Сравнительная характеристика мезенхимальных клеток пульпы молочного зуба и костного мозга: фенотип и первичная оценка возможности применения в тканевой инженерии кости. тема диссертации и автореферата по ВАК РФ 03.03.04, кандидат медицинских наук Вахрушев, Игорь Викторович

  • Вахрушев, Игорь Викторович
  • кандидат медицинских науккандидат медицинских наук
  • 2011, Москва
  • Специальность ВАК РФ03.03.04
  • Количество страниц 99
Вахрушев, Игорь Викторович. Сравнительная характеристика мезенхимальных клеток пульпы молочного зуба и костного мозга: фенотип и первичная оценка возможности применения в тканевой инженерии кости.: дис. кандидат медицинских наук: 03.03.04 - Клеточная биология, цитология, гистология. Москва. 2011. 99 с.

Оглавление диссертации кандидат медицинских наук Вахрушев, Игорь Викторович

СПИСОК СОКРАЩЕНИЙ!.;.;.

ВВЕДЕНИЕ:.;.:.

Глава 1. ОБЗОР ЛИТЕРАТУРЫ.

1'. 1. Тканевая инженерия костной ткани: основные принципы и область применения.'.:„.;.л.:.

1.2. Источники клеточного материала для остеорегенеративной .•".,'• терапии;.;.1 1Ш

1.2.Г. Эмбриональные стволовые;клетки.

1.2.1.1. История изучения эмбриональных стволовых;клеток;.

1.2.1.2: О возможности клинического применения эмбриональных

• стволовых! клеток;;.,.:.;.:. :.

1.2';2; Мезенхимальныестволовыеклетки.

1.2.2.1. История изучения мезенхимальных стволовых клеток.

1.2.212. Источники мезенхимальных стволовых клеток.

1.2.2.3. Характеристика мезенхимальных стволовыхклеток.'.".

1.2.2.4. Мультипотенгность мезенхимальных стволовых клеток.

1.2.2.5. Попытки применения мезенхимальных стволовых клеток в терапии костных дефектов .

1.2.2:6. Основания для поиска альтернативных источников мезенхимальных,стволовых клеток.—.

1.2.3; Мезенхимальные клетки пульпы зуба.

1.23.1. История изучения.мезенхимальных; клеток пульпы зуба:.

1.23;2. Свойства;мезенхимальных клеток пульпы зуба.

1.2.3.3. Мультипотентность мезенхимальных,клеток пульпы зуба.

1.2.4. Мезенхимальные клетки пульпы молочного зуба.

1.2.4.1. Мультипотентность мезенхимальных клеток пульпы молочного зуба.

1.2.4.2. Остеоиндуктивный потенциал мезенхимальных клеток пульпы молочного зуба.

1.2.5. Клиническое применение мезенхимальных клеток пульпы зуба

1.3. Скэффолды, применяемые в тканевой инженерии кости:.

1.3.1. История создания скэффолдов для тканевой инженерии кости

1.3.2. Биодеградируемые полимеры.

1.3.2.1. Полиэстеры.

1.3.2.2. Прочие биодеградируемые полимеры.

Глава 2. МАТЕРИАЛЫ И МЕТОДЫ.

2.1. Культуры клеток.

2.2. Изготовление полилактидных скэффолдов.

2.3. Заселение скэффолдов клетками.44*

2 Л. Проточнаящитофлуориметрия.

2.5. Остеогенная дифференцировка.

2.6. Адипогенная дифференцировка.

2.7. Исследование активности щелочной фосфатазы.

2.8. Иммуноцитохимическое окрашивание.

2.9. Получение и обработка цифровых изображений.

Глава 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ.

3.1. Морфология полученных культур клеток.

3.2 Цитофенотипические профили МСК костного мозга и МК пульпы молочного зуба.503.3. Оценка способности клеток к дифференцировке в адипоциты.

3.4. Оценка способности клеток к дифференцировке в остеобласты.

3.5. Изменение уровня экспрессии остеонектина клетками в процессе остеогенной дифференцировки.

3.6. Изменение уровня активности щелочной фосфатазы в клетках в процессе остеогенной дифференцировки.

3.7. Культивирование МСК костного мозга и МК пульпы молочного зуба на полилактидных скэффолдах.

3.8. Изменение уровня экспрессии остеокальцина МК пульпы молочного зуба в процессе остеогенной дифференцировки на полилактидных скэффолдах.

Глава 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ.

4.1. МК пульпы молочного зуба и МСК костного мозга обладают сходной морфологией и фенотипом, соответствующим мультипотентным мезенхимальным стромальным клеткам.

4.2. Культура МК пульпы молочного зуба содержит прогениторные клетки, обладающие остеогенным потенциалом.

4.3. МК пульпы молочного зуба сохраняют остеогенный потенциал при культивировании на полилактидном скэффолде в составе тканеинженерного комплекса.

