроорганизмы, являются потенциальными источниками новых термостабильных ферментов.
Цели и задачи исследования.
Целью представленного исследования являлось изучение термофильных гидрогеногенных СО-окисляющих прокариот: их физиологического и филогенетического разнообразия, распространения в различных гидротермальных местах обитания, их роли в микробных сообществах гидротерм.
Для достижения поставленной цели были сформулированы следующие задачи: характеристика исследуемой группы и определение активностей предполагаемых ключевых ферментов метаболизма СО у термофильных гидрогеногенных карбоксидотрофных прокариот;
2) обнаружение термофильных гидрогеногенных карбоксидотрофных прокариот в разнообразных по физико-химическим параметрам и географическому положению наземных и глубоководных гидротермах;
3) определение скорости и основных продуктов трансформации СО микробными сообществами горячих источников;
4) определение численности анаэробных карбоксидотрофных прокариот в горячих источниках;
5) выделение и характеристика микроорганизмов, осуществляющих анаэробную трансформацию СО в горячих источниках.
Научная новизна и значимость работы.
Впервые с помощью разработанного нами радиоизотопного и хроматографического методов показана высокая активность микробной СО трансформации в горячих местах обитания. Определены основные продукты микробной трансформации СО.
Показано физиологическое и филогенетическое разнообразие термофильных гидрогеногенных карбоксидотрофных прокариот, их широкое распространение в разнообразных гидротермальных местах обитания.
Описана новая физиологическая группа анаэробных термофильных прокариот. Узаконены новый класс, новое семейство, 5 новых родов, 8 новых видов. В типе ПгтюШез описан новый класс ТкегтоШкоЪаМепа, включающий семейство ТкегтоШкоЬа&епа1е8 и новый род ТкегтоШкоЬаЫег, содержащий два вида: Т. сагЪохусИуогат и Т. /егпгес!исепз. Выделены и описаны новые роды СагЬохус1о¡кегтиз, Ткегттсо1а, СагЬохус1осе11а, ТкегтоБтш. Выделены гидрогеногеннные карбоксидотрофные представители рода Dictioglomus и типов ЕигуагсЬаеога и СгепагсЬаео1а: ТНегтососсш АМ4 и новый вид "ТНегторкИит сагЬохус/о^оркш'".
Впервые было показано наличие и высокая активность ферментов метаболического пути Вуда-Льюнгдаля: формиатдегидрогеназы, гидрогеназы, СО-дегидрогеназы, фолатных соединений в бесклеточном экстракте представителя гидрогеногенных СО-окисляющих прокариот С. hydrogenoformans. Показана высокая термостабильность СО-дегидрогеназы.
Практическая значимость работы заключается в том, что разработан аналитический метод нехроматографического разделения газовой смеси метана и СО, и радиоизотопный метод количественного определения продуктов трансформации СО чистыми культурами карбоксидотрофных термофилов и термофильными микробными сообществами. Создана коллекция новых термофильных микроорганизмов, которая может быть использована для целей биотехнологии. Экстремально термофильные бактерии и гипертермофильные археи являются потенциальными продуцентами термостабильных ферментов. Умеренно термофильные гидрогеногенные СО-окисляющие прокариоты представляют большой интерес как потенциальные агенты для переработки синтез-газа с целью получения водорода.
Основные защищаемые положения
1) термофильные гидрогеногенные карбоксидотрофные прокариоты широко распространены в наземных и глубоководных гидротермальных местах обитания и составляют существенную часть микробных сообществ гидротерм;
2) ключевыми ферментами процесса анаэробного окисления СО с образованием водорода являются СО-дегидрогеназы и гидрогеназы, фиксация углерода происходит с участием СО-дегидрогеназы по пути Вуда-Льюнгдаля;
3) в гидротермальных местах обитания, населенных анаэробными термофильными микробными сообществами, присутствует растворенный СО и идет активный процесс его трансформации, причем основным продуктом является СОг;
4) термофильные гидрогеногенные СО-окисляющие прокариоты разнообразны по фенотипическим свойствам и не образуют единую филогенетическую группу;
5) существуют как факультативно, так и облигатно зависящие от СО термофильные гидрогеногенные карбоксидотрофные прокариоты, в разной степени чувствительные к высоким концентрациям СО.
Публикации.
Материалы диссертации опубликованы в 49 печатных работах, включая 19 экспериментальных работ, 3 обзора, 3 главы в монографиях, 24 тезисов конференций.
Объем и структура диссертации. Диссертационная работа изложена на 283 страницах машинописного текста. Экспериментальная часть включает 38 рисунков и 8 таблиц. Работа состоит из введения, обзора литературы, экспериментальной части, содержащей методы и результаты исследования, заключения, выводов и списка литературы, который содержит 33 русских и 269 английских наименований.
Похожие диссертационные работы по специальности «Микробиология», 03.00.07 шифр ВАК
Филогенетическое разнообразие микроорганизмов в термофильных железовосстанавливающих сообществах2010 год, кандидат биологических наук Непомнящая, Яна Николаевна
Молекулярная детекция и разнообразие Crenarchaeota в наземных горячих источниках2007 год, кандидат биологических наук Перевалова, Анна Александровна
Аэробные органотрофные бактерии щелочных гидротерм Байкальского региона2007 год, кандидат биологических наук Бабасанова, Ольга Бадмажаповна
Филогенетическое разнообразие и активность микроорганизмов высокотемпературных нефтяных пластов2007 год, кандидат биологических наук Шестакова, Наталья Михайловна
Новые анаэробные термофильные прокариоты и их гидролитические ферменты2007 год, кандидат биологических наук Кубланов, Илья Валерьевич
Заключение диссертации по теме «Микробиология», Соколова, Татьяна Геннадиевна
выводы
1. Термофильные водородобразующие карбоксидотрофные прокариоты широко распространены в географически удаленных наземных и глубоководных гидротермальных местах обитания с рН от 5,5 до 10,0 и температурами от 50 до 94 °С и составляют существенную часть микробных сообществ гидротерм. Установлено, что численность СО-окисляющих водородобразующих термофильных прокариот в горячих источниках кальдеры Узон и Долины Гейзеров составляет до 10% от численности анаэробных органотрофных организмов.
2. В клетках СагЬохус1о1кегти$ куйго^епоЗогтат 2-2906 были обнаружены ферментативные активности, характерные для нециклического пути фиксации углерода Вуда-Льюндаля: формиатдегидрогеназная, гидрогеназная, СО-дегидрогеназная; спектрофотометрически показано наличие фолатных соединений и ферредоксина. Показана высокая активность и термостабильность и низкое сродство к СО выявленной в бесклеточном экстракте СО дегидрогеназной активности.
3. Установлено, что в горячих источниках кальдеры Узон при температуре 60-90°С и нейтральных значениях рН, идет активное окисление СО до С02.
4. Группа термофильных гидрогеногенных карбоксидотрофных прокариот филогенетически разнообразна. В нее входят бактерии типов Firmicutes и Dictyoglomi и археи типов Euryarchaeota и Crenarchaeota. В типе Firmicutes описан новый класс Thermolithobacteria, включающий порядок Thermolithobacteriales, семейство Thermolithobacteraceae и род Thermolithobacter. 10 представителей типа Firmicutes отнесены к 5 новым родам класса Clostridia: Carboxydothermus, Thermincola, Carboxydocella, Thermosinus и Caldanaeobacter. Выделены и описаны новые гидрогеногенные карбоксидотрофные прокариоты: Carboxydothermus hydrogenoformans, 'Carboxydothermus siderophilusThermincola carboxydiphila, Carboxydocella thermautotrophica, Carboxydocella sporoproducens, "Carboxydocella ferrireducens", Thermosinus carboxydivorans , Caldanaerobacter subterraneus subsp. pacificus, Thermolithobacter carboxydivorans, 'Dictyoglomus carboxydivorans'Thermofilum carboxydotrophus', Thermococcus sp. AM4. Показана способность к росту на СО железоредуцирующих бактерий: Thermincola ferriacetica - с образованием водорода и Carboxydothermus ferrireducens - без образования водорода или ацетата.
