Разработка расчетно-экспериментального метода анализа сложнонапряженного состояния резиновых мембран для эффективных рецептурно-технологических решений их производства тема диссертации и автореферата по ВАК РФ 05.17.06, кандидат наук Куделин Дмитрий Вячеславович

  • Куделин Дмитрий Вячеславович
  • кандидат науккандидат наук
  • 2021, ФГБОУ ВО «МИРЭА - Российский технологический университет»
  • Специальность ВАК РФ05.17.06
  • Количество страниц 214
Куделин Дмитрий Вячеславович. Разработка расчетно-экспериментального метода анализа сложнонапряженного состояния резиновых мембран для эффективных рецептурно-технологических решений их производства: дис. кандидат наук: 05.17.06 - Технология и переработка полимеров и композитов. ФГБОУ ВО «МИРЭА - Российский технологический университет». 2021. 214 с.

Оглавление диссертации кандидат наук Куделин Дмитрий Вячеславович

СОДЕРЖАНИЕ

СПИСОК СОКРАЩЕНИЙ

ВВЕДЕНИЕ

ГЛАВА 1 СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ПРОЧНОСТИ И ДОЛГОВЕЧНОСТИ ТОНКОСТЕННЫХ РЕЗИНОВЫХ ИЗДЕЛИЙ

1.1 Характеристика и условия работы резиновых мембран

1.2 Влияние рецептурных факторов на свойства резин

1.3 Экспериментальная оценка прочности и долговечности тонкостенных резиновых изделий

1.3.1 Методы испытания резин, реализующие простое одноосное растяжение

1.3.2 Методы испытания резин, реализующие сложнонапряженное состояние

1.3.3 Методы определения характеристик эластичных мембран

1.4 Анализ напряженно-деформированного состояния

1.4.1 Основные характеристики напряженно-деформированного состояния

1.4.2 Основные виды напряжённо-деформированного состояния

1.4.3 Элементы нелинейной теории упругости

1.4.3.1 Тензоры деформаций и тензоры напряжений

1.4.3.2 Гиперупругие модели для несжимаемых материалов

1.5 Выводы из обзора литературы и постановка задачи исследования

ГЛАВА 2 ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

2.1 Объекты исследования

2.2 Методы исследования

2.2.1 Определение физико-механических свойств резин при одноосном

растяжении

2.2.1.1 Определение упруго-прочностных и усталостных свойств резин при одноосном растяжении

2.2.1.2 Определение сопротивления раздиру при одноосном растяжении

2.2.1.3 Определение усталостных свойств резин при одноосном растяжении в присутствии концентратора напряжений

2.2.2 Определение физико-механических свойств резин в условиях неоднородного сложнонапряженного состояния

2.2.2.1 Определение упруго-прочностных свойств резин в условиях неоднородного сложнонапряженного состояния

2.2.2.2 Определение сопротивления раздиру в условиях неоднородного сложнонапряжённого состояния

2.2.2.3 Определение усталостно-прочностных свойств резин в условиях неоднородного сложнонапряженного состояния

2.3 Анализ НДС резин в неоднородном сложнонапряженном состоянии

2.4 Экспериментально - статистические методы обработки данных

ГЛАВА 3 АНАЛИЗ ПОВЕДЕНИЯ МЕМБРАН ПРИ ИСПЫТАНИИ В СЛОЖНОНАПРЯЖЕННОМ СОСТОЯНИИ

3.1 Системно-функциональный анализ резиновых мембран

3.1.1 Классификация резиновых мембран

3.1.2. Обоснование выбора полимерной матрицы для мембран различного

назначения

3.2. Обоснование метода анализа сложнонапряженного состояния резиновых мембран для эффективных рецептурно-технологических решений их

производства

3.3 Анализ НДС резиновой мембраны

3.4. Усовершенствование подхода к испытанию резиновых мембран методом

индентирования

3.4.1. Влияние условий испытания на прочностные характеристики резиновых мембран при растяжении

3.4.2 Влияние условий испытаний на сопротивление раздиру резиновых мембран

3.4.3 Влияние условий испытания на усталостные характеристики резиновых мембран

ГЛАВА 4 ВЛИЯНИЕ ОСНОВНЫХ РЕЦЕПТУРНЫХ И ТЕХНОЛОГИЧЕСКИХ ФАКТОРОВ НА ХАРАКТЕРИСТИКИ РЕЗИНОВЫХ МЕМБРАН ПРИ ИНДЕНТИРОВАНИИ

4.1 Влияние типа каучука и наполнителя на упруго-прочностные свойства и характер разрушения резиновых мембран

4.1.1 Влияние типа каучука на напряженно-деформированное состояние и прочностные характеристики резин

4.1.2 Влияние типа наполнителя на напряженно-деформированное состояние и прочностные характеристики резин

4.2 Влияние типа каучука и наполнителя на сопротивление раздиру и характер разрушения резиновых мембран

4.2.1 Влияние типа каучука на прочностные свойства резин при наличии концентратора напряжений

4.2.2 Влияние типа наполнителя на прочностные свойства резин при наличии концентратора напряжений

4.3 Влияние типа каучука и наполнителя на усталостные характеристики резин

4.3.1 Влияние типа каучука на усталостные характеристики резин

4.3.2 Влияние типа наполнителя на усталостные характеристики резин

4.4 Разработка технологического приема для улучшения характеристик мембран при индентировании

4.5 Рекомендации для повышения эффективности производства резиновых мембран

ГЛАВА 5 РАЗРАБОТКА РЕЦЕПТУРЫ РЕЗИНОВЫХ МЕМБРАН С УЛУЧШЕННЫМИ ТЕХНИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ

5.1 Разработка рецептуры цельнорезиновых гофрированных мембран автоматического клапана системы продувки рукавных фильтров

5.2 Разработка рецептуры плоских силовых мембран для прибора ИТС-7037

ВЫВОДЫ

ЛИТЕРАТУРА

ПРИЛОЖЕНИЕ А Акт о внедрении результатов диссертационный работы в

учебный процесс

ПРИЛОЖЕНИЕ Б Акт о внедрении результатов диссертационный работы в

проектно-конструкторской деятельности ООО «ЯРТИС»

ПРИЛОЖЕНИЕ В Технологический регламент на производство цельнорезиновых

гофрированных мембран

ПРИЛОЖЕНИЕ Г Акт о выпуске опытной партии гофрированных мембран

автоматического клапана продувки рукавных фильтров

ПРИЛОЖЕНИЕ Д Технологический регламент на производство плоских силовых

мембран

ПРИЛОЖЕНИЕ Е Акт о промышленном использовании результатов

диссертационной работы на ООО «ИТС»

БЛАГОДАРНОСТИ

СПИСОК СОКРАЩЕНИЙ

НДС - напряженно-деформированное состояние; РТИ - резинотехнические изделия; СКИ-3 - синтетический каучук изопреновый; НК - натуральный каучук;

СКМС-30АРК - синтетический каучук метилстирольный;

БНКС-28 (18, 40) АМН - синтетический каучук бутадиен-нитрильный;

СКД - синтетический каучук бутадиеновый;

СКЭПТ - синтетический каучук этиленпропиленовый;

ХБК - синтетический каучук хлорбутиловый;

БК - синтетический бутилкаучук.

Рекомендованный список диссертаций по специальности «Технология и переработка полимеров и композитов», 05.17.06 шифр ВАК

Введение диссертации (часть автореферата) на тему «Разработка расчетно-экспериментального метода анализа сложнонапряженного состояния резиновых мембран для эффективных рецептурно-технологических решений их производства»

ВВЕДЕНИЕ

Актуальность темы исследования. Важнейшей задачей резиновой промышленности является непрерывное повышение качества, надежности и долговечности изделий, в том числе резиновых мембран, которые нашли широкое применение в автомобильной, авиационной, станкостроительной, машиностроительной, химической и других отраслях промышленности. В большинстве случаев резиновые мембраны применяются в конструкциях, позволяющих преобразовать изменение давления газа или жидкости в соответствующее изменение механического усилия (датчики, исполнительные механизмы регуляторов и др.), реже - в качестве уплотнительных устройств. На практике существуют тысячи рецептур резиновых мембран, что связано с разнообразными условиями их эксплуатации и спектром предъявляемых к ним требований.

Стандартный подход к созданию резиновых мембран включает в себя разработку рецептуры и последующее проведение испытаний. Первым этапом создания является построение рецептуры резиновой мембраны. Основные требования, которые предъявляются к резинам для изготовления мембран - высокая прочность, эластичность, сопротивление раздиру, усталостная выносливость, химическая инертность, а также малые остаточные деформации, могут быть обеспечены различными сочетаниями каучуков и ингредиентов. При этом поиск оптимального состава резины в значительной степени носит случайный характер. Следует отметить, что в связи со специфической международной ситуацией и санкциями по отношению к России, спектр полимеров, традиционно применяемых для создания резиновых мембран, сократился.