Рекомендованный список диссертаций по специальности «Клеточная биология, цитология, гистология», 03.03.04 шифр ВАК

Введение диссертации (часть автореферата) на тему «Сравнительная характеристика мезенхимальных клеток пульпы молочного зуба и костного мозга: фенотип и первичная оценка возможности применения в тканевой инженерии кости.»

В настоящее время наиболее распространёнными высокотехнологичными хирургическими подходами к восстановлению повреждённых органов являются реконструктивная хирургия и трансплантация органов. С их помощью спасены миллионы жизней, но они имеют принципиальные ограничения. Во-первых, биомедицинские конструкции, как правило, не могут полностью заменить живую ткань. Во-вторых, главной проблемой трансплантологии является дефицит пригодных для пересадки органов и иммунологическая несовместимость реципиента и донора. Эти ограничения поставили на повестку дня исследования в области тканевой инженерии как более щадящего метода структурного и функционального восстановления органов и тканей.

Тканевая инженерия - одна из новых и очень перспективных биомедицинских технологий, позволяющих индуцировать и/или ускорять регенерацию повреждённых тканей, а также проводить замещение дефектных органов или их частей. В то же время тканевая инженерия - это современная медицинская методология, основанная на использовании естественной способности организма пациента к восстановлению. Согласно определению, тканевая инженерия - это процесс создания трёхмерных структур, способных выполнять функции той или иной естественной ткани организма, на основе комбинации клеток и скэффолдов {от англ. scaffold — носитель, матрица, каркас), а также прочих факторов, оказывающих влияние на рост клеток, их дифференцировку и организацию внеклеточного матрикса [153].

Одним из наиболее востребованных и, следовательно, интенсивно развиваемых направлений тканевой инженерии является терапия костных дефектов [30]. Дефекты костной ткани, возникающие в результате травм, хирургических вмешательств, а также вследствие различных заболеваний, во многих случаях приводят к функциональной недостаточности опорнодвигательного аппарата, тем самым существенно снижая качество жизни. Практически во всех случаях в зоне поражения формируется значительный косметический дефект. Актуальность проблемы репарации костной ткани связана также с увеличением встречаемости остеодегенеративных заболеваний, особенно в развитых странах.

Тканевая инженерия любой' ткани возможна лишь при наличии по крайней мере двух исходных компонентов: клеток-родоначальниц её паренхиматозных элементов и биосовместимого' материала для создания трёхмерного скэффолда, в пределах которого протекают процессы, гисто- и морфогенеза. В идеале, материал скэффолда должен имитировать свойства межклеточного вещества и составлять часть «микрониши», т.е. непосредственного окружения клеток, создающего адекватные условия для их пролиферации и/или дифференцировки в нужном направлении, а также для осуществления нормальных функций после дифференцировки, в том числе, для продукции межклеточного вещества.

В качестве клеточного материала для заселения скэффолдов чаще всего используют аутологичные мезенхимальные стволовые клетки, изолированные из костного мозга [28] или жировой ткани [60] и размноженные в культуре. К сожалению, в течение жизни- эти клетки, подобно всем другим клеткам человеческого организма, стареют [13] и подвергаются воздействию неблагоприятных факторов окружающей среды, что приводит к накоплению соматических мутаций и снижению пролиферативного и остеогенного потенциала [21].

На основании данных, представленных в диссертационной работе, можно предложить в качестве решения этой проблемы использование-аутологичных остеогенных клеток пульпы молочного зуба, которые после выделения и экспансии в культуре могут до момента их использования храниться в жидком азоте в криобанке.

В данной работе в результате разнообразных экспериментов показано, что культура мезенхимальных клеток (МК) пульпы молочного зуба обладает остеогеннымшотенциалом не меньшим;, чем у мезенхимальных стромальных клеток» (МСК) костного мозга. МСК костного мозга1 были выбраны образцом для!8 сравнения;. .так; как; эти* клетки? традиционно;, рассматриваются* исследователями«' в качестве: основных кандидатов.' на ; роль остеопрогениторных клеток в составе тканеинженерных костных имплантов. В качестве * скэффолда в данной' работе был использован биодеградируемый полилактидный скэффолд нового поколения, созданный с помощью поверхностного селективного лазерного спекания. Можно сказать, что он успешно прошёл первичные испытания; по использованию с МК из пульпы зуба и стромы костного мозга.

Целью данного исследования явилась сравнительная характеристика мезенхимальных клеток пульпы молочного зуба и стромы красного костного' мозга человека и оценка возможности применения пульпы молочного зуба человека в качестве, источника. клеточного ^материала для тканевой инженерии кости.

В соответствии с. целью исследования были поставлены следующие задачи:

1. Получить культуры мезенх11 маль ных клеток (МК) > пульпы молочного: зуба и мезенхимальных стромальных клеток (МСК) костного мозга, человека.