5. Группа термофильных гидрогеногенных карбоксидотрофных прокариот метаболически разнообразна, она включает как облигатных СО-окисляющих литотрофов, так и микроорганизмы, способные к росту на других субстратах.
ЧАСТЬ 4. ЗАКЛЮЧЕНИЕ
В результате проделанной работы нами было показано, что анаэробные гидрогеногенные карбоксидотрофы широко распространены в гидротермальных местах обитания и составляют существенную часть микробных сообществ гидротерм. Мы показали, что в наземных гидротермах идет активный процесс трансформации присутствующего там СО-, причем в исследованных нами случаях основным продуктом этого процесса был С02. Мы выделили из различных гидротермальных мест обитания ряд термофильных гидрогеногенных карбоксидотрофных прокариот, осуществляющих анаэробное окисление СО в реакции с водой, сопряженное с образованием С02 и водорода. Мы впервые показали, что в клетках одного из представителей этой группы, СагЬоху^^егтт hydrogenoformans, содержатся высоко активные компоненты пути Вуда-Льюнгдаля. Более глубокое и всестроннее исследование энзимологии гидрогеногенной карбоксидотрофии было осуществлено В.А. Светличным на примере того же организма (БуеШ^Ьпу а1., 2001; 2003; 2004; БоЬЬек е1 а1., 2001). Наша работа была в большей степени посвящена изучению биоразнообразия гидрогеногенных карбоксидотрофов. Эти организмы оказались филогенетически разнообразными, включающими как бактерий типов Рштс^ев и Б1с1:^1огш, так и архей типов ЕигуагсЬаео1а и СгепагсЬаео1а. Среди них были как облигатные карбоксидотрофы, так и микроорганизмы, способные к росту на других субстратах. Наши исследования значительно расширили представления о фенотипическом и филогенетическом разнообразии термофильных микроорганизмов, способных осуществлять анаэробное окисление СО. В дополнение к известным к началу наших работ нескольким анаэробным термофилам, способным окислять СО в процессе роста: трем ацетогенам - Moorella thermoacetica, Moorella thermoautotrophica и Thermoanaerobacter kivuii (Savage et al., 1987; Diekert & Thauer, 1978; Daniel et al., 1990), и одному метаногену - Methanothermobacter thermoautotrophicus (Daniels et al., 1977), мы показали способность к росту за счет анаэробного окисления СО у 15 новых видов темофильных и гипертермофильных прокариот (рис. 3.4.1, табл. 3.4.1). 14 из них относятся к группе гидрогеногенных карбоксидотрофов, использующих для роста энергию реакции СО + Н20 —> С02 + H2 AGo~ - 20 кДж/моль. Один из видов, относящийся к роду Carboxydothermus, окисляет СО в процессе восстановления трехвалентного железа в виде гидроморфного оксида, и не образует водород. Выделенные нами из гидротермальных мест обитания анаэробные термофильные гидрогеногенные карбоксидотрофные прокариоты не образуют единую филогенетическую группу (рис. 3.4.1, табл. 3.4.1). В домене Bacteria они представлены в шести различных ветвях типов Firmicutes и Dictioglomi. В домене Archaea гидрогенногенные карбоксидотрофы представлены в типах Euryarchaeota и Crenarchaeota. Все описанные нами новые гидрогеногенные СО-окисляющие прокариоты обитают в природных термальных местах обитания - горячих источниках различного типа.
Другими исследователями из ила анаэробного биореактора был выделен еще один термофильный факультативный гидрогеногенный карбоксидотроф - сульфатредуцирующая бактерия Desulfotomaculum carboxydivorans (Parshina et al., 2005). Также было показано, что представитель гипертермофильных архей Archaeoglobus fulgidus может расти на СО, образуя ацетат или, в присутствии сульфатов, сероводород (Henstra et al., 2007). Также расширился круг мезофильных гидрогеногенных СО-трофов: в дополнение к известному ранее штамму Rhodocyclus gelatinosus были описаны еще три мезофильных бактерии с этим типом метаболизма: Rhodospirillum rubrum (Kerby et al, 1995), Citrobacter sp. (Jung et al., 2002) и Sulfurospirillum carboxydovorans (Jensen and Finster, 2005). Было также установлено, что Methanosarcina acetivorans может расти на СО, образуя в качестве основных продуктов ацетат и формиат (Rother and Metealf, 2004). Таким образом, выявлено значительно более широкое распространение способности к СО-трофии среди анаэробов, чем это представлялось ранее.
Выделенные нами гидрогеногенные карбоксидотрофные прокариоты представлены умеренными, экстремальными и гипертермофильными организмами. Экстремальные термофилы относятся к бактериальным родам Carboxydothermus, Caldanaerobacter, Thermolithobacter, Dictioglomus. Гипертермофилы относятся к археям родов Thermococcus и Thermofillum.
Большинство гидрогеногенных карбокисдотрофных прокариот нейтрофилы; нами был выделен только один алкалитолерантный представитель этой группы - Thermincola carboxydiphila. Ацидофильных представителей исследуемой группы пока не обнаружено.
Большинство гидрогеногенных карбоксидотрофных прокариот, известных к настоящему времени, устойчиво к высоким концентрациям
СО; онии хорошо растут при 100% СО в газовой фазе. Только два выделенных нами организма - "Dictyoglomus carboxydivorans" и
Thermofilum carboxydotrophus"- чувствительны к высоким концентрациям СО, оптимально развиваясь при 5 или 45 % СО в газовой фазе. Однако даже и эти относительно низкие концентрации СО значительно превышают полученные нами значения содержания СО в гидротермах и значения Ks для потребления СО микробным сообществом, обитающим в осадках гидротермального источника. Таким образом, возникает вопрос о роли выделенных нами микроорганизмов как агентов трансформации СО в природных горячих местах обитания. Исследования
Carboxydothermus hydrogenoformans, проведенные голландскими учеными показали, что этот организм способен к потребления чрезвычайно низких концентраций СО - до 2 ppm (Henstra et al., 2004). Однако полученные нами значения Ks указывают на вероятное существование термофильной микрофлоры с еще более высоким сродством к СО. Похожая ситуация наблюдается в аэробной системе, где осуществление процесса окисления
СО в природных местах обитания приписывается так называемым карбоксидоворам» - микроорганизмам с высоким сродством к СО, использующим его в процессе миксотрофного роста (King and Weber, 2007).
Большинство описанных нами микроорганизмов способно к росту на других субстратах, помимо СО, но два вида облигатно зависят от СО, - это Carboxydocella thermautotrophica и Thermincola carboxydophila.
Многие описанные нами гидрогеногенные карбоксидотрофные прокариоты способны расти за счет восстановления различных акцепторов электронов. Было показано, что способность к анаэробному окислению СО и диссимиляционному восстановлению трехвалентного железа является общим признаком ряда таксонов термофильных организмов. Эти свойства могут встречаться у разных видов одного рода - как в случае Thermincola carboxydiphila и Thermincola ferriacetica - или сочетаться в одном организме - Thermosinus caroxydivorans, "Carboxydocella ferrireducens". Особый интерес представляют представители рода Carboxydothermus, где мы наблюдаем оба случая сочетания этих свойств.
Среди способных к окислению СО анаэробных термофильных прокариот виды, относящиеся к гидрогеногенным карбоксидотрофам, наиболее многочисленны. Термофильные гидрогеногенные карбоксидотрофные прокариоты, как правило, легко выделяются из гидротермальных мест обитания, их численность достигает 10 % от числа анаэробных органотрофных организмов в микробных сообществах гидротерм. Это позволяет предположить, что СО окисляющие
Список литературы диссертационного исследования доктор биологических наук Соколова, Татьяна Геннадиевна, 2008 год
1. Басков Е.А., Суриков С.Н. (1989). Гидротермы Земли. Л.:Недра.
