Теория и практика обучения учащихся средней школы опровержению доказательств математических утверждений тема диссертации и автореферата по ВАК РФ 13.00.02, кандидат педагогических наук Костромитина, Екатерина Васильевна
- Специальность ВАК РФ13.00.02
- Количество страниц 166
Оглавление диссертации кандидат педагогических наук Костромитина, Екатерина Васильевна
ВВЕДЕНИЕ.
ГЛАВА I. Теоретические основы обучения опровержению доказательств в школьном курсе математики.
§1. Проблема обучения опровержению доказательств в учебной и научной литературе.
§2. Логические основы опровержения доказательства.
2.1. Ошибки в доказательстве.
2.2 Приемы опровержения доказательства.
§3. Методическая концепция обучения опровержению доказательств математических утверждений.
ГЛАВА II. Методические аспекты формирования у учащихся умения опровергать доказательства в курсе математики средней школы.
§ 1. Пропедевтика обучения опровержению ложных математических утверждений.
§2. Обучение школьников опровержению математических доказательств.
2.1. Формирование умения опровергать доказательства на первых уроках алгебры и геометрии.
2.2. Обучение приемам опровержения математических доказательств.
2.3 Формирование умения самостоятельно опровергать предложенные математические доказательства.
§3. Эксперимент.
Рекомендованный список диссертаций по специальности «Теория и методика обучения и воспитания (по областям и уровням образования)», 13.00.02 шифр ВАК
Задачи как средство уровневой дифференциации процесса обучения доказательству в школьном курсе алгебры2003 год, кандидат педагогических наук Диденко, Ольга Павловна
Обучение логическим приемам мышления учащихся основной школы в процессе изучения курса алгебры2006 год, кандидат педагогических наук Воинова, Ирина Вячеславовна
Формирование общих приемов поиска доказательства математических утверждений1984 год, кандидат педагогических наук Туркина, Валентина Михайловна
Обучение доказательству в курсе геометрии восьмилетней школы1984 год, кандидат педагогических наук Хашимов, Рахимжон
Логическая подготовка младших школьников при обучении математике2000 год, кандидат педагогических наук Алексеева, Ольга Владимировна
Введение диссертации (часть автореферата) на тему «Теория и практика обучения учащихся средней школы опровержению доказательств математических утверждений»
В школьном математическом образовании доказательство, как известно, представляет наиболее существенный вклад математики в общую культуг ру человека. .Однако автоматический перенос понимания строгости доказательства, принятого в математической науке, на школьное преподавание привносит в него существенные сложности, связанные с убедительностью обоснований рассматриваемых содержательных утверждений. Решение данной проблемы в рамках деятельностного подхода предполагает рассмотрение доказательства как системы специфических приемов учебной деятельности, среди которых одно из наиболее важных мест занимает прием опровержения учебных математических доказательств.
Мысль о важности обучения опровержению математических доказа тельств подчеркивалась в работах В. М. Брадиса, С. И. Векслера, Я. С. Дубнова, О. Н. Журавлевой, М. И. Зайкина, Д. И. Икрамова, И. Лакатоса, В. Литцмана, В. Л. Минковского, В. И. Обреимова, Д. Пойа, Ф. Ф. Притуло, М. А. Родионова, Г. И. Саранцева, Д. С. Скрыпника, А. И. Фетисова, А. К. Харчевой, Р. Хашимова, 3. П. Чиркиной, П. М. Эрдниева. Большая значимость умения опровергать доказательства в математике и других науках обусловила появление многочисленных исследований, посвященным различным аспектам обучения опровержению.
Анализ работ, в которых рассматривается проблема обучения опровержению, показывает, что в ее решении можно выделить несколько подходов. Представители первого (В. М. Брадис, Я. С. Дубнов, В. Л. Минковский, Ф. Ф. Притуло, А. И. Фетисов, А. К. Харчева, 3. П. Чиркина и др.) решают данную проблему при помощи внедрения в учебный процесс работы по разбору софизмов. Исследования данных авторов, выполненные в основном на материале геометрии, посвящены изучению отклонений рассуждений учащихся от логически верных математических рассуждений и построению на их основе содержания обучения умению опровергать. Однако развитию личности ученика в процессе обучения умению опровергать предложенные рассуждения, которое сводилось к разбору софизмов, практически не уделялось внимания. Ученики не привлекались к открытию фактов, поиску закономерностей, высказыванию гипотез, и поэтому не испытывали потребности в поиске и устранении ошибок, допущенных в рассуждениях. Кроме того, рассмотрение ошибок в математических рассуждениях было оторвано от общего контекста обучению доказательству. Второй подход связан с формированием логических приемов, правил опровержения утверждений. Это направление получило развитие в основном в работах Д.Пойа. В основе третьего направления решения проблемы обучения умению опровергать лежит современная методическая концепция обучения доказательству в средней школе. В настоящее время обучение доказательству рассматривается с позиций целостного (логико-эвристического) подхода. Его представители (И. Лакатос, Г. И. Саранцев, О. Н. Журавлева) рассматривают опровержение предложенных доказательств в качестве отдельного (завершающего) этапа в концепции обучения доказательству.
