Структурно-функциональная топография рибосом человека по данным аффинной модификации реакционноспособными производными олигорибонуклеотидов тема диссертации и автореферата по ВАК РФ 02.00.10, доктор химических наук Грайфер, Дмитрий Маратович

  • Грайфер, Дмитрий Маратович
  • доктор химических наукдоктор химических наук
  • 2008, Новосибирск
  • Специальность ВАК РФ02.00.10
  • Количество страниц 278
Грайфер, Дмитрий Маратович. Структурно-функциональная топография рибосом человека по данным аффинной модификации реакционноспособными производными олигорибонуклеотидов: дис. доктор химических наук: 02.00.10 - Биоорганическая химия. Новосибирск. 2008. 278 с.

Оглавление диссертации доктор химических наук Грайфер, Дмитрий Маратович

Принятые сокращения.

Введение.

Глава 1. СТРУКТУРНАЯ ОРГАНИЗАЦИЯ ЭУКАРИОТИЧЕСКОЙ РИБОСОМЫ

И ЕЕ ФУНКЦИОНАЛЬНЫХ ЦЕНТРОВ (обзор литературы).

1.1. Общая характеристика рибосомных субчастиц эукариот

1.1.1. Особенности морфологии 40Б и 608 субчастиц.

1.1.2. Изменчивость структуры рибосом эукариот.

1.2. Компоненты эукариотической рибосомы.

1.2.1. рРНК

1.2.1.1. Вторичная структура рРНК.

1.2.1.2. Номенклатура элементов вторичной структуры рРНК

1.2.1.3. Роль рРНК в структурной организации и функционировании рибосом

1.2.2. Рибосомные белки

1.2.2.1. Номенклатура и особенности рибосомных белков.

1.2.2.2. Гомология между рибосомными белками эукариот, эубактерий. и архей.

1.2.2.3. Посттрансляционные модификации.

1.2.2.4. Роль рибосомных белков в структурной организации и функционировании рибосомы эукариот

1.2.3. Ионы и полиамины

1.3. Укладка белков и рРНК в рибосомных субчастицах эукариот

1.3.1 Укладка рРНК

1.3.1.1. Методология химического, энзиматического и олигонуклеотидного пробинга.

1.3.1.2. Пробинг вторичной и третичной структуры рРНК.

1.3.2. Расположение белков и рРНК на рибосоме.

1.3.2.1. Данные, полученные с помощью сшивок.

1.3.2.2. Расположение белков на поверхности субчастиц по данным иммуноэлектронной микроскопии.

1.3.2.3. Расположение рРНК и белков в рибосомных субчастицах по данным крио-ЭМ.

1.4. Строение функциональных центров эукариотической рибосомы.

1.4.1. Участки рРНК, вовлеченные в функционирование рибосомы.

1.4.1.1. Участки, вовлеченные в ассоциацию субчастиц.

1.4.1.2. Участки 18S рРНК, вовлеченные в связывание eIF на 40S субчастице

1.4.1.3. Участки рРНК, вовлеченные в связывание eEF2 на 80S рибосоме и «ОТРаза-активирующий центр».

1.4.1.4. Участки рРНК, вовлеченные в связывание мРНК, пептидил-тРНК и белков, ассоциированных с полисомами.

1.4.1.5. Фрагмент 18S рРНК в районе декодирующего центра

1.4.1.6. Фрагмент 5.8S рРНК, вовлеченный в процесс транслокации

1.4.2. Рибосомные белки, влияющие на функционирование рибосомы.

1.4.3. Строение функциональных центров рибосомы эукариот по данным крио-ЭМ.

1.4.3.1. Контактные поверхности субчастиц.

1.4.3.2. тРНК-связывающие центры.

1.4.3.3. мРНК-связывающий центр.

1.4.3.4. Участок связывания eEF

1.4.3.5. Участок связывания eEF

1.4.3.6. Выход из полипептидного туннеля и участок связывания SRP.

1.4.3.7. Участок связывания большой субчастицы с мембраной эндоплазматического ретикулума.

Рекомендованный список диссертаций по специальности «Биоорганическая химия», 02.00.10 шифр ВАК

Введение диссертации (часть автореферата) на тему «Структурно-функциональная топография рибосом человека по данным аффинной модификации реакционноспособными производными олигорибонуклеотидов»

В клетках всех организмов - от прокариот до человека - реализация генетической информации происходит на рибосомах, где последовательности тринуклеотидов-кодонов мРНК, скопированные с ДНК, транслируются в аминокислотные последовательности синтезируемых белков. Рибосома - это уникальный рибонуклеопротеид, обладающий сложнейшей четвертичной структурой и состоящий из большой и малой субчастиц, каждая из которых содержит рРНК и несколько десятков белков. Синтез белков на рибосомах является одним из ключевых процессов жизнедеятельности организмов, поэтому установление молекулярных механизмов, лежащих в его основе, и строения функциональных центров рибосомы является одной из важнейших проблем молекулярной биологии. Эта проблема особенно актуальна в случае рибосом млекопитающих, в частности, человека, поскольку природа многих болезней связана с нарушениями в механизмах регуляции функционирования белок-синтезирующей системы. Знание особенностей устройства функциональных центров эукариотической рибосомы является принципиально важным для понимания не только молекулярных механизмов трансляции у эукариот, но и природы тех регуляторных процессов, которые обеспечивают эффективность и точность белкового синтеза.

Рибосомы прокариот к настоящему времени детально изучены с применением различных методов, но наиболее впечатляющие успехи в расшифровке структуры рибосомы достигнуты на рубеже XX и XXI столетий благодаря рентгеноструктурному анализу (РСА), который позволил установить с высоким разрешением строение рибосом прокариот (Ban et al., 2000; Carter et al„ 2000; Yusupov et al., 2001; Selmer et al., 2006; Korostelev et al., 2006) и выйти на новый уровень биохимических исследований, касающихся изучения молекулярных аспектов функционирования рибосомы (см., например, Leonov et al., 2003; Sergiev et al., 2005; Kubarenko et al., 2006). Однако метод РСА до сих пор неприменим для изучения эукариотических рибосом, поскольку кристаллы рибосом, пригодные для такого анализа, пока не получены. Метод крио-электронной микроскопии, интенсивно используемый для изучения эукариотических рибосом в последнее время, пока остается непригодным для определения структуры одного из важнейших функциональных центров рибосомы - мРНК-связывающего центра, поскольку разрешение, которое удается получить на эукариотических рибосомах, не позволяет четко "видеть" мРНК. Кроме того, с помощью этого метода не могут быть картированы рибосомные белки, не имеющие прокариотических гомологов. Наконец, методы, основанные на реконструкции рибосомных субчастиц из белков и рРНК (например, сайт-направленный мутагенез рРНК и сайт-направленное введение сшивающих групп в рРНК или белки), неприменимы для исследования рибосом высших эукариот, потому что до сих пор не найдено подходов к сборке активных субастиц рибосом эукариот in vitro.