2. Сравнить цитофенотипические профили полученных культур.

3. Сравнить.сгюсобносты1ссле;1уемых клеток к адипогенной и остеогенной дифференцировке.

4; Отработать методику культивирования изучаемых клеток на биодеградируемом скэффолде. 5. Оценить возможность остеогенной дифференцировки; МК пульпы молочного зуба, культивируемых на трёхмерном скэффолде.

Похожие диссертационные работы по специальности «Клеточная биология, цитология, гистология», 03.03.04 шифр ВАК

Заключение диссертации по теме «Клеточная биология, цитология, гистология», Вахрушев, Игорь Викторович

выводы

1. Пульпа молочного зуба человека, выпавшего естественным путем, дает возможность получить в культуре значительное количество мезенхимальных клеток.

2. Первичные культуры МК пульпы молочного зуба и МСК костного мозга обладают сходными цитофенотипическими профилями и содержат мультипотентные мезенхимальные стромальные клетки, способные к остеогенной и адипогенной дифференцировке in vitro.

3. МК пульпы молочного зуба экспрессируют CD29 и CD49b на высоком уровне в отличие от МСК костного мозга, для которых характерен низкий уровень экспрессии CD29 и отсутствие экспрессии CD49b.

4. Трехмерные биодеградируемые скэффолды на основе полилактида, полученные методом селективного лазерного спекания, могут быть использованы в комплексе с мезенхимальными клетками при создании тканеинженерных конструкций.

5. МК пульпы молочного зуба обладают способностью к остеогенной дифференцировке при культивировании на полилактидных скэффолдах.

ЗАКЛЮЧЕНИЕ

В результате выполненной работы нами показано, что пульпа молочного зуба является перспективным источником клеточного материала для тканевой инженерии кости. Основной упор в нашей работе был сделан на оценку остеогенного потенциала МК пульпы молочного зуба в сравнении с МСК костного мозга. Это обусловлено тем, что в мире наибольшее число исследований {in vitro и на лабораторных животных) в области регенерации костных дефектов проведено с использованием МСК костного мозга, так как считается, что эти клетки могут быть достаточно эффективными в роли клеток-предшественников костной ткани. Есть примеры удачного использования МСК костного мозга и в клинической практике.

Тем не менее, терапевтическое применение МСК костного мозга ограничено рядом проблем. С возрастом количество МСК в костном мозге резко уменьшается и, кроме того, они накапливают мутации (возникающие, например, под действием неблагоприятных факторов внешней среды), снижающие их остеорегенеративный потенциал. Ко всему прочему, забор материала для получения культур этих клеток требует пункции красного костного мозга - болезненной и небезопасной инвазивной процедуры.

Очевидно, что молочный зуб, выпавший естественным путём, - это чрезвычайно простой и не связанный ни с какими рисками способ получения исходного материала для выделения МК, которые, как показывают результаты данной работы, обладают не меньшим остеогенным потенциалом, чем МСК костного мозга. Благодаря высокой пролиферативной активности клеток пульпы молочного зуба один выпавший зуб позволяет получить сотни миллионов МК. На основании результатов нашего исследования мы ратуем за то, чтобы МК пульпы молочного зуба закладывались на хранение в банки аутологичных стволовых клеток. В настоящее время в таких банках хранятся лишь образцы пуповинной крови, в которой содержание плюрипотентных клеток невелико и колеблется в широких пределах от родов к родам.

Закладка МК пульпы молочного зуба в криобанки позволит существенно расширить круг детей, чьи аутологичные стволовые клетки могут быть заложены на хранение с целью последующего использования в течение жизни. Кроме того, внедрение пульпы зуба в качестве очень доступного и эффективного источника мультипотентных клеток может внести значительный вклад в развитие клеточных технологий и тканевой инженерии, что крайне актуально для зравоохранения.

Список литературы диссертационного исследования кандидат медицинских наук Вахрушев, Игорь Викторович, 2011 год

1. Abbondanzo S.J., Gadi I., Stewart C.L. Derivation of embryonic stem cell lines // Method Enzymol, 1993, V.225, P. 803-823.

2. About I., Bottero M.J., de Denato P., Camps J., Franquin J.C., Mitsiadis T.A. Human dentin production in vitro // Exp Cell Res, 2000, V.258, No.l, P. 33-41.

3. Akintoye S.O., Lam T., Shi S., Brahim J., Collins M.T., Robey P.G. Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals // Bone, 2006, V.38, No.6, P. 758-768.

4. Albrecht-Olsen P., Kristensen G., Tormala P. Meniscus bucket-handle fixation with an absorbable Biofix tack: development of a new technique // Knee Surg Sports Traumatol Arthrosc, 1993, V.l, No.2, P. 104-106.

5. Alexander J.T., Branch C.L., Jr., Subach B.R., Haid R.W., Jr. Applications of a resorbable interbody spacer via a posterior lumbar interbody fusion technique//Orthopedics, 2002, V.25, No. 10 Suppl, P. 1185-1189.