Следующий этап создания резиновых мембран должен заключаться в идентификации соответствия реальных условий их эксплуатации лабораторным методам испытаний. Мембраны в большинстве случаев эксплуатируются в сложных условиях нагружения, что приводит к разнообразию зон и характера потенциальных разрушений, которые проявляются в процессе их эксплуатации. В тоже время при разработке новых рецептур резиновых мембран, чаще всего, применяют стандартные методы определения физико-механических характеристик резин, большинство из которых предполагают испытание материала в условиях простого од-

ноосного растяжения-сжатия. В реальных условиях эксплуатации эластомерная составляющая мембран, воспринимающая внешние нагрузки, находится в условиях сложнонапряженного состояния, при котором отсутствует какое-либо одно, преимущественное направление действия внешней силы, вследствие чего ориен-тационные процессы, определяющие свойства эластомерных материалов при одноосном растяжении, в значительной степени затрудняются. Несоответствие испытательных методов и реальных условий эксплуатации сказывается на долговечности создаваемых изделий.

Анализ напряженно-деформированного состояния (НДС), позволяет выявить потенциально опасные зоны изделия, однако, до недавнего времени он был малодоступен ввиду отсутствия требуемого программного обеспечения.

Таким образом, стандартный подход к созданию резиновых мембран является материалоемким, т.к. требует проведения большого массива экспериментальных исследований, и не может гарантировать корректность полученных характеристик материала, поскольку лабораторные испытания не отражают реальных условий эксплуатации резин. Кроме того стандартный подход связан со значительными временными затратами, а оценки экспертов свидетельствуют о том, что временной фактор является важнейшим условием конкурентоспособности разрабатываемых резинотехнических изделий.

Повышение качества и конкурентоспособности резиновых мембран в условиях временных и ресурсных ограничений требует разработки нового подхода к процессу их создания, включающего как проведение простых лабораторных испытаний, позволяющих моделировать поведение мембран в условиях эксплуатации, так и проводить анализ НДС с применением корректных физических моделей, максимально учитывающих характеристики резин и их изменение в процессе эксплуатации.

Степень разработанности темы исследования. Исследованиями поведения полимерных материалов, а также анализом их напряженно-деформированного состояния расчетными способами занимались такие ученые, как Гамлицкий Ю.А., Зуев Ю.С., Лукомская А.И., Лавендел Э.Э., Хромов М.К., Швачич М.В, в работах которых, помимо описания сложнонапряженного состояния резин, представлены различные способы реализации такого вида напряженно-

деформированного состояния на практике. Однако, несмотря на то, что большинство резинотехнических изделий при эксплуатации находятся в условиях сложно-напряженного состояния, широкого распространения дальнейшие исследования в этой области не получили в виду того, что такое состояние технически сложно правильно осуществить и оценить, поскольку нужно деформировать и измерять усилия на образец одновременно в трех направлениях. Кроме того требуются глубокие знания тензорного анализа и нелинейной механики сплошных сред, в то время как рецептуростроением чаще всего занимаются химики-технологи, не обладающие достаточной компетенцией в данной области. Одним из способов реализации сложнонапряженного состояния является метод продавливания резиновой мембраны стальным шарообразным индентором, описанный в работах М.К. Хромова. Авторы метода изучали механизм разрушения протекторных резин при движении по гравийной дороге, поэтому использовали сферический индентор малого диаметра, а также цилиндрический индентор и индентор в виде призмы, приводившие к катастрофическому разрушению образца в виде прокола. В настоящей работе требовалось оценить физико-механические характеристики резин для мембран, поэтому методы по оценке прочности, сопротивления раздиру и усталостной выносливости были соответствующим образом адаптированы, а инден-тор цилиндрической формы и индентор в форме призмы были исключены из дальнейших исследований.

На основании вышеизложенного основной целью диссертационной работы является разработка комплексного расчетно-экспериментального метода анализа сложнонапряженного состояния резиновых мембран, позволяющего оперативно создавать изделия с заданными характеристиками при минимальных совокупных затратах.

Для достижения указанной цели поставлены и реализованы следующие задачи:

- систематизация данных о конструкции, особенностях работы и причинах выхода из строя резиновых мембран;

- разработка научно-обоснованных методик испытания резин в сложнона-пряженном состоянии;

- анализ напряженно-деформированного состояния резиновых мембран;

- исследование влияния основных рецептурных факторов на физико-механические характеристики резин в статических и динамических условиях на-гружения в сложнонапряженном состоянии, а также особенностей их разрушения;

- разработка рецептур и технологии создания резиновых мембран с улучшенными техническими характеристиками.

Научная новизна работы:

1. Предложен и научно обоснован расчетно-экспериментальный метод анализа сложнонапряженного состояния резиновых мембран, позволяющий моделировать их работу в условиях эксплуатации.

2. На основании анализа напряженно-деформированного состояния резиновых мембран, реализующегося при их нагружении путем продавливания стальным шарообразным индентором, сформулирован критерий прогнозирования прочности резиновых мембран и предложено уравнение состояния эластомерного материала, адекватно отражающее его механические свойства.

3. Впервые установлено, что наполненные техническим углеродом резины на основе некристаллизующихся бутадиен-стирольных и бутадиен-нитрильных каучуков в неоднородном сложнонапряженном состоянии превосходят по сопротивлению раздиру резины на основе кристаллизующегося изопренового каучука, в то время как при одноосном растяжении значительно уступают им.

4. Показано, что при переходе от одноосного режима нагружения к сложно-напряженному снижается вклад ориентационного упрочнения и, соответственно, возрастает роль энергетической составляющей в формировании прочностных свойств резин, в результате чего, в частности, сопротивление раздиру вулканизата на основе некристаллизующегося каучука с высокой плотностью флуктуационной сетки оказывается выше по сравнению с резинами на основе неполярных кристаллизующихся каучуков.

Практическая значимость:

1. Обоснован комплексный подход, сочетающий стандартные лабораторные испытания вулканизатов по оценке их физико-механических свойств и численное моделирование, что позволяет существенно сократить временные, трудовые и ма-

териальные затраты на проектирование и выпуск мембран с заданными техническими свойствами.

2. Усовершенствованы методы лабораторных испытаний, адекватно воспроизводящие НДС в наиболее нагруженных зонах резиновых мембран.

3. Доказана целесообразность дублирования заготовок резиновых смесей с учетом направления каландрования, позволяющая улучшить технические характеристики мембран.

4. На основании результатов работы разработаны рецептуры резин и выпущены опытные партии:

- плоских силовых мембран прибора для испытания бумаги с ресурсом работы, увеличенным на 25 % по сравнению с импортным аналогом (Акт о промышленном использовании на ООО «ИТС», г. Иваново).

- цельнорезиновых гофрированных мембран автоматического клапана системы продувки рукавных фильтров с ресурсом работы, увеличенным на 35 % по сравнению с аналогом (Акт о выпуске опытной партии мембран на НПК «Технолог», г. Ярославль).

Достоверность научных положений и выводов диссертации базируется на комплексном применении современных физических и математико-статистических методов анализа, а также на удовлетворительном совпадении расчетных и экспериментальных данных.

Основные положения, выносимые на защиту:

1. Комплексный экспериментально-расчетный подход к разработке рецептур для мембран;

2. Усовершенствованные методы лабораторных испытаний, основанные на продавливании резиновой мембраны сферическим индентором;

3. Анализ НДС резиновых мембран при контактном нагружении;

4. Изучение влияния основных рецептурных факторов (типа каучука и типа наполнителя) на свойства резин в неоднородном сложнонапряженном состоянии;

5. Разработка рецептур и технологии изготовления плоских и гофрированных резиновых мембран.

Личный вклад автора. Диссертантом выполнен весь объем экспериментальных исследований, проведены необходимые расчеты, обработка результатов и их анализ. Автор принимал непосредственное участие в обсуждении результатов и подготовке публикаций, формулировке выносимых на защиту выводов и рекомендаций.

Апробация работы. Материалы диссертации докладывались и обсуждались на 22-м и 23-м симпозиумах «Проблемы шин и резинокордных композитов», III Всероссийской конференции «Каучук и Резина - 2013», 28 симпозиуме Проблемы шин, РТИ и эластомерных композитов - 2018, Международной научной конференции «Математические методы в технике и технологиях» - 2018.

Публикации

По теме диссертации опубликовано 18 печатных работ, в том числе 7 статей в журналах, рекомендованных ВАК РФ, и 11 - в сборниках докладов научных конференций [1-18].

Объем и структура диссертации. Диссертация состоит из списка сокращений, введения, пяти глав, выводов и списка использованной литературы, содержит 57 таблиц, 66 рисунков, 6 приложений, 134 источника. Общий объем работы 214 страниц машинописного текста.

ГЛАВА 1 СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ПРОЧНОСТИ И ДОЛГОВЕЧНОСТИ ТОНКОСТЕННЫХ РЕЗИНОВЫХ ИЗДЕЛИЙ

1.1 Характеристика и условия работы резиновых мембран

Мембраны широко применяются в автомобильной, авиационной, станкостроительной, машиностроительной, химической промышленности и других отраслях народного хозяйства [19, 20, 21].

Резиновая мембрана, в соответствии с ГОСТ 21905 - 76, представляет собой гибкую, закрепленную по контуру перегородку, отделяющую полость от пространства или разделяющую две полости с различным давлением и преобразующую изменение давления в перемещение или наоборот [19, 20, 22]. Основными характеристиками мембран являются чувствительность (способность воспринимать нагрузку) и жесткость (способность противодействовать нагрузке).

По конструктивному признаку мембраны классифицируют на плоские, гофрированные, конические и оболочковые.