2. Беляев С.С., Лауринавичус К.С., Иванов М.В. (1975) Определение интенсивности процесса микробиологического окисления метана с14использованием СН4> Микробиология, 44(3): 542-545.
3. Большаков A.M., Егоров A.B. (1987) Об использовании методики фазово-равновесной дегазации при газометрических исследованиях. Океанология, 27(5): 861-862.
4. Гальченко В.Ф. (1994) Сульфатредукция, метанообразование и метаноокисление в различных водоемах оазиса Бангер Хиллс, Антарктида. Микробиология, 63(4): 683-698.
5. Гебрук AB (2002). Биология гидротермальных систем. Изд. «Товарищество науных изданий КМК»
6. Гордон А., Форд Р. (1976). Спутник химика. М.: Мир. 542 стр.
7. Горленко В.М., Бон-Осмоловская Е.А. (1989). Формирование микробных матов в горячих источниках и активность продукционных и деструкционных процессов. В сборнике: «Кальдерные микроорганизмы», М.: Наука
8. Гудвин, Т., Мерсер, Э. (1986) Введение в биохимию растений: В 2 т. // Пер. с англ. А.О. Ганаго и др., Под ред. В.А.Кретовича. М.: Мир.
9. Дедыш С.Н., Паников Н.С. (1997) Влияние концентрации метана на скорость его бактериального окисления в сфагновом торфе. Микробиология. Т. 66(4). С. 563-568.
10. Заварзин Г.А .(1978) Водородные и карбоксидобактерии. М. «Наука».
11. Заварзин Г.А. (1984) Бактерии и состав атмосферы. М., «Наука».
12. Лебединский A.B., Ивановский Р.Н., Ножевникова А.Н. (1976) Состав и концентрация цитохромов в клетках карбоксидобактерий. Микробиология, 45(1):176-177.
13. Мархинин Е.К. (1985) Вулканизм. М.: «Недра».
14. Назина Т.Н., Иванова А.Е., Канчавели Л.П., Розанова Е.П. (1988) Новая спорообразующая термофильная метилотрофная сульфатредуцирующая бактерия, Desulfotomaculum kuznetsovii sp. nov. Микробиология, 57: 823-827.
15. Ножевникова А.Н. (1974). Отношение СО-окисляющих бактерий к окиси углерода. Известия АН СССР. Сер. Биологическая 6: 878-884.
16. Ножевникова А.Н., Заварзин Г.А. (1973) Симбиотическое окисление оксида углерода бактериями. Микробиология 42(1): 158-159.
17. Ножевникова А.Н., Заварзин Г. А. (1974) Таксономия СО-окисляющих Грам отрицательных бактерий. Известия АН СССР. Сер. Биологическая 3: 436-440.
18. Ножевникова А.Н., Савельева Н.Д. (1972) Автотрофная ассимиляция диоксида углерода бактериями, окисляющими оксид углерода. Микробиология 41(6): 939-946.
19. Ножевникова А.Н., Юрганов JI.H. (1979) Цикл атмосферной окиси углерода и использование ее бактериями. В Роль микроорганизмов в круговороте газов в при роде. М.: «Наука», стр. 178-204.
20. Резников A.A., Муликовская Е.П., Соколов И.Ю. (1970) Методы анализа природных проб. М.: Недра.
21. Романова А.К., Ножевникова А.Н., Зыкалова К.А., Алексеева С.А., Веденина И .Я. (1978) Биохимические пути ассимиляции СОкарбоксидобактерией Pseudomonas gazotropha. Микробиология, 47(2): 197202.
22. Романова А.К., Ножевникова А.Н., Леонтьев И.Г., Алексеева С.А. (1977) Пути ассимиляции окислов углерода карбоксидобактериями Seliberia carboxydphydrogena и Achromobacter carboxydus. Микробиология, 46(5): 885-889.
23. Санжиева Э.У., Заварзин Г.А. (1971) Бактерия, окисляющая окись углерода. Докл АН СССР, 196: 956.
24. Соколов В.А. (1971) Геохимия природных газов. М. «Недра».
25. Светличный В.А., Светличная Т.П. (1988) Dictyoglomus turgidus sp. nov. новая экстремально термофильная эубактерия, выделенная из горячих источников Кальдеры вулкана Узон. Микробиология, 57: 435-441.
26. Светличный В.А., Соколова Т.Г., Герхардт М., Заварзин Г.А. (1990) Новая группа анаэробных термофильных карбоксидобактерий выделяющих водород. Докл АН СССР, 314: 742-745.
27. Светличный В.А., Соколова, Т.Г., Кострикина, H.A., Лысенко A.M. (1994) Carboxydothrmus restrictus sp.nov. новая термофильная анаэробная карбоксидотрофная бактерия. Микробиология, 63: 523-528.
28. Шарп Д., Госни И., Роули А. (1993) Практикум по органической химии. М.: Мир.
29. Химия. Большой Энциклопедический словарь. Гл ред. И.Л. Кнунянц. Второе издание. «Большая Российская Энциклопедия». 1998г. 772 стр.
30. Химия. Справочное руководство. ГДР, 1972г. Переводе немецкого. Ленинград: Химия, 1975.
31. Abrini J., Naveau Н., Nyns E.J. (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol, 161: 345-351.
32. Adams M.W.W. (1990a) The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta 1020: 115-145.
33. Adams M.W.W. (1990b) The metabolism of hydrogen by extremely thermophilic, sulfur-dependent bacteria. FEMS Microbiol Rev 75: 219-238.
34. Allard P., Barton M. (2004) High resolution FTIR sensing of magmatic gas composition during explosive eruption of primitive Etna basalt. Geophys Res Abstr 6: 06493.
35. Balk ML, van Gelder Т., Weelink S.A., Stams A.J. (2008) (Per)chlorate reduction by the thermophilic bacterium Moorellaperchloratireducens sp. nov., isolated from underground gas storage. Appl Environ Microbiol, 74: 403-409.
36. Barns S.M., Fundyga R.E., Jeffries M.W., Pace N.R. (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA, 91: 1609-1613.
37. Baross J.A., Deming J.W. (1983) Growth of'black smoker' bacteria at temperatures of at least 250 °C. Nature, 303: 423-426
38. Bartholomew G.W., Alexander M. (1981) Soil as a sink for atmospheric carbon monoxide. Science, 212: 1389-1391.
39. Bartholomew G.W., Alexander M. (1982) Microorganisms responsible for the oxidation of carbon monoxide in soil. Environ Sci Technol, 16: 300-301.
40. Bateson M.M., Wiegel J., Ward D.M. (1989) Comparative analysis of 16S ribosomal RNA sequences of thermophilic fermentative bacteria isolated from hot spring cyanobacterial mats. SystAppl Microbiol 12: 1-7.
41. Beeder J., Nilsen R.K., Rosnes J.T., Torsvik T., Lien T. (1994) Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl Environ Microbiol 60: 1227-1231.
42. Bell J.M., Falconer C., Colby J., Williams E. (1987) CO metabolism by a thermophilic actinomycete, Streptomyces strain G26. J Gen Microbiol, 133: 3445-3456.
43. Bender M., Conrad R. (1992) Kinetics of CH4 oxidation in oxic soils exposed to embient air or high CH4 mixing ratios. FEMS Microbiol Ecol 101: 261-270.
44. Bender M., Conrad R. (1994) Microbial oxidation of methane, ammonium and carbon monoxide, and turnover of nitrous oxide and nitric oxide in soils. Biogeochem, 27: 97-112.
45. Bennett B., Lemon B.J., Peters J.W. (2000) Reversible carbon monoxide binding and inhibition at the active site of the Fe-only hydrogenase. Biochemistry, 39: 7455-7460.