6. Amit M. Feeder-layer free culture system for human embryonic stem cells // Methods Mol Biol, 2007, V.407, P. 11-20.

7. Amit M., Margulets V., Segev H., Shariki K., Laevsky I., Coleman R., Itskovitz-Eldor J. Human feeder layers for human embryonic stem cells // Biol Reprod, 2003, V.68, No.6, P. 2150-2156.

8. Aubin J.E. Bone stem cells. // J Cell Biochem Suppl, 1998, V.30-31, P. 7382.

9. Barry F.P., Boynton R., Murphy M., Zaia J. The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. // Biochem Biophys Res Commun, 2001, V.289, P. 519-524.

10. Barry F.P., Boynton R.E., Haynesworth S., Murphy J.M., Zaia J. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). // Biochem Biophys Res Commun, 1999, V.265, P. 134-139.

11. Batouli S., Miura M., Brahim J., Tsutsui T.W., Fisher L.W., Gronthos S., Robey P.G., Shi S. Comparison of stem-cell-mediated osteogenesis and dentinogenesis // J Dent Res, 2003, V.82, No. 12, P. 976-981.

12. Bellantuono I., Aldahmash A., Kassem M. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss // Biochim Biophys Acta, 2009, V.1792, No.4, P. 364-370.

13. Bianco P., Constantini M., Dearden L., Bonucci E. Alkaline phosphatase positive precursors of adipocytes in the human bone marrow. // J Haematol, 1988, V.68, P. 401-411.

14. Bianco P., Gehron Robey P. Marrow stromal stem cells // J Clin Invest, 2000, V.105, No.12, P. 1663-1668.

15. Bonzani I.C., George J.H., Stevens M.M. Novel materials for bone and cartilage regeneration // Curr Opin Chem Biol, 2006, V.10, No.6, P. 568575.

16. Burns A.E. Biofix fixation techniques and results in foot surgery // J Foot Ankle Surg, 1995, V.34, No.3, P. 276-282.

17. Burns A.E., Varin J. Poly-L-lactic acid rod fixation results in foot surgery // J Foot Ankle Surg, 1998, V.37, No.l, P. 37-41.

18. Buttery L.D., Bourne S., Xynos J.D., Wood H., Hughes F.J., Hughes S.P., Episkopou V., Polak J.M. Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. // Tissue Eng, 2001, V.7, P. 89-99.

19. Campagnoli C., Roberts I.A., Kumar S. Identification of mesenchymal • stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. //Blood, 2001, V.98, P. 2396-2402.

20. Cancedda R., Bianchi G., Derubeis A., Quarto R. Cell therapy for bone disease: a review of current status // Stem Cells, 2003, V.21, No.5, P. 610619.

21. Cantatore F.P., Crivellato E., Nico B., Ribatti D. Osteocalcin is angiogenic in vivo // Cell Biol Int, 2005, V.29, No.7, P. 583-585.

22. Caplan A.I. Mesenchymal stem cells // J Orthop Res, 1991, V.9, No.5, P. 641-650.

23. Casagrande L., Demarco F.F., Zhang Z., Araujo F.B., Shi S., Nor J.E. Dentin-derived BMP-2 and odontoblast differentiation // JDent Res, 2010, V.89, No.6, P. 603-608.

24. Conget P. A., Minguell J.J. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells // J Cell Physiol, 1999, V.181, No.l, P. 67-73.

25. Couble M.L., Farges J.C., Bleicher F., Perrat-Mabillon B., Boudeulle M., Magloire H. Odontoblast differentiation of human dental pulp cells in explant cultures // Calcif Tissue Int, 2000, V.66, No.2, P. 129-138.

26. D'Ippolito G., Schiller P.C., Ricordi C., Roos B.A., Howard G.A. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. // J Bone Miner Res, 1999, V.14, P. 1115-1122.

27. Dennis J.E., Carbillet J.P., Caplan A.I., Charbord P. The STRO-1+ marrow cell population is multipotential // Cells Tissues Organs, 2002, V.170, No.2-3, P. 73-82.

28. Dennis J.E., Merriam A., Awadallah A., Yoo J.U., Johnstone B., Caplan A.I. A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse // J Bone Miner Res, 1999, V. 14, No.5, P. 700-709.

29. Doetschman T., Williams P., Maeda N. Establishment of hamster blastocyst-derived embryonic (ES) cells. // Dev Biol, 1989, V.127, P. 224-227.

30. Eglin D., Alini M. Degradable polymeric materials for osteosynthesis: tutorial // Eur Cell Mater, 2008, V. 16, P. 80-91.

31. El-Amin S.F., Lu H.H., Khan Y., Burems J., Mitchell J., Tuan R.S., Laurencin C.T. Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering // Biomaterials, 2003, V.24,No.7, P. 1213-1221.