Плоская мембрана - тело плоской формы (рисунок 1.1). Плоская мембрана без жесткого центра может работать как компенсационная, т.е. может обеспечивать уравновешивание объемов жидкости или газа.

Рисунок 1.1 - Плоская мембрана

Гофрированная мембрана - тело с одним или несколькими гофрами (рисунок 1.2). Гофрированные мембраны работают аналогично плоским, при этом обладают более высокой чувствительностью и большим ходом жесткого центра вследствие наличия гофра.

Рисунок 1.2 - Гофрированная мембрана

Плоские, гофрированные и тарельчатые мембраны представляют группу мембран с одинаковым функциональным назначением, но с разной величиной прогиба, определяемой формой и размерами тела мембраны [20, 23].

Коническая мембрана - тело в виде полого усеченного конуса (рисунок 1.3).

Л

Рисунок 1. 3 - Коническая мембрана

Работает в условиях значительных осевых перемещений, высоких давлений

и скоростей в узлах с возвратно-поступательным и качательным движением. Конические мембраны в отличие от других уплотнителей возвратно-поступательного движения обеспечивают минимальные потери на трение и требуют минимальных сдвиговых усилий.

Специфика работы мембран этого типа заключается в том, что для нормальной работы необходимо наличие перепада давления (Рмин). Без перепада давления мембрана теряет устойчивость, происходит «закусывание» тела мембраны, его смятие и выход изделия из строя.

Оболочковая мембрана - тело в виде оболочки произвольной формы (сферическая, коробчатая и др.). Наиболее широко применяется в узлах пневмогидро-аккумуляторов, где в период эксплуатации перепад давления не превышает 0,01 МПа. В «донной» части корпуса пневмоаккумулятора имеется сетка с отверстиями (рисунок 1.4).

При высоких заправочных давлениях (Рзапр > 5,0 МПа) рекомендуется в «донной» части изделия вместо сетки с отверстиями применять подпружиненный клапан.

1 - мембрана; 2 - корпус; 3 - сетка. Рисунок 1.4 - Оболочковые мембраны

2

Методы контроля материалов, указанные в нормативно-технической доку-

ментации на мембраны, применяются, главным образом, для контроля качества используемых материалов (резин) данной конкретной партии мембран. Качество мембран по таким показателям, как прочность, герметичность или назначенный ресурс, проверяется их испытаниями на специальных стендах или на конструкциях (приборах) в составе которых они эксплуатируются.

В таблице 1.1 приведены наиболее часто встречаемые виды разрушений мембран, обусловленные в большинстве случаев неправильными хранением и эксплуатацией мембранных узлов [19].

Таблица 1.1 - Виды разрушения мембран и методы их устранения

Виды разрушений Причины Меры устранения

Появление трещин в зоне перехода от фланцев к телу мембраны Механические повреждения Пережатие Малый радиус закрепления фланца Обеспечение заданной шероховатости поверхности фланца, исключение попадания инородных тел. Обеспечение степени поджатия по телу при эксплуатации не более 10 %. Обеспечение радиуса закругления не менее 2,5 толщины тела мембраны

Отслоение резины от арматуры (ткань, металл) Низкая прочность связи, концентрация местных напряжений Повышение прочности связи. Уменьшение степени деформации; уменьшение жесткости мембраны

Разрыв по телу мембраны Низкая прочность материала; высокий коэффициент трения в зоне контакта тела мембраны и посадочного места при циклических нагрузках, неправильная конструкция; нарушение условий эксплуатации Выбор материала конструкции в соответствии с условиями эксплуатации

Появление трещин при хранении в местах перегиба Деформирование при хранении Соблюдение условий хранения

Наиболее часто встречающимися причинами выхода из строя резиновых

мембран являются: разрушение в зоне перехода от фланца к телу, а также разрушение по телу (особенно у мембран с жестким центром) [19]. При эксплуатации мембран эти области подвержены сложным деформациям, вызывающим локальные перенапряжения и, как следствие, приводящим к отказу изделия. Примеры разрушения мембран показаны на рисунке 1. 5. Потеря эксплуатационных свойств может быть также связана с высоким уровнем остаточных деформаций, при которых мембрана перестает выполнять свои функции. Следовательно, совершенствование конструкции мембран и рецептуры для их изготовления необходимо проводить таким образом, чтобы минимизировать величину напряжений, возникающих при её работе, а также снизить уровень остаточных деформаций.

а б

а - разрыв по телу; б - отслоение арматуры

Рисунок 1.5 - Примеры разрушения резиновых мембран

1.2 Влияние рецептурных факторов на свойства резин

Эксплуатационные характеристики мембран, как и любого резинотехнического изделия, определяются свойствами резин, из которых они изготовлены.

Разработка резиновой смеси не обходится без глубокого анализа влияния структурных и рецептурных факторов на характеристики резин в составе самого

изделия. Данная процедура является весьма трудоемкой, длительной и, как следствие, затратной. При этом важно отметить, что не всегда резины, показавшие высокий комплекс физико-механических характеристик на лабораторном этапе исследований, обеспечивают заданные потребительские характеристики изделия. Связано это, в первую очередь, с тем, что лабораторные методы испытаний не позволяют в полной мере моделировать поведение резин в процессе эксплуатации [24-26].

Механические свойства вулканизатов рассматривают в зависимости от физической и химической структуры материала. Хотя этому вопросу уделяется большое внимание [27-29], имеющиеся в настоящее время результаты не могут служить достаточной основой для создания резин с заданными механическими характеристиками, поэтому в большинстве случаев пользуются зависимостью «состав - свойство» с учетом влияния структурных факторов.

Как известно, механические характеристики резин зависят от природы применяемого каучука, особенностей его строения, типа и дозировки наполнителя, характера вулканизующей группы, а также от типа и дозировки пластификатора [27-30].

Прочность полимера возрастает при повышении его молекулярной массы до определенного значения. Дальнейшее ее повышение практически не влияет на прочность. Влияние молекулярной массы на прочность резин уменьшается с ростом степени сшивания. При достаточно больших значениях средней молекулярной массы молекулярно-массовое распределение мало влияет на прочность полимеров, в то время как при низких и средних значениях молекулярной массы это влияние заметно [31].

Межмолекулярное взаимодействие значимо влияет на характер разрушения, прочность и долговечность полимеров. С увеличением полярности каучуков наблюдается тенденция к переходу от механизма разрушения, характерного для эластомеров, к механизму разрушения, типичному для твердых тел, при этом происходит возрастание прочности [31].

Одним из главных факторов, влияющих на деформационно-прочностные

характеристики резин, является регулярность строения полимерной цепи. Каучу-ки с регулярным строением способны образовывать ориентированную и кристаллическую структуры, что приводит к резкому возрастанию прочности. По своему поведению при деформации кристаллические полимеры резко отличаются от аморфных каучуков и низкомолекулярных кристаллических материалов. Для них характерны специфическая диаграмма растяжения с плато в области определенных значений деформации и образование «шейки» на образце в предразрывной стадии [31, 32].

Следует отметить, что наибольшее влияние на физико-механические характеристики резин оказывает не столько наличие кристаллической фазы, сколько степень ее ориентации. Поскольку не все молекулярные цепи переходят в ориентированное кристаллическое или аморфное состояние, существует линейная зависимость между прочностью и степенью ориентации. С уменьшением размеров кристаллических образований и повышением их совершенности прочность увеличивается [31].

Прочность зависит также от химической природы макромолекул и плотности их упаковки, однако систематизировать роль этих факторов чрезвычайно трудно [31, 33].

Большое влияние на прочностные и деформационные свойства резин оказывает строение вулканизационной сетки [33 - 37]. Сшивание и изменение концентрации поперечных связей значимо влияют на процесс разрушения эластомеров. В резинах с густой сеткой после разрушения происходит быстрое сокращение образца до начальных размеров, с редкой сеткой - сокращение продолжается более длительное время. Таким образом, с увеличением густоты пространственной сетки наблюдается тенденция к переходу от механизма разрушения, характерного для эластомеров, к механизму разрушения, характерному для твердых тел.

Зависимость прочности от степени вулканизации носит экстремальный характер: с увеличением густоты пространственной сетки прочность вулканизатов меняется по кривой с максимумом [33]. Влияние характера вулканизационных

связей, т.е. их природы и энергии на прочность чрезвычайно велико: чем меньше энергия связей, тем выше прочность, и тем в более высокой области концентрации вулканизационных узлов находится максимум прочности. Для получения вулканизатов с улучшенным комплексом свойств рекомендуется определенное сочетание прочных связей, создающих каркасность структуры, со слабыми узлами, обеспечивающими перегруппировку цепей при деформации и повышение прочности. При равной энергии связей более длинная или гибкая связь, приводящая к появлению трифункциональных узлов, обеспечивает более высокую прочность резин [32, 34, 38].

Прочность повышается пропорционально увеличению доли активных цепей вулканизационной сетки и уменьшается с увеличением роли деструктивных процессов при вулканизации. Побочные реакции при вулканизации, приводящие к модификации полимерной цепи (циклизация, цис-, транс-изомеризация), также оказывают существенное влияние на прочность. Так, с увеличением содержания серы, связанной в виде циклов, или при достаточно высокой степени изомеризации прочность снижается [31].