Анализ учебно-методической литературы, результаты констатирующего эксперимента, наблюдение за уроками учителей позволяют сделать вывод о том, что проблема обучения опровержению доказательств, в целом, еще далека от полного разрешения. В частности, как показывает практика преподавания математики, у большинства школьников приемы опровержения формируются спонтанно. С другой стороны, как отмечается в литературе, имеет место значимая взаимосвязь между успешностью самостоятельного поиска и конструирования доказательства и умением опровергать математические доказательства. С целью совершенствования методики обучения опровержению целесообразно с новых позиций проанализировать содержание понятия «обучение опровержению»; определить структуру деятельности по обучению опровержению, и в частности, действия, входящие в ее состав; выделить уровни овладения умением опровергать, соотнести их со структурой деятельности по обучению доказательству.
Таким образом, противоречие между потребностью в научно-обоснованной методике обучения опровержению доказательств и реальным состоянием сформированности умения опровергать у школьников определяет актуальность проблемы исследования. Сама же проблема заключается в поиске путей и средств совершенствования обучения опровержению доказательств математических утверждений.
Цель исследования состоит в разработке теории и методики обучения учащихся средней школы опровержению доказательств математических утверждений.
Объектом исследования является обучение доказательству и опровержению в курсе математики средней школы.
Предмет исследования - цели, содержание, методы, формы и средства обучения опровержению доказательств в курсе математики средней школы.
Гипотеза исследования: если уточнить содержание понятие обучения опровержению, выделить уровни обучения опровержению, соотнести их с этапами деятельности по обучению доказательству, разработать методику их формирования и внедрить ее в практику обучения школьной математике, то это позволит успешно обучать опровержению доказательств учащихся сред/ ней школы.
Проблема, цель, предмет и гипотеза исследования обусловили следующие задачи:
1. Провести анализ состояния проблемы обучения опровержению доказательств в учебно-методической и научной литературе и практике обучения школьной математике.
2. Уточнить содержание понятия обучения опровержению доказательств математических утверждений.
3. Выделить совокупность действий, составляющих основу обучения доказательств математических утверждений, и соотнести их со структурой деятельности по обучению доказательству.
4. Разработать методику формирования компонентов умения опровергать доказательства математических утверждений.
5. Экспериментально проверить эффективность разработанной методи ки и составить рекомендации для ее использования в практике обучения.
Для решения поставленных задач были использованы следующие методы исследования: системный анализ; деятельностный подход; анализ психолого-педагогической, учебно-методической литературы по проблеме исследования, анализ школьных учебников, программ и учебных пособий; изучение и обобщение педагогического опыта учителей математики; проведение эксперимента по проверке основных положений работы, статистические методы обработки его результатов.
Исследование проводилось поэтапно.
На первом этапе осуществлялся анализ учебно-методической и научной литературы по проблеме исследования с целью выявления предпосылок для разработки теоретических основ методики обучения опровержению в курсе школьной математики, изучалось состояние исследуемой проблемы в практике обучения, проводился констатирующий эксперимент.
На втором этапе разрабатывалась теория и методика обучения учащихся средней школы опровержению доказательств математических утверждений, апробировались возможные варианты ее использования в практике обучения с целью отбора наиболее эффективных методических решений в асг пекте проблемы исследования, проводился поисковый эксперимент.
На третьем этапе проводился обучающий эксперимент с целью проверки эффективности разработанной методики, изучались его итоговые результаты, формулировались выводы исследования.
Научная новизна исследования состоит в том, что в нем решение проблемы обучения опровержению доказательств математических утверждений происходит на основе концепции единства логики и эвристики. Впервые обоснована и реализована на практике возможность организации процесса формирования готовности школьников к опровержению математических доказательств в адекватном соотнесении с известными стадиями обучения доказательным рассуждениям.
Теоретическая значимость работы заключается в:
- уточнении содержания понятия обучения опровержению;
- выделении совокупности действий, составляющих его основу, и соотнесении их со структурой деятельности по обучению доказательству;
- построении динамической модели формирования умения опровергать математические доказательства, отражающей адекватное соотнесение этапов деятельности по опровержению со средствами обучения и достигаемыми результатами.
Выводы, полученные в результате проведенного исследования, позволяют определить конкретные роль и место опровержения в обучении математике, расширить представление об обучении доказательству, раскрыть содержание понятия «обучение опровержению».
Практическая значимость исследования состоит в том, что разработанная методика обучения опровержению доказательств в курсе математики средней школы может быть использована учителями, а также авторами учебных пособий, предназначенных для учителей, студентов и учащихся.
Методологической основой исследования послужили: системный анализ и концепция деятельностного подхода; работы по теории и методике обучению доказательству; работы по проблеме обучения школьников приемам опровержения; теория развития личности; труды известных методистов, психологов.
Достоверность и обоснованность проводимого исследования, его результатов и выводов обусловлены опорой на основные теоретические положения в области теории и методики обучения математике, учетом современных достижений в области педагогики и психологии и обработкой экспериментальных данных.
На защиту выносятся следующие положения:
1. Под обучением опровержению доказательств математических утверждений мы будем понимать обучение учащихся нахождению и исправлению ошибок в предложенных рассуждениях и в своих собственных, разбор готовых опровержений предложенных рассуждений, обучение восстановлению неполных доказательств, обучение приемам опровержения отдельных частей доказательства, самостоятельному проведению опровержений готовых математических доказательств.
2. Обучение опровержению доказательств необходимо рассматривать как естественный компонент деятельности по обучению школьников математическим доказательствам на всех ее этапах. Процесс формирования умений, адекватных опровержению доказательств математических утверждений, представляет собой иерархию определенных уровней, каждый из которых реализуется через комплекс составляющих его действий.
3. Характер конструирования системы задач для формирования умения опровергать математические доказательства должен определяться качественным составом приемов опровержения и последовательностью этапов такого формирования.