46. Bergamaschi P., Hein R., Heimann M., Crutzen P.J. (2000) Inverse modeling of the global CO cyclQ.JGeophys Res, 105: 909-1927.
47. Bott M., Thauer R. K. (1987) Proton-motive-force-driven formation of CO from C02 and H2 in methanogenic bacteria. Eur J Biochem 168(2): 407-412.
48. Burggraf S., Jannasch H.W., Nicolaus B., Stetter K.O. (1990) Archaeoglobus profundus sp.nov, represents a new species within the sulfate-reducing archaebacteria. Syst Appl Microbiol, 13: 24-28.
49. Charlou J.L., Donval J.P., Fouquet Y., Jean-Baptiste P., Holm N. (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14'N, MAR). Chemical Geol, 191: 345359.
50. Conrad R. (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, OCS, N20 and NO). Microbiol Rev, 60: 609-640.
51. Conrad R., Meyer O., Seiler W. (1981) Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil. Appl Environ Microbiol, 42:211-215.
52. Conrad R., Seiler W. (1982) Utilization of traces of carbon monoxide by aerobic oligotrophic microorganisms in ocean, lake, and soil. Arch. Microbiol, 132:41-46.
53. Conrad R., Seiler W. (1985) Characteristics of biological carbon monoxide formation from soil organic matter, humic acids, and phenolic compounds. Environ Science Technol, 19: 1165-1169.
54. Conrad R., Schütz H., Seiler W. (1988) Emission of carbon monoxide from submerged rice fields into the atmosphere. Atmos Environ, 22: 821-824.
55. Conrad, R., Thauer R.K. (1983) Carbon monoxide production by Methanobacterium thermoautotrophicum. FE MS Microbiol Lett 20: 229-232.
56. Crutzen P.J. (1974) Photochemical reactions initiated by and influencing ozone in unpolluted tropospheric air. Tellus, 26: 47.
57. Cypionka H., Meyer O. (1983) Carbon monoxide-insensitive respiratory chain of Pseudomonas carboxydovorans. J Bacteriol, 156(3): 1178-1187.
58. Daniel S.L., Hsu T., Dean S.I., Drake H.L. (1990) Characterization of thehydrogen- and carbon monoxide-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. JBacteriol, 172; 4464-4471.
59. Daniels L., Fuchs G., Thauer R.K., Zeikus J.G.( 1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol, 132: 118-126.
60. Dashekvicz M.P., Uffen R.L. (1979) Identification of a carbon monoxide metabolizing bacterium as a strain of Rhodopseudomonas gelatinosa (Molisch). Int J Syst Bacteriol, 29:145-148.
61. Davidova M.N., Tarasova N.B., Mukhitova F.K., Karpilova I.U. (1994) Carbon monoxide in metabolism of anaerobic bacteria. Can J Microbiol, 40: 417—425.
62. De Lay J., Cattoir H., Reynaerts A. (1970) The quantities measurements of DNA hybridization from renaturation rates. Eur Biochem 12: 133-142.
63. Denton M.D., Reeve W.G., Howieson J.G., Coventry D.R. (2003) Competitive abilities of common field isolates and a commercial strain of Rhizobium leguminosarum bv. trifolii for clover nodule occupancy. Soil Biol Biochem, 35: 1039-1048.
64. Desbruyéres D., Laubier L. (1980) Alvinellapompejana gen. nov., sp. nov., aberrant Ampharetidae from the East pacific Rise hydrothermal vents. Oceanol Acta, 3: 267-274.
65. Desbruyéres D., Laubier L. (1991) Systematics, phylogeny, ecology and distribution of Alvinellidae (Polychaeta) from deep-sea hydrothermal vents. Ophelia 5: 31-45.
66. Diekert G.B., Thauer R.K. (1978) Carbon-monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J Bacteriol, 136. 597-606.
67. Diekert G., Hansch M., Conrad R. (1984) Acetate synthesis from 2 C02 in acetogenic bacteria: is carbon monoxide an intermediate? Arch Microbiol, 138: 224-228.
68. Dobbek H., Svetlichny V., Gremer L., Huber R., Meyer O. (2001) Crystal structure of the carbon monoxide dehydrogenase reveals a Ni-4Fe-5S. cluster. Science, 293(5533): 1281-1285.
69. Dobbek H., Svetlitchnyi V., Liss J., Meyer O. (2004) Carbon monoxide induced decomposition of the active site Ni-4Fe-5S. cluster of CO dehydrogenase. J Am Chem Soc, 126(17): 5382-5387.
70. Doukov, T.I., Iverson, T., Seravalli, J., Ragsdale, S.W., Drennan,C.L. (2002) A Ni-Fe-Cu center in a bifiinctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Science, 298(5593): 567-572.
71. Drake H.L., Daniel S.L. (2004) Physiology of the thermophilic acetogen Moorella thermoacetica. Research in Microbiology, 155: 422-436.
72. Eikmanns B., Fuchs G., Thauer R.K. (1985) Formation of carbon monoxide from C02 and H2 by Methanobacterium thermoautotrophicum. Eur JBiochem 146: 149-154.
73. Erbes D.L., Burris R.H. (1978) The kinetics of methyl viologe oxidation. Biochim Biophys Acta, 525: 45-54.
74. Erickson D.J. (1989) Ocean to atmosphere carbon monoxide flux: Global inventory and climate implications. Global Biogeochem Cyc, 3: 305-314.
75. Felsenstein J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. JMol Evol 17(6): 368-376.
76. Felsenstein J. (1989) PHYLIP Phylogenetic Inference Package version 3.2. Cladistics, 5: 164-166.
77. Ferenci T., Strom T., Quayle J.R. (1975) Oxidation of carbon monoxide and methane by Pseudomonas methanica. J Gen Microbiol, 91(1): 79-91.
78. Ferry J.G., House C.H. (2006) The stepwise evolution of early life driven by energy conservation, molecular biology and evolution. 23(6): 1286-1292.
79. Fitch W.M. (1971) Toward defining the course of evolution: minimum change for a specified tree topology. Systematic Zoology, 20: 406-416.
80. Fitch W.M., Margoliash E. (1967) Construction of phylogenetic trees. Science, 155: 279-284.
81. Fox J.D., He Y., Shelver D., Roberts G.P., Ludden P.W. (1996a) Characterization of the region encoding the CO-induced hydrogenase of Rho do spirillum rubrum . J Bacteriol, 178: 6200-6208.
82. Fox J.D., Kerby R.L., Roberts G.P., Ludden P.W. (1996 b) Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme. J Bacteriol, 178: 1515-1524.
83. Frunzke K., Meyer O. (1990) Nitrate respiration, denitrification, and utilization of nitrogen sources by aerobic carbon monoxide-oxidizing bacteria. Arch Microbiol 154: 168-174.
84. Furdui C., Ragsdale S.W. (2000) The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway J Biol Chem, 275: 28494-28499.
85. Gadkari D., Schricker K., Acker G., Kroppensetdt R. M., Meyer O. (1990) Streptomyces thermoautotrophicus sp. nov., a thermophilic CO- and H2-oxidizing obligate chemolithotroph. Appl Environ Microbiol 56 : 3727-3734.
86. Garofalo K., Tassi F., Vaselli O., Delgado-Huertas A., TedescoD., Frische M., Hansteen T.H. PoredaR.J., Strauch W. (2007) Fumarolic gases at
87. Mombacho volcano (Nicaragua): presence of magmatic gas species and implications for volcanic surveillance. Bull Volcanol 69: 785-795.
88. González J.M., Robb F.T. (2000) Genetic analysis of Carboxydothermus hydrogenoformans carbon monoxide dehydrogenase genes cooF and cooS. FEMS Microbiol Lett, 191: 243-247.
89. González J.M., Sheckells D., Viebahn M., Krupatkina D., Borges K.M., Robb F.T. (1999) Thermococcus waiotapuensis sp. nov., an extremely thermophilic archaeon isolated from a freshwater hot spring. Arch Microbiol, 172: 95-101.