По влиянию на прочность резин наполнители делятся на две группы: усилители (увеличивающие прочность) и инертные наполнители (практически не меняющие прочность) [31, 39, 40].

При введении активных наполнителей прочность резин на основе некри-сталлизующихся каучуков повышается в 10 - 12 раз, тогда как прочность резин на основе кристаллизующихся каучуков практически не меняется [41]. Это положение, однако, справедливо лишь для той области температур, в которой способность к кристаллизации проявляется достаточно полно. При более высоких температурах активные наполнители повышают прочность резин как на основе не-кристаллизующихся, так и на основе кристаллизующихся каучуков. С повышением степени дисперсности активных наполнителей прочность резин возрастает. Наиболее важным эффектом при введении активного наполнителя является заметное повышение теплостойкости резин, что, безусловно, важно с точки зрения условий работы мембран, часто эксплуатирующихся в установках при температу-

ре ~ 80 - 100 оС.

Известно двойственное влияние наполнителей на свойства резин. Активные наполнители образуют цепные структуры, служащие матрицей, на которую укладываются и ориентируются молекулы каучука [31], в результате чего происходит увеличение прочности резин. Максимум прочности наблюдается в области тех значений наполнителя, при которых заканчивается формирование каучук-техуглеродной структуры. При дальнейшем повышении содержания наполнителя прочность снижается, так как его частицы становятся дефектами и приводят к образованию очагов разрушения. Существенные структурные изменения возникают лишь тогда, когда вводимые твердые частицы достаточно сильно смачиваются полимером. Эффект смачивания является обязательным условием. Твердый тонкодисперсный наполнитель часто играет роль адсорбента для молекул полимера. При этом образуются высокоориентированные адсорбционные слои, способствующие повышению механической прочности полимерного материала. В ряде случаев при взаимодействии полимера и наполнителя образуются химические соединения. Размер частиц наполнителя должен находиться в определенном соответствии с размерами структурных образований в полимере.

Сопротивление резин раздиру также зависит от совокупности различных факторов. Ввиду того, что процесс ориентации при раздире затруднен, значения сопротивления раздиру (ГД а также характеристической энергии раздира резин из кристаллизующихся и аморфных каучуков должны сблизиться по сравнению с их прочностью при растяжении (/р). По данным, представленным Ю.С. Зуевым [24], если по прочности при растяжении резины из каучука СКС-30 и НК различаются в 28 раз, то по сопротивлению раздиру - в 10 раз. Аналогичный вывод можно сделать и по результатам работы [41]: согласно приведенным данным, по прочности при растяжении исследованные резины из НК и СКБ различаются примерно в 10 раз, а по сопротивлению раздиру, определенному тремя различными методами - в 6; 4,2 и 3,5 раза.

Похожие диссертационные работы по специальности «Технология и переработка полимеров и композитов», 05.17.06 шифр ВАК

Список литературы диссертационного исследования кандидат наук Куделин Дмитрий Вячеславович, 2021 год

и — а

Одним из важнейших требований, предъявляемых к мембранам, является обеспечение высокой усталостной выносливости. В работе [81] представлен метод испытания динамической выносливости плоских мембран. Данный метод позволяет проводить испытания плоских мембран как с жестким центром, так и без него (рисунок 1.15).

С целью получения точных и стабильных результатов по измерению давления и прогиба мембран в процессе циклического нагружения используется датчик линейного перемещения (8), фиксирующий перемещение мембраны под давлением. Выходным сигналом датчика является токовый сигнал 4-20 тА, который изменяется в зависимости от линейных перемещений мембраны. Далее сигнал поступает на вход видеографического регистратора серии ДХ 1000 и отображается на информационном дисплее. Регистратор подключен к персональному компьютеру для передачи накопленной информации в режиме реального времени. Испытания при повышенных температурах осуществляются за счет контролируемого нагрева прибора при помощи нагревательной плиты (10), в которой поддерживается заданная температура за счет регулятора температуры ОВЕН-ТРМ-1 (13).

К недостаткам данного метода можно отнести сложность всей установки и возможность определять единственный показатель - динамическую выносливость мембран.

Таким образом, как стандартные методы испытаний, так и специальные имеют существенные недостатки. Стандартные методы просты в исполнении, однако не отражают в полной мере свойства резин при эксплуатации. Специальные методы, как правило, требуют индивидуально изготовленных испытательных ус-

тановок, которые дают возможность определять единичные показатели, но не всегда позволяют определять предельные свойства резин и их усталостные характеристики, что делает комплексные исследования крайне дорогостоящими.

1 - штуцер для подачи воздуха; 2 - корпус; 3 - кольцо прижимное; 4 - преобразователь сигналов; 5 - винт прижимной; 6 - жесткий центр; 7 - мембрана; 8 - датчик линейного перемещения; 9 - магнитное кольцо; 10 - плита нагревателя; 11 -термоизоляция; 12 - датчик температурный ТСМ 100; 13 - регулятора температуры ОВЕН-ТРМ-1; 14 - видеографический регистратор серии ДХ 1000; 15 - таймер циклический; 16 - электропневмоклапан; 17 - регулятор давления; 18 - персональный компьютер.

Рисунок 1.15 - Стенд для испытания плоских технических мембран

1.4 Анализ напряженно-деформированного состояния

Резиновые мембраны, о которых пойдет речь в работе, являются ярким

примером изделий РТИ, работающих в неоднородном сложнонапряженном состоянии.

1.4.1 Основные характеристики напряженно-деформированного состояния

Теория НДС ставит своей задачей определение внутренних напряжений, деформаций и перемещений в различных точках деформируемого твёрдого тела произвольной формы и размеров [90-94].

Напряженным состоянием тела в точке называют совокупность нормальных и касательных напряжений, действующих по всем площадкам (сечениям), содержащим данную точку [90-94].

На рисунке 1.16 показана модель напряженного состояния тела в точке в виде выделенного параллелепипеда или кубика размерами йх, йу, йг, отнесенного к координатным осям х, у, 2.

в2 '

еу

д

т

162

Сг

/

У Тх2 X Туг

Т2Х

Тух

Т2у

бу

Тху

Ах

Су

Рисунок 1.16 - Модель напряженного состояния тела в точке

Действия удаленной части тела были заменены векторами - напряжениями 5Х, Бу, и разложены на составляющие по координатным осям.

2

у

2

у

Бх ахех ~Ь тухеу ~Ь т2Хб2

Б у тХубх -Ь <Губу -Ь т 2у6(1.5) тхуех -Ь Ту2бу -Ь бт2£?2

где бх, бу, бг - единичные векторы, направленные вдоль координатных осей х, у, 2;

ох, оу, о г - нормальные напряжения;

тху, туг, т гу, т гх, т гу - касательные напряжения.

У касательных напряжений первый индекс указывает на направление его действия, второй индекс - на нормаль к площадке, на которой оно действует. У нормальных напряжений индекс соответствует одновременно как направлению, так и нормали к площадке их действия. На невидимых гранях действуют такие же, но противоположно направленные напряжения.

Совокупность указанных напряжений полностью характеризует напряжённое состояние частицы тела. Эту совокупность записывают в виде квадратной матрицы и называют тензором напряжений Коши [92, 93, 95]:

т =

Тху Тхг

Оу Туг

Тгх Тгу

(1.6)

Система напряжений, приложенных к частице тела, должна удовлетворять условиям равновесия. Первые три условия в проекциях на оси х, у, 2 дают тождества, т.к. на противоположных гранях напряжения считаются равными по величине. Для проверки, обращаются ли в нуль суммы моментов всех сил относительно координатных осей, составляют условие равновесия моментов относительно оси х:

( т гу дх (Сг ) ду — ( т у гд х ду ) (С г = 0 , (1.7)

откуда следует .

Аналогично составляют два уравнения равновесия моментов относительно осей у и 2. В результате получают соотношения:

т ху т ух> туг т гу> т хг т гх> (1.8)

которые называют законом парности касательных напряжений: на двух взаимно перпендикулярных площадках составляющие касательных напряжений, ортогональные их общему ребру, равны по величине и направлены оба либо к ребру, ли-

бо от него. На основании этого закона тензор-матрица напряжений Та является симметричной относительно главной диагонали, состоящей из нормальных напряжений [95].

Напряжение

О0 — ~(Ох + Оу + Ог)

(1.9)

называют средним напряжением. Тензор напряжений, для которого о0 — 0, называется тензором-девиатором напряжений. В общем случае тензор напряжений можно разложить на сумму двух тензоров: Та — Т0 + Т5. Первый из них

б70 О О

тп =

О б70 о О 0 а0

(1.10)

носит название шарового тензора напряжений, а второй [95]:

т =

°Х ТХу

Оу - <70

'-хг

Ту х (Ту ~ (То Ту 2

(111)

Т2у (Тг (Т0,

тензора-девиатора или просто девиатора напряжений [95].

Иногда компоненты девиатора напряжений обозначают:

~ тху

— Оу — Од, Буг — Туг, (1.12)

. Б г (т2 — а0, БХ2 тх2 Шаровой тензор характеризует напряженное состояние всестороннего растяжения - сжатия частицы тела, а девиатор - напряженное состояние её формоизменения.

