Разработка и моделирование алгоритмов сжатия изображений на основе неразделимых преобразований тема диссертации и автореферата по ВАК РФ 05.13.18, кандидат технических наук Наместников, Сергей Михайлович
- Специальность ВАК РФ05.13.18
- Количество страниц 131
Оглавление диссертации кандидат технических наук Наместников, Сергей Михайлович
ВВЕДЕНИЕ.
ГЛАВА 1. АНАЛИЗ МЕТОДОВ СЖАТИЯ ИЗОБРАЖЕНИЙ.
1.1. Постановка задачи.
1.2. Методы сжатия без потерь.
1.2.1. Арифметический алгоритм, коды Шеннона-Фэно и Хаффмена.
1.2.2. Сравнительный анализ статистических методов сжатия.
1.3. Методы дифференциальной импульсной кодовой модуляции и иерархической сеточной интерполяции.
1.3.1. Дифференциальная импульсная кодовая манипуляция.
1.3.2. Метод иерархической сеточной интерполяции.
1.3.3. Сравнительный анализ методов сжатия, основанных на оценивании элементов изображения.
1.4. Применение ортогональных разложений для сжатия изображений.
1.4.1. Преобразование Адамара.
1.4.2. Преобразование Карунена-Лоэва.
1.4.3. Дискретное косинусное преобразование.
1.4.4. Сравнительный анализ методов кодирования с преобразованием.
1.5. Сжатие изображений на основе вейвлет-преобразований.
1.5.1. Базисные вейвлет-функции.
1.5.2. Кратномасштабный анализ.
1.5.3. Преобразование Хаара. Декомпозиция изображения.
1.5.4. Сравнительный анализ вейвлет-преобразований.
1.6. Сравнительный анализ методов сжатия на основе иерархической сеточной интерполяции и вейвлет-преобразования.
1.7. Выводы.
ГЛАВА 2. СЖАТИЕ ИЗОБРАЖЕНИЙ НА ОСНОВЕ МЕТОДА ИЕРАРХИЧЕСКОЙ СЕТОЧНОЙ ИНТЕРПОЛЯЦИИ.
2.1. Постановка задачи.
2.2. Структура сеточного алгоритма сжатия.
2.3. Оптимальное калмановское оценивание в алгоритме иерархической сеточной интерполяции
2.4. Псевдоградиентное оценивание в алгоритме иерархической сеточной интерполяции.
2.5. Сравнительный анализ сеточных методов.
2.6. Выводы.
ГЛАВА 3. СЖАТИЕ ИЗОБРАЖЕНИЙ НА ОСНОВЕ ЛИФТИНГОВОЙ СХЕМЫ.
3.1. Постановка задачи.
3.2. Лифтинговая схема.
3.3. Отличия лифтинговой схемы от сеточного метода.
3.4. Коррекция вейвлет-коэффициентов на основе двумерных интерполирующих фильтров.
3.5. Структура вейвлет-кодера с коррекцией вейвлет-коэффициентов.
3.6. Сравнительный анализ алгоритмов сжатия на основе вейвлет-преобразования и сеточного метода.
3.7. Выводы.
ГЛАВА 4. ОСОБЕННОСТИ ПРОГРАММНОЙ РЕАЛИЗАЦИИ АЛГОРИТМОВ СЖАТИЯ.
4.1. Постановка задачи.
4.2. Особенности программной реализации при сжатии изображений разными методами.
4.3. Особенности работы алгоритмов кодирования на границах изображений.
4.4. Особенности реализации псевдоградиентных алгоритмов оценивания
4.5. Применение предложенных алгоритмов.
4.6. Выводы.
Рекомендованный список диссертаций по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК
Аналитический синтез многомерных неразделимых сигналов и устройств для многоскоростных систем обработки изображений2007 год, доктор технических наук Чобану, Михаил Константинович
Компрессия цифровых изображений на основе векторного квантования и контекстного кодирования в области дискретных преобразований2011 год, кандидат физико-математических наук Коплович, Дмитрий Михайлович
Методы и устройства преобразования и квантования вейвлет-спектров при внутрикадровом сжатии цифровых телевизионных сигналов2012 год, кандидат технических наук Мочалов, Иван Сергеевич
Обработка изображений двумерными нерекурсивными цифровыми фильтрами2010 год, доктор технических наук Приоров, Андрей Леонидович
Методы, алгоритмы и устройства для покадрового кодирования и передачи видеоданных по радиоканалам с низкой пропускной способностью2008 год, кандидат технических наук Плахов, Александр Геннадьевич
Введение диссертации (часть автореферата) на тему «Разработка и моделирование алгоритмов сжатия изображений на основе неразделимых преобразований»
Актуальность темы. В последние годы быстро развиваются системы передачи, обработки и хранения изображений и видеопоследовательностей. Эффективным способом сокращения интенсивности цифрового потока является сжатие передаваемых данных с последующим восстановлением на принимающей стороне. Известные методы сжатия без потерь, как правило, показывают низкую эффективность при работе с изображениями. Поэтому целесообразно применять методы сжатия с потерей информации, которые позволяют достигать более высоких коэффициентов сжатия при сохранении хорошего качества восстановления.