90. Grahame D.A., DeMoll E. (1995) Substrate and accessory protein requirements and thermodynamics of acetyl-CoA synthesis and cleavage in Methanosarcina barkeri. Biochemistry, 34(14): 4617-4624.
91. Greenland L.P. (1986) Gas analyses from the Pu'u O'o eruption in 1985, Kilauea volcano, Hawaii. Bull Volcanol, 48: 341-348.
92. Grethlein A.J., Worden R.M., Jain M.K., Datta R. (1991) Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum. J Ferment Bioeng, 72: 58-60.
93. Guenther A., Geron C., Pierce T., Lamb B., Hartley P., Fall R. (2000) Natural emissions of non-methane volatile compounds, carbon monoxide, and oxide of nitrogen from North America. Atmos Environ, 34: 2205-2230.
94. Hansteen T.H., PoredaR.J., Strauch W. (2007) Fumarolic gases at Mombacho volcano (Nicaragua): presence of magmatic gas species and implications for volcanic surveillance. Bull Volcanol, 69: 785-795.
95. Hardy K.R., King G.M. (2001) Enrichment of high-affinity CO oxidizers in Maine forest soil. Appl Environ Microbiol, 67: 3671-3676.
96. Hedderich R. (2004) Energy-converting NiFe. hydrogenases from archaea and extremophiles: ancestors of complex I. J Bioenerg Biomembr, 36: 65-75.
97. Hedderich R., Forzi L. (2005) Energy-converting Ni-Fe.-hydrogenases: more than just H2 activation. J Mol Microbiol Biotechnol, 10: 92 -104.
98. Hendrickson, O. Q., Kubiseski T. (1991) Soil microbial activity at high levels of carbon monoxide. J Environ Qual, 20: 675-678.
99. Hekinian R., Fevrier M., Bischoff J.L., Picot P., Shanks W.C. (1980) Sulfide deposits from the East Pacific Rise near 21°N. Science, 207: 1433-1444.
100. Hekinian R., Fouquet Y. (1985) Volcanism and metallogenesis of axial and off-axial structures on the East Pacific Rise near 13°N. Econ Geol, 80: 221-249.
101. Hellebrand H.J, Schade G.W, (2008) Carbon monoxide from composting due to thermal oxidation of biomass. J Environ Qual, 37: 592-598.
102. Hendrickson O.Q., Kubiseski T. (1991) Soil microbial activity at high levels of carbon monoxide. J Environ Qual, 20: 675-678.
103. Henstra A.M. (2006) CO metabolism of Carboxydothermus hydrogenoformans and Archaeoglobus fulgidus. The PhD Thesis Wageningen University, Wageningen, the Netherlands, ISBN: 90-8504-408-1.
104. Henstra A.M., Dijkema C., Stams A.J.M. (2007a) Archaeoglobus fulgidus couples CO oxidation to sulfate reduction and acetogenesis with transient formate accumulation. Environ Microbiol, 9: 1836-1841.
105. Henstra A.M., Sipma J., Rinzema A., Stams A.J.M. (2007b) Microbiology of synthesis gas fermentation for biofuel production. Current Opinion in Biotechnology, 18: 200-206.
106. Hino S., Tauchi H. (1987). Production of carbon monoxide from aromatic amino acids by Morganella morganii. Arch Microbiol 148: 167-171.
107. Hoehler T.M., Bebout B.M., Marais J.D. (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature, 412: 324-327.
108. Holden J.F., Takai K., Summit M., Bolton S., Zykowski J., Baross J.A. (2001) Diversity of three novel groups of hyperthermophilic deep-sea Thermococcus species from three sites in the northeastern pacific Ocean. FEMS Microbiol Ecol, 36: 51-60.
109. Holland H.D. (1984) The chemical evolution of the Atmosphere and Oceans. Princeton University Press, Princeton, NJ.
110. Houchins J.P., Burris R.H. (1981) Comparative characterization of two distinct hydrogenases from Anabaena sp. strain 7120. J Bacteriol, 146(1): 215— 221.
111. Hu S.I., Drake H.L., Wood H.G.( 1982) Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium ihermoaceticum. J Bacteriol, 149: 440-448.
112. Huber H., Huber G., Stetter K.O. (1985) A modified DAPI fluorescence staining procedure suitable for the visualization of lithotrophic bacteria. Syst Appl Microbiol 6: 105-106.
113. Hubley J.H., Mitton J.R., Wilkinson J.F. (1974) The oxidation of carbon monoxide by methane-oxidizing bacteria. Arch Microbiol, 95(4): 365-368.
114. Hugenholtz P., Pitulle C., Hershberger K.L., Pace N.R. (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol, 180: 366-376.
115. Inman R.E., Ingersoll R.B., Levy E.A. (1971) Soil: a natural sink for carbon monoxide. Science, 172: 1229-1231.
116. IPCC (2001) Climate Change 2001, The Scientific Basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York.
117. Jensen A., Finster K. (2005) Isolation and characterization of Sulfurospirillum carboxydovorans sp. nov., a new microaerophilic carbon monoxide oxidizing epsilon Proteobacterium. Antonie van Leeuwenhoek, 87: 339-353.
118. Johnson K.M., Davis P.G., McN. Sieburth J. (1983) Diel variation of C02 in the upper layer of oceanic waters reflects microbial composition, variation and possibly methane cycle. Marine Biology 77: 1-10.
119. Jones R.D. (1991) Carbon monoxide and methane distribution and consumption in the photic zone of the Sargasso Sea. Deep-Sea Res, 38: 625-635.
120. Jung G.Y., Jung H.O., Kim J.R., Ahn Y., Park S. (1999a) Isolation and characterization of Rhodopseudomonas palustris P4 which utilizes CO with the production of H2. Biotechnol Lett, 21: 525-529.
121. Jung G.Y., Kim J.R., Jung H.O., Park J.Y., Park S. (1999b)A new chemoheterotrophic bacterium catalyzing water-gas shiftreaction. Biotechnol Lett, 21:869-873.
122. Jung G.Y., Kim J.R., Park J.Y., Park S. (2002) Hydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int J Hydrogen Energy, 27: 601-610.
123. Kaneko, Т. et al. (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res, 9: 189197.
124. Karnovsky M.J. (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol, 27: 137A-138A.
125. Kasting J.F. (1990) Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere. Origins of Life, 20: 199-231.
126. Kerby R.L., Hong S.S., Ensign S.A., Coppoc L.J., Ludden P.W., Roberts G.P. (1992) Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system. J В acteriol, 174: 5284-5294.
127. Kerby R.L., Ludden P.W., Roberts G.P. (1995) Carbon monoxide dependent growth of Rhodospirillum rubrum. J В acteriol, 177: 2241-2244.
128. Kerby R.L., Ludden P.W., Roberts G.P. (1997) In vivo nickel insertion into the carbon monoxide dehydrogenase of Rhodospirillum rubrum : molecular and physiological characterization of cooCTJ. JBacteriol, 179: 2259-2266.
129. Khalil M.A.K., Rasmussen R.( 1994) Global decrease in atmospheric carbon monoxide. Nature, 370: 639-641.
130. Khalil M.A.K. (1999) Atmospheric carbon monoxide. Chemosphere, 1, ix-xi.
131. Kharecha P., Kasting J., Siefert J. (2005) A coupled atmosphere-ecosystem model of the early Archean Earth. Geobiology, 3: 53-76.
132. King G.M. (1999) Attributes of atmospheric carbon monoxide oxidation by Maine forest soils. Appl Environ Microbiol 65: 5257-5264.
133. King G.M. (1999) Characteristics and significance of atmospheric carbon monoxide consumption by soils. Chemosphere, 1: 53-63.
134. King G.M. (2000). Land use impacts on atmospheric carbon monoxide consumption by soils. Global Biochemic Cycles, 14: 1161-1172.