На каждую частицу тела кроме напряжений действуют объёмные силы:

Д — Яхех + Яуву + Я2е2, (1ЛЗ)

где Ях, Яу, Я2 - проекции этих сил на координатные оси. Каждая вектор-сила Я действует на единицу объёма.

На поверхности тела F на каждую единицу её площади могут действовать распределённые силы:

Ч — Чхех + Чуеу + Чгег, (114)

где цх, цу, - проекции этих сил.

Если последние действуют на малых площадках контакта А F поверхности тела, то их, согласно принципу смягчения граничных условий Сен-Венана, заменяют главными вектором и моментом всех сил, действующих на этих малых площадках:

А- I Цд¥,ш- 1(гХд)сС¥, (1.15)

ДF ДF

где Г- радиус-вектор, проведённый из заданной точки (центра приведения сил) на до текущей силы .

В результате действия на тело внешних сил р, ' каждая точка В совершает перемещение в новое положение . Это перемещение характеризуется направленным отрезком В В' , т.е. вектором перемещения [95]:

А = ибх + Убу+\А/бг, (116)

где и, V, w - проекции этого перемещения на координатные оси.

Перемещения А характеризуют деформацию тела в целом. Например, прогибы точек оси балки V и поворот поперечных сечений, проходящих через эти же точки, характеризуют деформацию балки в целом при её изгибе.

Деформация тела складывается из деформации её материальных (физических) частиц, каждая из которых испытывает удлинения в направлении её рёбер и искажения прямых углов между её гранями в каждой из координатных плоскостей:

Уху Уух, Ууг Угу> Ухг Угу (1.17)

Схема деформации представлена на рисунке 1.17. Величины

Д(сгх) А((1у) Д№)

£х--СГ'£У-—'£г-— (118)

называют относительными удлинениями или деформациями частиц тела [94, 95]. Половины сдвигов обозначают:

£ху 2

Уху

£уг 2Гуг'

УУ2

£хг 2

(1.19)

а б

Рисунок 1.17 - Схема деформации тела при одноосном растяжении (а) и чистом

сдвиге(б)

Совокупность шести компонентов деформации полностью характеризует деформированное состояние частицы тела. Эту совокупность записывают в виде квадратной матрицы и называют тензором деформаций Коши:

£х £ху £хг\

£ух £у £уг 1 (1.20)

£гх £гу

Величину

£о =^(£х +£у +£г) (1.21)

называют средней деформацией.

Если для рассматриваемого тензора деформация £0 = 0, то он называется тензором-девиатором или просто девиатором деформации.

В общем случае £0 Ф 0, тогда тензор (1.20) можно разложить на сумму двух тензоров:

Т£ = Т0 + Тэ

Первый из них:

/£0 О О

Т0 = [ 0 £() О | (1.22)

\0 0 е0/

носит название шарового тензора деформации и описывает объёмную деформацию всестороннего растяжения - сжатия. Второй тензор:

£ху \

£у-£ о £у* I (1.23)

представляет собой тензор-девиатор и характеризует деформацию изменения формы частиц тела.

1.4.2 Основные виды напряжённо-деформированного состояния

Простейшие виды НДС: растяжение - сжатие, плоский чистый сдвиг и их комбинация рассмотрены выше. Они встречаются при растяжении и сжатии стержня и его кручении, а также при изгибе. При растяжении и сжатии осевая и поперечные деформации определяются законами Гука и Пуассона [90-93, 95-97]:

£ = —

2 Е (1.24)

£ х £у ¡1 £

где Е - модуль продольной упругости; 1 - коэффициент Пуассона.

Часто на практике встречаются двухосное растяжение и его комбинация с чистым сдвигом [95].

В последнем случае состояние называют плоским напряжённым состоянием. Оно возникает в тонкостенных элементах конструкций, таких как плиты (пластины) и оболочки (рисунок 1.18).

При двухосном растяжении деформации в направлениях х и у могут быть найдены на основании законов (1.24) для одноосного растяжения. Можно представить , на основании принципа независимости действия сил (напряжений

ох, оу) в виде суммы деформаций в каждом из направлений х и у от этих сил:

а2 (Оу\ 1

Оу /6ТХ\ 1 £у - - М = - №х)

М Г

~ ~ £ + °у)

(1.25)

а

б

Р

х

Рисунок 1.18 - Плоское напряженно-деформированное состояние в пластинах (а)

и оболочках (б)

Для плоского напряжённого состояния с учётом (1.24) получается:

1 1

£х = Ё ~ £У = Ё ~ ^°х^

_ Тху _ _ М

(1.26)

лу р- ( \

УХу-~С> Ё^Гх + ау)-

При трёхосном растяжении на основании законов (1.24) аналогичным образом получается:

1 1

8х ~ Ё ~ ^°у + 8у ~ Ё ~ +

1

^ = -К<Гх + Оу)]-

(1.27)

Если сложить соотношения (1.24), то результатом будет закон упругого изменения объёма:

°0

в=т

где - относительное изменение объёма;

(1.28)

К =

3(1-2д)

- модуль объёмной деформации.

q

Произвольная точка тела А при деформации остаётся лежать в одной плоскости, параллельной плоскости х, у. Напряжённое состояние отличается от плоского тем, что возникает напряжение о2. Соответствующее деформированное состояние тела носит название плоской деформации. Относительные деформации определяются соотношениями закона Гука, полученными использованием принципа независимости действия сил (напряжений). Накладывая на соотношения (1.11) при трёхосном растяжении плоский чистый сдвиг с напряжениями тху = Суху, получается:

1

, 8У К^х + ^у)]-

Характерным примером возникновения объёмного НДС могут служить контактные задачи. Например, задача о вдавливании шарика в твердое тело (рисунок 1.19).

Рисунок 1.19 - Пример контактной задачи: вдавливание шарика в твердое тело

Совокупность деформаций, возникающих по различным направлениям и в различных плоскостях, проходя через точку, определяет деформированное состояние в этой точке. Сложное деформированное состояние возникает, если тело одновременно подвергается нескольким простейшим нагружениям. В ряде случаев нормальные и касательные напряжения, возникающие в теле, имеют одинако-

(1.29)

вый порядок и ими нельзя пренебрегать. В таком случае не существует универсального критерия, позволяющего рассчитать предельное состояние для любого материала. В этой связи предложено несколько различных гипотез предельных состояний, и при расчетах используют наиболее подходящую гипотезу. Расчёты по гипотезам прочности позволяют избегать дорогостоящих испытаний изделий [95, 98].

Сравнение разнотипных состояний производится с помощью эквивалентного (простого) напряженного состояния. Обычно сложное напряженное состояние заменяют простым растяжением.

В ряде случаев возникающие нормальные и касательные напряжения имеют одинаковый порядок и ими нельзя пренебрегать. Тогда расчет проводят при сложном деформированном состоянии. Расчетное напряжение, соответствующее выбранному одноосному растяжению, называют эквивалентным напряжением.

1.4.3 Элементы нелинейной теории упругости

Большинство полимерных материалов, в том числе и резины не подчиняются закону Гука при деформировании, т.е. имеют нелинейную зависимость напряжения от деформации (физическая нелинейность). Такие материалы рассматриваются в нелинейной теории упругости [84, 85, 99].

1.4.3.1 Тензоры деформаций и тензоры напряжений

Рассмотрим деформацию резиноподобного твердого тела и обозначим локальный градиент деформации через Г. Правый и левый тензоры деформации Коши-Грина, соответственно С и В, определяются следующим образом [85, 99]:

С-Р *¥ и В-Р Р 1 . (1.30)

С и В допускают три инварианта, которые классически обозначаются 11,12 и 13 и определяются следующим образом:

к-Ъ ( С) ; (1.31)

h=\[K ( С) 2-tr (С2 ) ] ; (1.32)

I3 = d etC. (1.33)

В этих уравнениях C можно заменить на B. Кратности растяжения определяются как квадратные корни из собственных значений C (аналогично для B) и классически обозначаются как (ХД=13. Используя эти отношения, можно определить инварианты тензора деформации:

11=л2 + л2 + л23 (1.34)

(1.35)

1з = 444. (1.36)

Напряжения - это силы когезии внутри материала [99]. Для задач больших деформаций определяются два основных тензора напряжений: тензор истинных напряжений а (или тензор Коши) и тензор условных напряжений P (или первый тензор Пиолы-Кирхгофа) [85]. Они связаны между собой следующим соотношением [99]:

Р = det¥oF~(1.37) в котором показатель степени (-t) означает обратное транспонирование.