К моменту начала настоящей работы практически отсутствовали данные по структурно-функциональной топографии рибосомы эукариот за исключением нескольких работ по изучению мРНК-связывающего центра рибосом из печени крысы с помощью аффинной модификации с использованием аналогов мРНК - алкилирующих производных олигорибонуклеотидов (Stahl and Kobetz, 1981, 1984; Stahl and Karpova, 1985) и по исследованию 48S предынициаторных комплексов методом прямых УФ-индуцированных сшивок (см., например, Westermann and Nygard, 1984). Метод аффинной модификации (аффинного химического сшивания) оказался очень продуктивным для изучения структурно-функциональной топографии прокариотических рибосом и остается на сегодняшний день одним из наиболее приемлемых методов, способных давать детальную информацию о молекулярном окружении мРНК на эукариотической рибосоме. Основной целью настоящей работы являлось установление структурной организации мРНК-связывающего центра рибосомы человека, а именно, выявление нуклеотидов рРНК и рибосомных белков, принимающих участие в формировании этого центра. Для решения поставленной задачи использован один из наиболее продуктивных методов биоорганической химии, а именно метод аффинной модификации (аффинного химического сшивания) рибосом реакционноспособными аналогами мРНК. В качестве таких аналогов использован набор производных олигорибонуклеотидов, различающихся длиной, последовательностью и типом сшивающей группы, а также положением и природой нуклеотида, несущего эту группу. Одно из таких производных применено в качестве зонда для изучения структурно-функциональной топографии уникальной для рибосом эукариот 5.8S рРНК.

В ходе исследования планировалось:

• разработать методологию получения модельных комплексов аналогов мРНК с рибосомами, в которых расположение аналога мРНК можно было бы задавать с помощью тРНК, узнающей определенный кодон мРНК в отсутствие факторов трансляции;

• изучить фотоаффинную модификацию 80S рибосом человека аналогами мРНК длиной около 50 нт, несущими остатки 4-тиоуридина, и определить нуклеотиды 18S рРНК, сшивающиеся с этими аналогами;

13

• изучить аффинную модификацию 80S рибосом производными олигорибонуклеотидов, несущими алкилирующую или п-азидотетрафторбензоильную группу, в составе комплексов, различающихся расположением модифицированного нуклеотида аналога мРНК относительно первого нуклеотида кодона в Р-участке;

• определить нуклеотиды рРНК и рибосомные белки, сшивающиеся с указанными аналогами мРНК, и тем самым получить информацию о структурных элементах 80S рибосомы, соседствующих с мРНК в области кодон-антикодоновых взаимодействий и в районах, прилегающих к кодонам в Е и А-участках;

• на основании полученных результатов охарактеризовать основные черты структурной организации мРНК-связывающего центра рибосомы человека и, сопоставив эти результаты с данными по структурно-функциональной топографии прокариотической рибосомы, выявить элементы сходства и различия в структурной организации этого центра у прокариот и млекопитающих;

• показать возможность использования реакционноспособных производных олигорибонуклеотидов в качестве зондов для изучения доступности и молекулярного окружения определенных последовательностей в рРНК на разных стадиях процесса трансляции.

Похожие диссертационные работы по специальности «Биоорганическая химия», 02.00.10 шифр ВАК

Заключение диссертации по теме «Биоорганическая химия», Грайфер, Дмитрий Маратович

ВЫВОДЫ

Настоящая работа представляет собой первое комплексное исследование структурно-функциональной топографии рибосомы человека. Это исследование позволило получить уникальную информацию о молекулярном окружении мРНК на 80S рибосоме на уровне нуклеотидов рРНК и рибосомных белков, в случае одного из них - на уровне олигопептидной последовательности, а также о расположении центральной части 5.8S рРНК в 60S субчастице рибосомы и степени ее экспонированности на разных стадиях трансляции.

1. Для изучения молекулярного окружения мРНК на 80S рибосоме человека предложен набор фотоактивируемых аналогов мРНК - производных олигорибонуклеотидов длиной от 3 до 12 нт, различающихся природой и положением нуклеотида, несущего сшивающую группу, который использован для аффинной модификации рибосом наряду с алкилирующими производными олигорибонуклеотидов.

• Установлено, что в отсутствие факторов трансляции короткие аналоги мРНК, могут быть с высокой степенью точности фазированы на рибосоме с помощью прокариотических тРНК, узнающих кодон, направляемый в Р-участок, в отличие от аналогов мРНК длиной около 50 нт.

• Показано, что при облучении мягким УФ-светом комплексов 80S рибосом с тРНК и аналогами мРНК, несущими алкилирующую группу на 3'- или 5'-конце или п-азидотетрафторбензоильную группу на остатке уридина, гуанозина или 5'-концевом фосфате, происходят сшивки аналогов с рибосомами; для всех аналогов основной мишенью сшивки являлась 40S субчастица.

2. Определены рибосомные белки и нуклеотиды 18S рРНК, сшивающиеся с аналогами мРНК. Обнаружено, что результаты аффинной модификации (наборы сшивающихся белков, положение сшитого нуклеотида в 18S рРНК и выход каждого из продуктов сшивки) зависят не только от положения модифицированного нуклеотида аналога мРНК на рибосоме, но и от его природы и типа сшивающей группы.

3. Показано, что нуклеотиды рРНК малых субчастиц, соседствующие с мРНК, составляют консервативный "кор" (сердцевину) рибосомы, структурно идентичную в рибосомах всех организмов.

• Установлено, что 18S рРНК сближена с довольно протяженным фрагментом мРНК - с нуклеотидами в положениях от -3 до +9 относительно первого нуклеотида ко дона в Р-участке.

• Показано, что все нуклеотиды 18S рРНК, сшивающиеся с аналогами мРНК, находятся в консервативных районах рРНК малых рибосомных субчастиц и по положению во вторичной структуре точно соответствуют нуклеотидам 16S рРНК, контактирующим с мРНК по данным рентгеноструктурного анализа рибосом прокариот.

4. Установлено, что у млекопитающих рибосомные белки играют большую роль в организации мРНК-связывающего центра рибосом, чем у прокариот, и обнаружены значительные различия в белковом окружении мРНК на рибосомах про- и эукариот.

• Показано, что белки сближены со всеми нуклеотидами мРНК в положениях от -9 до +12, а нуклеотиды в положениях от -4 до -9 и от +9 до +12 соседствуют в основном с белками.

• Установлено, что на 80S рибосоме нуклеотиды мРНК в положениях от +1 до -3 соседствуют с белками S6 и S26, не имеющими прокариотических гомологов, а в положениях от -4 до -9 - в основном с белком S26. Нуклеотиды в декодирующем центре (в положениях от +4 до +6) и в положении +7 сближены преимущественно с белком S15, чей прокариотический гомолог S19 удален от декодирующего центра на расстояние более 35 Â.

• Обнаружено, что нуклеотиды мРНК в положениях от +4 до +7 соседствуют на 80S рибосоме с С-концевым фрагментом 111-145 белка S15, что указывает на участие этого фрагмента в формировании декодирующего центра эукариотической рибосомы.

• Выявлено сходство в белковом окружении мРНК на рибосоме с 3'-стороны от кодона в декодирующем центре у про- и эукариот. Показано, что эта часть мРНК соседствует в основном с белком S3, прокариотический гомолог которого контактирует с мРНК с 3'-стороны от кодона в А-участке.

5. С использованием производного нонарибонуклеотида, содержащего последовательность, комплементарную фрагменту 82-86 в центральном районе 5.8S рРНК, и перфторфенилазидогруппу на первом остатке уридина, впервые изучено расположение этого района 5.8S рРНК в рибосоме млекопитающих, а также его доступность для комплементарно-адресованной модификации этим производным в разных функциональных состояниях рибосомы.

253

БЛАГОДАРНОСТИ

На разных этапах настоящей работы в ней принимали участие сотрудники и аспиранты Лаборатории структуры и функции рибосом НИБХ СО РАН (с 2003 г. ИХБФМ СО РАН) -М.А. Зенкова, A.A. Малыгин, К.Н. Булыгин, H.A. Демешкина и М.В. Молотков, а также д-р П. Воллензиен (США), д-р И. Шталь (Германия) и работавшие под руководством автора студенты НГУ. Автор приносит им искреннюю благодарность. Автор также очень благодарен зав. лабораторией химии РНК ИХБФМ СО РАН А.Г. Веньяминовой и ее сотрудникам, которые обеспечили работу олигорибонуклеотидами и их производными, содержащими реакционноспособную группу на остатках уридина.