На основе проведенного анализа работ по сжатию изображений можно выделить алгоритмы кодирования, ориентированные на преобразование стационарных и нестационарных сигналов. Для стационарных сигналов наибольшее распространение получил метод сжатия на основе дискретного косинусного преобразования. Он показывает хорошие результаты для кодирования квазипериодических сигналов. Описание нестационарных сигналов целесообразно выполнять с помощью вейвлет-преобразования, позволяющего получить высокие коэффициенты сжатия для сигналов, которые описываются кусочно-полиномиальными функциями. Обобщение методов Фурье и вейвлет-преобразований для обработки двумерных сигналов приводит к известным разделимым преобразованиям. Они обладают выраженной анизотропией, связанной с искусственно введенными координатными осями при построении разделимых алгоритмов кодирования. Однако пространственные свойства большинства реальных изображений изотропны, характерной для разделимых порождающих фильтров. В связи с этим является актуальной задача повышения эффективности кодирования широких классов изображений за счет использования неразделимых алгоритмов.
Цель работы. Целью работы является разработка и моделирование алгоритмов сжатия изображений, обладающих малой вычислительной сложностью и обеспечивающих высокие коэффициенты сжатия за счет применения двумерных неразделимых преобразований. Для достижения названной цели необходимо решить следующие задачи.
1. Провести сравнительный анализ известных алгоритмов кодирования изображений.
2. Разработать алгоритмы сжатия на основе метода иерархической сеточной интерполяции с использованием двумерных неразделимых преобразований как для известных моделей изображений, так и для реальных в условиях априорной неопределенности.
3. Синтезировать улучшенные алгоритмы сжатия на основе вейвлет-преобразований с использованием двумерных неразделимых фильтров, для широких классов реальных квазиизотропных изображений.
4. Провести статистическое моделирование известных и разработанных алгоритмов сжатия. Определить класс изображений, для которых целесообразно применять предложенные алгоритмы, а также изучить особенности их программной реализации.
5. Осуществить программную реализацию предложенных алгоритмов сжатия с возможностью их модификации для различных прикладных задач.
Методы исследования базируются на теории вероятностей, теории случайных процессов и полей, математической статистике. При разработке программного обеспечения применялись численные методы, методы объектно-ориентированного программирования в среде Microsoft Visual С++.
Научная новизна. В диссертации получены следующие новые научные результаты.
1. Предложен сеточный алгоритм на основе адаптивной псевдоградиентной процедуры, обеспечивающий большие на 2-5% коэффициенты сжатия для типовых реальных изображений по сравнению с алгоритмом на основе векторного фильтра Калмана.
2. С помощью статистического моделирования установлено, что для однородных изотропных случайных полей алгоритм сжатия на основе псевдоградиентной процедуры имеет выигрыш 3-8% по величине коэффициентов сжатия по сравнению с алгоритмом на основе фильтра Калмана.
3. Предложен алгоритм сжатия на основе вейвлет-преобразования с коррекцией вейвлет-коэффициентов с помощью двумерного неразделимого фильтра, обеспечивающий большие на 3-7% коэффициенты сжатия для типовых реальных изображений по сравнению с аналогичным вейвлет-кодером без коррекции коэффициентов.
4. Статистическое моделирование алгоритма кодирования на основе вейвлет-преобразования с коррекцией вейвлет-коэффициентов показало, что наибольший выигрыш 5-10% коэффициентов сжатия по сравнению с алгоритмами JPEG и JPEG2000 достигается для однородных изотропных случайных полей.
5. Проведенное исследование сеточного алгоритма на основе псевдоградиентной процедуры показало проигрыш 2-3% коэффициентов сжатия для имитированных случайных полей с известными разделимыми экспоненциальными корреляционными функциями по сравнению с алгоритмом на основе фильтра Калмана.
Практическая значимость. Представлено конкретное описание двух классов алгоритмов сжатия изображений, допускающее их непосредственное использование при проектировании современных и перспективных систем передачи и обработки изображений. Структура разработанных алгоритмов сжатия изображений предоставляет разработчикам возможность эффективной программно-аппаратной реализации на различных типах вычислительных систем. Предложенные способы кодирования изображений могут быть использованы в системах хранения больших объемов графической информации, где нет сильных ограничений на скорость сжатия. Результаты диссертационной работы внедрены в учебный процесс.