1.4.3.2 Гиперупругие модели для несжимаемых материалов

В общей теории гиперупругости предполагается, что тензоры напряжений выводятся из функции энергии деформации, которая определяется на единицу не-деформированного объема, зависит от тензора деформации B и обозначается W. При рассмотрении несжимаемых материалов возникает кинематическое условие по напряжению [99]:

¡3 = 1. (1.38)

Следовательно, тензоры напряжений зависят как от деформации, так и от произвольного скалярного параметра p, который можно определить с помощью уравнений равновесия:

а-2 В^-рI , (1.39)

где I - тождественный тензор:

Р-^-р Р-*. (140)

ЗР

Если предположить, что материал изотропен, функция энергии деформации зависит только от двух первых инвариантов тензора деформации, а тензоры напряжений могут быть записаны как [99]:

а = 2Ьг1+1^)В-21П-2В (141)

и

__ /гаи/ , т зш.

Главное напряжение можно определить в терминах основных коэффициентов растяжения [99]:

„ Л2 Ш 1 9ИЛ 1 о /1 Л1\

и

„ 0Л ЗЖ 1 диЛ 1 . , _

р = 2(я< ^п^гр^- ,=1>3 (144)

Используя предыдущее уравнение (1.44), можно легко получить зависимости напряжения от деформации, соответствующие простым видам НДС [99, 100]: - для одноосного растяжения:

Р = 2 Л

1 \ (дШ дШ 9 \

• (145)

- для всестороннего двухосного растяжения:

Р = 21 Я

- для чистого сдвига

-И(з7:+аЫ ' (146)

/ 1 \ /д\¥ д\¥\ р-2{А-¥')ш;+^д • (147)

- для двухосного растяжения:

и

(1.48)

(1.49)

В этих уравнениях Р и X представляют собой, соответственно, условное напряжение и деформацию, измеренные при проведении испытаний. В случае двухосного растяжения Рг и Р2 означают условные напряжения в плоскости, а Л± и Л2 -деформации в плоскости. В любом случае принимается условие плоского напряженного состояния такое, что Р3 = 0.

Любой симметричный тензор второго ранга можно подходящим выбором системы координат привести к диагональному виду [82, 96]. Это означает, что для напряжения и деформации в данной точке всегда можно выбрать такую систему координат, в которой, в матрице тензора, окажутся отличными от нуля в общем случае только диагональные члены. В частном случае из них может быть один или два также равны нулю (двуосное напряженное состояние и одноосное напряженное состояние). Эти три диагональных члена, которые получаются после поворота (линейного преобразования компонентов тензора) называются главными значениями (главными напряжениями и главными деформациями, соответственно). Именно они характеризуют напряженное состояние в точке, поскольку систем координат может быть выбрано бесконечное множество, но главная система координат (с точностью до обозначения осей) всего одна. Таким образом, чтобы определить напряженное состояние в точке нужно, прежде всего, вычислить главные значения тензора напряжений (главные напряжения). В зависимости от этих главных значений можно сделать вывод о виде напряженного состояния и сказать является оно простым или сложным.

В случае если главные значения одинаковы, имеет место всестороннее растяжение (если они все положительны) или всестороннее сжатие (если они все отрицательны). Если одно из главных значений отлично от нуля, а два других равны нулю, то имеет место одноосное растяжение (если значение положительно) или

одноосное сжатие (если оно отрицательно). Если главные значения отличны от нуля, но их сумма равна нулю, то возникает напряженное состояние, которое называется чистым сдвигом. Остальное множество видов напряженно-деформированного состояния принято считать сложным.

Следует различать напряженное состояние в данной точке и то, как напряженное состояние изменяется от точки к точке в пространстве (зависимость напряженного состояния от пространственных координат). Если такая зависимость отсутствует, то такое напряженное состояние является однородным. При этом может быть как простым, так и сложным. Если напряженное состояние в разных точках пространства различно, то напряженное состояние не однородно. Опять же оно может быть простым или сложным.

Описанные в настоящем разделе теоретические выкладки заложены в основу программных комплексов для конечно-элементного анализа, таких как БтиНа АВЛОШ, АШУБ, БГОБЗУЗ и т.д. [101-103]. Подобные программные пакеты позволяют существенно расширить возможности для анализа напряженно-деформированного состояния изделия при нагружении [104, 105].

1.5 Выводы из обзора литературы и постановка задачи исследования

Анализ литературных данных свидетельствует, что резиновые мембраны используются в самых разнообразных сферах человеческой деятельности. Задача их - преобразовать изменение давления газа или жидкости в соответствующее изменение механического усилия, что обеспечивается такими свойствами резин, как прочность, сопротивление раздиру, усталостная выносливость, химическая инертность и др. Существующий подход к проектированию резиновых мембран заключается в разработке рецептуры и проведении лабораторных и эксплуатационных испытаний. Специфика свойств резиновых мембран обусловливает широкий спектр применяемых для их изготовления каучуков и ингредиентов. При этом поиск оптимального состава резин во многом носит случайный характер, т.к. оценка их свойств обычно производится по методикам, характеризующимся про-

стотой режимов нагружения и предполагающим испытание материала в условиях одноосного растяжения. В реальных условиях эксплуатации реализуется сложно-напряженное состояние, при котором отсутствует какое-либо одно преимущественное направление действия внешней силы, процессы перестройки структуры резин протекают иначе, чем в условиях одноосного растяжения, что может привести к существенным различиям результатов лабораторных и эксплуатационных испытаний.

Для большинства резинотехнических изделий, эксплуатационные характеристики которых определяются способностью эластомера противостоять внешним механическим нагрузкам, характерна работа в условиях возникновения местных концентраций напряжения, которые вызываются либо конструктивными не-однородностями изделия, либо поверхностными повреждениями материала, возникшими в процессе эксплуатации (порезы, проколы, трещины сетки старения и т.д.). Для анализа поведения полимерного материала, предназначенного для эксплуатации в подобных условиях, определяют сопротивление раздиру, испытывая образцы, содержащие искусственно созданные концентраторы напряжения. Испытания проводятся на образцах разной формы и с разной глубиной надреза, общими являются условия испытания - одноосное растяжение образцов. При этом сопротивление раздиру во многом обусловлено способностью резины к ориента-ционному упрочнению и тяжеобразованию. В условиях сложнонапряженного состояния ориентационные процессы протекают иначе, чем в условиях одноосного растяжения. Это говорит об ограниченной возможности применения стандартных методов при создании резиновых мембран.

Альтернативой стандартным методам испытания являются специальные методы, позволяющие моделировать работу мембраны при эксплуатации. Однако, универсальных установок для испытания мембран различных типов не существует, т.к. требования к ним в зависимости от назначения могут существенно различаться. Более того, такое оборудование является штучным и, как следствие, дорогостоящим.

Таким образом, существующий подход к созданию резиновых мембран,

нельзя признать конструктивным, поскольку он не взаимоувязывает разработку рецептуры с условиями реальной эксплуатации резин, а кроме того является затратным как с позиций материальных ресурсов, так и с временных позиций.

Исходя из вышеперечисленных аспектов, были выделены следующие основные направления поставленных задач в рамках разработки комплексного рас-четно-экспериментального метода анализа сложнонапряженного состояния резиновых мембран, позволяющего оперативно создавать изделия с заданными характеристиками при минимальных совокупных затратах:

- систематизация данных об особенностях работы, конструкции и причинах выхода из строя резиновых мембран;

- разработка научно-обоснованной методики испытания резин для мембран в сложнонапряженном состоянии;

- теоретический и экспериментальный анализ напряженно-деформированного состояния резиновых мембран;

- исследование влияния рецептурных факторов на физико-механические характеристики резин в статических и динамических условиях нагружения в слож-нонапряженном состоянии;

- исследование особенностей разрушения резин в сложнонапряженном состоянии;

- разработка рецептур и технологии создания резиновых мембран с улучшенными техническими характеристиками.

ГЛАВА 2 ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

2.1 Объекты исследования

В настоящей работе объектами исследования являлись резины на основе каучуков общего и специального назначения. Выбор эластомеров и наполнителей обусловлен, в первую очередь их широким использованием в производстве РТИ. Рецептуры резиновых смесей представленные в таблицах 2.1 - 2.2.

Таблица 2.1 - Рецепты ненаполненных резиновых смесей

Ингредиенты Содержание ингредиентов, мас.ч.

Каучук СКИ-3 100.00 - -

Каучук СКМС-30АРК - 100.00 -

Каучук БНКС-28АМН - - 100.00

Сера 1.20 1.50 1.20

Сульфенамид Ц 1.00 1.20 1.00

Окись цинка 5.00 5.00 5.00

Кислота стеариновая 1.00 1.00 1.00

Итого 108.20 108.70 108.20

Таблица 2.2 - Рецепты наполненных резиновых смесей

Ингредиенты Содержание ингредиентов, мас.ч.

СКИ-3 100 - - -

СКМС-30АРК - 100 - -

БНКС-28АМН - - 100.00 -

скд - - - 100.00

Сера 1.20 1.50 1.20 1.40

Сульфенамид Ц 1.00 1.20 1.00 1.10

Окись цинка 5.00 5.00 5.00 5.00

Кислота стеариновая 1.00 1.00 1.00 1.00

Масло ПН-6 - - - 20

Технический углерод N339 * * * *

Технический углерод N550 * * * *

Мел ** ** ** -

* - Содержание техуглерода N339 и N550 варьировалось от 10 до 50 мас.ч. на 100 мас.ч. каучука с шагом 10 мас.ч; ** - Содержание мела варьировалось от 20 до 80 мас.ч. на 100 мас.ч. каучука с шагом 20 мас.ч.

Изготовление резиновых смесей осуществлялось на лабораторных вальцах типа Лб 320 160/160.

Для изготовления резиновых смесей на основе СКД, склонных к шублению как в мало наполненном, так и высоко наполненном состоянии, был использован ряд технологических приемов: смесь изготавливалась на минимальном зазоре вальцев, с частым подрезанием; в состав смеси дополнительно введен пластификатор - масло ПН-6.

