Повышение стойкости быстрорежущего инструмента за счет вакуумно-плазменной поверхностной обработки тема диссертации и автореферата по ВАК РФ 05.03.01, кандидат технических наук Волосова, Марина Александровна

  • Волосова, Марина Александровна
  • кандидат технических науккандидат технических наук
  • 2003, Москва
  • Специальность ВАК РФ05.03.01
  • Количество страниц 137
Волосова, Марина Александровна. Повышение стойкости быстрорежущего инструмента за счет вакуумно-плазменной поверхностной обработки: дис. кандидат технических наук: 05.03.01 - Технологии и оборудование механической и физико-технической обработки. Москва. 2003. 137 с.

Оглавление диссертации кандидат технических наук Волосова, Марина Александровна

ВВЕДЕНИЕ.

1. АНАЛИЗ СОВРЕМЕННОГО СОСТОЯНИЯ ПРОБЛЕМЫ. ПОСТАНОВКА ЦЕЛИ И ЗАДАЧ ИССЛЕДОВАНИЙ.

1.1. Механизм изнашивания инструмента из быстрорежущих сталей и основные причины его отказа.

1.2. Повышение работоспособности быстрорежущего инструмента методами поверхностной модифицирующей обработки и нанесением износостойких покрытий.

1.3. Анализ данных литературного обзора. Постановка цели и задач исследований.

2. МЕТОДИКА ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ.

2.1. Методика определения режущих свойств инструмента.

2.1.1. Обрабатываемые материалы.

2.1.2. Станки и приспособления.

2.1.3. Режущий инструмент.

2.1.4. Методика стойкостных испытаний.

2.2. Методика вакуумно-плазменной поверхностной обработки инструмента.

2.3. Методика металлографических и металлофизических исследований.

3. ИССЛЕДОВАНИЕ ЗАКОНОМЕРНОСТЕЙ ФОРМИРОВАНИЯ И СВОЙСТВ ИЗНОСОСТОЙКОГО СЛОЯ ПРИ ОБРАБОТКЕ ИНСТРУМЕНТА В ПЛАЗМЕ ВАКУУМНО-ДУГОВОГО РАЗРЯДА.

3.1. Физические принципы и особенности двухступенчатого вакуумно-дугового разряда.

3.2. Формирование азотированного слоя при обработке инструмента в плазме двухступенчатого вакуумно-дугового разряда.

3.2.1. Исследование влияния состава азотосодержащей атмосферы на структуру азотированного слоя быстрорежущей стали.

3.2.2. Исследование влияния технологических режимов на микротвердость и глубину азотированного слоя быстрорежущей стали.

3.3. Оптимизация процесса комбинированной вакуумно-плазменной обработки быстрорежущего инструмента.

4. ИССЛЕДОВАНИЕ КИНЕТИКИ ИЗНАШИВАНИЯ ИНСТРУМЕНТА ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ С ВАКУУМНО-ПЛАЗМЕННОЙ ОБРАБОТКОЙ.

5. ОПТИМИЗАЦИЯ РЕЖИМОВ РЕЗАНИЯ БЫСТРОРЕЖУЩИМ ИНСТРУМЕНТОМ С ВАКУУМНО-ПЛАЗМЕННОЙ ПОВЕРХНОСТНОЙ ОБРАБОТКОЙ И ОЦЕНКА ЕГО ЭФФЕКТИВНОСТИ.

5.1. Критерии эффективности процесса резания инструментом с вакуумно-плазменной обработкой.

5.2. Выбор вида математической модели для описания процесса резания.

5.3. Построение математических моделей процессов точения и фрезерования быстрорежущим инструментом с вакуумно-плазменной обработкой.

5.4. Определение оптимального режима эксплуатации инструмента с вакуумно-плазменной обработкой.

5.5. Эффективность, достигаемая в результате применения инструмента с вакуумно-плазменной поверхностной обработкой.