Особую признательность автор выражает д.х.н. профессору Г.Г. Карповой, которая была инициатором работы и уделяла ей первоочередное внимание на всех стадиях от постановки задач до представления результатов в виде статей, тезисов докладов и настоящей диссертации. Автор также очень признателен академику Д.Г. Кнорре за постоянную поддержку и интерес к данной работе.

ЗАКЛЮЧЕНИЕ

Применение метода афинной модификации рибосом с использованием производных олигорибонуклеотидов, несущих реакционноспособную группу в заданном положении, позволило получить уникальную информацию о структурно-функциональной организации рибосом млекопитающих, которую до сих пор не могут дать другие методы и подходы. В настоящей работе впервые получено экспериментальное подтверждение распространенного представления о том, что нуклеотиды рРНК, принимающие участие в формировании мРНК-связывающего центра, включая участок декодирования, составляют консервативный "кор" (сердцевину) рибосомы, структурно идентичную в рибосомах всех организмов. Это согласуется с представлением о «мире РНК», согласно которому проторибосома, возникшая на заре эволюции, состояла только из рРНК, а белки появились в составе рибосомы позже. Возможно, первоначальная роль белков состояла в поддержании пространственной структуры рРНК, оптимальной для функционирования рибосомы, но в процессе дальнейшей эволюции роль белков возросла и они стали принимать участие в формировании некоторых функциональных центров рибосом. Полученные в настоящей работе данные свидетельствуют о том, что у эукариот рибосомные белки вносят больший вклад в формирование мРНК-связывающего центра, чем у прокариот. Более того, молекулярное окружение мРНК на рибосоме млекопитающих в значительной степени состоит из эукариот-специфичных рибосомных белков, а также белков, которые хоть и имеют прокариотические гомологи, но соседствуют с мРНК своими эукариот-специфичными последовательностями. Эти данные несомненно должны поставить под сомнение широко распространенную точку зрения, что эукариотическая рибосома представляет собой просто усложненную копию прокариотической рибосомы, в которой все функциональные центры устроены в общем так же, как и в прокариотической рибосоме, а эукариот-специфичные белки расположены на периферии, вдали от функциональных центров, и нужны главным образом для поддержания «правильной» пространственной структуры фрагментов рРНК, отсутствующих у прокариот.

Можно предположить, что вовлечение в формирование мРНК-связывающего центра 80S рибосом специфичных для эукариот олигопептидных последовательностей или белков связано с их способностью взаимодействовать с различными факторами (шалеронами, модифицирующими ферментами и пр.), влияющими на эффективность и точность трансляции, или служить мишенями для этих факторов. Это, в свою очередь, может обеспечивать более сложную и многостадийную систему регуляции белкового синтеза у эукариот по сравнению с прокариотами. Высказанная гипотеза базируется на том, что различия в молекулярном окружении мРНК на рибосомах прокариот и эукариот касаются в наибольшей степени окружения той части мРНК, которая находится с 5'-стороны от кодона в E-участке; именно те компоненты рибосомы, которые формируют это окружение, отвечают за ее взаимодействие с 5'-нетранслируемой областью мРНК, которая может участвовать в различных регуляторных процессах.

Недавно результаты настоящей работы были полностью подтверждены данными по сшивкам мРНК, несущих остатки s4U, с рибосомами кролика в составе 48S предынициаторного и 80S инициаторного комплексов (Pisarev et al., 2006; 2008). Оказалось, что в составе этих комплексов мРНК соседствует с теми же нуклеотидами рРНК и рибосомными белками, что и в комплексах рибосом человека, изученных в настоящей работе, а нуклеотиды мРНК в положениях от -8 до -17 контактируют со специфичным для эукариот фактором инициации eIF3, что согласуется с высказанной выше гипотезой.

Фотоактивируемые производные олигорибонуклеотидов оказались полезными для изучения не только структурной организации мРНК-связывающего центра рибосомы человека, но и в качестве комплементарно-адресованных зондов (которые имеют ряд преимуществ по сравнению с обычными антисмысловыми олигонуклеотидами) для изучения изменений, которые могут происходить в определенных участках структуры рРНК при переходе рибосомы из одного функционального состояния в другое. В частности, в настоящей работе с использованием такого зонда удалось обнаружить зависимость доступности последовательности в центральной части 5.8S рРНК от состояния рибосомы, благодаря чему стала более понятной роль 5.8S рРНК в процессе трансляции.

Нет сомнений, что использование метода аффинной модификации для изучения структурно-функциональной топографии эукариотической рибосомы дает уникальную возможность получать всестороннюю информацию об особенностях устройства ее функциональных центров, что является принципиально важным для понимания как молекулярных механизмов трансляции у эукариот, так и тех регуляторных процессов, которые обеспечивают эффективность и точность белкового синтеза.

Список литературы диссертационного исследования доктор химических наук Грайфер, Дмитрий Маратович, 2008 год

1. Беликова A.M., Гринёва Н.И. Алкилирование нуклеиновых кислот и их компонентов. VIII. Реакция 2\3'-0-4-(№2-хлорэтил-М-метиламино).бензилиден]-уридина и -аденозина с тРНК //Изв.Сиб.Отд. АН СССР, сер.хим.наук. 1971. Вып. 5. С. 119-127.

2. Булычев Н.В., Грайфер Д.М., Карпова Г.Г., Лебедев A.B. Препаративное выделение индивидуальной тРНКРЬе высокоэффективной жидкостной обращенно-фазовой хроматографией //Биоорган, химия. 1988. Т. 14. С. 27-30.

3. Гимаутдинова О.И., Карпова Г.Г., Козырева H.A. Аффинная модификация рибосом Е. coli 4-(ТЧ-2-хлорэтил-1\1-метил)амино.-бензил-5'-фосфамидами олироуридилатов разной длины //Молекуляр. биология. 1982. Т. 16. С. 752-762.

4. Карпова Г.Г., Кобец Н.Д., Силина С.А., Годовиков A.A. Аффинная модификация 16S РНК в составе рибосом E.coli аналогом гептауридилата, несущим на З'-конце химически активную группу // Биоорган, химия. 1981. Т. 7. С. 1503-1511.

5. Карпова Г.Г. Химические аспекты комплементарно-адресованной модификации нуклеиновых кислот //Изв. СО АН СССР, сер. хим. наук. 1987. Вып. 12. С. 82-95.

6. Карпова Г.Г., Кнорре Д.Г. Структурно-функциональная топография рибосом E.coli по данным аффинной модификации реакционноспособными аналогами мРНК и тРНК // Успехи биологической химии. 1991. Т. 32. С. 3-49.

7. Кнорре Д.Г., Карпова Г.Г., Кобец Н.Д. Аффинная модификация рибосом E.coli вблизи мРНК- и тРНК связывающих центров // Итоги науки и техники (ВИНИТИ). 1985. Т. 4. С. 87-143.

8. Росс У. Биологически активные вещества// Медицина (Москва). 1964. С. 30, 98, 100.

9. Сергиев П.В., Донцова О.А., Богданов А.А. Изучение структуры прокариотической рибосомы биохимическими методами: судный день // Молекуляр. биология. 2001. Т. 35. С. 559-583.

10. Черноловская E.JL, Черепанов П.П., Горожанкин А.В., Добриков М.И., Власов В.В., Кобец Н.Д. Взаимодействие фотоактивных производных олиготимидилата с хроматином клеток HeLa // Биоорган, химия. 1993. Т. 19. С. 889-896.