32. Erices A., Conget P., Minguell J.J. Mesenchymal progenitor cells in human umbilical cord blood. // Br J Haematol, 2000, V.109, P. 235-242.

33. Evans M J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos. // Nature, 1981, V.292, P. 154-156.

34. Fernandez M., Simon V., Herrera G. Detection of stromal cells in peripheral blood progenitor cell collections from breast cancer patients. // Bone Marrow Transplant, 1997, V.20, P. 265-271.

35. Ferrari G., Cusella-DeAngelis G., Coletta M. Muscle regeneration by bone marrow-derived myogenic progenitors. // Science, 1998, V.279, P. 15281530.

36. Fibbe W.E. Mesenchymal stem cells. A potential source for skeletal repair // Ann Rheum Dis, 2002, V.61 Suppl 2, P. Ü29-31.

37. Friedenstein A. Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. In: Thienfelder S, RodtH, Kolb HJ (eds). Immunology Of Bone Marrow Transplantation. Berlin: Springer-Verlag;1980.

38. Friedenstein A .J., Chailakhjan R.K., Lalykina K.S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells // Cell Tissue Kinet, 1970, V.3, No.4, P. 393-403.

39. George J., Kuboki Y., Miyata T. Differentiation of mesenchymal stem cells into osteoblasts on honeycomb collagen scaffolds // Biotechnol Bioeng, 2006, V.95, No.3, P. 404-411.

40. Gepstein L. Derivation and potential applications ofhuman embryonic stem cells // Circ Res, 2002, V.91, No. 10; P. 866-876.

41. Giles J.R., Yang X., Mark W., Foote R.H. Pluripotency of cultured rabbitinner cell mass cells.detected by isozyme analysis and eye pigmentation ofjfetuses following injection into blastocyst or morulae. // Mol Reprod Dev, 1993, V.36,P." 130-138.

42. Golub E.E. Role of matrix vesicles inbiomineralization// Biochim Biophys Acta, 2009, V.l,790, No.l2,P: 1592-1598.

43. Gronthos S., Brahim Ji, Li W., Fisher L.W., Cherman N., Boyde A., DenBestenP;, Robey P.G., Shi S. Stem cell properties of human dental pulp stem cells //J Dent Res, 2002, V.81, No.8, P. 531-535.

44. Gronthos S., Graves S.E., Ohta S., Simmons P.J. The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors // Blood, 1994, V.84, No. 12, P. 4164-4173.

45. Gronthos S., Mankani M;, Brahim J., Robey P.G., Shi S. Postnatal human? dental pulp stem cells (DPSCs) in vitro and in vivo // Proc Natl Acad Sci U S A, 2000, V.91, No.25, P. 13625-13630.

46. Gronthos S., Simmons P.J. The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived' conditions in vitro // Blood, 1995, V.85, No.4, P. 929-940.

47. GrundelR.E., Chapman M.W., Yee T., Moore D.C. Autogeneic bone marrow- and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna // Clin Orthop Relat Res, 1991, No.266, P. 244258.

48. Han Z., Cheng Y., Liang C.G., Latham K.E. Nuclear transfer in mouse oocytes and embryos // Methods Enzymol, 2010, V.476, P. 171-184.

49. Haynesworth S.E., Goshima J., Goldberg V.M:, Caplan A. Characterization of cells with osteogenic potential from human marrow. // Bone, 1992, V.13, P. 81-88. :

50. Hench L.L., Polak J.M. Third-generation biomedical materials // Science, 2002, V.295, No.5557, P. 1014-1017.

51. Heng B.C., Cao T., Stanton L.W., Robson P., Olsen B. Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro // J Bone Miner Res, 2004, V.19, No.9, P. 1379-1394.

52. Hoang Q.Q., Sicheri F., Howard A.J., Yang D.S. Bone recognition mechanism of porcine osteocalcin from crystal structure //Nature, 2003, V.425, No.6961, P. 977-980:

53. Hogan B., Beddington R., Costantini F., Lacy E. Isolation, culture and manipulation of embryonic stem cells. (2nd ed), In Manipulating the Mouse

54. Embryo. A laboratory Manual. New York: Gold Spring Harbor Laboratory Press; 1994.

55. Huang G.T., Shagramanova K., Chan S.W. Formation of odontoblast-like: cells from cultured human dental.pulp cells on dentin in vitro IIJ Endod, 2006, V.32, No:l 1, Pi 1066-1073.

56. Huang G.T., Sonoyama W., Chen J., Park S.H. In vitro:characterization of human dental pulp cells: various isolation methods and culturing environments// Cell Tissue Res, 2006, Y.324i No.2, P. 225-236;

57. Ishaug S.L., Crane G.M., Miller M.J., Yasko A.W., Yaszemski M.J., Mikos A.G. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds // J Biomed Mater Res, 1997, V.36, No. l, P. 17-28. ;i

58. Jaiswal N., Haynesworth S.E., Caplan A.I., Bruder S.P. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro // J Cell Biochem, 1997, V.64, No.2, P. 295-312.