Рекомендованный список диссертаций по специальности «Технологии и оборудование механической и физико-технической обработки», 05.03.01 шифр ВАК

Введение диссертации (часть автореферата) на тему «Повышение стойкости быстрорежущего инструмента за счет вакуумно-плазменной поверхностной обработки»

Анализ перспектив развития металлообрабатывающего производства показывает, что обработка резанием остается наиболее предпочтительной для окончательного формирования размеров деталей, несмотря на значительный прогресс в развитии таких альтернативных методов, как точное литье, штамповка и электрофизическая обработка. Такая тенденция обусловлена возрастающими требованиями к точности размеров и качеству обработанных деталей, что в свою очередь, предопределяет совершенствование технологии обработки резанием в направлении интенсификации скорости резания и снижения снимаемого припуска.

В настоящее время развитие металлообрабатывающего производства связано как с созданием нового, так и с совершенствованием имеющегося станочного оборудования, режущего и вспомогательного инструментов.

Режущий инструмент является особым объектом технологии металлообработки. Разнообразные условия эксплуатации и, следовательно, нагружения его режущей части вызывают многообразные виды повреждений и отказов технологической системы, а скорости изнашивания инструмента значительно выше, чем скорости изнашивания деталей и узлов станка. Поэтому работоспособность технологической системы в целом в первую очередь зависит от качества применяемого режущего инструмента.

Несмотря на возрастающее с каждым годом потребление инструмента из твердых сплавов, режущей керамики и сверхтвердых материалов, объем быстрорежущих сталей, использующихся при изготовлении металлообрабатывающего инструмента, нисколько не уменьшается. Сегодня в машиностроительных отраслях промышленности широко используется инструмент из быстрорежущих сталей с различными вариантами износостойких покрытий на основе нитридов, карбидов и карбонитридов тугоплавких металлов. Однако эти покрытия, обладающие отличными служебными характеристиками - высокой микротвердостью, низким коэффициентом трения и инертностью по отношению к обрабатываемому, материалу, зачастую преждевременно разрушаются, особенно под воздействием циклических термомеханических нагрузок, возникающих в процессе прерывистого резания, что резко снижает эффект от применения инструмента с покрытием.

В большинстве случаев разрушение системы покрытие-подложка начинается с пластической деформации подложки вблизи границы раздела, когда эта система подвергается достаточно высокому нагружению и таким образом, сопротивление нагрузке существенно зависит от поверхностных свойств подложки. Формирование на поверхности быстрорежущей основы перед нанесением покрытия диффузионного слоя, обладающего высокой твёрдостью и теплостойкостью, будет увеличивать сопротивление режущего клина термомеханическим нагрузкам. Создание такого слоя методом ионного азотирования с последующим нанесением более твёрдого покрытия вакуумно-дуговым способом является одним из вариантов комбинированной вакуумно-плазменной обработки и позволяет получить слоистый композит с уникальной комбинацией свойств.

Первые исследования по созданию таких комбинаций, начались в нашей стране более двадцати лет назад на кафедре «Резание материалов» МГТУ «СТАНКИН» под руководством д.т.н., проф. Верещака А.С. и показали высокую эффективность быстрорежущего инструмента с такой обработкой. Главной преградой для широкого производственного освоения разработанных принципов комбинированной обработки, была высокая себестоимость процесса из-за необходимости проведения двух последовательных технологических циклов вакуумно-плазменной обработки на разном оборудовании, что делало использование такой технологи экономически нецелесообразным.

К настоящему моменту в России на основе вакуумно-дуговых источников плазмы созданы и успешно эксплуатируются образцы современного многофункционального оборудования, позволяющего в одном технологическом цикле, без перезагрузки обрабатываемых изделий производить все этапы комбинированной обработки: нагрев и очистку инструмента, ионное азотирование и нанесение вакуумно-плазменных покрытий.

В связи с этим оптимизация процесса вакуумно-плазменной обработки с целью формирования на поверхности быстрорежущего инструмента слоя, обеспечивающего минимальную интенсивность изнашивания инструмента, а также определение условий рациональной эксплуатации инструмента с вакуумно-плазменной обработкой, снова представляется чрезвычайно актуальным.