Апробация работы. Основные положения диссертационной работы докладывались и обсуждались на следующих НТК:
• Ш-1У Всероссийские научно-практические конференции «Современные проблемы создания и эксплуатации радиотехнических систем» (Ульяновск, 2001 г., 2004 г.);
• Международная научно-техническая конференция «Телевидение: передача и обработка изображений» (Санкт-Петербург, 2002, 2003 гг.);
• ЬУИ- ЬУШ научные сессии, посвященные Дню радио (Москва, 2002, 2003 гг.);
• У1-УН Международная конференция «Распознавание образов и анализ изображений» (В. Новгород, 2002 г.; С. Петербург, 2004 г.);
• У-У1 Международные конференции и выставки «Цифровая обработка сигналов и ее применение» (Москва, 2003, 2004 гг.);
• ежегодные конференции профессорско-преподавательского состава Ульяновского государственного технического университета (2001-2004 гг.).
Содержание работы. В первой главе представлен анализ известных работ в области сжатия изображений. Описаны алгоритмы сжатия без потерь и с потерей информации. Представлены сравнительные характеристики сжатия разных классов алгоритмов для четырех тестовых изображений. Рассмотрены классические методы кодирования сигналов на основе преобразований Фурье, Карунена-Лоэва, Адамара. Приведены результаты сжатия тестовых изображений на основе данных преобразований. Описаны алгоритмы кодирования ДИКМ и иерархической сеточной интерполяции, основанные на оценивании неизвестных элементов изображения. Большое внимание уделено методу кодирования на основе вейвлет-преобразования. Рассмотрено ортогональное вейвлет-преобразование Хаара и биортогональное вейвлет-преобразование, используемое в стандарте сжатия Л5ЕС2000. Представлены сравнительные характеристики сжатия разных вейвлет-преобразований.
Вторая глава посвящена разработке и исследованию алгоритмов иерархической сеточной интерполяции с разными операторами оценивания элементов изображения. Приведено описание сеточного алгоритма для случайных полей, заданных авторегрессионными уравнениями первого порядка на основе оптимального фильтра Калмана. Описан алгоритм кодирования на основе процедуры псевдоградиентного оценивания для изображений с неизвестными статистическими характеристиками. Представлены сравнительные характеристики предложенных алгоритмов.
В третьей главе представлен алгоритм сжатия на основе вейвлет-преобразования с коррекцией вейвлет-коэффициентов двумерными неразделимыми фильтрами. Описаны основные отличия алгоритмов сжатия на основе вейвлет-преобразования и сеточного метода. Представлены сравнительные характеристики вейвлет-преобразования с сеточным методом.
Четвертая глава посвящена вопросам практической реализации предложенных алгоритмов сжатия. Приведено описание разработнных соискателем программных пакетов для алгоритмов на основе вейвлет-преобразования и иерархической сеточной интерполяции. Рассмотрены алгоритмы обработки границ изображений при разных методах сжатия. Описаны особенности реализации псевдоградиентных процедур. Приведены результаты обработки имитированных и реальных изображений описанными алгоритмами кодирования.
Похожие диссертационные работы по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК
Сжатие полутоновых изображений на основе контурных кодирования и интерполяции и дискретного вейвлет-преобразования2009 год, кандидат технических наук Самохвалов, Антон Витальевич
Инструментальные средства сжатия полутоновых изображений на основе адаптивного и многоступенчатого решетчатого векторного квантования2009 год, кандидат технических наук Петров, Александр Васильевич
Сжатие сигналов и изображений при помощи оптимизированных вейвлет-фильтров2006 год, кандидат технических наук Кобелев, Владимир Юрьевич
Разработка алгоритмов стабилизации и компрессии изображений для систем видеонаблюдения мобильных робототехнических комплексов2008 год, кандидат физико-математических наук Коплович, Евгения Александровна
Разработка и исследование методов и алгоритмов устранения избыточности видеопоследовательностей на основе сегментации видеоданных2013 год, кандидат технических наук Рубина, Ирина Семеновна
Заключение диссертации по теме «Математическое моделирование, численные методы и комплексы программ», Наместников, Сергей Михайлович
Основные результаты диссертационной работы состоят в следующем.
1. Анализ алгоритмов сжатия с частичной потерей информации показал, что по качеству восстановления, величине коэффициентов сжатия и вычислительной сложности лидируют методы кодирования на основе иерархической сеточной интерполяции и вейвлет-преобразований, которые могут быть положены в основу новых алгоритмов сжатия.
2. Предложен сеточный алгоритм на основе адаптивной псевдоградиентной процедуры, обеспечивающий большие на 2-5% коэффициенты сжатия для типовых реальных изображений по сравнению с алгоритмом на основе фильтра Калмана.
3. С помощью статистического моделирования установлено, что для однородных изотропных случайных полей алгоритм сжатия на основе псевдоградиентной процедуры имеет выигрыш 3-8% по величине коэффициентов сжатия по сравнению с алгоритмом на основе фильтра Калмана.
4. Проведенное исследование сеточного алгоритма на основе псевдоградиентной процедуры показывает проигрыш 2-3% коэффициентов сжатия для имитированных случайных полей с известными разделимыми экспоненциальными корреляционными функциями по сравнению с алгоритмом на основе фильтра Калмана.