11. Alkemar G. and Nygard О. Secondary structure of two regions in expansion segments ES3 and ES6 with the potential of forming a tertiary interaction in eukaryotic 40S ribosomal subunits // RNA. 2004. Vol. 10. P. 403-411.

12. Alkemar G. and Nygard O. Probing of the secondary structure of expansion segment ES6 in 18S ribosomal RNA // Biochemistry. 2006. Vol. 45. P. 8067-8078.

13. Azad F., Failla P. and Hanna P.J. Inhibition of Ribosomal Subunit Association and Protein Synthesis by Oligonucleotides Corresponding to Defined Regions of 18S rRNA and 5S rRNA // Biochim. Biophys. Res. Commun. 1998. Vol. 248. P. 51-56.

14. Ban N, Nissen P., Hansen J., Moore P.B. and Steitz T.A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution // Science. 2000. Vol. 289. P. 905-920.

15. Bakowska-Zywicka K. and Twardowski T. Correlation of the structure and conformational changes of selected fragments of plant small ribosomal RNA within the steps of polypeptide chain elongation // J. Plant Physiol. 2007. Vol. 164. P. 496-504.

16. Ballesta J.P., Rodriguez-Gabriel M.A., Bou G., Briones E., Zambrano R. and Remacha M. Phosphorylation of the yeast ribosomal stalk. Functional effects and enzymes involved in the process // FEMS Microbiol. Rev. 1999. Vol. 23. P. 537-550.

17. Bartetzko A. and Nierhaus K.H. Mg2+/NH4/polyamine system for polyuridine-dependent polyphenylalanine sunthesis with near in vivo characteristics // Methods Enzymol. 1988. Vol. 164. P. 650-658.

18. Bashan A., Zarivach R., Schluenzen F., Agmon I., Harms J., Auerbach, T., Baram D., Berisio R., Bartels H., Hansen H.et al. Ribosomal Crystallography: peptide bond formation and its inhibition //Biopolymers. 2003. Vol. 79. P. 19-41.

19. Bhangu R. and Wollenzien P. L. The mRNA binding track in the Escherichia coli ribosome for mRNAs of different sequences // Biochemistry. 1992. Vol. 31. P. 5937-5944.

20. Bhangu R., Juzumiene D.I. and Wollenzien P. L. Arrangement of messenger RNA on Escherichia coli ribosomes with respect to 10 16S rRNA cross-linking sites // Biochemistry 1994. Vol. 33. P. 3063-70.

21. Bielka H., Bommer U.-A., Noll F., Stahl J., Welfle H. and Westermann P. The eukaryotic ribosome /Bielka H., ed. Academie-Verlag, Berlin, 1982.

22. Blau M., Mullapudi S., Becker t., Dudek J., Zimmermann R., Penczek H.A. and Beckmann R. ERjlp uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane // Nat. Struct. Mol. Biol. 2005. Vol. 12. P. 1015-1016.

23. Boehringer, D., Thermann, R., Ostareck-Lederer, A., Lewis, J.D. and Stark, H. Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES // Structure. 2005. Vol. 13. P. 1695-1706.

24. Boguski M. S., Hieter P. A. and Levy C. C. Identification of a cytidine-specific ribonuclease from chicken liver // J. Biol. Chem. 1980. Vol. 255. P. 2160-2163.

25. Briones C. and Ballesta J.P.G. Conformational changes induced in the Saccharomyces cerevisiae GTPase-associated rRNA by ribosomal stalk components and a translational inhibitor // Nucl. Acids Res. 2000. Vol. 28. P. 4497-4505.

26. Brodersen D.E. and Nissen P. The social life of ribosomal proteins // FEBS J. 2005. Vol. 272. P. 2098-2108.

27. Brosius J., Dull T.J. and Noller H.F. Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli // Proc. Natl. Acad Sci. USA. 1980. Vol. 77. P. 201-204.

28. Carter A.P., Clemons W.M., Brodersen D.E., Morgan-Warren R.J., Wimberly B.T. and Ramakrishnan V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics // Nature. 2000. Vol. 407. P. 340-348.

29. Ceci M., Gaviraghi C., Gorrini C., Sala L.A., Offenhauser N., Marchisio P.C. and Biffo S. Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly // Nature. 2003. Vol. 426. P. 579-584.

30. Chandramouli, P., Topf, M., Menetret, J.-F., Eswar, N., Cannone, J.J., Gutell, R.R., Sali, A. and Akey, C.W. Structure of the Mammalian 80S Ribosome at 8.7 A Resolution // Structure. 2008. Vol. 16. P. 535-548.

31. Changchien L.-M. and Craven G.R. The use of hydroxylamine cleavage to produce a frament of ribosomal protein S4 which retains the capacity to specifically bind 16S ribosomal RNA // Nucleic Acids Res. 1986. Vol. 14. P. 1957-1966.

32. Chavatte L., Frolova L., Kisselev L., Favre A. The polypeptide chain release factor eRFl specifically contacts the s(4)UGA stop codon located in the A site of eukaryotic ribosomes // Eur. J. Biochem. 2001. Vol. 268. P. 2896-904.

33. Chavatte L., Seit-Nebi A., Dubovaya V., Favre A. The invariant uridine of stop codons contacts the conserved NIKSR loop of human eRFl in the ribosome // EMBO J. 2002. Vol. 21. P. 53025311.

34. Chavatte L., Brown B.A.I.I. and Driscoll D.M. Ribosomal protein L30 is a component of of the UGA-selenocysteine recoding machinery in eukaryotes // Nat. Struct. Mol. Biol. 2005. Vol. 12. P. 408-416.

35. Ciesiolka J., Lorenz S. and Erdmann V. A. Different conformational forms of Escherichia coli and rat liver 5S rRNA revealed by Pb(II)-induced hydrolysis // Eur. J. Biochem. 1992a. Vol. 204. P. 583-589.

36. Ciesiolka, J., Lorenz, S. & Erdmann, V. A. Structural analysis of three prokaryotic 5S rRNA species and selected 5S rRNA-ribosomal-protein complexes by means of Pb(II)-induced hydrolysis // Eur. J. Biochem. 1992b. Vol. 204. P. 575-581.

37. Clark C.G., Tague B.W., Ware V.C. and Gerbi S.A. Xenopus laevis 28S rRNA: A secondary structure model and its evolutionary and functional implications // Nucleic Acids Res. 1984. Vol. 12. P. 6197-6220.

38. Cuatrecasas P., Fuchs S. and Anfinsen C. B. Catalytic properties and specificity of the extracellular nuclease of Staphylococcus aureus // J. Biol. Chem. 1967. Vol. 242. P. 1541-1547.

39. Doudna J. A. and Rath V.L. Structure and function of the eukaryotic ribosome: the next frontier // Cell. 2002. Vol. 109. P. 153-156. .

40. Dresios J., Panopoulos P., Frantziou C.P. and Synetos D. Yeast ribosomal protein deletion mutants possesses altered peptidyltransferase activity and sensitivity to cycloheximide // Biochemistry. 2001. Vol. 40. P. 8101-8108.

41. Dresios J., Chan Y.L. and Wool I.G. The role of zinc finger motif and of the residues at the amino terminus in the function of yeast ribosomal protein YL37a // J. Mol. Biol. 2002. Vol. 316. P. 475-488.

42. Dresios J., Panopoulos P., Suzuki K. and Synetos D. A dispensable yeast ribosomal protein optimizes peptidyltransferase activity and affects translocation // J. Biol. Chem. 2003. Vol. 278. P. 3314-3322.

43. Dresios J., Panopoulos P. and Synetos D. Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function // Mol. Microbiol. 2006. Vol. 59. P. 16511663.