На основании изложенного была сформулирована основная цель работы, которая заключается в повышении стойкости быстрорежущего инструмента на двух различных по характеру нагрузок процессов резания - непрерывного (точения) и прерывистого (фрезерования) за счет вакуумно-плазменной поверхностной обработки, включающей процессы азотирования и нанесения износостойкого покрытия.

Настоящая работа является продолжением ряда работ, выполненных в Московском государственным технологическом университете «СТАНКИН».

Научная новизна работы заключается:

- в установлении влияния содержания аргона в газовой среде на структуру поверхностного слоя быстрорежущей стали при азотировании в плазме двухступенчатого вакуумно-дугового разряда;

- в математических зависимостях, учитывающих факторы времени, температуры, состава газовой среды при азотировании, времени последующего процесса осаждения покрытия и их влияние на износ инструмента при непрерывном точении и прерывистом фрезеровании.

Практическая ценность работы состоит:

- в рекомендациях по выбору режимов вакуумно-плазменной обработки инструмента, обеспечивающих минимальную интенсивность изнашивания быстрорежущего инструмента при точении и фрезеровании;

- в рекомендациях по назначению режимов эксплуатации быстрорежущего инструмента с вакуумно-плазменной обработкой, обеспечивающих максимальную производительность инструмента на операциях точения и фрезерования.

Результаты работы были доложены на заседаниях кафедры Высокоэффективные технологии обработки МГТУ «СТАНКИН», на Международных научно-технических конференциях «Взаимодействие ионов с поверхностью - 2001» в Звенигороде, «Производство. Технология. Экология - 2001» в Москве, а также были удостоены бронзовой медали и диплома 30-го Международного салона изобретений, новой техники и товаров (Швейцария, г. Женева, 2002 г.) и серебряной медали и диплома II московского международного салона инноваций и инвестиций (г. Москва, ВВЦ, 2002 г.).

Производственное внедрение результатов работы осуществлено в рамках контрактов на поставку технологии и оборудования для комбинированной ионно-плазменной обработки, заключенных МГТУ «СТАНКИН» с ОАО «Комсомольское-на-Амуре авиационное производственное объединение» (2001г.) и инструментальным производством ОАО «АВТОВАЗ» (2003г.).

По теме диссертации опубликовано 7 печатных работ.

Автор выражает благодарность научному руководителю работы зав. кафедрой «Высокоэффективные технологии обработки» профессору, д.т.н. С.Н. Григорьеву, а также преподавателям и сотрудникам кафедры «Высокоэффективные технологии обработки» за помощь, оказанную при выполнении работы.

Похожие диссертационные работы по специальности «Технологии и оборудование механической и физико-технической обработки», 05.03.01 шифр ВАК

Заключение диссертации по теме «Технологии и оборудование механической и физико-технической обработки», Волосова, Марина Александровна

6. ОБЩИЕ ВЫВОДЫ

1. Стойкостные испытания показали, что вакуумно-плазменная обработка, включающая процессы азотирования и нанесения покрытия TiN, является эффективным способом повышения стойкости быстрорежущего инструмента. Установлено, что азотирование в сочетании с нанесением покрытия TiN по сравнению с нанесением однослойного покрытия TiN, позволяет повысить стойкость инструмента из стали Р6М5 до достижения катастрофического износа при точении стали 45 в 2,6 раза и в 2,9 раза при фрезеровании.

2. Сравнительные исследования природы затупления инструмента с азотированным слоем в сочетании с покрытием TiN и инструмента только с покрытием TiN при точении и фрезеровании стали 45 показали, что механизм изнашивания и причины отказа обоих инструментов одинаковы, но в случае формирования перед нанесением покрытия азотированного слоя, интенсивность изнашивания инструмента резко снижается. Это связано с тем, поверхностный слой, формируемый азотированием с нанесением покрытия TiN, более эффективно, чем однослойное покрытие TiN тормозит развитие лунки износа по передней и фаски износа по задней поверхности инструмента.