5. Предложен алгоритм кодирования на основе вейвлет-преобразования с коррекцией вейвлет-коэффициентов на основе двумерных неразделимых фильтров, обеспечивающий большие на 3-7% коэффициенты сжатия для типовых реальных изображений по сравнению с соответствующим вейвлет-кодером без коррекции вейвлет-коэффициентов.
6. Проведенные исследования алгоритма сжатия на основе вейвлет-преобразования с коррекцией вейвлет-коэффициентов показали, что для изотропных однородных случайных полей коэффициенты сжатия на 2-3% выше, чем для неоднородных анизотропных случайных полей при равных потерях.
7. Предложенный алгоритм сжатия на основе иерархической сеточной интерполяции обеспечивает большие коэффициенты сжатия на 10-20% по критерию минимума максимальной ошибки по сравнению с вейвлет-кодером. При квадратической функции потерь большие коэффициенты сжатия на 5-10% позволяет достичь алгоритм кодирования на основе вейвлет-преобразования по сравнению с алгоритмом на основе иерархической сеточной интерполяции.
8. Разработанный пакет программ позволяет сжимать изображения при разных интервалах квантования, мерах потерь, способах оценивания элементов и других параметрах. Реализованные программные пакеты в среде Ма1;ЬаЬ имеют простую структуру и могут быть изменены для решения различных прикладных задач.
ЗАКЛЮЧЕНИЕ
Список литературы диссертационного исследования кандидат технических наук Наместников, Сергей Михайлович, 2004 год
1. Адаптивные фильтры: Пер. с англ./Под ред. К. Ф. Н. Коуэна и П.М. Гранта. М.: Мир, 1988. - 392 с.
2. Акимов П.С., Бакут П.А., Богданович В.А. и др. Теория обнаружения сигналов / Под ред. П.А. Бакута.-М.: Радио и связь, 1984.-440 с.
3. Астафьева Н.М. Вейвлет-анализ: основы теории и примеры применения. www.autex.spb.ru.
4. Ахмед Н., Pao K.P. Ортогональные преобразования при обработке цифровых сигналов: Пер. с англ./Под ред. И.Б. Фоменко.-М.: Связь, 1980.-248 с, ил.
5. Балакришнан A.B. Теория фильтрации Калмана: Пер. с англ. М.: Мир, 1988,- 168 с.
6. Бердышев В.И., Петрак JT.B. Аппроксимация функций. Сжатие численной информации. Приложения. Екатеринбург, изд-во «Мир», 1999, с. 127-150.
7. Бокс Дж., Дженкинс Г. Анализ временных рядов: Пер. с англ. // Под ред. В.Ф. Писаренко. М.: Мир, 1974, кн. 1. - 406 с.
8. Браиловский И.В. Эффективное сжатие картографических "изображений без потерь качества. // Труды 6-й международной конференции РОАИ-6-2002, В. Новгород 2002, т.1, с. 85-86.
9. Ю.Быков В.В. Цифровое моделирование в статистической радиотехнике. -М.: "Советское радио", 1971.- 328 с.
10. П.Быков P.E. Системы учебного телевидения. М.: Радио и связь, 1984. -248 с.
11. Быков P.E., Гуревич С.Б. Анализ и обработка цветных и объемных изображений. М.: Радио и связь, 1984. - 248 с.
12. И.Быков P.E. Теоретические основы телевидения / Учеб. для ВУЗов. -СПб.: Лань, 1998.-288 с.
13. Васильев К.К. Крашенинников В.Р. Методы фильтрации многомерных случайных полей. Саратов: Изд-во Сарат. ун-та, 1990. - 128 с.
14. Васильев К.К., Наместников С.М. Квантование ошибок оценивания случайного поля // Материалы международной конференции «Телевидение: передача и обработка изображений» (Санкт-Петербург, 21-22 мая 2002), с. 23-24.
15. Васильев К.К., Наместников С.М. Применение фильтра Калмана для кодирования изображений // LVII научная сессия, посвященная Дню радио. М., 2002, Т.2, с. 137-139.
16. Васильев К.К., Наместников С.М. Анализ методов сжатия изображений при разных критериях оценки качества восстановленного изображения. Труды IX международной научно-технической конференции «Радиолокация, навигация, связь», Воронеж, 2003, с. 1060-1067.
17. Васильев К. К., Наместников С. М. Отличия сеточного метода сжатия от вейвлет-преобразования. Труды МНТК «Телевидение: передача и обработка изображений», - СПб: МОРФ, 2003, с. 148-151.
18. Васин Ю.Г., Бакараева В.П. Рекуррентные алгоритмы адаптивного сжатия с использованием хорошо приспособленных локальных восстанавливающих функций. //Математическое обеспечение САПР: Межвуз.сб. Горький: ГТУ, 1978, вып.1.