44. Ehresmann C., Baudin F., Mougel M., Romby P., Ebel J. P. And Ehresmann B. Probing the structure of RNAs in solution //Nucl. Acids Res. 1987. Vol. 15. P. 9109-9128.

45. Elela S.A., Good L., Melekhovets Y.F. and Nazar, R. Inhibition of protein synthesis by an efficiently expressed mutation in the yeast 5.8S ribosomal RNA // Nucleic Acids Res. 1994, Vol. 22. P. 686-693.

46. Elela S.A. and Nazar R. Role of 5.8S rRNA in ribosome translocation // Nucleic Acids Res. 1997. Vol. 25. P. 1788-1794.

47. Favorova O.O., Fasiolo F., Keith G., Vassilenko S.K. and Ebel J. P. Partial digestion of tRNA-aminoacyl-tRNA synthetase complexes with cobra venom ribonuclease // Biochemistry. 1981. Vol. 20. P. 1006-1011.

48. Ferreras A.C., Bandeira E., Cayama E., Zambrano R., Avila H., Yepez A., Triana J.L. and Triana-Alonso F.J. Efficient and faithful in vitro translation of natural and synthetic mRNA with human ribosomes // Int. J. Mol. Med. 2004. Vol. 13. P. 527-536.

49. Fleischer T., Weawer C.M., McAfee K.J., Jennings J.L. and Link A.J. Systematic identification and functional screens of uncharacterized protiens associated with eukaryotic ribosomal complexes // Genes Dev. 2006. Vol. 20. P. 1294-1307.

50. Frank J., Zhu J., Penczek P., Li Y., Srivastava S., Verschoor A., Radermacher M., Grassucci R., Lata R.K. and Agrawal R.K. A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome //Nature. 1995. Vol. 376. P. 441-444.

51. Frank J. and Agrawal R.K. A ratchet-like inter-subunit reorganization of the ribosome during translocation//Nature. 2000. Vol. 406. P. 318-322.

52. Frank J. and Agrawal R.K. Ratchet-like movements between the two ribosomal subunits: their implications in elongation factor recognition and tRNA translocation // Cold Spring Harb. Symp. Quant. Biol. 2001. Vol. 66. P. 67-75.

53. Gomez E.B., Medina G., Ballesta J.P., Levin M.J. and Tellez-Inon M.T. Acidic ribosomal P proteins are phosphorylated in Trypanosoma cruzi // Int. J. Parasitol. 2001. Vol. 31. P. 10321039.

54. Gonzalez I.L., Chambers C., Gorski J.L., Stambolian D., Schmickel R.D. and Sylvester J.E. Sequence and structure correlation of human ribosomal transcribed spacers // J. Mol. Biol. 1990. Vol. 212. P. 27-35.

55. Gorski J.L., Gonzalez I.L. and Schmickel R.D. The secondary structure of human 28S rRNA: the Structure and evolution of a mosaic rRNA gene // J. Mol. Evol. 1987. Vol. 24. P. 236-251.

56. Goss D.J. and Harrigan T. Magnesium ion dependent equilibria, kinetics and thermodynamic parameters of Artemia ribosome dissociation and subunit association // Biochemistry. 1986. Vol. 25. P. 3690-3695.

57. Graifer D.M., Zenkova M.A., Malygin A.A., Mamaev S.V., Mundus D.A. and Karpova G.G. Identification of a site on 18S rRNA of human placenta ribosomes in the region of the mRNA binding center//J. Mol. Biol. 1990. Vol. 214. P. 121-128.

58. Green R. and Noller H. Ribosomes and translation // Annu Rev. Biochem. 1997. Vol. 66. P. 679716.

59. Gu S.Q., PeskeF., Wieden H.J., Rodnina M.V. and Wintermeyer W. The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome // RNA. 2003. Vol. 9. P. 566-573.

60. Gueydan C., Wauquier C., De Mees C, Huez G. and Kruys V. Identification of ribosomal proteins specific to higher eukaryotes // J. Biol. Chem. 2002. Vol. 277. P. 45034-45040.

61. Hagiya A., Naganuma T., Maki Y., Ohta J., Tohkairin Y., Shimizu T., Nomura T., Hachimori A. and Uchiumi T. A mode of assembly of P0, PI and P2 proteins at the GTPase-associated center in animal ribosome // J. Biol. Chem. 2005. Vol. 280. P. 39193-39199.

62. Halic M., Becker T., Pool M.R., Spahn C.M.T., Grassucci R.A., Frank J. and Beckmann R. Structure of the signal recognition particle interacting with the elongation-arrested ribosome // Nature. 2004. Vol. 427. P. 808-814.

63. Halic M. and Beckmann R. The signal recognition particle and its interactions during protein targeting // Curr. Opin. Struct. Biol. 2005. Vol. 15. P. 116-25.

64. Halic M., Gartmann M., Schlenker O., Mielke T., Pool M.R., Sinning I. and Beckmann R. Signal recognition particle receptor exposes the ribosomal translocon binding site // Science. 2006. Vol. 312. P. 745-747.

65. Hancock J.M. The contribution of DNA slippage to eukaryotic nuclearl8S rRNA evolution // J. Mol. Evol. 1995. Vol. 40. P. 629-639.

66. Hancock J.M. and Vogler A.P. How slippage-derived sequences are incorporated into rRNA variable-region secondary structure: implications for phylogeny reconstruction // Mol. Phylogenet. Evol. 2000. Vol. 14. P. 366-374.

67. Hoa G.H.B., Begard E., Beaudry P., Maurel P., Grunberg-Manago M. and Douzou P. Analysis of Cosolvent and divalent cation effects on association equilibrium and activity of ribosomes // Biochemistry. 1980. Vol. 19. P. 3080-3087.

68. Hoang L., Fredrick K., Noller H.F. Creating ribosomes with an all-RNA 30S subunit P site // Proc. Natl. Acad. Sei. USA. 2004. Vol. 101. P. 12439-12443.

69. Hogan J.J., Gutell R.R. and Noller H.F. Probing the conformation of 18S rRNA in yeast 40S ribosomal subunits with kethoxal // Biochemistry. 1984a. Vol. 23. P. 3322-3330.

70. Hogan J.J., Gutell R.R. and Noller H.F. Probing the conformation of 26S rRNA in yeast 60S ribosomal subunits with kethoxal // Biochemistry. 1984b. Vol. 23. P. 3330-3335.

71. Holmberg L., Melander Y. and Nygard O. Probing the structure of mouse Ehrlich ascites cell 5.8S, 18S and 28S ribosomal RNA in situ //Nucleic Acids Res. 1994a. Vol. 22. P. 1374-1382.

72. Holmberg L., Melander Y. and Nygard O. Probing the con-formational changes in 5.8S, 18S and 28S rRNA upon association of derived subunits into complete 80S ribosomes // Nucleic Acids Res. 1994b. Vol. 22. P. 2776-2783.

73. Khaitovich P., Tenson T., Mankin A.S. and Green R. Peptidyl transferase activity catalyzed by protein-free 23S ribosomal RNA remains elusive // RNA. 1999. Vol. 5. P. 605-608.

74. Kisselev, L.L., Ehrenberg, M., and Frolova, L.Yu. Termination of translation: interplay of mRNA, rRNAs and release factors // EMBO J. 2003. Vol. 22. P. 175-182.

75. Klein D .J., Moore P.B., Steitz T.A. The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit// J. Mol. Biol. 2004. Vol. 340. P. 141-177.

76. Knorre, D.G., Vlassov, V.V., Zarytova, V.F. and Karpova, G.G. Nucleotide and oligonucleotide derivatives as enzymes and nucleic acid targeted irreversible inhibitors // Chemical aspects. Adv. Enzym. Regulat. 1985. Vol. 24. P. 277-300.