Апробация основных положений и результатрв исследования проводилась через публикацию статей и тезисов, в форме докладов и выступлений на заседаниях научно-методического семинара кафедры теории и методики обучения математике Пензенского государственного педагогического университета имени В. Г. Белинского (2002-2005 годы), на Всероссийской научной конференции (Пенза, 2005 год). По теме исследования имеется 11 публикаций.
Внедрение разработанных методических материалов осуществлялось в ходе экспериментальной проверки в процессе обучения математике в многопрофильной гимназии при ПГПУ им. В.Г.Белинского и в общеобразовательной школе №12 города Пензы, на практических занятиях по решению геометрических задач, на лабораторных занятиях и спецсеминаре по теории и методике обучения математике в Пензенском государственном педагогическом университете имени В. Г. Белинского.
Структура диссертации определена логикой «и последовательностью решения задач исследования. Она состоит из введения, двух глав, заключения и списка литературы. Основное содержание работы изложено на 166 страницах машинописного текста. Библиография составляет 154 наименования. В тексте диссертации имеются рисунки (34), таблицы (8) и схемы (2).
Похожие диссертационные работы по специальности «Теория и методика обучения и воспитания (по областям и уровням образования)», 13.00.02 шифр ВАК
Методика обучения доказательству с использованием средств естественного вывода при изучении курса математики основной школы2008 год, кандидат педагогических наук Лукьянова, Елена Викторовна
Формирование у учащихся основной школы умений и навыков доказательных рассуждений при обучении математике2006 год, кандидат педагогических наук Мурадова, Наида Бабаевна
Развитие у учащихся умения рассуждать при обучении математике в 5-6 классах1999 год, кандидат педагогических наук Смирнова, Светлана Иосифовна
Технология изучения элементов математической логики в основной школе2006 год, кандидат педагогических наук Елифантьева, Светлана Сергеевна
Соотношение интуиции и логики в процессе обучения математике в средней школе2005 год, доктор педагогических наук Маликов, Турсынбек Сабирович
Заключение диссертации по теме «Теория и методика обучения и воспитания (по областям и уровням образования)», Костромитина, Екатерина Васильевна
Выводы по второй главе
1. Курс математики 5-6 классов, учет возрастных особенностей учеников этих классов дает возможность осуществления пропедевтического этапа в обучении опровержению математических утверждений и их обоснований.
На геометрическом и арифметическом материале математики 5-6 классов становится возможным формирование умения распознавать истинные и ложные утверждения, понимания того, что истинные суждения нуждаются в обосновании, а ложные - в опровержении, умения использовать логические правила вывода, умения находить и исправлять ошибки в простейших рассуждениях, простейших дедуктивных выводах.
2. Обучение умению опровергать готовые обоснования утверждений должно идти по пути целенаправленного формирования у учащихся приемов опровержения тезиса, аргументов и демонстрации доказательства. Ведущую роль на каждом этапе формирования приемов опровержения играют целесоt образно подобранные упражнения. Нами были выделены следующие, типы упражнений, направленных на формирование приемов опровержения: упражнения типа А (упражнения на отработку всех действий, составляющих тот или иной прием, на отработку последовательности их применения), упражнения типа В (упражнения, содержащие требование применить конкретный прием для опровержения предложенного доказательства), упражнения типа С (упражнения, содержащие требование показать истинность или опровергнуть предложенное доказательство без каких-либо указаний на прием опровержения). Для формирования каждого приема опровержения разрабо таны системы упражнений всех указанных типов.
3. Практика преподавания подтверждает, что возможности целесообразного использования упражнений на опровержение готовых доказательств возрастают по мере продвижения учащихся по ступеням классной лестницы, по мере роста их интереса к логической структуре науки.
4. Результаты, полученные экспериментально, подтвердили эффективность разработанной методики формирования у школьников умения опровергать доказательства математических утверждений.
ЗАКЛЮЧЕНИЕ
В процессе теоретического и экспериментального исследования в соответствии с целями и задачами получены следующие основные результаты и выводы:
1. Обучение опровержению доказательств математических утверждений необходимо рассматривать как естественный компонент деятельности по обучению школьников математическим доказательствам на всех ее этапах. На основе сложившейся теории и методики обучения опровержению доказательству, новых образовательных идей предложено следующее определение понятия «обучения опровержению». Под обучением опровержению доказа тельств математических утверждений мы будем понимать обучение учащихся нахождению и исправлению ошибок в предложенных рассуждениях и в своих собственных, разбор готовых опровержений предложенных рассуждений, обучение восстановлению неполных доказательств, обучение приемам опровержения отдельных частей доказательства, самостоятельному проведению опровержений готовых математических доказательств.
2. Целенаправленный процесс формирования знаний и умений, адекватных опровержению доказательств математических утверждений, представляет собой последовательность определенных этапов, соответствующих стадиям формирования доказательных рассуждений. Эти этапы реализуются через овладение комплексом действий, составляющих каждый их них (выделение условия и заключения предложенного утверждения, приведение контрпримеров, определение истинности (ложности) математических предложений, формулирование отрицания утверждения, нахождение ошибки в дедуктивных выводах, анализ условия теоремы, установление различных частных случаев теоремы, выявление и устранение пробелов в цепочках логических шагов, выведение следствий, выделение в предложенном доказательстве последовательности всех аргументов, приведенных в защиту тезиса, проверка истинности, доказанности и независимости каждого аргумента, проверка достаточности приводимых аргументов, анализ отдельных шагов доказательства, использование логических правил вывода).