19. Васин Ю.Г. Хорошо приспособленные локальные однородные методы обработки графической информации. //Автоматизация обработки сложной графической информации: Межвуз.сб. Горький: ГГУ, 1984, с. 18-21.
20. Ваеюков В.Н. Квазиоптимальный алгоритм двумерной фильтрации // Методы статистической обработки изображений и полей. Новосибирск, 1984. с. 14-18.
21. Ватолин Д.С. Алгоритмы сжатия изображений www.useic.ru\~dv\ fractal\index.htm.
22. Ватолин Д.С. Фрактальное сжатие изображений www.arctest.narod.ru\ descript\fract-comp. htm.
23. Вентцель Е.С. Теория вероятностей: Учеб. для вузов. М.: Высш. шк., 1999.-576 с.
24. Воробьев В.И., Грибунин В.Г. Теория и практика вейвлет-преобразования. СПб.: ВУС, 1999. - 204 с.
25. Ганин A.A. Обратное вейвлет преобразование шума квантования. Труды 5-й Международной конференции «Цифровая обработка сигналов и ее применение». М., 2003, Т.1, с. 290-293.
26. Гантмахер Ф.Р. Теория матриц. -М.: Наука, 1968. 458 с.
27. Гашников М.В., Глумов Н.И., Сергеев В.В. Информационная технология компрессии изображений для систем реального времени. // Труды 6-й международной конференции РОАИ-6-2002, В. Новгород, 2002, т.1, с. 138142.
28. Гинзбург В.М. Формирование и обработка изображений в реальном времени. М.: Радио и связь, 1986 - 232 с.
29. Гуляев Ю.В., Кравченко В.Ф., Смирнов Д.В. Новый класс вейвлетов на основе атомарных функций. Труды 5-й Международной конференции «Цифровая обработка сигналов и ее применение». М., 2003, Т.1, с. 6-7.
30. Даджион Д., Мерсеро Р. Цифровая обработка многомерных сигналов: Пер. с англ. М.: Мир, 1998. - 488 с.
31. Дворкович A.B., Быстрое C.B. Методика контроля при сжатии динамических изображений. Труды 5-й Международной конференции «Цифровая обработка сигналов и ее применение». М., 2003, Т.2, с. 429-430.
32. Дворкович A.B., Мингазов И.Д. Особенности программной реалиации цифрового телевизионного кодера MPEG2. Труды 5-й Международной конференции «Цифровая обработка сигналов и ее применение». М., 2003, Т.2, с. 431-432.
33. Добеши И. Десять лекций по вейвлетам. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. - 464 с.
34. Дьяконов В.П. Вейвлеты. От теории к практике. M.: COJIOH-P, 2002. -448 с.
35. Карлин С. Основы теории случайных процессов. М.: Мир, 1971. -536 с.
36. Кловский Д.Д., Сойфер В.А. Обработка пространственно-временных сигналов (в каналах передачи информации). М.: Связь, 1976. - 208 с.
37. Кравченко В.Ф., Рвачев В.A. "Wavelet" системы и их применение в обработке сигналов. Зарубежная радиоэлектроника, 1996, №4, с. 3-20.
38. Красильников H.H. Теория передачи и восприятия изображений. М.: Радио и связь, 1986. - 246 с.
39. Краткий курс высшей математики: Учеб. пособие для вузов / Б.П. Демидович, В.А. Кудрявцев. М.: Изд-во Астрель; Изд-во ACT, 2001. - 656 с.
40. Лебедев Д.С., Цуккерман И.И. Телевидение и теория информации, М.: Энергия, 1965. 218 с.
41. Левин Б.Р. Теоретические основы статистической радиотехники.-3-е изд., перераб. и доп.-М.: Радио и связь, 1989.-656 с.
42. Левит А.Б. Введение в общую теорию телевидения. М.: Советское радио, 1967. 116 с.
43. Малоземов В.Н., Певный А.Б., Третьяков A.A. Быстрое вейвлетное преобразование дискретных периодических сигналов и изображений. Проблемы передачи информации, 1998, т.34, вып. 2, с. 77-85.
44. Методы компьютерной обработки изображений / Под ред. В.А. Сойфера. М.: Физматлит, 2001. - 784 с.
45. Методы передачи изображений. Сокращение избыточности/У.К. Прэтт, Д.Д. Сакрисон, Х.Г.Д. Мусманн и др. Под ред. У.К. Прэтта: Пер. с англ.-М.: Радио и связь, 1983.-264 с.
46. Наместников С.М. Анализ методов кодирования изображений // Современные проблемы создания и эксплуатации радиотехнических систем: Труды третьей всероссийской научно-практической конференции (с участием стран СНГ). Ульяновск, 2001, с. 140-142.
47. Наместников С.М. Преобразование изображения с помощью процедуры адаптивной декорреляции. Вестник УлГТУ, № 4, 2001, с. 7-10.