3. Исследования влияния процентного содержания инертного газа (аргона) в составе газовой среды при азотировании на структуру поверхностного слоя быстрорежущей стали Р6М5 показали, что азотирование в газовой среде, содержащей 60 % азота и 40 % аргона, позволяет подавить образование на поверхности 8 - фазы и обеспечивает минимальную интенсивность изнашивания инструмента при точении. В случае азотирования в газовой среде, содержащей 30 % азота и 70 % аргона, удается подавить образование на поверхности не только 8 - фазы, но и у'-фазы и получить азотированной слой, состоящий только из азотистого мартенсита. Такая структура является оптимальной для инструмента, работающего в условиях прерывистого резания.

4. С помощью разработанных математических зависимостей, учитывающих влияние факторов вакуумно-плазменной обработки на износ инструмента при точении и фрезеровании, расчетным путем были определены оптимальные режимы процесса вакуумно-плазменной обработки (время азотирования тА, температура азотирования 0А, концентрация азота в газовой смеси с аргоном KN при азотировании и время последующего процесса осаждения покрытия TiN тп), обеспечивающие минимальный износ инструмента.

5. На основе обработки результатов стойкостных и металлографических исследований установлено, что износостойкий слой, обеспечивающий минимальную интенсивность изнашивания быстрорежущего инструмента при обработке стали 45, соответствует следующим характеристикам. При непрерывном точении: эффективная толщина азотированного слоя hA ~ 50 - 55 мкм с микротвердостью Нпзо ~ 1220 - 1240 кгс/мм2 при толщине нитридо-титанового покрытия hn = 6 мкм. При прерывистом фрезеровании: эффективная толщина азотированного слоя hA ~ 30 - 35 мкм с микротвердостью Нп30 ~ 1080 - 1100 кгс/мм2 при толщине нитридо-титанового покрытия hn = 4 мкм.

6. На основе проведенных экспериментов, определены режимы эксплуатации быстрорежущего инструмента с вакуумно-плазменной обработкой, включающей азотирование и нанесение покрытия TiN, обеспечивающие максимальную производительность инструмента на операциях точения и фрезерования стали 45. Установлено повышение производительности инструмента с азотированием и покрытием TiN при точении в 1,5 раза, а при фрезеровании в 1,8 раза по сравнению с инструментом с покрытием TiN без азотирования.

Список литературы диссертационного исследования кандидат технических наук Волосова, Марина Александровна, 2003 год

1. Талантов Н.В. Физические основы процесса резания, изнашивания и разрушения инструмента. М.: Машиностроение, 1992. - 240 с.

2. Синопальников В.А. Некоторые вопросы повышения работоспособности инструмента из быстрорежущей стали. В сб.: «Высокопроизводительные конструкции режущего инструмента». М., МДНТП им. Ф.Э. Дзержинского, 1976, с. 142-150.

3. Синопальников В.А. Затупление быстрорежущего инструмента и способы повышения его работоспособности. В кн: Обработка конструкционных материалов резанием с применением СОЖ. - М.: МДНТП им. Ф.Э. Дзержинского, 1978. с. 62-67.

4. Лоладзе Т.Н. Прочность и износостойкость режущего инструмента.-М.: Машиностроение, 1982.-320 с.

5. Кабалдин Ю.Г., Кожевников Н.Е. Исследование изнашивания режущей части инструмента из быстрорежущей стали // Трение и износ. 1990, т. 11, №1, с.130-135.

6. Резников А.Н. Теплофизика процессов механической обработки материалов. М.: Машиностроение, 1981. - 279 с.

7. Трент Е.М. Резание металлов: Перевод с английского Г.И. Айзенштока. М.: Машиностроение, 1980. 236 с.

8. Синопальников В.А. Надежность режущего инструмента. Учебное пособие. М., 1990. 88 с.