135. King G.M. (2001) Aspects of carbon monoxide production and oxidation by marine macroalgae. Mar Ecol Prog Ser 224: 69-75.
136. King G.M. (2003) Uptake of carbon monoxide and hydrogen at environmentally relevant concentrations by mycobacteria. Appl Environ Microbiol, 69: 7266-7272.
137. King, G. M. (2003) Molecular and culture based analyses of aerobic carbon monoxide oxidizer diversity. Appl Environ Microbiol 69: 7257-7265.
138. King G.M. (2006) Nitrate-dependent anaerobic carbonmonoxideoxidation by aerobicCO-oxidizing bacteria. FEMS Microbiol Ecol, 56: 1-7.
139. King G.M. (2007) Microbial carbon monoxide consumption in saltmarsh sediments FEMS Microbiol Ecol, 59: 2-9.
140. King G.M., Crosby H. (2002) Impacts of plant roots on soil CO cycling and soil- atmosphere exchange. Global Change Biol, 8: 1-9.
141. King G.M., Hungria, M. (2002) Soil-atmosphere CO exchanges and microbial biogeochemistry of CO transformations in a Brazilian agriculture ecosystem. Appl Environ Microbiol, 68: 4480-4485.
142. King G.M., Weber C.F. (2007) Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nature Rev Microbiol, 5: 107-118.
143. Kim S.B., Falconer C., Williams E., Goodfellow M. (1998) Streptomyces thermocarboxydovorans sp. nov., and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species from soil. Int J Syst Evol Microbiol, 48: 59-68.
144. Kim S.B., Goodfellow M. (2002) Streptomyces thermospinisporus sp. nov., a moderately thermophilic carboxydotrophic streptomycete isolated from soil. Int J Syst Evol Microbiol, 52: 1225-1228.
145. Klages K.U., Morgan H.W. (1994) Characterization of an extremely thermophilic sulfur-metabolizing archaebacterium belonging to the Thermococcales. Arch Microbiol, 152: 261-266.
146. Klemps R., Cypionka H., Widdel F. & Pfennig N. (1985) Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch Microbiol, 143: 203-208.
147. Krueger B., Meyer O. (1984) Thermophilic bacilli growing with carbon monoxide. Arch Microbiol, 139: 402-408.
148. Krumholz L.R., Bryant M.P. (1985) Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate. Int J Syst Bacterio/, 35: 454-456.
149. Kodosky L.G., Motyka RJ, Symonds R.B. (1991) Fumarolic emissions from Mount St. Augustine, Alaska: 1979-1984 degassing trends, volatile sources and their possible role in eruptive style. Bull Volcanol, 53: 381-394.
150. Ktinkel A., Vorholt J.A., Thauer R.K., Hedderich R. (1998) An Escherichia coli hydrogenase-3-type hydrogenase in methanogenic archaea. Eur J Biochem, 252: 467^476.
151. Lane D.J. (1991) 16S/23S rRNA sequencing. In E. Stackebrandt, and M. Goodfellow (ed.), Nucleic acid techniques in bacterial systematics. p. 115-175 John Wiley & Sons, Inc., New York, NY.
152. Lindahl, P.A. (2002) The Ni-containing carbon monoxide dehydrogenase family: Light at the end of the tunnel? Biochemistry, 41: 2097-2105.
153. Lorite M.J., Tachil J., Sanjuan J., Meyer O., Bedmar E.J. (2000) Carbon monoxide dehydrogenase activity in Bradyrhizobium japonicum. Appl Environ Microbiol, 68: 1871-1876.
154. Lorowitz W.H., Bryant M.P. (1984) Peptostreptococcusproductus strain that grows rapidly with CO as the energy source. Appl Environ Microbiol, 47: 961-964.
155. Lupton F.S., Conrad R., Zeikus J.G. (1984) CO metabolism of Desulfovibrio vulgaris strain Madison physiological function in the absence or presence of exogenous substrates. FEMS Microbiol Lett, 23: 263-268.
156. Lyons, C.M., Colby, J.P., Williams, E. (1984) Isolation and characterization and autotrophic metabolism of a moderately thermophilic caboxydobacterium, Pseudomonas thermocarboxydovorans sp. nov. J Gen Microbiol 130: 1097- 1105.
157. Lynd L., Kerby R., Zeikus J.G. (1982) Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum. JBacteriol, 149: 255-263.
158. Marmur J. (1961) A procedure for the isolation DNA from microorganisms. J Molecular Biol, 3: 208-218.
159. Martin D.R., Misra A., Drake H.L. (1985) Dissimilation of carbon monoxide to acetic acid by glucose-limited cultures of Clostridium thermoaceticum. Appl Environ Microbiol, 49(6): 1412-1417.
160. Martin W., Russell M.J. (2003) On the origin of cells: an hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil Trans R Soc B, 358: 59-85.
161. Maynard E.L., Lindahl P.A. (1999) Evidence of a molecular tunnel connecting the active sites for C02 reduction and acetyl-CoA synthesis in acetyl-CoA synthase from Clostridium thermoaceticum. J Am Chem Soc, 121: 92219222.
162. Maynard E.L., Lindahl P.A. (2001) Catalytic coupling of the active sites in acetyl-CoA synthase, a Afunctional CO-channeling enzyme. Biochemistry 40(44): 13262-13267.
163. Menyailov I.A., Nikitina L.P. (1980) Chemistry and metal contents of magmatic gases: The new Tolbachilc volcanoes case (Kamchatka). Bull Volcanol 43:197-205.
164. Meuer J., Bartoschek S., Koch J., Kiinkel A., Hedderich R. (1999) Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri. Eur JBiochem, 265: 325-335.
165. Meyer O., Rhode M. (1984) Enzymology and bioenergetics of carbon monoxide-oxidizing bacteria. In Microbial growth on CI compounds, pp. 2633. R.L. Crawford, and R.S. Hanson, Eds., American Society for Microbiology, Washington, DC.
166. Meyer O., Schlegel H.G. (1978) Reisolation of the carbon monoxide utilizing hydrogen bacterium Pseudomonas carboxydovorans (Kistner) comb, nov. Arch Microbiol, 118(1): 35-43.
167. Meyer O., Schlegel H.G. (1983) Biology of aerobic carbon monoxide-oxidizing bacteria. Ann Rev Microbiol 37: 277-310.
168. Meyer O., Frunzke K., Gadkari D., Jacobitz S., Hugendieck I., Kraut M. (1990) Utilization of carbon monoxide by aerobes recent advances. FEMS Microbiol Rev 87: 253-260.
169. Meyer O., Stackebranbdt E., Auling G. (1993) Reclassification of ubiquinone Q-10 containing carboxidotrophic bacteria: transfer of
170. Meyer O., Stackebranbdt E., Auling G. (1994). Validation list № 48 Int J Syst Bacteriol 44: 182-183.
171. Meyer O., Frunzke K., Gadkari D., Jacobitz S., Hugendieck I., Kraut M. (2006) Utilization of carbon monoxide by aerobes: recent advances. FEMS Microbial Lett, 87: 253- 260.
172. Miyakawa S., Yamanashi H., Kobayashi K., Cleaves H.J., Miller S.L. (2002) Prebiotic synthesis from CO atmospheres: implications for the origin of life. PNAS, 99: 14628-14631.
173. Min H., Zinder S.H. (1990) Isolation and characterization of a thermophilic sulfate-reducing bacterium Desulfotomaculum thermoacetoxidans sp.nov. Arch Microbiol, 153: 399-404.
174. Mopper K., Zhou X.L., Kieber R.J., Kieber D.J., Sikorski R.J., Jones R.D. (1991) Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature, 353: 60-62.
175. Mori K., Hatsu M., Kimura R., Takamizawa K. (2000) Effect of heavy metals on the growth of a methanogen in pure culture and coculture with a sulfate-reducing bacterium. J Bios ci Bioeng, 90: 260-265.