3. В соответствии с представленной концепцией обучения опровержению доказательств раскрыта пропедевтика обучения опровержению ложных математических утверждений; разработана методику формирования умения опровергать на первых уроках алгебры и геометрии, а также методика обучения школьников логическим и эвристическим приемам опровержения доказательства.
4. Выделены уровни сформированности умения опровергать предложенные доказательства у учащихся средней школы. Разработаны системы целесообразных упражнений, направленных на формирование умения опровергать доказательства математических утверждений. Их особенности и структура определены составом всех компонентов названного умения и последовательностью этапов его формирования.
Экспериментальная проверка разработанной методики подтверждает справедливость гипотезы исследования. Полученные результаты свидетельствуют о том, что поставленные задачи исследования в основе своей решены, цель исследования достигнута. Результаты апробации и внедрения предложенной методики обучения учащихся опровержению доказательств математических утверждений свидетельствуют о возможности и целесообразности ее использования в практике преподавания математики в средней школе.
Разработанная методическая концепция и результаты предложенного исследования открывают перспективу дальнейшей' разработки проблемы обучения опровержению доказательств, включающую совершенствование методики обучения опровержению доказательств в курсе высшей математики.
Список литературы диссертационного исследования кандидат педагогических наук Костромитина, Екатерина Васильевна, 2006 год
1. Абдукаримов, М. Формирование логических приемов мышления у учащихся 6-8 классов при обучении геометрии: дис. . канд. пед. наук / М. Абдукаримов. - Сырдарья, 1984. - 161 с.
2. Агафонова, И. Н. Учимся думать. Сборник занимательных логических задач, текстов и упражнений: учеб. пособие / И.Н.Агафонова. СПб, 1996.-96 с.
3. Азиев, А. И. Индивидуальные задания для устранения ошибок / А. И. Азиев // Математика в школе. 1993. - №5. - С. 9-10.
4. Алгебра и начала анализа: учеб. для 10-11 кл. общеобразоват. учреждений/ Ш. А.Алимов, Ю.М.Колягин, Ю.В.Сидоров и др. 10-е изд. — М.: Просвещение, 2002.- 384с.: ил.
5. Алгебра: учеб. для 7, 8, 9 кл. общеобразоват. учреждений/ Ю.Н.Макарычев, Н.Г.Миндюк, К.И. Нешков и др.; под общ. ред. С.А. Теляковского,- М.: Просвещение, 1992-1999.
6. Ангелов, Д. С. Анализ ошибок по алгебре в знаниях учащихся и пути их устранения и предупреждения: автореф. дис. . канд. пед. наук / Д. С. Ангелов. М., 1980. - 16с.
7. Аристотель. Сочинения. В 4 т. Т.2. О софических опровержениях / Аристотель. М.: Мысль, 1978. - С. 533-593.
8. Артемов, А. К. Об одной причине ошибок школьников по геометрии / А. К. Артемов // Математика в школе.-1963.- №6. С. 24-29.
9. Артемов, А. К. Об эвристических приемах при обучении геометрии / А. К. Артемов // Математика в школе.- 1973.- №6. С. 25-29.
10. Асмус, В. Ф. Учение логики о доказательстве и опровержении / В.Ф. Асмус. М.: Госполитиздат, 1954. - 88 с. ,
11. П.Байдак, В. А. Алгоритмическая направленность процесса обучения математике в средней школе: учебно-метод. пособие / В. А. Байдак -Омск: ОмПУ, 1999.-98 с.
12. Байрамов, А. С. Динамика развития самостоятельности и критичности мышления у детей младшего школьного возраста: автореф. дис. . д-ра. пед. наук / A.C. Байрамов. Баку, 1968. - 128 с.
13. Березин, В. Н. Сборник задач для факультативных и внеклассных занятий по математике: книга для учителя / В. Н. Березин. М.: Просвещение, 1985. - 185 с.
14. Бескин, H. М. Аксиоматический метод / H. М. Бескин // Математика в школе. 1993. - №3. - С. 25-29.
15. Блонский, П. П. Избранные пед. и псих, сочинения. В 3 т. Т.2. Развитие мышления школьников / П. П. Блонский. М.: Педагогика, 1979.- С. 5117.
16. Брадис, В. М. Методика преподавания математики в средней школе/ В. М. Брадис,- М.: Учпедгиз, 1954. 240с.
17. Брадис, В. М. Ошибки в математических рассуждениях / В. М. Брадис, В. JI. Минковский, А. К. Харчева.- М.: Просвещение, 1967. 191с.
18. Буловацкий, М. П. Разнообразить виды задач / М. П. Буловацкий // Математика в школе.-1998.-№5. С. 23-25.
19. Буткин, Г.А. Формирование умения осуществлять геометрическое доказательство: дисс. . канд. пед. наук / Г. А. Буткин. М., 1967. - 203с.
20. Валиев, С. Индивидуальные задания по устранению ошибок / С. Вали-ев// Математика в школе. 1989. - №5.- С. 42-46.
21. Векслер, С. И. Найти и преодолеть ошибку / С. И. Векслер // Математика в школе. 1989. - №5. - С.40-42.
22. Виноградова, J1. В. Развитие мышления учащихся при обучении математике / JI. В. Виноградова. — Петрозаводск: Карелия, 1989. 175с.
23. Виола, И. Математические софизмы / И. Виола; пер. с фран. В.И. 06-реимова. СПб, 1883.