48. Наместников С.М. Кодирование стационарных изображений сеточным методом с полиномиальным оцениванием // Труды 6-й Международной конференции РОАИ-6-2002, В. Новгород, 2002, т.2, с. 401-404.
49. Наместников С.М. Определение значимых ошибок оценивания при сеточном подходе к кодированию изображений. Труды 5-й Международной конференции «Цифровая обработка сигналов и ее применение». М., 2003, Т.2, с. 446-448.
50. Наместников С.М. Сравнительный анализ методов сжатия изображений с помощью вейвлет-преобразования и сеточного метода. // LVIII научная сессия, посвященная Дню радио. М., 2003, Т.1, с. 236-237.
51. Наместников С.М. Сжатие изображений на основе лифтинговой схемы с коррекцией вейвлет-коэффициентов. Труды 6-й Международной конференции «Цифровая обработка сигналов и ее применение». М., 2004, с. 153-158.
52. Невельсон М.Б., Хасьминский Р.З. Стохастическая аппроксимация и рекуррентное оценивание. М.: Наука, 1972.-304 с.
53. Основы теории обработки изображений: Учеб. Пособие / Крашенинников В.Р. Ульяновск: УлГТУ, 2003. - 152 с.
54. Победря Б.Е. Лекции по тензороному анализу. М. Изд-во МИР, 1986. - 264 с.
55. Поликар Р. Введение в вейвлет преобразование. Пер. с англ./ Под ред. Грибунина В.Г. www.autex.spb.ru.
56. Полонников Р.И., Костюк В.И., Краскевич В.Е. Матричные методы обработки сигналов. Киев: Техника, 1978. 327 с.
57. Поляк Б.Т., Цыпкин Я.З. Псевдоградиентные алгоритмы адаптации и обучения // Автоматика и телемеханика. 1973. №3, с. 45-68.
58. Попов О.В. Анализ авторегрессионных моделей случайных полей с кратными корнями // Труды Ульяновского научного центра «Ноосферные знания и технологии» Российской академии естественных наук. Ульяновск: УНЦ РАЕН, 1999, т.2, вып. 1, с. 122-128.
59. Приоров A.JI. Двумерные цифровые сигналы и системы: Учеб. Пособие. Ярославль, 2000. 168 с.
60. Прэтт У., Кэйн Д., Эндрюс X. Кодирование изображений посредством преобразования Адамара // ТИИЭР. 1969. - Т.57. - №1. - С. 66-77.
61. Прэтт У. Цифровая обработка изображений: Пер. с англ.-М.: Мир, 1982. -Кн.1 -312 с.
62. Прэтт У. Цифровая обработка изображений: Пер. с англ.-М.: Мир, 1982. Кн.2 - 480 с.
63. Рабинер Л., Гоулд Б.Теория и применение цифровой обработки сигналов Пер. с англ./ Под ред. Ю.Н. Александрова, М.: Мир, 1978. 848 с.
64. Радченко Ю.С. Алгоритмы сжатия, обработки и восстановления изменяющихся изображений при полиномиальных преобразованиях. Труды 5-й
65. Международной конференции «Цифровая обработка сигналов и ее применение». М., 2003, Т.2, с. 451-454.
66. Репин В.Г., Тарковский Г.П. Статистический анализ при априорной неопределенности и адаптация информационных систем.-М.: Советское радио, 1977.-432 с.
67. Романовский И.В. Дискретный анализ. Учебное пособие для студентов, специализирующихся по прикладной математике и информатике. — Издание 2-е, исправленное. СПб.: Невский диалект, 2000 г. - 240 с.
68. Садыхов Р.Х., Чеголин П.М., Шмерко В.П. Методы и средства обработки сигналов в дискретных базисах.-Мн.: Наука и техника, 1987.-296 с.
69. Сармин А. Идея арифметического кодирования www.arctest.narod.ru\ descript\arithm.htm.
70. Сармин А. Метод Хаффмана и родственные методы www.arctest.narod.ru\descript\huffmans.htm.
71. Сейдж Э., Меле Дж. Теория оценивания и ее применение в связи и управлении. Пер. с англ. Под ред. Проф. Б.Р. Левина. М., Связь, 1976. 496 с.
72. Соколов Н.В. Введение в теорию многомерных матриц. — Киев: Наукова думка, 1972. 176 с.
73. Спектор A.A. Многомерные дискретные марковские поля и их фильтрация при наличии некоррелированного шума // Радиотехника и электроника. 1985, Т.30, №5, с. 965-972.
74. Спектор A.A. Рекуррентная фильтрация дискретных гауссовских полей при действии гауссовских помех // Тез. докл. II Всесоюзного семинара секции «Теория информации» ЦП ВНТО РЭС им. A.C. Попова -4.1, Ульяновск : УлПИ, 1989, с. 61-62.