59. Jeon O., Rhie J.W., Kwon I.K., Kim J.H., Kim B.S., Lee S.H. In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically // Tissue Eng Part A, 2008, V.14, No.8, P. 1285-1294.

60. Jundt G., Berghauser K.H., Termine J.D., Schulz A. Osteonectin—a differentiation marker of bone cells // Cell Tissue Res, 1987, V.248, No.2, P. 409-415.

61. Kaigler D., Pagni G., Park C.H., Tarle S.A., Bartel R.L., Giannobile W.V. Angiogenic and osteogenic potential of bone repair cells for craniofacial regeneration // Tissue Eng Part A, 2010, V.16, No.9, P. 2809-2820.

62. Kaigler D., Wang Z., Horger K., Mooney D.J., Krebsbach P.H. VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects // J Bone Miner Res, 2006, V.21, No.5, P. 735-744.

63. Krebsbach P.H., Kuznetsov S.A., Satomura K. Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. // Transplantation, 1997, V.63, P. 1059-1069.

64. Lee C.K., Piedrahita J.A. Transgenesis and germ cell engineering in domestic animals. // Asian-Australas J Anim Sci, 2003, V.16, P. 910-927.

65. Lee J.B., Song J.M., Lee J.E., Park J.H., Kim S.J., Kang S.M., Kwon J.N., Kim M.K., Roh S.I., Yoon H.S. Available human feeder cells for the maintenance of human embryonic stem cells // Reproduction, 2004, V.128, No.6, P.727-735.

66. LeGeros R.Z. Properties of osteoconductive biomaterials: calcium phosphates // Clin Orthop Relat Res, 2002, No.395, P. 81-98.

67. Lennon D.P., Haynesworth S.E., Arm D.M., Baber M.A., Caplan A.I. Dilution of human mesenchymal stem cells with dermal fibroblasts and the effects on in vitro and in vivo osteochondrogenesis // Dev Dyn, 2000, V.219, No.l, P. 50-62.

68. Liang H., Wang K., Shimer A.L., Li X,, Balian G., Shen F.H. Use of a bioactive scaffold for the repair of bone defects in a novel reproducible vertebral body defect model // Bone, 2010, V.47, No.2, P. 197-204.

69. Liu H., Slamovich E.B., Webster T.J. Less harmful acidic degradation of poly(lacticco-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition // Int J Nanomedicine, 2006, V.l, No.4, P. 541-545.

70. Liu X., Ma P.X. Polymeric scaffolds for bone tissue engineering // Ann Biomed Eng, 2004, V.32, No.3, P. 477-486.

71. Lu J., Hou R., Booth C.J., Yang S.H., Snyder M. Defined culture conditions of human embryonic stem cells // Proc Natl Acad Sci USA, 2006, V.103, No.15, P. 5688-5693.

72. Lucas P.A., Price P.A., Caplan A.I. Chemotactic response of mesenchymal cells, fibroblasts and osteoblast-like cells to bone Gla protein // Bone, 1988, V.9,No.5, P. 319-323.

73. Mackay A.M., Beck S.C., Murphy J.M. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. // Tissue Eng, 1998, V.4, P. 415-428.

74. Maillard C., Malaval L., Delmas P.D. Immunological screening of SPARC/Osteonectin in nonmineralized tissues // Bone, 1992, V.13, No.3, P. 257-264.

75. Mareschi K., Biasin E., Piacibello W. Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. // Haematologica, 2001, V.86, P. 1099-1100.

76. Martin M.J., Muotri A., Gage F., Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. // Nat Med, 2005, V. 11, P. 228-232.

77. McCulloch C.A., Strugurescu M., Hughes F., Melcher A.H., Aubin J.E. Osteogenic progenitor cells in rat bone marrow stromal populations exhibit self-renewal in culture. // Blood, 1991, V.77, P. 1906-1911.

78. Middleton J.C., Tipton A.J. Synthetic biodegradable polymers as orthopedic devices // Biomaterials, 2000, V.21, No.23, P. 2335-2346.

79. Miura M., Gronthos S., Zhao M., Lu B., Fisher L.W., Robey P.G., Shi S. SHED: stem cells from human exfoliated deciduous teeth // Proc Natl Acad Sci USA, 2003, V.100, No.10, P. 5807-5812.

80. Mizuno M., Shindo M., Kobayashi D., Tsuruga E., Amemiya A., Kuboki Y. Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo // Bone, 1997, V.20, No.2, P. 101-107.

81. Morsczeck C., Gotz W., Schierholz J., Zeilhofer F., Kuhn U., Mohl C., Sippel C., Hoffmann K.H. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth // Matrix Biol, 2005, V.24, No.2, P. 155-165.