77. Korostelev A., Tralchanov S., Laurberg M., Noller H.F. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements // Cell. 2006. Vol. 126. P. 1065-1077.

78. Krieg J., Hofsteenge J. and Thomas G. Identification of the 40S ribosomal protein S6 phosphorylation sites induced by cycloheximide // J. Biol. Chem. 1988. Vol. 263. P. 1147311477.

79. Kruse T.A, Siboslca G.E. and Clark B. F. C Photosensitized cross-linking of tRNA to the P, A and R sites of Escherichia coli ribosomes // Biochimie. 1982. Vol. 64. P. 279-284.

80. Maden B.E. and Hughes J.M. Eukaryotic ribosomal RNA: the recent excitement in the nucleotide modification pattern// Chromosoma. 1997. Vol. 105. P. 391-400.

81. Madjar J.-J., Arpin M., Buisson M., Reboud J.-P. Spot position of rat liver ribosomal proteins by four different two-dimensional electrophoresis in Polyacrylamide gel // Mol. Gen. Genet. 1979. Vol. 171. P. 121-134.

82. Malygin A.A., Dobrikov M.I., Repkova M.N., Shishkin G.V., Veny'aminova A.G., Karpova G.G. Proteins neighboring 18S rRNA conserved sequences 609-618 and 1047-1061 within the 40S human ribosomal subunit // RNA. 1999. Vol. 5. P. 1656-1664.

83. Malygin, A.A., Dobrikov, M.I., Repkova, M.N., Shishkin, G.V., Veny'aminova, A.G., and Karpova G.G. Proteins neighboring 18S rRNA conserved sequences 609-618 and 1047-1061 within the 40S human ribosomal subunit // RNA. 1999. Vol. 5. P. 1656-1664.

84. Malygin A.A., Shaulo D.D. and Karpova G.G. Proteins S7, S10, S16 and S19 of the human 40S ribosomal subunit are most resistant to dissociation by salt // Biochim. Biophys. Acta. 2000. Vol. 1494. P.213-216.

85. Matassova N.B., Venjaminova A.G., Karpova G.G. Nucleotides of 18S rRNA surrounding mRNA at the decoding site of translating human ribosome as revealed from the cross-linking data//Biochim.Biophys.Acta. 1998. Vol. 1397. P. 231-239.

86. Mauro V. and Edelman G. The ribosome filter hypothesis // Proc. Natl. Acad. Sci. USA. 2002. Vol. 99. P. 12031-12036.

87. Melander Y., Holmberg L. and Nygard O. Structure of 18S rRNA in native 40S ribosomal subunits // J. Biol. Chem. 1997. Vol. 272. P. 3254-3258.

88. Menetret J.F., Neuhof A., Morgan D.G., Plath K., Radermacher M., Rapoport T.A. and Akey C.W. The structure of ribosome-channel complexes engaged in protein translocation // Mol. Cell. 2000. Vol. 6. P. 1219-1232.

89. Merrick, W.C. Mechanism and regulation of eukaryotic protein synthesis // Microbiol. Rev. 1992. Vol. 56. P. 291-315.

90. Merryman C. and Noller H.F. Footprinting and modification interference analysis of binding sites on RNA. In: RNA:protein interactions A practical approach (ed. Smith C.W.J.). Oxford University Press, Oxford, UK, 1998. P. 237-253.

91. Merryman C., Moazed D., McWhirter J. and Noller H.F. Nucleotides in 16S rRNA protected by the association of 30S and 50S ribosomal subunits // J. Mol. Biol. 1999. Vol. 285. P. 97-105.

92. Meyer T.H., Menetret J.F., Breitling R., Miller K.R., Akey C.W. and Rapoport T.A. The bacterial SecY/E translocation complex forms channel-like structures similar to those of the eukaryotic Sec61p complex // J. Mol. Biol. 1999. Vol. 285. P. 1789-1800.

93. Moazed D., Stern and Noller H.F. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension // J. Mol. Biol. 1986. Vol. 187. P. 399416.

94. Moazed D., Robertson J.M. and Noller H.F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA //Nature. 1988. Vol. 334. P. 362-364.

95. Morgan, D.G., Menetret, J.-.F, Neuhof, A., Rapoport, T.A. and Akey, C.W. Structure of the mammalian ribosome-channel complex at 17 A resolution // J. Mol. Biol. 2002. Vol. 324. P. 871886.

96. Musters W., Boon K., van der Sande C.A., van Heerikhuizen, H. and Planta R.J. Functional analysis of transcribed spacers of yeast ribosomal DNA // EMBO J. 1990. Vol. 9. P. 3989-3996.

97. Naora H. Involvement of ribosomal proteins in regulating cell growth and apoptosis: translational modulation or recruitment for extraribosomal activity? // Immunol. Cell Biol. 1999. Vol. 77. P. 197-205.

98. Nazar R.N., Sitz T.O. and Busch H. Structural analyses of mammalian ribosomal ribonucleic acid and its precursors. Nucleotide sequence of ribosomal 5.8S ribonucleic acid // J. Biol. Chem. 1975. Vol. 250. P. 8591-8597.

99. Neefs J.M. and DeWachter R. A proposal for the Secondary structure of a variable area of eukaryotic small Ribosomal subunit RNA involving the existence of a pseudoknot // Nucleic Acids Res. 1990. Vol. 18. P. 5695-5704.

100. Nilsson J., Sengupta J., Frank J. and Nissen P. Regulation of eukaryotic translation by the RACK1 protein: a platform for signalling molecules on the ribosome // EMBO Rep. 2004. Vol. 5.P. 1137-1141.

101. Noller H.F. Ribosomal RNA and translation // Annu. Rev. Biochem. 1991. Vol. 60. P. 191-227.

102. Noller H.F. RNA Structure: reading the ribosome // Science. 2005. Vol. 309. P. 1508-1514.

103. Noller H.F., Hoang L. and Fredrick K. The 30S ribosomal P site: a function of 16S rRNA // FEBS Lett. 2005. Vol. 579. P. 855-858.

104. Nygard O and Nilsson L. Translational dynamics. Interaction between the translational factors, tRNA and ribosomes during eukaryotic protein synthesis // Eur. J. Biochem. 1990. Vol. 191. P. 1-17.

105. Nygard O., Alkemar G. and Larsson S.L. Analysis of the secondary structure of expansion segment 39 in ribosomes from Fungi, Plants and Mammals // J. Mol. Biol. 2006. Vol. 357. P. 904-916.

106. Ofengand J., Malhotra A., Remme J., Gutgsell N. Del Campo M., Jean-Charles, S., Peil L. and Kaya Y. Pseudouridines and pseudouridine synthases of the ribosome // Cold Spring Harbor Symp. Quant. Biol. 2001. Vol. 66. P. 147-159.

107. Ogasawara T., Ito K. and Igarashi K. Effect of polyamines on globin synthesis in a rabbit reticulocyte-free protein synthesizing system // J. Biochem. 1989. Vol. 105. P. 164-167.

108. Ogle J.M., Brodersen D.E., Clemons W.M. Jr, Tarry M.J., Carter A.P., Ramakrishnan V. Recognition of cognate transfer RNA by the 30S ribosomal subunit // Science. 2001. Vol. 292. P. 897-902.

109. Ogle J.M., Murphy F.V., Tarry M.J. and Ramakrishnan V. Selection of tRNA by the ribosome requires a transition from an open to a closed form // Cell. 2002. Vol. 111. P. 721-32.