Вулканизация образцов для испытаний проводилась в одноэтажном электрическом вулканизационном прессе ВП 40-250Э при температуре 155 °С.

Продолжительность вулканизации для ненаполненных резиновых смесей на основе СКМС-30АРК составляла 40 мин, для резиновых смесей на основе СКИ-3 и БНКС-28АМН - 20 мин. Для наполненных смесей на основе СКИ-3, СКМС-30АРК, БНКС-28АМН, СКД - 15 мин. Оптимум вулканизации, определялся по физико-механическим показателям при одноосном растяжении.

Все каучуки и ингредиенты, применяемые в смесях, соответствовали государственным стандартам и техническим условиям на эти материалы.

При разработке рецептуры резин для гофрированных мембран автоматического клапана системы продувки рукавных фильтров использованы каучуки БНКС-18АМН и БНКС-40АМН (рецептура представлена в таблице 1 приложения В). При разработке рецептуры резин для плоских силовых мембран прибора для испытания бумаги использован каучук НК и комбинация НК с СКД (рецептура представлена в таблице 1 приложения Д).

2.2 Методы исследования

Для решения поставленных задач использовался комплекс методов, как широко известных, так и специально разработанных.

2.2.1 Определение физико-механических свойств резин при одноосном растяжении

Физико-механические показатели резин определялись в соответствии с общими требованиями к проведению физико-механических испытаний по ГОСТ 269-66 [63], а также согласно действующим стандартам.

2.2.1.1 Определение упруго-прочностных и усталостных свойств резин при одноосном растяжении

Определение упруго-прочностных свойств резин при растяжении проводили по ГОСТ 270 - 75 [63]. Испытания проводились на машине ИТС 8220-10 со скоростью движения нижнего зажима 250 мм/мин.

Определение усталостных свойств резин при растяжении проводили по ГОСТ 26365 - 84 [63]. Испытания проводились на машине МРС-2.

2.2.1.2 Определение сопротивления раздиру при одноосном растяжении

Сопротивление раздиру резин при одноосном растяжении определялось по авторской методике [106]. Выбор метода испытания обусловлен необходимостью проведения испытаний с дозированным надрезом на длинной стороне образца (полоски размером 120 х 15 х 2 мм) глубиной от 0,5 до 6 мм, что не позволяют стандартные методы испытаний.

Для удобства исполнения, нанесение дозированного надреза осуществлялось с помощью устройства, состоящего из основания, подвижного стола для закрепления образца и режущего механизма [106]. Схема устройства представлена на рисунке 2.1.

Образец 5 помещается на подвижный стол 3, подпружиненным прижимным рычагом 7 прижимается к ограничителю 4 и фиксируется шарнирно закрепленными плоскими пружинами 6 и 9. Рукоять 11 поворачивается на 360о (на схеме на

себя) и фиксируется угловым фиксатором 10. При этом ножевой вал 13 так же поворачивается, закручивая спиральную пружину 14. Подвижный стол 3 с помощью микрометрического винта 8 перемещается к режущему устройству на заданное расстояние, после чего отклонением рукояти 11 (на схеме влево) производится спуск режущего устройства. Ножевой вал резко проворачивается и жестко закрепленный на валу плоский нож 15 прорезает кромку образца.

1 - основание; 2, 12 - направляющие; 3 - подвижный стол; 4 - ограничитель; 5 -образец; 6, 9 - плоские пружины; 7 - прижимной рычаг; 8 - микрометрический винт; 10 - угловой фиксатор; 11 - рукоять; 13 - ножевой вал; 14 - спиральная пружина; 15 - плоский нож

Рисунок 2.1 - Схема устройства для нанесения дозированного надреза при испытании резин в условиях одноосного растяжения

Перед началом работы на устройстве устанавливается нулевая точка по контрольному твердому образцу с гладкой поверхностью. Контрольный образец фиксируется на подвижном столе, после чего последний микрометрическим вин-

том двигается к режущему устройству до соприкосновения образца с ножом, лезвие которого при этом устанавливается в горизонтальное положение.

Испытания образцов проводились на машине ИТС 8220-10 со скоростью движения нижнего зажима 100 мм/мин.

Сопротивление раздиру рассчитывалось по формуле:

(2.1)

где: ^ - максимальная разрушающая нагрузка; Ь - начальная толщина образца.

2.2.1.3 Определение усталостных свойств резин при одноосном растяжении в присутствии концентратора напряжений

Испытание резин на многократное растяжение при одноосном нагружении осуществлялось на машине МРС-2. На образцы-полоски с шириной рабочего участка 15 мм и толщиной 2 мм наносился надрез в центральной части образца длиной 2 мм. Для нанесения дефекта применялось специальное устройство, разработанное «Научно-исследовательским институтом шинной промышленности» (рисунок 2.2) [64].

Образец слегка сжимается между двумя горизонтальными планками 1 путем вращения головки 3 стержня 4, имеющего на верхней части левую, а на нижней - правую резьбу, входящую в нарезные отверстия сухарей 8. Каждый из последних наглухо соединен с соответствующей зажимной планкой 1 посредством двух перемычек, скользящих в направляющих шлицах 5 стойки зажима и обеспечивающих горизонтальное положение обеих планок. При вращении стержня, благодаря двойной резьбе на нем, планки перемещаются - одна вверх, а другая вниз, симметрично относительно горизонтальной оси образца, высота которой над столом не меняется. Посредине планок сделаны риски 7 для установки по ним средней линии образца. Стойка зажима имеет небольшое отверстие 6 для прохода иглы при прокалывании образца и упор 2 для обеспечения постоянства глубины прохождения иглы. Зажим фиксируется на столе станка штифтами 10 и крепится болтами 9.

1 - планки; 2 - упор; 3 - головка; 4 - стержень; 5 - шлицы; 6 - отверстие; 7 - риски; 8 - сухари; 9 - болты; 10 - штифты.

Рисунок 2.2 - Приспособление для нанесения центрированного надреза

Показателем сопротивления резин при многократном растяжении является динамическая выносливость N характеризуемая числом циклов деформации до разрушения образца, и определяемая по уравнению:

N = vt, (2.2)

где V - частота деформации, об/мин; t - время до разрушения образца, мин.

2.2.2 Определение физико-механических свойств резин в условиях неоднородного сложнонапряженного состояния

2.2.2.1 Определение упруго-прочностных свойств резин в условиях неоднородного сложнонапряженного состояния

Неоднородное сложнонапряженное состояние реализовывалось методом продавливания резиновой мембраны стальным полированным шарообразным ин-

дентором [87-89]. Для этого использовалась реверсивная приставка к разрывной испытательной машине ИТС 8220-10. Внешний вид испытательного устройства представлен на рисунке 2.3.

а - внешний вид устройства, смонтированного на разрывной машине; б - мембрана в зажимном устройстве; в - внешний вид образца в процессе деформирования

Рисунок 2.3 - Устройство для определения физико-механических свойств резин в

условиях сложнонапряжённого состояния

Образцы для испытания (рисунок 2.4, а) представляли собой круглую мембрану с диаметром рабочего участка 65 мм и толщиной 1±0,1 мм. По периметру образца имеется бурт, предназначенный для фиксации образца в испытательном устройстве. Изготовление образцов осуществлялось методом компрессионного прессования в одноместной пресс-форме (рисунок 2.4, б).

Чертежи устройства для определения физико-механических свойств резин в условиях сложнонапряжённого состояния и пресс-формы для мембран разработаны на кафедре «Химии и технологии переработки полимеров» (современное на-

звание «Химическая технология биологически активных веществ и полимерных композитов») Ярославского государственного технического университета с участием автора диссертации.

Рисунок 2.4 - Образец для определения физико-механических свойств резин в условиях сложнонапряженного состояния (а) и пресс-форма для изготовления мембран (б)

2.2.2.2 Определение сопротивления раздиру в условиях неоднородного сложнонапряжённого состояния

При определении сопротивления раздиру резин в условиях сложнонапряжённого состояния в центре мембраны наносился дозированный надрез длиной от 0,5 до 6 мм. Для нанесения надреза было изготовлено приспособление, состоящее из направляющей матрицы, фиксирующейся на образце по внутреннему диаметру бурта, и пуансона, перемещающегося в центральном отверстии матрицы. В нижней части пуансона выполнена прорезь, в которой с помощью винта фиксируются

лезвия с различной длиной режущей кромки. Схема устройства для нанесения дозированного надреза показана на рисунке 2.5. Нанесение надрезов на мембраны осуществлялось на ручном вырубном прессе.

Сопротивление раздиру резин рассчитывалось по формуле 2.1. Для оценки влияния режима нагружения на сопротивление раздиру резин рассчитывали индекс изменения данного показателя АТзизм\

ду _ Т?сложн

^яизм _ т , (2.3)

^одноосн

где Т5сложн - сопротивление раздиру в сложнонапряженном состоянии; Ттодноосн - сопротивление раздиру при одноосном растяжении.

з

1 - образец; 2 - направляющая матрица; 3 - пуансон; 4 - лезвие; 5 - фиксирующий винт

Рисунок 2.5 - Схема устройства для нанесения дозированного надреза

2.2.2.3 Определение усталостно-прочностных свойств резин в условиях неоднородного сложнонапряженного состояния

Для проведения испытаний на многократное растяжение в условиях слож-нонапряженного состояния с участием автора диссертации была спроектирована и изготовлена приставка к машине МРС-2 (рисунок 2.6) на кафедре «Химии и технологии переработки полимеров» (современное название «Химическая технология биологически активных веществ и полимерных композитов») Ярославского

государственного технического университета.