176. Mörsdorf G., Frunzke K., Gadkari D., Meyer O. (1992) Microbial growth on carbon monoxide. Biodegradation, 3: 61-82.
177. Moxley J.M., Smith K.A. (1997) Factors affecting utilization of CO by soils. Soil Biol Biochem, 30: 65-79.
178. Muyzer G. (1998) Structure, function and dynamics of microbial communities: the molecular biological approach. In G. R. Carvalho (ed.), Advances in molecular ecology, p. 87-117. NATO Science Series.
179. O'Brien J.M., Wolkin R.H., Moench T.T., Morgan J.B., Zeikus J.G. (1984) Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. JBacteriol, 158: 373-375.
180. Ohta K. (1997) Diurnal variations of carbon monoxide concentration in the equatorial pacific upwelling region. J Oceanogr, 53: 173-178.
181. Oremland R.S., Hoeft S.E., Santini J.A., Bano N., Hollibaugh R.A., Hollibaugh J.T. (2002) Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68: 4795-4802.
182. Park S. W. Hwang E.H., Park H., Kim J.A., Heo J., Lee K.H., Song T., Kim E., Ro Y.T., Kim S.W., Kim Y.M. (2003) Growth of mycobacteria on carbon monoxide and methanol. JBacteriol, 185: 142-147.
183. Patel B.K., Morgan H.W., Wiegel J., Daniel R.M. (1987) Isolation of an extremely thermophilic chemoorganotrophic anaerobe similar to Dictyoglomus thermophilum from New Zealand hot springs. Arch Microbiol, 147: 21-24.
184. Peer C.W., Painter M.H., Rasche M.E., Ferry J.G. (1994) Characterization of a CO: heterodisulfide oxidoreductase system from acetate-grown Methanosarcina thermophila. J Bacteriol, 176(22): 6974-6979.
185. Petron G., Gamier C., Khattatov B., Yudin,V., Lamarque J.-F., Emmons L., Gille J., Edwards D.P. (2004) Monthly surface sources inventory based on 20002001 MOPITT satellite data. Geophys Res Lett, 31: L21107.
186. Pimenov N.V., Slepova T.V., Sokolova T.G., Rusanov I.I., Bonch
187. Osmolovskaya E.A. (2007) Microbial activity in Uzon Caldera (Kamchatka)thhot springs. 18 International Symposium on Environmental Biogeochemistry, Taupo, New Zealand. Abstract G-9.
188. Plügge C., Balk M., Stams A.J.M. (2002) Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic syntrophic propionate-oxidizing spore-forming bacterium. Int J Syst Evol Microbiol, 52: 391-399.
189. Potter C.S., Klooster S.A., Chatfield R.B. (1996) Consumption and production of carbon monoxide in soils: a global model analysis of spatial and seasonal variation. Chemosphere, 33: 1175-1193.
190. Prieur (2005) Microbiology of Deep-Sea Hydrothermal Vents: Lessons for Mars Exploration. In Water on Mars and Life, pp. 299-324. Tetsuya Tokano (ed.), Adv. Astrobiol. Biogeophys.
191. Ragsdale S.W. (2004) Life with carbon monoxide. Crit Rev Biochem Mol Biol, 39(3): 165-95.
192. Ragsdale, S.W., Kumar M. (1996) Ni containing carbon monoxide dehydrogenase/acetyl-CoA synthase. ChemRev, 96: 2515-2539.
193. Reynolds E.S. (1963) The use of lead citrate at high pH as electron opagae strain in electron microscopy. J Cell Biol, 17: 208.
194. Reysenbach A.L., Ehringer M., Hershberger K. (2000) Microbial diversity at 83 degrees C in Calcite springs, Yellowstone National Park: another environment where the Aquificales and 'Korarchaeota' coexist. Extremophiles, 4: 61-67.
195. Robinson E., Robbins R.C. (1972) Emissions, concentrations and fate of gaseous atmospheric pollutants. In Air Pollution Control, pp. 1-94. W. Strauss (Ed.), Wiley Interscience, NY.
196. Rother M., Metcalf W.W. (2004)Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci USA, 101: 16929-16934.
197. Saiki T., Kobayashi Y., Kawagoe K., Beppu T. (1985) Dictyoglomus thermophilum gen. nov., sp. nov., a chemoorganotrophic, anaerobic, thermophilic bacterium. Int JSyst Bacteriol 35: 253-259.
198. Saitou N., Nei M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol. Evol, 4(4): 406-425.
199. Sakai, H., Gamo, T., Kim, E.-S., 10 other authors (1990). Unique chemistry of the hydrothermal solution in the mid-Okinawa Trough back arc basin. Geophys Res Lett, 17: 2133-2136.
200. Sandbeck, K.A., Ward D.M. (1982) Temperature adaptations in theterminal processes of anaerobic decomposition of Yellowstone National Parkand Icelandic hot spring microbial mats. Appl Environ Microbiol 44: 844-851.
201. Sanger F., Nicklen S., Coulson A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA, 84: 5463-5467.
202. Sanhueza E., Dong Y., Scharffe D., Lobert J.M., Crutzen P.J. (1998) Carbon monoxide. Tellus, 50B: 51-58.
203. Sapra R., Bagramyan K., Adams M.W. (2003) A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Natl Acad Sci USA, 100: 7545-7550.
204. Sato M., Mori T., Shimoile Y., Nagao K., Notsu K. (2002) Carbon isotope systematic of C02, CO and CH4 in fumarolic gases from Satsuma-Iwojimavolcanic island, Japan. Earth Planets Space, 54: 257-263.
205. Savage M.D., Wu Z.G., Daniel S.L., Lundie L.L., Drake H.L. (1987) Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum. Appl Environ Microbiol, 53: 1902-1906.
206. Seetfeldt L.C., Rasche M.E., Ensign S. (1995) Carbonyl sulfide and carbon dioxide as new substrates, and carbon disulfide as new inhibitor, of nitrogenase. Biochemistry, 34: 5382-5389.
207. Seiler W. (1974) The cycle of atmospheric CO. Tellus, 26: 116-135.
208. Seiler W., Conrad R. (1987) Contribution of tropical ecosystems to the global budgets of trace gases, especially CH4, H2, CO, and N20. In The Geophysiology of Amazonia, Ch.9, pp. 133-162. Dickinson R.E. (Ed), John Wiley, New York,
209. Seravalli J., Ragsdale S.W., (2000) Channeling of Carbon Monoxide during anaerobic carbon dioxide fixation. Biochemistry, 39 (6): 1274 -1277.
210. Schade G.W., Hofmann R.-M., Crutzen P.J. (1999) CO emissions from degrading plant matter (I). Measurements. Tellus, 51B: 889-908.
211. Schade G.W. Crutzen P.J. (1999) CO emissions from degrading plant matter. (II). Estimate of a global source strength. Tellus 51: 909-918.
212. Scharffe D., Hao W. M., Donoso L., Crutzen P. J., Sanhueza E. (1990) Soil fluxes and atmospheric concentration of CO and CH4 in the northern part of the Guayana Shield, Venezuela. J Geophys Res, 95: 22475-22480.
213. Schneider K., Cammack R„ Schlegel H.G., Hall D.O. (1979) The iron-sulphur centres of soluble hydrogenase from Alcaligenes eutrophus. Biochim BiophysActa 578: 445^61.
214. Sharak Genthner B.R., Bryant M.P. (1982) Growth of Eubacterium limosum with carbon monoxide as the energy source. Appl Environ Microbiol, 43: 70-74.
215. Sharak Genthner B.R., Bryant M.P. (1987) Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii. Appl Environ Microbiol, 53: 471-476.
216. Shelver D., Kerby R.L., He Y„ Roberts G.P. (1997) CooA, a CO-sensing transcription factor from Rhodospirillum rubrum, is a CO-binding heme protein. Proc Natl Acad Sci USA, 94: 11216-11220.