24. Выготский, JI. С. Избранные психологические исследования. Мышление и речь. Проблемы психологического развития ребенка / J1. С. Выгодский. М.: АПН РСФСР, 1956. - 386с.
25. Гарднер, М. Математические головоломки и развлечения/ М. Гарднер; пер. с англ.- М.: Наука, 1971. 320с.
26. Геометрия: учеб. для 7-9 кл. общеобразоват. учреждений/ JI. С. Атана-сян и др. -М.: Просвещение, 1998. -335с.
27. Геометрия: учеб. для 10-11 кл. общеобразоват. учреждений/ Л.С.Атанасян и др. М.: Просвещение, 1998. - 190 с.
28. Гетманова, А. Д. Логические основы математики: учеб.пособие / А. Д. Гетманова. М.: Дрофа, 2005.- 253с: ил.
29. ГОСТ 7. 1-2003. Библиографическая запись. Библиографическое описание: Общие требования и правила составления // Библиография. -2004.-№3.-С. 45-72.
30. Грабарь, М. И. Применение математической статистики в педагогических исследованиях. Непараметрические методы / М. И. Грабарь, К. А. Краснянская. М.: Педагогика, 1977. - 136с.: ил.
31. Григорян, Г. В. Исследование причин возникновения и методика предупреждения ошибок учащихся (на геометрическом материале IV-V классов): автореф. дис. . канд. пед. наук /Г. В. Григорян. Баку, 1981. -20 с.
32. Груденов, Я.И. Совершенствование методики работы учителя математики: книга для учителя / Я. И. Груденов. М.: Просвещение, 1990. -172с.
33. Гусев, А. А. Индивидуализация учебной деятельности учащихся как основа дифференцированного обучения математике / А. А. Гусев // Математика в школе. 1990. - №4. - С. 19-21.
34. Далингер, В.А. Анализ типичных ошибок, допускаемых в курсе алгебры и начал анализа / В. А. Далингер // Математика в школе. 1998.-№6.-С. 13-18.
35. Далингер, В. А. Обучение учащихся доказательству теорем: учебное пособие / В. А. Далингер. Омск: ОГПИ-НГПИ, 1990. -127с.
36. Дегтярникова, И. Н. Остроугольный или тупоугольный / И. Н. Дегтяр-никова // Математика в школе. 1998. - №5. - С.43.
37. Декопольцева, З.П. Как ликвидировать пробелы в знаниях / 3. П. Деко-польцева // Математика в школе,- 1994.-№1. С. 34-35.
38. Джумалиева, Д. Ранние формы проявления критичности мышления у детей дошкольного возраста и особенности ее формирования: дис. . канд. пед. наук / Д. Джумалиева. Фрунзе, 1983.- 141 с.
39. Дорофеев, Г. В. Дифференциация в обучении математике / Г. В. Дорофеев // Математика в школе.-1990.-№4. С. 15-21.
40. Дорофеев, Г. В. О правильности рассуждений и подробности изложения в решении задач / Г. В. Дорофеев // Математика в школе.-1982.-№1.- С. 44-47.
41. Древнегреческая философия: от Платона до Аристотеля: соч.; пер. с древнегреч.; сост., вступ. ст. и коммент. В. Шкоды. М.: ACT, Харьков: 1999.- 829 с.
42. Дубнов, Я. С. Ошибки в геометрических доказательствах / Я. С. Дубнов. -М.: Наука, 1969.- 64с.
43. Епишева, О. Б. Учить школьников учиться математике: Формирование приемов умственной деятельности: кн. для учителя / О. Б. Епишева, В. И. Крупич.- М.: Просвещение, 1990. 128с.: ил.
44. Екимова, М. А. Развитие логического мышления учащихся 5-7 классов посредством обучения решению задач с геометрическим содержанием: дис. канд. пед. наук/М. А. Екимова. -М., 1992.- 166с.
45. Журавлева, О. Н. Теория и методика обучения доказательству в курсе планиметрии средней школы: дис. . канд. пед. наук/ О. Н. Журавлева. -Саранск, 1995.-209 с. 48.3айкин, М. И. Провоцирующие задачи / М. И. Зайкин, В. А. Колосова //
46. Запорожец, А. В. Развитие логического мышления у детей в дошкольном возрасте / А. В. Запорожец // Вопросы психологии ребенка дошкольного возраста. М.: АПН РСФСР, 1948.- С. 34-42.
47. Ивин, А. А. Искусство правильно мыслить: кн. для уч-ся/ А. А. Ивин.-М.: Просвещение, 1990.- 240 с.
48. Ивин, А. А. Словарь по логике / А. А. Ивин, А. П. Никифоров.- М., 1997.-384 с.
49. Игнатенко, В. 3. Сюрпризы биссектрисы / В. 3. Игнатенко // Математика в школе. 1998.-№5. - С. 42.
50. Икрамов Д. Устойчивые ошибки учащихся восьмилетней школы, догпускаемые в процессе решения геометрических задач на доказательство: автореф.дис. . канд. пед. наук / Д. Икрамов .-Ташкент, 1967.- 20 с.
51. Калинкина, Т. М. Динамические задачи как средство совершенствования процесса обучения геометрии в средней школе: дис. . канд. пед. наук / Т. М. Калинкина. Саранск, 1995. - 167с.
52. Капиносов, А. И. Методика формирования умений проводить доказательные рассуждения при обучении математике в 5-6 классах: автореф. дис. канд.пед.наук / А. И. Капиносов.- М., 1988. 143с.