9. Синопальников В.А., Гурин В.Д. Распределение температур в зоне режущего клина инструмента из быстрорежущей стали. Вестник машиностроения, 1977, №1, с. 51-54.

10. Постнов В.В., Шарипов Б.У., Шустер Л.Ш. Процессы на контактных поверхностях, износ режущего инструмента и свойства обработанной поверхности: Учеб. пос.- Свердловск: Изд. Урал, ун-та, 1988.-224 с.

11. Андреев А.А., Гаврилов А.Г., Падалко В.Г. Прогрессивные технологические процессы в инструментальном производстве. М.: Машиностроение, 1981.-214 с.

12. Верещака А.С. Работоспособность режущего инструмента с износостойкими покрытиями. М.: Машиностроение, 1993. - 336 с.

13. Поляк М.С. Технологические методы упрочнения. Справочник в 2-х томах. М.: "Л В. М.- СКРИПТ, Машиностроение, 1995, 832 с.

14. Поляк М.С. Высокопроизводительный инструмент. М.: Центр «Наука и техника», 1997, 691 с.

15. Прогрессивные режущие инструменты и режимы резания металлов / В.И. Баранчиков, А.В. Жариков, Н.Д. Юдина, А.И. Садыхов. М.: «Машиностроение», 1990, 400 с.

16. Позняк Л.А. Инструментальные стали. Киев: «Наукова думка», 1996,488 с.

17. Хирвонен Дж. Ионная имплантация. М.: Металлургия, 1985,391 с.

18. Полетика М.Ф., Весковский О.И., Полещенко К.И. Повышение надежности режущего инструмента ионной имплантацией // " Повышение эффективности применения твердосплавных инструментальных материалов и пути их экономии". Л.: 1989. - С. 70-74.

19. Чупрова Т.П., Бернштейн A.M. Лазерная обработка быстрорежущей стали Р6М5 // Заводская лаборатория. 1985, №7, с.21-23.

20. Федюнин В.Ф., Труш Н.А., Дмитриев П.А. Применение электроискрового упрочнения инструментов из быстрорежущих сталей.-Технология и организация производства, 1975 г. С. 54.

21. Арзамасов Б.Н., Братухин А.Г., Елисеев Ю.С., Панайоти Г.А. Ионная химико-термическая обработка сплавов. М.: Изд-во МГТУ им. Н.Э.Баумана, 1999, 400 с.

22. Саблев Л.П., Андреев А.А., Кунченко В.В. Плазменное азотирование режущего инструмента из быстрорежущей стали. // Труды симп. ОТТОМ, г. Харьков, 2000, с. 133 137.

23. Аксёнов И.И., Андреев А.А. Вакуумно-дуговые ионно-плазменные технологии покрытий в ХФТИ. // ВАНТ, Вакуум, чистые металлы, сверхпроводники, 1998, вып. 2 ( 3), 3 (4), с. 3 10.

24. Соснин Н.А., Тополянский П. А. Плазменные покрытия (технология и оборудование). Санкт-Петербург, 1992, с. 25.

25. Вакуумные технологии и оборудование: Сборник докладов 5-й Международной конференции / Под редакцией В. И. Лапшина, В. М. Шулаева. — Харьков: ННЦ ХФТИ, ИПЦ «Контраст», 2002.

26. Y. Tanaka, T.M.Gur, М. Kelly et all. Properties of (Ti,.xAlx)N coatings for cutting tools prepared by the cathodic arc ion plating method.// J. Vac. Sci. Technol. A 10(4), Jul/Aug. 1992, p. 1749 1756.

27. M. Хокинг, В. Васантасри, П. Сидки. Металлические и керамические покрытия. Пер. с англ. -М.: Мир, 2000, 516 с.

28. Андреев А.А., Кунченко В.В., Саблев Л.П., Шулаев В.М. Дуплексная обработка инструментальных сталей в вакууме. // Сб. докл. 2-го Междунар. симп. ОТТОМ-2, ч. 2, г. Харьков, 2001, с. 48 56.