82. Moss D.W. Perspectives in alkaline phosphatase research // Clin Chem, 1992, V.38, No. 12, P. 2486-2492.

83. Nakahara H., Dennis J.E., Bruder S.P. In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. // Exp Cell Res, 1991, V.195, P. 492-503.

84. Nandakumar A., Fernandes H., de Boer J., Moroni L., Habibovic P., van Blitterswijk C.A. Fabrication of Bioactive Composite Scaffolds by Electrospinning for Bone Regeneration // Macromol Biosci, 2010, P.

85. Nathanson M.A. Bone matrix-directed chondrogenesis of muscle in vitro. // Clin Orthop, 1985, V.200, P. 142-158.

86. Navarro M., Michiardi A., Castano O., Planell J.A. Biomaterials in orthopaedics // J R Soc Interface, 2008, V.5, No.27, P. 1137-1158.

87. Ohgushi H., Goldberg V.M., Caplan A.I. Heterotopic osteogenesis in porous ceramics induced by marrow.cells // J Orthop Res, 1989, V.7, No.4, P. 568578.

88. V.105,No.41, P. 15767-15772.

89. Owen M. Marrow stromal stem cells // J Cell Sci Suppl, 1988, V. 10, P. 6376.

90. Pereira R.F., O'Hara M.D., Laptev A.V. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. // Proc Natl Acad Sci USA, 1998, V.95, P. 1142-1147.

91. Petersen B., Bowen W., Patrene K. Bone marrow as a potential source of hepatic oval cells. // Science, 1999, V.284, P. 1168-1170.

92. Pihlajamaki H., Bostman O., Rokkanen P. A biodegradable expansion plug for fixation of the coracoid bone block in the Bristow-Latarjet operation // Int Orthop, 1994, V.18, No.2, P. 66-71.

93. Pitt C.G., Gratzl M.M., Kimmel G.L., Surles J., Schindler A. Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (epsilon-caprolactone), and their copolymers in vivo // Biomaterials, 1981, V.2, No.4, P. 215-220.

94. Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R. Multilineage potential of adult human mesenchymal stem cells // Science, 1999, V.284, No.5411, P. 143-147.

95. Pittinger M., Mackay A., Beck S.C. Multilineage potential of adult human mesenchymal stem cells. // Science, 1999, V.284, P. 143-147.

96. Porter J.R., Henson A., Popat K.C. Biodegradable poly(epsilon-caprolactone) nanowires for bone tissue engineering applications // Biomaterials, 2009, V.30, No.5, P. 780-788.

97. Power M.J., Fottrell P.F. Osteocalcin: diagnostic methods and clinical applications // Crit Rev Clin Lab Sci, 1991, V.28, No.4, P. 287-335.

98. Quarto R., Thomas D., Liang C.T. Bone progenitor cell deficits and the age-associated decline in bone repair capacity. // Calcif Tissue, 1995, V.56, P. 123-129.

99. Reyes C.D., Garcia A.J. Alpha2betal integrin-specific collagen-mimetic surfaces supporting osteoblastic differentiation // J Biomed Mater Res A, 2004, V.69, No.4, P. 591-600.

100. Reyes M., Lund T., Lenvik T. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. // Blood, 2001, V.98, P. 2615-2625.

101. Reyes M., Verfaillie C.M. Turning marrow into brain: generation of glial and neuronal cells from adult bone marrow mesenchymal stem cells. // Blood, 1999,V.94,P. 377a.

102. Richards M., Tan S., Fong C.Y., Biswas A., Chan W.K., Bongso A. Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells // Stem Cells, 2003, V.21, No.5, P. 546-556.

103. Robbins M.M., Vaccaro A.R., Madigan L. The use of bioabsorbable implants in spine surgery // Neurosurg Focus, 2004, V.16, No.3, P. El.

104. Robertson E.J., Bradley A., Evans M.J., Kuhen M.R. Germ line transmission of genes introduced into cultured pluripotential cells by retroviral vector. // Nature, 1986, V.323, P. 445-448.

105. Sakai V.T., Zhang Z., Dong Z., Neiva K.G., Machado M.A., Shi S., Santos C.F., Nor J.E. SHED differentiate into functional odontoblasts and endothelium // J Dent Res, 2010, V.89, No.8, P. 791-796.

106. Satomura K., Derubeis A.R., Fedarko N.S., Ibaraki-O'Connor K., Kuznetsov S.A., Rowe D.W., Young M.F., Gehron Robey P. Receptor tyrosine kinase expression in human bone marrow stromal cells // J Cell Physiol, 1998, V.177, No.3, P. 426-438.

107. Schimming R., Schmelzeisen R. Tissue-engineered bone for maxillary sinus augmentation // J Oral Maxillofac Surg, 2004, V.62, No.6, P. 724-729.

