Нелинейные эффекты при распространении краевых волн в океане переменной глубины тема диссертации и автореферата по ВАК РФ 01.02.05, кандидат физико-математических наук Дубинина, Валентина Александровна
- Специальность ВАК РФ01.02.05
- Количество страниц 153
Оглавление диссертации кандидат физико-математических наук Дубинина, Валентина Александровна
Введение.
Глава 1. Дисперсионные свойства краевых волн.
1.1 Основные уравнения.
1.2 Структура и дисперсионное соотношение краевых волн в океане переменной глубины.
1.2.1 Бесконечный откос.
1.2.2 Шельф-ступенька.
1.2.3 Вогнутый экспоненциальный шельф
1.3 Наблюдения краевых волн
1.4 Дисперсионные эффекты и формирование аномальных краевых волн над вогнутым экспоненциальным шельфом
1.5 Выводы.
Глава 2. Слабонелинейные периодические краевые волны
2.1 Нелинейные краевые волны Стокса с различной модальной структурой
2.2 Нелинейное уравнение Шредингера для огибающей краевых волн Стокса с различной модальной структурой.
2.3 Модуляционная неустойчивость краевых волн Стокса.
2.4 Нелинейно дисперсионная фокусировка краевых волн.
2.5 Выводы.
Глава 3. Нелинейные резонансные трехволновые взаимодействия краевых волн.
3.1 Вывод коэффициентов нелинейных трехволновых взаимодействий краевых
3.2 Трехволновые взаимодействия краевых волн над откосом постоянного уклона
3.3 Трехволновые взаимодействия краевых волн над шельфом-ступенькой
3.4 Трехволновые взаимодействия краевых волн над вогнутым экспоненциальным шельфом.
3.5 Выводы.
Рекомендованный список диссертаций по специальности «Механика жидкости, газа и плазмы», 01.02.05 шифр ВАК
Нелинейная и нестационарная динамика длинных волн в прибрежной зоне2005 год, доктор физико-математических наук Куркин, Андрей Александрович
Моделирование наката длинных волн на плоский откос и анализ реальных событий2006 год, кандидат физико-математических наук Диденкулова, Ирина Игоревна
Динамика внутренних и поверхностных волн большой амплитуды в океане2002 год, кандидат физико-математических наук Слюняев, Алексей Викторович
Исследование пространственной структуры резонансных колебаний в бассейнах со сложной геометрией2010 год, кандидат физико-математических наук Чернов, Антон Григорьевич
Динамика нелинейных внутренних гравитационных волн в трехслойной жидкости2012 год, кандидат физико-математических наук Рувинская, Екатерина Александровна
Введение диссертации (часть автореферата) на тему «Нелинейные эффекты при распространении краевых волн в океане переменной глубины»
Зона шельфа - континентального склона приобретает все большее значение в последние десятилетия. Навигация, рыболовство, добыча нефти, газа и других полезных ископаемых, строительство портовых сооружений требуют детального знания гидрофизических процессов, протекающих в этой зоне. Как известно, перепады глубины океана в прибрежной области способствуют захвату (концентрации) волновой энергии в ограниченных по протяженности областях и приводят к существенной трансформации длинных волн, вызывая особые типы волновых движений, распространяющихся в основном вдоль берега (захваченные волны), которые самым существенным образом определяют динамику этой зоны. Вблизи берега на захваченные волны приходится 95 - 98 % энергии, которая может передаваться вдоль берега на большие расстояния без существенных потерь. До сих пор остается открытым вопрос о причине гораздо более высокой энергонасыщенности захваченных волн по сравнению с волнами открытого океана, несмотря на то обстоятельство, что область захвата волн, как правило, занимает лишь 5 - 10 % площади океана [Munk et al, 1964].
Одним из видов захваченных волн являются краевые волны. Краевыми волнами называются относительно высокочастотные волны, которые распространяются вдоль берега, и фактически не чувствуют вращения Земли. Они достигают максимальной амплитуды на границе с сушей, быстро спадая с удалением от берега. Вся энергия этих волн сосредоточена в узкой прибрежной зоне и фактически не может передаваться в открытый океан, так что происходит своеобразный "захват" волновой энергии. Захват краевых волн определяется в основном эффектом изменения глубины бассейна. Краевые волны, даже в длинноволновом пределе, обладают сильной дисперсией, обусловленной изменением рельефа в направлении, перпендикулярном движению волны.