29. Власов С.Н. Повышение работоспособности режущего инструмента путем комбинированной упрочняющей обработки. Диссертация на соискание ученой степени канд. техн. наук: 05.03.01. -Ульяновск, 2000.

30. Revolution in HSS tools. R.L. Hatschek (senior editor). // American Machinist, Special report 752, March 1993, p. 129 144.

31. Григорьев С.Н. Повышение надежности режущего инструмента путем комплексной ионно-плазменной поверхностной обработки. Диссертация на соискание ученой степени докт. техн. наук:: 05.03.01. Москва, 1995 г.

32. Григорьев С.Н., Федоров С.В., Волосова М.А. Технология и оборудование для комплексной ионно-плазменной обработки режущего инструмента // Качество машин: Сб. тр. IVмеждународной научно-технич. конф. Т.2. Брянск: БГТУ, 2001. С. 126-127.

33. Чекалова Е.А. Повышение надежности инструмента из быстрорежущей стали путем комбинированной обработки с оптимальными параметрами ионно-плазменной среды: Диссертация на соискание ученой степени докт. техн. наук:: 05.03.01. Москва, 1997 г.

34. Сейткулов А.Р. Повышение эффективности зубофрезерования применением червячных фрез из быстрорежущей стали с комплексной поверхностной обработкой: Диссертация на соискание ученой степени докт. техн. наук:: 05.03.01. Москва, 1993 г.

35. Башков В.М., Кацев П.Г. Испытания режущего инструмента на стойкость. М.: Машиностроение, 1985, 136 с.

36. Григорьев С.Н., Горовой А.П., Федоров С.В., Волосова М.А. Разработка и создание установки для нанесения ионно-плазменных покрытий. Научно-исследовательский отчет по Гос. контракту (регистрационный № ВНТИЦ 01.2.00100986), 2001 г. 32 с.

37. Приборы и методы физического металловедения / Под. ред. Ф. Вейнберга. Пер. с англ. М.: Изд-во «Мир», 1973. 427 с.

38. Лахтин Ю.М., Коган Я.Д. Структура и прочность азотированных сплавов. М.: Металлургия, 1982 . - 174 с.

39. F. Sanchette, Е. Damond. Single cycle plasma mtriding and hard coating deposition in a cathodic arc evaporation device. Surface & Coating Technology. 1997, p. 261 267.

40. Некрасов В.И. Многофакторный эксперимент. Планирование и обработка результатов: Учеб. пособие. -Курган, 1998. -145 с.

41. Мухаметзянов И.З. Планирование эксперимента при поиске оптимальных условий: Конспект лекций. -Уфа, 1996. -75 е.:138

42. Математическое моделирование самоорганизующихся процессов в технологических системах обработки резанием / Кабалдин Ю.Г., Олейников А.И., Шпилев A.M., Бурков А.А. -Владивосток: Дальнаука, 2000. -195 е.:

43. Пестунов В.М. Условия эксплуатации инструмента и эффективность процесса обработки. Техника машиностроения, 2000, №6. -С. 31-39.

44. Абденов А.Ж, Денисов В.И., Чубин В.М. Введение в оценивание и планирование экспериментов для стохастических динамических систем: Учеб. пособие по специальности "Прикладная математика". -Новосибирск, 1993. —43

45. Гаврилов Ю.В. Математическое моделирование процессов резания и режущего инструмента: Конспект лекций. -Челябинск: Изд-во ЮУрГУ, 1998. -78с.

46. Власов В.И. Стохастическая динамическая модель резания / Сборник докладов научно-методической конференции «Проблемы интеграции и науки». М.: СТАНКИН, 1990 г., 37 с.

47. Зимина Е.Г., Зимин М.С., Помигалова Т.Е. Основы математического моделирования и оптимизации процессов резания металлов и инструментов: Учеб. пособие. -Тюмень, 2002. -111 с.

48. Задгенидзе И.Г. Планирование эксперимента для исследования многокомпонентных систем. М.: Наука, 1976. - 360 с.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.