110. Osborne A.R., Rapoport T.A. and Van den Berg B. Protein translocation by the Sec61/SecY channel // Ann. Rev. Cell Dev. Biol. 2005. Vol. 21. P. 529-550.

111. Pisarev, A.V., Kolupaeva, V.G., Yusupov, M.M., Hellen, C.U.T and Pestova, T.V. Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes // EMBO J. 2008. Vol. 27. P. 1609-1621.

112. Pool M.R., Stumm J., Fulga T.A., Sinning I. and Dobberstein B. Distinct modes of signal recognition particle interaction with the ribosome // Science. 2002. Vol. 297. P. 1345-1348.

113. Prinz A., Behrens C., Rapoport T.A., Hartmann E. and Kalies K.-U. Evolutionarily conserved binding of ribosomes to the translocation channel via the large ribosomal RNA // EMBO J. 2000. Vol. 19. P. 1900-1906.

114. Qiu D., Parada P., Marcos A.G., Cardenas D., Remacha M. and Ballesta J.P.G. Different roles of PI and P2 Saccharomyces cerevisiae Ribosomal stalk proteins revealed by cross-linking // Mol. Microbiol. 2006. Vol. 62. P. 1191-202.

115. Ramakrishnan V. Ribosome structure and the mechanism of translation // Cell. 2002. Vol. 108. P. 557-72.

116. Rawat U.B., Zavialov A.V., Sengupta J., Valle M., Grassucci R.A., Linde J.,

117. Vestergaard B., Ehrenberg M., Frank J. A cryo-electron microscopic study of ribosome-bound termination factorRF2 //Nature. 2003. Vol. 421. P. 87-90.

118. Repkova, M.N., Venyaminova, A.G., and Zarytova, V.F. New photoreactive RNA analogues // Nucleosides & Nucleotides. 1997. Vol. 16. P. 1797-1798.

119. RheinbergerH.-J., Sternbach H. and Nierhaus K.H. Three tRNA binding sites on Escherichia coli ribosomes //Proc. Natl. Acad. Sci. USA. 1981. Vol. 78. P. 5310-5314.

120. Rodnina M.V., A.V., Semenkov Yu.P. and Kirillov S.V. Number of tRNA binding sites on 80S ribosomes and their subunits // FEBS Lett. 1988. Vol. 231. P. 71-74.

121. Rodnina M.V., El'skaya A.V., Semenkov Yu.P. and Kirillov S.V. Interaction of tRNA with A and P sites of rabbit-liver 80S ribosomes and their subunits // Eur. J. Biochem. 1989. Vol. 185. P. 563-568.

122. Ross, W.C.J. Biological alkylating agents Butterworth. London and Washington, 1962.

123. Rossniann M.G. Fitting atomic models into electron-microspopy maps // Acta cryst. (section D). 2000. Vol. 56. P. 1341-1349.

124. Ruvinsky I and Meyuhas O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size // Trends Biochem. Sci. 2006. Vol. 31. P. 342-348.

125. Santos C. and Ballesta J.P.G. The highly conserved protein PO carboxyl end is essential for ribosome activity only in the absence of proteins PI and P2 // J. Biol. Chem. 1995. Vol. 270. P. 20608-20614.

126. Santos C. and Ballesta J.P.G. Characterization of the 26S rRNA-binding domain in Saccaromyces serevisiae ribosomal stalk phosphoprotein PO // Mol. Microbiol. 2005. Vol. 58. P. 217-226.

127. Schaletzky J. and Rapoport T.A. Ribosome binding to and dissociation from translocation sites of the endoplasmic reticulum membrane // Mol. Biol. Cell. 2006. Vol. 17. P. 3860-3869.

128. Schluenzen F., Tocilj A., Zarivach R., Harms J.,Gluehman M., Janell D. Bashan A., Bartels H., Agmon I., Franceschi F. and Yonath A. Structure of functionally activated small ribosomal subunit at 3.3 A resolution // Cell. 2000. Vol. 102. P. 615-623.

129. Schuwirth B.S., Borovinskaya M.A., Haw C.W., Zhang H.W., Vila-Sanjurjo A., Holton J. and Cate J.D.H. Structures of the Bacterial Ribosome at 3.5 A Resolution // Science. 2005. Vol. 310. P. 827-834.

130. Selmer M., Dunham C.M., Murphy IV F.M., Weixlbaumer A., Petry S., Kelley A.C., Weir J.R. and Ramakrishnan V. Structure of the 70S Ribosome Complexed with mRNA and tRNA // Science. 2006. Vol. 313. P. 1935-1942.

131. Sengupta J., Nilsson J., Gursky R., Spahn C.M.T., Nissen P. and Frank J. Identivication of the versatile scaffold protein RACK1 on the eukaryotic ribosome by cryo-EM // Nature Struct. Mol. Biol. 2004. Vol. 11. P. 957-962.

132. Semenkov Yu.P., Kirillov S.V. and Stahl J.) 40 S subunits from rat liver ribosomes contain two codon-dependent sites for transfer RNA // FEBS Lett. 1985. Vol. 193. P. 105-108.

133. Sloma M. and Nygard O. Chemical accessibility of 18S rRNA in native ribosomal complexes: interaction sites of mRNA, tRNA and translation factors // Biol. Chem. 2001a. Vol. 382. P. 661668.

134. Sloma M. and Nygard O. Possible interaction sites of mRNA, tRNA, translation factors and the nascent peptide in 5S, 5.8S and 28S rRNA in in vivo assembled eukaryotic ribosomal complexes //Biochim. Biophys. Acta. 2001b. Vol. 1521. P. 30-38.

135. Spahn C.M.T., Nierhaus K.H Models of the elongation cycle: an evaluation // Biol. Chem. 1998. Vol. 379. P. 753-772

136. Spahn, C.M.T., Beckmann, R., Eswar, N., Penczek, P.A., Sali, A., Blobel, G. and Frank, J. Structure of the 80S ribosome from Saccaromyces serevisiae tRNA-ribosome and subunit-subunit interactions // Cell. 2001. Vol. 107. P. 373-386.

137. Sperrazza J.M., Russell D.W. and Spremulli L.L. Reversible dissociation of wheat germ ribosomes: Cation-dependent equilibria and thermodynamics parameters // Biochemistry. 1980. Vol. 19. P. 1053-1058.

138. Sperrazza J.M. and Spremulli L.L.) Quantitation of cation binding to wheat germ ribosomes: Influences of subunit association equilibria and ribosome activity // Nucleic Acids Res. 1983. Vol. 11. P. 2665-2679.

139. Stahl J. and Kobetz N.D. Affinity labeling of proteins at the mRNA binding site of rat liver ribosomes by an analogue of octauridylate containing an alkylating group attached to the 3'-end //FEBS Lett. 1981. Vol. 123. P. 269-272.

140. Stahl J. and Kobetz N.D. Affinity labelling of rat liver ribosomal protein S26 by heptauridylate containing a 5'-terminal alkylating group // Mol Biol Rep. 1984. Vol. 9. P. 219-22.

141. Stahl J. and Karpova G.G. Investigation on the messenger RNA binding site of eukaryotic ribosomes by using reactive oligo(U) derivatives // Biomed. Biochim. Acta. 1985. Vol. 44. P. 1057-1064.

142. Stebbins-Boaz B. and Gerbi S.A. Structural Analysis of the Peptidyl Transferase Region in Ribosomal RNA of the Eukaryote Xenopus laevis // J. Mol. Biol. 1991. Vol. 217. P. 93-112

143. Steitz T. and Moore P. RNA, the first macromolecular catalyst: the ribosome is a ribozyme // Trends. Biochem. Sci. 2003. Vol. 28. P. 411-418.