108. Seo B.M., Miura M., Gronthos S., Bartold P.M., Batouli S., Brahim J., Young M., Robey P.G., Wang C.Y., Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament // Lancet, 2004, V.364, No.9429, P. 149-155.

109. Seo B.M., Sonoyama W., Yamaza T., Coppe C., Kikuiri T., Akiyama K., Lee J.S., Shi S. SHED repair critical-size calvarial defects in mice // Oral Dis, 2008, V.14, No.5, P. 428-434.

110. Shi Y. Induced pluripotent stem cells, new tools for drug discovery and new hope for stem cell therapies // Curr Mol Pharmacol, 2009, V.2, No.l, P. 1518.

111. Simmons P.J., Torok-Storb B. Identification of stromal cell precursors in, human bone marrow by a novel monoclonal antibody, STRO-1 // Blood, 1991, V.78,No.l,P. 55-62.

112. Simon J.A., Ricci J.L., Di Cesare P.E. Bioresorbable fracture fixation in orthopedics: a comprehensive review. Part I. Basic science and preclinical studies // Am J Orthop (Belle Mead NJ), 1997, V.26, No.10, P. 665-671.

113. Smith A.J., Cassidy N., Perry H., Begue-Kirn C., Ruch J.V., Lesot H. Reactionary dentinogenesis // Int J Dev Biol, 1995, V.39, No.l, P. 273-280.

114. Sonoyama W., Liu Y., Fang D., Yamaza T., Seo B.M., Zhang C., Liu H., Gronthos S., Wang C.Y., Wang S., Shi S. Mesenchymal stem cell-mediated functional tooth regeneration in swine // PLoS One, 2006, V.l, P. e79.

115. Sonoyama W., Liu Y., Yamaza T., Tuan R.S., Wang S., Shi S., Huang G.T. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study // J Endod, 2008, V.34, No.2, P. 166-171.

116. Sottile V., Thomson A., McWhir J. In vitro osteogenic differentiation of human ES cells. // Cloning Stem Cells, 2003, V.5, P. 149-155.

117. Sung H.J., Meredith C., Johnson C., Galis Z.S. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis // Biomaterials, 2004, V.25, No.26; P. 5735-5742.

118. Suvorova L.A., Gordukova V.I., Gruzdev G.P. Heterogeneity of the stromal precursor cells of human and guinea pig bone marrow. // Probl Gematol Pereliv Krovi, 1981, V.26, No.6, P. 30-33.

119. Tortelli F., Cancedda R. Three-dimensional cultures of osteogenic and chondrogenic cells:: a-tissue engineering«approach to mimic bone and . cartilage in vitro // Eur Cell Mater, 2009, V.17, P. 1-14.

120. Tran G.T., Gargiulb. C., Thao H:D., Tuan H.M., Filgueira L., Michael' Strong D. Culture and differentiation of osteoblasts on coral scaffold from human bone marrow mesenchymal stem cells // Cell Tissue Bank, 2010, DOl 10.1007/sl 0561-010-9208-2

121. Trounson A. Human embryonic stem cells: Mother of all cell and tissue types. // Reprod Biomed Online, 2002, V.4(Suppl 1), P. 58-63.

122. Tsukamoto Y., Fukutani S., Shin-Ike T., Kubota T., Sato S;, Suzuki^^Y., Mori M: Mineralized nodule: formation by cultures of human dental pulp-derived fibroblasts//Arch Oral Biol, 1992, V.37,No.l2, P. 1045-1055.

123. Vert M. Aliphatic polyesters: great degradable polymers that cannot do everything // Biomacromolecules, 2005, V.6, No.2, P. 538-546.

124. Vert M., Li S., Garreau H. New insights on the degradation of bioresorbable polymeric devices based on lactic and glycolic acids // Clin Mater, 1992, V.10, No. 1-2, P. 3-8.

125. Wang J., Wang X., Sun Z., Yang H., Shi S., Wang S. Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells // Stem Cells Dev, 2010, V.19, No.9, P. 1375-1383.

126. Wang Y., Shi X., Ren L., Yao Y., Zhang F., Wang D.A. Poly(lactide-co-glycolide)/titania composite microsphere-sintered scaffolds for bone tissue engineering applications // J Biomed Mater Res B Appl Biomater, 2010, V.93, No.l, P. 84-92.

127. Xu C., Inocuma M.S., Denham J., Golds K., Kundu P., Golds J.D., Carpenter M.K. Feeder-free growth of undifferentiated human embryonic stem cells.//Nat Biotechnol, 2001, V.19, P. 971-974.167: Yamaza Т., Kentaro A.,

128. Фриденштейн А.Я., Чайлахян Р.К., Лалыкина К.С. О фибробластоподобных клетках в культурах кроветворной ткани морских свинок // Цитология, 1970, Т.12, №9, С. 1147-1155.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.