75. Степнова Е.В., Рычков А.Н. Оптимальный алгоритм сжатия цветных изображений методом SPIHT. Труды 5-й Международной конференции «Цифровая обработка сигналов и ее применение». М., 2003, Т.1, с. 302-304.
76. Стохастическая аппроксимация и рекурентное оценивание М.Б. Невельсон, Р.З. Хасьминский. Главная редакция физико-математической литературы изд-ва "Наука", 1972. 327 с.
77. Сундучков А. Фракталы и синтез изображений softlab.od.ua/algo/dsp/ frsynt/6n96y 1 a.htm.
78. Телевидение: Учеб. пособие для вузов/Р.Е. Быков, В.М. Сигалов, Г.А. Эйссенгардт; Под ред. P.E. Быкова. Изд-во Радио и связь, 1982. 212 с.
79. Ташлинский А.Г. Оценивание параметров пространственных деформаций последовательностей изображений / Ульяновский государственный технический университет. Ульяновск: УлГТУ, 2000.-131 с.
80. Тихонов В.И. Статистическая радиотехника. М.: Радио и связь, 1982. -624 с.
81. Трахтман A.M., Трахтман В.А. Основы теории дискретных сигналов на конечных интервалах. М., Сов. радио, 1975. 208 с.
82. Уидроу Б., Стирнз С. Адаптивная обработка сигналов: Пер. с англ. М.: Радио и связь, 1989. - 440 с.
83. Френкс JI. Теория сигналов. Нью-Джерси, 1969 г. Пер. с англ. / Под ред. Д.Е. Вакмана. М., Сов. радио, 1974. 344 с.
84. Хабиби А. Двумерная байесовская оценка изображений // ТИИЭР, 1972, Т.60, №7, с. 153-159.
85. Харатишвили H.H. Пирамидальное кодирование. М.: Мысль, 1997. -342 с.
86. Цифровое кодирование телевизионных изображений/И.И. Цуккерман, Б.М. Кац, Д.С. Лебедев и др.; Под ред. И.И. Цуккермана.-М.: Радио и связь, 1981.-240 с.
87. ЮО.Цифровое телевидение/Под ред. М.И. Кривошеева.-М.: Связь, 1980.264 с.
88. Цуккерман И.И. Проблемы современного телевидения: М.: Знание, 1980.-64 с.
89. Цыпкин Я.3. Адаптация и обучение в автоматических системах, М., "Наука", 1968. 400 с.
90. ЮЗ.Цыпкин Я.З. Информационная теория идентификации. М.: Наука. Физматлит, 1995.-336с.
91. Чуи Ч. Введение в вейвлеты: Пер. с англ. Мир, 2001. - 412 с.
92. Чукин Ю.В. Стуктуры данных для представления изображений. //Зарубежная радиоэлектроника, 1983, №8, с. 32-40.
93. Юб.Ширяев А.Н. Статистический последовательный анализ. М.: Наука, 1976,272 с.
94. Ярославский Л.П. Введение в цифровую обработку изображений. М., 1979.-312 с.
95. Ahmed M.S., Tahboub К.К. Recursive Wiener Filtering for Image Restoration // IEEE Trans., Vol. 34, 1986, pp. 990-993.
96. Ahmed N., Natarajan Т., Rao K.R. On image processing and a discrete cosine transform // IEEE Trans. Computers, №1, 1974, pp. 90-93.
97. O.Andrews H.C., Pratt W.K. Transform image coding // Proc. Computer processing in communications. New York: Polytechnic Press, 1969, pp. 63-84.
98. Beaumont J.M. Image data compression using fractal techniques // ВТ Technological Journal, №4, 1991, pp. 92-109.
99. Besag J. On the statistical analysis of dirty pictures. J Royal Statistical Soc., Serie B, Vol. 48, No 3, 1986, pp. 259-302.
100. Beylkin G., Coifman R., Daubechies I., Mallat S., Meyer Y., (eds.), Wavelets and Their Applications, Jones and Bartlett, Cambridge, MA, 1992. 234 p.
101. Buhman J., KUnel H. Vector quantization with complexity costs // IEEE Trans, on Information Theory, V.39, №4, 1993, pp. l'133-l 145.
102. Claypoole R., Sweldens W. Nonlinear Wavelet Transforms for Image Coding via Lifting, http://cm.bell-labs.com/who/wim/papers/nonlinear.pdf.
103. Claypoole R., Sweldens W. Nonlinear Wavelet Transforms for Image Coding, http://cm.bell-labs.com/who/wim/papers/asil97.pdf.
104. Coifman R. R., Jones P. W., and Semmes S. Two elementary proofs of the L2 boundedness of Cauchy integrals on Lipschitz curves. J. Amer. Math. Soc, 1989, pp. 553-564.
105. Cosman P.C. et al. Using vector quantization for image processing // Proc. IEEE, V.81, №9, 1993, pp. 1326-1341.
106. Daubechies I., Jaffard S., A simple Wilson orthonormal basis with exponential decay, SIAM J. Math. Anal, 1991, pp. 554-572.