144. Strittmatter A.W., Fischer C., Kleinschmidt M. and Braus G.H. FL011 mediated filamentous growth of the yeast Saccharomyces cerevisiae depends on the expression of the ribosomal rpS26 genes // Mol. Gen. Genomics. 2006. Vol. 276. P. 113-25.

145. Sweeney R., Chen L. and Yao M.C. An rRNA variable region has an evolutionarily conserved essential role despite sequence divergence // Mol. Cell. Biol. 1994. Vol. 14. P. 4203-4215.

146. Synetos D., Frantziou C.P. and Alksne L.E. Mutations in yeast ribosomal proteins S28 and S4 affect the accuracy of translation and alter the sensitivity of the ribosome to paromomycin // Biochim. Biophys. Acta. 1996. Vol. 1309. P. 156-166.

147. Takahashi K. and Moore S. RibonucleaseTl // The Enzymes. 1982. Vol. 15. P. 435-468.

148. Todokoro, K., Ulbrich, N., Chan, Y.-L. and Wool, I.G. Characterization of the binding of rat liver ribosomal proteins L6, L8, L19, S9 and S13 to 5.8S ribosomal ribonucleic acid // J. Biol. Chem. 1981. Vol. 256. P. 7207-7212.

149. Towbin H., Staehelin T. and Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications // Proc. Natl. Acad. Sci USA. 1979. Vol. 76. P. 4350-4354.

150. Tsurugi, K„ Collatz, E., Todokoro, K. and Wool, I.G. Isolation of eukaryotic ribosomal proteins // J. Biol. Chem. 1977. Vol. 252. P. 3961-3969.

151. Tyulkina L.G. and Mankin A.S. Inhibition of ribonuclease contamination in preparations of T4 RNA ligase, polynucleotide kinase, and bacterial alkaline phosphatase with bentonite // Anal. Biochem. 1984. Vol. 138. P. 285-290.

152. Uchiumi T., Wahba A.J. and Traut R.R. (1987) Topography and stoichiometry of acidic proteins in large ribosomal subunits from Artemia salina as determined by crosslinking. Proc. Natl. Acad. Sci USA 84, 5580-5584.

153. Uchiumi T. and Kominami R. A functional site of the GTPase-associated center within 28S ribosomal RNA probed with an anti-RNA autoantibody // EMBO J. 1994. Vol. 13. P. 33893394.

154. Ulbrich, N., Lin, A., and Wool, I.G. Identification by affinity chromatography of the eukaryotic ribosomal proteins that bind to 5.8S ribosomal ribonucleic acid // J. Biol. Chem. 1979. Vol. 254. P. 8641-8645.

155. Walker K., Elela S.A. and Nazar, R. Inhibition of protein synthesis by anti-5.8S rRNA oligodeoxyribonucleotides // J. Biol. Chem. 1990. Vol. 265. P. 2428-2430.

156. Ware V.C., Tague B.W., Clark C.G., Gourse R.L., Brand R.C. and Gerbi S.A. Sequence analysis of 28S ribosomal DNA from the amphibian Xenopus laevis // Nucleic Acids Res. 1983. Vol. 11. P. 7795-7817.

157. Warner J.R. Nascent ribosomes // Cell. 2001. Vol. 107. P. 133-136.

158. Watanabe S. Interaction of siomycin with the acceptor site of Escherichia coli ribosomes // J. Mol. Biol. 1972. Vol. 67. P. 443-457.

159. Westermann P. and Nygard O. Cross-linking of mRNA to initiation factor eIF-3, 24 kDa cap binding protein and ribosomal proteins SI, S3/3a, S6 and Sll within the 48S pre-initiation complex //Nucleic Acids Res. 1984. Vol. 12. P. 8887-8897.

160. Wilson D.N. and Nierhaus K.H. Ribosomal proteins in the spotlight // Critical reviews in Biochemistry and Molecular Biology. 2005. Vol. 40. P. 243-267.

161. Wimberly B.T., Brodersen D.E., Clemons W.M., Morgan-Warren R.J., Carter A.P., Vonrhein C., Hartsch T. And Ramakrishnan V. Structure of the 30S ribosomal subunit // Nature. 2000. Vol. 407. P. 327-339.

162. Wojtech E., Brimacombe R., Hackel A., Prochnow D. and Fasold H. Cross-linking of nucleic acids to proteins. Modified poly(A) as mRNA for Escherichia coli ribosomes // Eur. J. Biochem. 1994. Vol. 223. P. 799-803.

163. Wollenzien, P., Expert-Bezancon, A. and Favre, A. Sites of contact of mRNA with 16S rRNA and 23S rRNA in the Escherichia coli ribosome // Biochemistry. 1991. Vol. 30. P. 1788-1795.

164. Wool, I.G., Chan, Y.-L. and Glueck, A. Mammalian ribosomes: the structure and the evolution of the proteins. In J.W.B. Hershey, M.B. Matthews, and N. Sonenberg (eds.), Translational control, Cold Spring Harbor Laboratory Press., (1996). P. 685-732.

165. Valle M., Zavialov A., Li W., Stagg S.M., Sengupta J., Nielsen R.C., Nissen P., Harvey S.C., Ehrenberg M., Frank J. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy //Nat. Struct. Biol. 2003a. Vol. 10. P. 899-906.

166. Valle M., Zavialov A., Sengupta J., Rawat U., Ehrenberg M., Frank J. Locking and unlocking of ribosomal motions // Cell. 2003b. Vol. 114. P. 123-134.

167. Van Loock M.S., Easterwood T., Harvey S.C. Major groove binding of the tRNA/mRNA complex to the 16S ribosomal RNA decoding site // J. Mol. Biol. 1999 Vol. 285. P. 2069-2078.

168. Van Nues R.W., Venema J., Planta R.J. and Raue H.A. Variable region VI of Saccharomyces cereisiae 18S rRNA participates in biogenesis and function of the small ribosomal subunit // Chromosoma. 1997. Vol. 105. P. 523-531.

169. Villareal J.Jr. and Lee J.C. Yeast ribosomal protein L26 is located at the ribosomal subunit interface as determined by chemical cross-linking //Biochimie. 1998. Vol. 80. P. 321-324.

170. Vollbrandt T., Willkomm D., Stossberg H. and Kruse C. Vigilin is co-localized with 80S ribosomes and binds to the ribosomal complex through its C-terminal domain // Int. J. Biochem. Cell Biol. 2004. Vol. 36. P. 1306-1318.

171. Yoshizawa S., Fourmy D. and Puglisi J.D. Recognition of the codon-anticodon helix by ribosomal RNA // Science. 1999. Vol. 285. P. 1722-1725.

172. Yusupova G.Zh., Yusupov M.M., Cate J.H.D. and Noller H.F. The path of messenger RNA through the ribosome // Cell. 2001. Vol. 106. P. 233-241.

173. Yusupov M.M., Yusupova, G.Zh., Baucom A., Lieberman K., Earnest T.N., Cate, J.H.D. and Noller, H.F. Crystal structure of the ribosome at 5.5 A resolution // Science. 2001. Vol. 292. P. 883-292.

174. Yusupova G., Jenner L., Rees B., Moras D. and Yusupov M. Structural basis for messenger RNA movement on the ribosome // Nature. 2006. Vol. 444. P. 391-394.

175. Zavialov A.V., Hauryliuk V.V. and Ehrenberg M. Guanine-nucleotide exchange on ribosome-bound elongation factor G initiates the translocation of tRNAs // Journal of Biology. 2005. Vol. 4. Article 9.

176. Zenkova M.A. and Karpova G.G. Imperfectly matched nucleic acid complexes and their biochemical manifestation //Russian Chem. Rev. 1993. Vol. 62. 387-407.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.