217. Shen G.J, Shieh J.S, Grethlein A.J, Jain M.K, Zeikus J.G. (1999) Biochemical basis for carbon monoxide tolerance and butanol production by Butyribacterium methylotrophicum. Appl Microbiol Biotechnol, 51: 827-832.
218. Shock L.E, (1993). Hydrothermal dehydration of aqueous organic compounds. Geochim Cosmochim Acta, 57: 3341-3349.
219. Silva P.J, van den Ban E.C, Wassink H, Haaker H,de Castro B, Robb F.T, Hagen W.R. (2000) Enzymes of hydrogen metabolism in Pyrococcus furiosus. Eur JBiochem, 267: 6541-6551.
220. Singer S.W, Hirst M.B,. Ludden P.W. (2006) CO-dependent H2 evolution by Rhodospirillum rubrum: role of CODH:CooF complex. Biochim Biophys Acta, 57(12): 1582-1591.
221. Sipma J., Henstra A.-M., Parshina S.N., Lenz P.N.L., Lettinga G., Stams A.J.M. (2006) Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization. Crit Rev Biotech, 26: 1-25.
222. Soboh B., Linder D., Hedderich R. (2002) Purification and catalytic properties of a CO-oxidizing:H2-evolving enzyme complex from Carboxydothermus hydrogenoformans. Eur J. Biochem, 269: 5712-5721.
223. Spiess F.N. (1980) East Pacific Rise: Hot springs and geophysical experiments. Science, 207(4438): 1421-1432.
224. Stetter K.O., Lauerer G., Thomm M., Neuner A. (1987) Isolation of extremely thermophilic sulfate reducers: Evidence for a novel branch of archaebacteria. Science, 236: 822-824.
225. Stetter K.O. (1988) Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst Appl Microbiol, 10: 172173.
226. Stetter K.O., Huber R., Blochl E., Kurr M., Eden R.D., Fielder M., Cash H.,Vance I. (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature, 365: 743-745.
227. Stupperich E., Fuchs G. (1984) Autotrophic synthesis of activated acetic acid from two C02 in Methanobacterium thermoautotrophicum. Arch Microbiol, 139: 14-20.
228. Svetlichny V.A., Sokolova T.G., Kostrikina N.A., Zavarzin G.A. (1991) Anaerobic extremely thermophilic carboxydotrophic bacteria in hydrotherms of Kunashir Island. Microbial Ecology, 21: 1-7.
229. Svetlitchnyi V., Peschel C., Acker G., Meyer O. (2001) Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans, J Bacteriol, 183: 5134-5144.
230. Swinnerton J.W., LinnenbomV.J., Lamontagne R.A. (1970). The ocean: a natural source of carbon monoxide. Science, 167, 984-986.
231. Symonds R.B., Rose W.I., Bluth G.J.S., Gerlach T.M. (1994) Volcanic gas studies: Methods, results and applications. In Volatiles in Magma (Carroland MR & Holloway JR, eds) pp. 1-66. Mineral Society of America, Washington, DC.
232. Tanner R.S., Miller L.M., Yang D. (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial ribosomal-RNA homologygroup-I. Int JSyst Bacteriol, 43: 232-236.
233. Tarr M.A., Miller W.L., Zepp R.G. (1995) Direct carbon monoxide photoproduction from plant matter. J Geophys Res, 100: 11403-11413.
234. Tassi F., Martinez C., Vaselli O., Capaccioni B., Viramonte J. (2005b). Light hydrocarbons as redox and temperature indicators in the geothermal field of El Tatio (northern Chile). Appl Geochem 20: 2049-2062.
235. Tersteegen, A., Hedderich, R. (1999) Methanobacterium thermoautotrophicum encodes two multi-subunit membrane-bound NiFe. hydrogenases.Transcription of the operons and sequence analysis of the deduced proteins. Eur JBiochem, 264: 930-943.
236. Thauer R.K., Käufer B., Zähringer M., Jungermann K. (1974) The reaction of iron-sulfur protein hydrogenase with carbon monoxide. Eur J Biochem, 42: 447-452.
237. Thompson, A.M. (1992) The oxidizing capacity of the Earth's atmosphere: probable past and future changes. Science, 256: 1157-1165.
238. Thompson J.D., Higgins D.G., Gibson T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 22: 4673-4680.
239. Tolli, J.D., Taylor C.D. (2005) Biological CO oxidation in the Sargasso Sea and in Vineyard Sound, Massachusetts. Limnol Oceanogr, 50: 1205-1212.
240. Uffen R.L. (1976) Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc Natl AcadSci USA, 73: 3298-3302.
241. Uffen R.L. (1981) Metabolism of carbon monoxide. Enzyme Microbial Technol, 3: 197-206.
242. Uffen RL. (1983) Metabolism of carbon monoxide by Rhodopseudomonas gelatinosa: cell growth and properties of the oxidation system. J Bacteriol 155: 956-965.
243. Van de Peer Y., De Wachter R. (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Applic Biosci, 10(5): 569-570.
244. Vignais P.M., Billoud B, Meyer J. (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev, 25: 455-501.
245. Vignais P.M., Billoud B. (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev, 107(10): 4206-4272.
246. Volbeda A, Charon M.H., Piras C, Hatchikian E.C., Frey M, Fontecilla-Camps J.C. (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature, 373: 580-587.
247. Volbeda A, Fontecilla-Camps J.C. (2004) Crystallographic evidence for a CO/CO2 tunnel gating mechanism in the bifunctional carbon monoxide dehydrogenase/ acetyl Coenzyme A synthase from Moorella thermoacetica. J Biol Inorg Chem, 9(5): 525-532.
248. Voordouw G. (2002) Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. JBacteriol, 184: 5903-5911.
249. Wardell L.J, Kyle P.R, Chaffin C. (2004) Carbon dioxide and carbon monoxide emission rates from an alkaline intra-plate volcano: Mt. Erebus, Antarctica. J Volcanol Geotherm Res, 131: 109-121.
250. Warneck P. (1999). Chemistry of the Natural Atmosphere, 2nd ed. International Geophysics Series Vol.71, Academic Press, New York, Ch.4.
251. Weber C.F, King G.M. (2007) Physiological, ecological, and phylogenetic characterization oiStappia, a marine CO-oxidizing bacterial genus. ApplEnviron Microbiol, 73: 1266-1276.
252. Wachtershauser G. (1997) The origin of life and its methodological challenge. J Theor Biol, 187: 483-494.
253. Wächtershäuser G. (2006) From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Phil Trans R Soc B, 361: 1787-1808.
254. Wiegel J., Braun M., Gottschalk G. (1981) Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr Microbiol, 5: 255-260.
255. Wilks S.S. (1959) Carbon monoxide in green plants. Science, 129: 964966.
256. Whalen S.C., Reeburgh W.S. (2001) Carbon monoxide consumption in upland boreal forest soils. Soil Biol Biochem 33: 1329-1338.
257. Wray J.W., Abeles R.H. (1993) A bacterial enzyme that catalyzes formation of carbon monoxide. J Biol Chem, 268: 21466-21469.
258. Yagi, T. (1959) Enzymic oxidation of carbon monoxide. II. JBiochem (Tokyo), 46: 949-955.
259. Yang H.C., Drake H.L. (1990) Differential effects of sodium on hydrogen-and glucose-dependent growth of the acetogenic bacterium Acetogenium kivui. Appl Environ Microbiol, 56(1): 81-86.
260. Zavarzin G.A., Nozhevnikova A.N. (1977) Aerobic carboxydobacteria. Microb Ecol, 3: 305-326.
261. Zeikus J.G., Wolfe R.S. (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. JBacteriol, 109: 707- 713.
262. Zhao W.D., Zhang C.L., Romanek C.S. (2006). Geochemistry of reduced gases and carbon dioxide in Kamchatka hot springs. In UGA Academy of the Environment Symposium, Athens, GA.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.