Для испытания применяются образцы в виде мембран с диаметром рабочего участка 65 мм и толщиной 2±0,2 мм, либо 1±0,2 мм. Дефект наносится на мембрану так же, как и при испытании на сопротивление раздиру при помощи специального устройства (рисунок 2.5).

Рисунок 2.6 - Приставка для испытания резин на многократное растяжение, смонтированная на машине МРС-2

Перед испытанием на машину МРС-2 устанавливается специальная приставка и производится настройка: верхний и нижний элементы приставки центрируются, выставляются строго параллельно друг другу; с помощью кривошипно-шатунного механизма задаётся амплитуда динамической деформации. Обязательно необходимо проверить, чтобы инденторы, закрепленные в верхней траверсе, не касались (при испытании) нижнего элемента приставки, в противном случае это приведет к разрушению установки. Для проверки нужно вручную провернуть маховик. Образцы устанавливают в зажимном устройстве приставки. Затем с помощью маховика верхнюю траверсу опускают до тех пор, пока инденторы не соприкоснутся с поверхностью мембраны. Непосредственно перед началом испытания

поверхность мембраны смазывается силиконовой смазкой, чтобы минимизировать влияние сил трения. Включают электродвигатель и растягивают образцы в динамических условиях до разрушения. При этом фиксируют продолжительность испытания до момента полного разрушения каждого образца.

Перед испытанием определяют удлинение резин при разрыве.

Показателем сопротивления резин многократному растяжению является усталостная выносливость N которая определяется по уравнению (2.2).

Для сравнения резин, испытанных при различной амплитуде динамической деформации, использовался коэффициент усталостной выносливости ¡вЕ, который определялся как коэффициент к линейной функции у=кх+Ъ, построенной по зависимости:

1о8^ = /(1о8(е)), (2.4)

где £ - амплитуда динамической деформации.

2.3 Анализ НДС резин в неоднородном сложнонапряженном состоянии

Анализ НДС резин в сложном напряженно-деформированном состоянии проводили методом конечных элементов [101-103], позволяющем осуществить анализ численным способом с высокой точностью и за короткое время. Для проведения расчета экспериментальные зависимости «напряжение-деформация», полученные при одноосном растяжении, аппроксимировались рядами ортогональных многочленов Лежандра.

1 б71

Рп(х) = ---- (х2 - 1)п (2.5)

Они удовлетворяют рекуррентному соотношению:

2п + 1 п

Рп+1(х) ^—ГТХРп(х)^—ГтРп-1(х). (26)

71+1 71+1

При этом Р0(х) = 1 ,Р±(х) = х.

По уравнению 2.5 были найдены выражения при п от 2 до 9. На основании этих выражений была получена зависимость напряжения от деформации (2.7).

Используя экспериментальные массивы напряжения £ и деформации Хи ме-

тодом наименьших квадратов для каждого испытанного образца вычислялись оценки параметров Ь0, Ь\, Ь2, Ь3, Ь4, Ь5, Ь6, Ь7, Ь8, Ь9. Также были рассчитаны зависимости /(А) с числом параметров от 1 до 9, отвечающим последовательным членам уравнения (2.6).

/63 = 35 , 15 \ /231 , 315 „ 105 , 5\

(т* ~тх +тх)+ь {-16 х ~1бх+ 16 х - Тб)+

/429 , 693 с 315 , 35 \ „ч

/6435 а 3003 Л 3465 „ 315 0 35 \

+Ьо -х8--х6 +-х4--х2 +- +

4 128 32 64 32 128/

/12155 . 6435 _ 9009 _ 1155 _ 315 \

+¿0 (-х--х Н--х--х Н--х ).

Ч 128 32 64 32 128 )'

где х - нормированная деформация, которая связана с кратностью растяжения выражением:

где

_ Хк - Яр ах - 2 ,

Я 0, Я к - начальная и конечная кратность растяжения, соответственно; L0 . . . L9 - оценки параметров полинома Лежандра.

На основании вычисленных коэффициентов полинома Лежандра рассчитывались параметры потенциалов высокоэластичности, применяемые в пакете для конечноэлементного анализа. В работе использовался потенциал Йоха (2.9), представляющий собой разумный компромисс между точностью аппроксимации деформационной кривой и устойчивостью в различных напряжённо -

деформированных состояниях [107, 108].

з з

F = £ Q оЙ-3)i + £ 1 (J е t - 1 ) 2 i (2.9)

¿=i ¿=i 1

где 1± - первый девиаторный инвариант тензора деформации;

/е г - упругая объёмная кратность деформации;

С; 0 - константы, характеризующие свойства материала;

- параметр, характеризующий объемную сжимаемость материала.

Решение задачи о напряжённо-деформированном состоянии резинового образца в виде плоского диска, закреплённого по внешнему периметру и продавливаемого в центре сферическим индентором, осуществлялось методом конечных элементов [105, 109] в осесимметричной постановке. Степень неоднородности напряжённо-деформированного состояния оценивали по величине стандартного отклонения значений главных напряжений в выбранном элементе.

Деформированное состояние при различных значениях коэффициента трения и перемещения индентора оценивали по формуле 1.34.

Напряжённое состояние оценивалось по значению критерия Мизеса [110, 111], которое рассчитывается в программном комплексе для конечноэлементного анализа, а также по инвариантам тензора напряжений 51 и 52:

Б1=Р1 +Р2 + Р3 1123 (2.10) 52 = Р1 Р2 + Р2 Р3 + Р1 Рз ,

где Р; — значения главных напряжений.

Для того чтобы сопоставить прочности в неоднородном сложнонапряжен-ном состоянии и при одноосном растяжении использовалась функция следующего вида:

Р (51,52 ) = а*51+(1^) 52 = С, (2.11)

где экспериментально определяемые коэффициенты;

характеризует условную прочность материала и определяется как:

С = /р * а (2.12)

где /р - условная прочность при одноосном растяжении;

- характеризует относительный вклад первого инварианта (нормальных напряжений) в прочность и определяется как:

а = (/рт12—5-у (2.13)

соответственно, (1-а) характеризует стойкость к напряжениям, связанными с из-

менением формы.

2.4 Экспериментально - статистические методы обработки данных

Для оценки достоверности экспериментальных данных, значимости влияния качественных и количественных факторов, а также для сокращения, где это возможно, объёма исследований при постановке и проведении работы привлекались различные экспериментально-статистические методы. Оценку параметров случайных величин осуществляли в соответствии с известными методиками [112, 113]. Сравнение значимости различия двух средних случайных величин производили с помощью 1-критерия Стьюдента [112]. Оценку значимости влияния качественных и количественных факторов на результаты эксперимента проводили методом дисперсионного анализа [113].

ГЛАВА 3 АНАЛИЗ ПОВЕДЕНИЯ МЕМБРАН ПРИ ИСПЫТАНИИ В СЛОЖНОНАПРЯЖЕННОМ СОСТОЯНИИ

Как показал анализ литературных данных, существующий подход к созданию резиновых мембран, несмотря на кажущуюся простоту объекта исследования, не может считаться конструктивным, т.к. он не рассматривает объект в совокупности элементов, что не позволяет эффективно решать технико-экономические задачи создания изделия.

Конкурентоспособность создаваемого изделия, в том числе мембран, как известно, определяется совокупностью трех факторов:

- качеством, в том числе техническими характеристиками в соответствии с требованиями заказчика;

- стоимостью, в том числе возможностью производства из доступных материалов;

- сроками, в том числе временем от момента начала проектирования до поступления готовой продукции заказчику.

Существующий процесс создания резиновых мембран является материало-емким, т.к. требует проведения большого массива экспериментальных исследований, и не может обеспечить корректность полученных данных, поскольку стандартные лабораторные испытания не отражают сложнонапряженное состояние, характерное для реальных условий эксплуатации резин. Кроме того, процесс требует значительных затрат времени.

Поскольку создание новых изделий с заданными характеристиками в современных реалиях происходит в условиях дефицита времени, а также материальных и финансовых ресурсов, то в соответствии с ГОСТ Р 54869-2011, РМВОК и РКГЫСЕ2 процесс создания резиновых мембран (инженерное творчество) можно рассматривать как проектное решение, т.е. комплекс взаимосвязанных мероприятий, направленный на создание уникального продукта или услуги в условиях временных и ресурсных ограничений [114-116].

Современные принципы построения целостной картины объекта (в иссле-

дуемом случае это проект создания резиновых мембран) должны базироваться на комплексном подходе, обеспечивающем целостность и системность процесса исследования [114]. Из основных аспектов системного подхода в работе рассматривались: системно-функциональный аспект, предполагающий выявление функций, для выполнения которых создана система и системно-ресурсный аспект, заключающийся в выявлении ресурсов, требующихся для решения системой той или иной задачи.

С позиций системного подхода, для целенаправленного создания резиновых мембран, позволяющего оперативно создавать изделия с заданными характеристиками при минимальных совокупных затратах, необходимо осуществить:

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.