53. Керимов, О. Ф. Особенности проявления критичности мышления студентов при индивидуальном и групповом решении задач: автореф. дис. . канд. психол. наук / О. Ф. Керимов.- Тбилиси, 1987.- 22с.
54. Кирилецкий, И. M. Анализ и предупреждение типичных ошибок учащихся при изучении алгебры и начал анализа: автореф. дис. . канд. пед. наук/ И. М. Кирилецкий.- Киев, 1987. 20с.
55. Коваленко, В. Г. Круг в доказательстве / В. Г. Коваленко, В. Я. Кривоtшеев // Математика в школе. 1993.- №3. - С. 12-16.
56. Кондрашенкова, Т. А. Методика формирования общелогических умений при обучении математике в 4-5 классах: автореф. дис. . канд. пед.наук / Т. А. Кондрашенкова. M., 1981. - 18с.
57. Копылова, Т. Ю. Особенности проявления критичности младших школьников при решении учебных и нравственных задач: дис. . канд. псих, наук / Т. Ю. Копылова. Санкт-Петербург, 2001. - 198 с.
58. Костромитина, Е. В. Формирование у учащихся потребности в опровержении готовых доказательств/ Е. В. Костромитина // Вестник молодых ученых: межвуз. сб. науч. трудов. Пенза: ПГПУ, 2003. - С. 95-97.
59. Костромитина, Е. В. Обучение школьников опровержению предложенных утверждений/ Е. В. Костромитина // Вопросы методики преподавания математики и информатики: межвуз. сб. науч. трудов. Ульяновск: УГПУ, 2003.- С.62-65.
60. Крупич, В. И. Теоретические основы обучения решению школьных математических задач / В. И. Крупич. М.: Прометей, 1995. - 166 с.
61. Крутецкий, В. А. Психология математических способностей школьников / В. А. Крутецкий. М.: Просвещение, 1968.- 432с.
62. Кулюткин, Ю. М. Эвристические методы в структуре решений / Ю. М. Кулюткин.- М.: Педагогика, 1970.- 232с.: ил.
63. Купиллари, А. Трудности доказательств. Как преодолеть страх перед математикой / А. Купиллари.- М.: Техносфера, 2002. 304 с.
64. Куайн, У. Математическая логика / Уиллард Ван Орман Куайн; пер. с англ.- М.: Праксис: Логос, 2000. 286с.
65. Лакатос, И. Доказательство и опровержения / И. Лакатос; пер. с англ. И.Н.Веселовского.- М.: Наука, 1967.- 152 е.: ил.
66. Леонтьев, А. Н. Деятельность. Сознание. Личность / А. Н. Леонтьев. -М.: Политиздат, 1975.- 304 с.
67. Липкина, А. И. Критичность и самооценка в учебной деятельности / А. И. Липкина, Л. А. Рыбак.- М.: Просвещение, 1968. 142 с.
68. Литцман, В. Где ошибка?/ В. Литцман; пер. с нем. Б.С.Виленской; под ред. В.Г.Болтянского. М.: Учпедгиз, 1962.- 192 с.
69. Люблинская, А. А. Очерки психического развития ребенка / А. А. Люблинская.- М.: Просвещение, 1965.- 363 с.
70. Лященко Е. И. Методика обучения математики в 4-5 классах / Е. И. Лященко, А. А. Мазанник.- Минск: Народная асвета, 1976.- 222 с.
71. Маликов, .С. О доказательствах очевидных фактов школьного курса геометрии / С. Маликов. // Математика в школе.- 1988.- №6.- С. 24.
72. Математика: учеб. для 5 кл. сред.шк./ Н. Я. Виленкин, А. С. Чесноков, В. И. Жохов. М.: Просвещение, 1990. - 300 с.
73. Математика: учеб. для 6 кл. сред.шк./ Н. Я. Виленкин, А. С. Чесноков, В. И. Жохов. -М.: Просвещение, 1990.- 305 с.
74. Материал исты древней Греции: Собрание текстов Гераклита, Демокрита и Эпикура.- М., 1955. -356с.
75. Матюшкин, А. М. Проблемные ситуации в мышлении и обучении / А. М. Матюшкин. М.: Педагогика, 1972. - 209с.
76. Методика обучения геометрии: учеб. пособие для студ. высш. пед. учеб.заведений/ В.А. Гусев, В.В. Орлов, В.А.Панчищина и др.; под ред.
77. B.А.Гусева.- М.: Издательский центр «Академия», 2004. 368 с.
78. Методика преподавания математики в 8-летней школе/ Под общей ред.
79. C.Е.Ляпина.- М.: Просвещение, 1965. -734 с.
80. Методика преподавания математики в средней школе: Общая методика/ В.А. Оганесян, Ю.М.Колягин и др.- М.: Просвещение, 1980.-368 с.
81. Метельский, Н. В. Дидактика математики. Общая методика и ее проблемы / Н. В. Метельский. -Минск: БГУ, 1982. 185с.
82. Менчинская, Н. А. Психическое развитие ребенка от рождения до 10 лет: дневник развития дочери / Н. А. Менчинская.- М.: Ин-т практ. Психологии, 1996.- 183с.
83. Минковский, В. Л. Опровержение ложных доказательств как средство для развития математического мышления учащихся: дис. . канд. пед. наук / В. Л. Минковский.- М., 1947.- 200с.