107. Dikshit S.S. A Recursive Kalman Window Approach to Image Restoration // IEEE Trans., Vol. Com, 1984, pp. 125-139.
108. Fractal image compression: theory and application./ Ed.: Y.Fisher. New York, XVIII, 1995.-341 p.
109. Habibi A., Wintz P.A. Image coding by linear transformation and block quantization // IEEE Trans. Commun. Tech, №1, 1971, pp. 50-63.
110. Huang C.-M., Harris R.W. A comparison of several vector quantization code book generation approaches // IEEE Trans. Image Proc, V.2, №1, 1993, pp. 108-112.
111. Jaquin A.E. Image coding based on a fractal theory of iterated contractive image transformations // IEEE Trans. Image Proc, V.l, №1, 1992, pp. 18-30.
112. Jawerth B., Sweldens W. Biorthogonal Smooth Local Trigonometric Bases. http://cm.bell-labs.com/who/wim/papers/trigon.pdf.
113. Kim E.H., Modestino J.W. Adaptive entropy coded subband coding of images // IEEE Trans. Image Proc, V.l, №1, 1992, pp. 31-48.
114. Kovacevic J., Sweldens W. Wavelet Families of Increasing Order in Arbitrary Dimensions, http://cm.bell-labs.com/who/wim/papers/mdlift.pdf.
115. Meyer Y., Wavelets, Vibratibns and Scalings, Amer. Math. Soc., Providence, RI, 1997. 432 p.
116. Nanda S., Pearlman W.A. Tree coding of image subbands // IEEE Trans. Image Proc, V.l, №2, 1992, pp. 133-147.
117. Namestnikov S.M. Coding Stationary Images by the Grid Method with Polynomial Estimation.//Pattern Recognition and Image Analysis, Vol. 13, № 1, 2003, pp. 152-154.
118. Pratt W.K., Andrews H.C. Application of Fourier-Hadamard transformation to bandwidth compression // Picture bandwidth compression / Ed.: Huang T.S., Tretiak O.J. New York: Gordong and Breach, 1972, pp. 515-554.
119. Pratt W.K., Chen W.H., Welch L.R. Slant transform image coding // IEEE Trans. Commun, V. COM, 1974, pp. 1075-1093.
120. Rao K.R., Narasimhan M.A., Revuluri K. Image data processing by Hadamard-Haar transform // IEEE Trans. Computers, №9, 1975, pp. 888-896.
121. Shapiro J. M. Embedded image coding using zerotrees of wavelet coecients. IEEE Trans. Signal Process, 1993. 237 p.
122. Sweldens W. A New Class of Unbalanced Haar Wavelets that from an Unconditional Basis for Lp on General Measure Spaces, http://cm.bell-labs.com/who/wim/papers/ghaar.pdf.
123. Sweldens W. Building Your Own Wavelets at Home, http://cm.bell-labs.com/who/wim/papers/athome.pdf.
124. Sweldens W. The Lifting Scheme: a Construction of Second Generation Wavelets, http://cm.bell-labs.com/who/wim/papers/lift2.pdf.
125. Sweldens W. The Lifting Scheme: a Custom-Design Construction of Biorthogonal Wavelets, http://cm.bell-labs.com/who/wim/papers/liftl.pdf.
126. Sweldens W. The Lifting Scheme: A New Philosophy in Biorthogonal Wavelet Constructions, http://cm.bell-labs.com/who/wim/papers/spie95.pdf.
127. Sweldens W. Wavelets and the Lifting Scheme: A 5 Minute Tour. http://cm.bell-labs.com/who/wim/papers/iciam95.pdf.
128. Sweldens W., Zorin D. Interpolating Subdivision for Meshes with Arbitrary Topology, http://cm.bell-labs.com/who/wim/papers/sig96.pdf.
129. Tan K.H., Ghanbari M. Layered image coding using the DCT pyramid // IEEE Trans. Image Proc, V.4, №4, 1995, pp. 512-516.
130. Taubman D., Zakhor A. Orientation adaptive subband coding of images // IEEE Trans. Image Proc, V.3, №4, 1994, pp. 421-437.
131. Woods J.W. Subband image coding of images // IEEE Trans, on ASSP, V.34, №5, 1986, pp.1278-1288.
132. Woods J.W. Two-dimensional Kalman filtering //Topics in Applied Physics, Berlin, v.42, 1981, pp.155-208.
133. Woods J.W., Huang T.S. Picture bandwidth compression by linear transformation and block quantization // Picture bandwidth compression / Ed.: Huang T.S., Tretiak O.J. New York: Gordong and Breach, 1972, pp. 555-573.
134. Zorin D. Introduction to Wavelets II http://www.cs.washington.edu/research/graphics/projects/wavelets/article/.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.