84. Муханов, А. Т. Пути предупреждения устойчийых ошибок в математической подготовке выпускников средней школы: автореф. дис. . канд. пед. наук / А. Т. Муханов. Ташкент, 1975. -18с.
85. Нагибин, Ф. Ф. Математическая шкатулка / Ф. Ф. Нагибин. М.: Учпедгиз, 1961. -156с.
86. Никитин, H. Н. Сборник логических упражнений / H. Н. Никитин.t1. Тамбов, 1959. 65 с.
87. Никольская, И. JI. Учимся рассуждать и доказывать: кн. для учващихся 6-10 ют. сред.шк. / И. JI. Никольская , Е. Е. Семенов. -М.: Просвещение 1989.- 192с.: ил.
88. Ожегов, С. И. Словарь русского языка. Ок. 57000 слов / С. И. Ожегов,под. ред. Н. Ю. Шведовой.- 13 изд., испр.- М., 1981. -816 с. 98,Окунев, А. А. Спасибо за урок, дети!: кн. для учителя / А. А. Окунев.
89. М.: Просвещение, 1988,- 126 с. 99.0рлов, В. В. Геометрия в задачах 7кл.: пособие для ученика и учителя / В. В. Орлов.- СПб, НПО Мир и семья -, 1995, ООО «Интерлайн», 1998. -144с.: ил.
90. Пардала, К. С. Об ошибках при выполнении и использованиигеометрических чертежей / К. С. Пардала, П. Н. Свобода // Математикав школе.- 1994. -№1.- С. 35-36.
91. Пиаже, Ж. Речь и мышление ребенка / Ж. Пиаже .- М.: Педагогика-Пресс, 1999.- 528 с.
92. Повышение эффективности обучения математике в школе: кн. для учителя/ Из опыта работы; сост. Г.Д. Глейзер.- М.: Просвещение, 1989.-240с.
93. Погорелов, А. В. Геометрия: учеб. для 7-9 кл. общеобразоват. учреждений / А. В. Погорелов. М.: Просвещение, 2001. - 224с.
94. Пойа, Д. Как решать задачу / Д. Пойа.- Львов, 1991.- 134с.
95. Пойа, Д. Математика и правдоподобные рассуждения/ Д. Пойа; пер. с англ.-М.: Наука, 1975.-464 с.
96. Пойа, Д. Математическое открытие/ Д. Пойа; пер. с англ.- М.: Наука, 1976.- 448с.
97. Полуянова, Н. В. Технологический подход к реализации развивающих целей обучения алгебре в основной щколе: автореф. дис. . канд. пед. наук / Н. В. Полуянова. Омск, 2003. - 19с.
98. Попков, В. А. Критический стиль мышления в профессиональном становлении преподавателя высшей школы: дис. . д-ра. пед. наук / В. А. Попков.- М., 2002.- 319с.
99. Притуло, Ф. Ф. Методика изложения геометрических доказательств в средней школе: пособие для учителей / Ф. Ф.Притуло. -М.: Учпедгиз, 1958.- 108 с.
100. Притуло, Ф. Ф. О методике изучения геометрических доказательств в средней школе: дис. . канд. пед. наук/ Ф. Ф.Притуло.-М., 1955.-267 с.
101. Репьев, В. В. Общая методика преподавания математики / В. В. Репьев. М.: Учпедгиз, 1958.- 222 с.
102. Рогановский, Н. М. Геометрия 7-9 / Н. М. Рогановский. Мн.: Народная асвета,1997. - 234с.
103. Рогановский, Н. М. Методика преподавания математики в средней школе: учеб. пособие/ Н. М. Рогановский.- Мн.: Выш.шк.,1990.-267 с.
104. Родионов, М. А. Мотивация учения математике и пути ее формирования: монография / М. А. Родионов Саранск: МГПИ, 2001. - 252 с.
105. Рубинштейн, С. JL Бытие и сознание / С. JI. Рубинштейн. М.: АНСССР, 1957.- 328 с.
106. Самарин, Ю. А. Очерки психологии ум: Особенности умственной деятельности школьников / Ю. А. Самарин.- М.: АПН СССР, 1962.-504с.
107. Самсонов, П. И. Об обучении доказательствам / П. И. Самсонов //Математика в школе.- 2001.-№4.-С. 34-38.
108. Саранцев, Г. И. Методология методики обучения математике / Г. И. Саранцев.- Саранск: Тип. «Крас.Окт.», 2001,- 144 с.
109. Саранцев, Г. И. Обучение математическим доказательствам в школе: книга для учителя / Г. И. Саранцев.- М.: Просвещение, 2000.173 с.
110. Саранцев, Г. И. Общая методика преподавания математики/ Г. И. Саранцев.- Саранск: Тип. «Крас.Окт.», 1999.- 2Ö8 с.
111. Саранцев, Г. И. Перед встречей с доказательством/ Г. И. Саранцев // Математика в школе.-2004.-№9. С. 41-45.
112. Семенов, Е. Е. Размышления об эвристике / Е. Е. Семенов // Математика в школе.- 1995.- №5.-С. 39-43.
113. Скобелев, Г. Н. Контроль на уроках математики: пособие для учителя / Г. Н. Скобелев.- Минск: Нар. асвета, 1986.- 104 с.
114. Скрыпник, Д. С Математические ошибки в рассуждениях, их предупреждение и методика исправления: дис. . канд. пед. наук / Д. С. Скрыпник.-Киев, 1971.-180с.
115. Слепкань, 3. И. Психолого-педагогические основы обучения математике / 3. И. Слепкань. Киев: Рад.школа, 1983. - 192 е.: ил.
116. Столяр, А. А. Логические проблемы преподавания математики / А. А. Столяр. -Мн.: Выш.шк., 1965.-254 с.
117. Субботин, И. Я. Обучающая функция ошибки / И. Я. Субботин, М. С. Якир // Математика в школе.-1992.-№2-3.-С. 27-28.
118. Талызина, Н.Ф. Контроль и его функции в учебном процессе / Н.
119. Ф. Талызина// Советская педагогика.-1989.-ЖЗ .-С. 11-16.
120. Тарасенкова, Н. А. Найти ошибку / Н. А. Тарасенкова // Математика в школе.- 1997.-№2.-С. 19-23.
121. Тарасова, М. А. Педагогические условия критического стиля деятельности учащихся многопрофильной гимназии: автореф. дис. .канд. пед. наук / М. А. Тарасова. Москва, 2000.- 22с.
122. Тимофеева, И. Л. Как устроено доказательство?/ И. Л. Тимофеева //Математика в школе.-2004.-№8.-С.73-80.
123. Тихомиров, О. К. Обнаружение противоречий как начальный этап формирования задачи / О. К. Тихомиров, В. Е. Клочко //Искусственный интеллект и психология,- М., 1975.-С. 176-204.
124. Тригг, Ч. Задачи с изюминкой / Ч. Тригг; пер. с англ. Ю.Н.Сударева; под ред. с пред. В.М. Алексеева, М.: Мир, 1975. 214с.
125. Фетисов, А. И. О доказательстве в геометрии / А. И. Фетисов.
126. М.: Госполитиздат, 1954.- 60 е.: ил.
127. Фридман, Л. М. Психолого-педагогические основы обучения математике в школе: Учителю математики о психологии / Л. М. Фридман. М: Просвещение, 1983.- 134 с.
128. Фридман, Л. М. Теоретические основы методики обучения математике: пособие для учит., метод. / Л. М. Фридман. М.: Флинта, 1998.- 224 с.
129. Хамраев, Ч. Деятельностиый подход в процессе обучения решению планиметрических задач на вычисление: дис. . канд. пед. наук /
130. Ч. Хамраев,- Чарджев, 1993. -224 с.
131. Хашимов, Р. Обучение доказательеву в курсе геометрии восьмилетней школы: дис. . канд. пед. наук/ Р. Хашимов: Ташкент, 1984.-171с.
132. Хитрина, Н. А. О применении контрпримеров / Н. А.Хитрина // Математика в школе.- 1974.-№6. -С. 8-14.
133. Челябов, И. М. разработка системы организации исследовательской работы учащихся в процессе изучения факультатива по математике в 7-1 1кл: дис. . канд. пед. наук / И. М. Челябов: Махачкала, 1998.г178 с.
134. Черняева, А. Р. Реализация деятельностного подхода в процессе формирования пространственного мышления учащихся при обучении построению сечений многогранников: автореф. дис. . канд. пед. наук / А. Р. Черняева. Омк, 2004. -19 с.
135. Чиркина, 3. П. Задачи на доказательство в курсе геометрии средней школы: дис. . канд. пед. наук / 3. П. Чиркина: Чебоксары, 1951.-314с.
136. Чукотаев, М. Н. Устойчивые ошибки учащихся по алгебре и началам анализа и способы их устранения: дис. . канд. пед. наук / М. Н.Чукотаев.: Усть-Каменогорск, 1992.- 184с.
137. Шамова, Т. И. Активизация учения школьников / Т. И. Шамова. -М.: Педагогика, 1982.- 208с.
138. Шестакова, Л. Г. Формирование критичности мышления в процессе обучения математике / Л. Г. Шестакова //Актуальные проблемы обучения математике: Материалы Всерос. науч.-практ. конф., Т.2.-Орел, ОГУ, 2002. С. 240-244.
139. Шнейдерман, М. В. Анализ ошибок и затруднений учащихся 5 классов/ М. В. Шнейдерман //Математика в школе.- 1999.-№6.- С. 2123.
140. Шуба, М. Ю. Занимательные задания в обучении математике: кн. для учителя.-2 изд./ М. Ю. Шуба. -М.: Учпедгиз, 1962. 230 с.
141. Шугаипова, 3. М. Преемсвенность в обучении элементам алгебры в 1-6 кл.: дис. . канд. пед. наук / 3. М. Шугаипова. Махачкала, 2000.-144с.
142. Эльконин, Д. Б. Избранные психологические труды / Д. Б. Элько-нин.- М.: Педагогика, 1989.- 560 с.
143. Эрдниев, П. М. Преподавание математики в школе / П. М. Эрд-ниев.- М.: Просвещение, 1978. -345с.151. . Эрдниев, П. М. Развитие навыков самоконтроля при обучении математике/ П. М. Эрдниев.- М.: Учпедгиз, 1957.-71с.
144. Ягудина, Т. А. Преемственность в формировании логических суждений у учащихся IV-V кл. в процессе изучения учебного материала: дис. . канд. пед. наук/Т. А. Ягудина.-М, 1994. -157 с.
145. Ярский, А. С. Что делать с ошибками? / А. С. Ярский // Математика в школе.- 1998.-№2.-С. 8-14.
146. Raymond, A. Barnett. College algebra. -4th ed. by Mc Graw-Hill / A. Barnett Raymond, R. Ziegler Michal. Inc. Printed in USA.-1989. - 529 c.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.