В настоящее время имеется множество фактов, подтверждающих существование краевых волн в волновом поле прибрежной зоны океана (см., например, [Huntley & Bo-wen, 1973; Huntley et al, 1981; Bowen & Huntley, 1984; Bryan et al, 1998]). Краевые волны играют определяющую роль во многих процессах береговой динамики, таких как перенос осадочного материала, формирование структуры береговой линии и прибрежного рельефа, прибойные биения [Bowen, 1969; Bowen & Inman, 1969; Bowen & Inman, 1971; Gallagher, 1971; Huntley & Bowen, 1978; Huntley, 1980; Bauer & Greenwood, 1990; Ле Блон и Майсек, 1981; Holman & Bowen, 1982; Bowen & Huntley, 1984; Holman & Bowen, 1984; Рабинович, 1993; Masselink, 1999; Aagaard, 2004] и часто рассматриваются как onределяющий фактор эволюции береговой линии при формировании ритмических форм рельефа, таких как серповидные бары и фестоны (см., например, [Dolan & Ferm, 1968; Guza & lnman, 1975; Holman & Bowen, 1982; Masselink et al, 2004]). В книге [Komar, 1998] приведены несколько превосходных изображений структуры прибрежной линии, вызванной краевыми волнами (одно из них приведено на рис. 0.1). Лабораторные эксперименты и грубые оценки характерных масштабов находятся в хорошем соответствии с реальным наблюдением прибрежных особенностей морфологии. Краевые волны, движущиеся вдоль побережья, могут в прилегающих заливах и бухтах вызывать собственные колебания с той же частотой [Lemon, 1975; Tintore et al, 1988; Monserrat et al, 1991a; Monserrat et al, 1991b; Gomis et al, 1992]. Взаимодействие краевых волн с волнами зыби и прибоем приводит к образованию разрывных течений [Rowen, 1969; Bowen & lnman, 1969]. Существованием длинных краевых волн объясняется неравномерный характер распределения высот волн цунами вдоль береговой линии [Ishii & Abe, 1980; Пелинов-ский, 1996]. В целом до 70% энергии волн цунами переносится вдоль Курильских островов в виде краевых волн [Файн и др., 1983]. Крупномасштабные краевые волны являются важной компонентой движений воды, производимых циклонами, движущимися вдоль береговой линии [Tang & Grimshaw, 1995]. Коротко-масштабные краевые волны обычно генерируются набегающими ветровыми волнами вследствие сильной нелинейности поля ветровых волн [Guza & Davis, 1974; Foda & Mei, 1981; Agnon & Mei, 1988; Miles, 1990; Blondeaux & Vittori, 1995].
Рис. 0.1 Береговые формы, которые образуются под воздействием краевых волн
Теоретическое исследование краевых волн в океане проводится с использованием методов механики жидкости. Линейная теория краевых волн разработана к настоящему времени достаточно хорошо. Впервые аналитические решения линейных уравнений Эйлера над прямым наклонным дном были получены Стоксом в 1846 г. [Stokes, 1846] и соответствующее решение получило название краевой волны Стокса. Классическая краевая волна Стокса может распространяться в обоих направлениях вдоль побережья и экспоненциально затухает в сторону открытого океана. Примерно столетием позже Эккарт [Eckart, 1951] показал в рамках теории длинных волн, что краевая волна Стокса является одной из волн среди бесконечного множества мод, энергия которых захватывается берегом. Краевые волны имеют характер прогрессивных колебаний в направлении вдоль шельфа и стоячих - поперек него. С увеличением частоты их фазовая скорость уменьшается. Урселл [Ursell, 1952] развил точную теорию краевых волн, не обращаясь к длинноволновой аппроксимации; в частности, он показал, что существует конечное множество мод краевых волн, и это число увеличивается с уменьшением наклона дна. В дальнейшем теория краевых волн для различных профилей глубины была развита в работах [Ball, 1967; Munk et al, 1970; Buchwald & de Szoeke, 1973] и др. Фактически в этих работах используется приближение длинных волн, когда для монохроматической волны исходные уравнения идеальной несжимаемой и нестратифицированной жидкости сводятся к задаче Штурма-Лиувилля, решение которой определяют структуру и дисперсионное соотношение краевых волн для различных форм потенциала, определяемого профилем дна. В книгах [Ефимов и др., 1985; Ле Блон и Майсек, 1981; Рабинович, 1993] изучаются общие свойства решений данной задачи Штурма-Лиувилля и приводятся различные аналитические и численные решения, дающие представление о структуре краевых волн над неровным дном при различных условиях и кинематических свойствах этих волн, связанных с их дисперсионными соотношениями. Краевые волны в более полной постановке, учитывающей вращение Земли и стратификацию жидкости по плотности, исследовались в [Одуло, 1974; Музылев и Одуло, 1980]. Следует отметить, что большинство теоретических работ, посвященных изучению краевых волн, рассматривают бассейны с цилиндрической геометрией дна, т.е. случай, когда глубина жидкости является только функцией поперечной к берегу координаты. Реальная же ситуация более сложная, так как нужно учитывать двумерную изменчивость глубины жидкости, и этому посвящено только несколько работ. Например, в работе [Stoker & Johnson, 1991] изучается захват и рассеяние топографических волн устьями рек и мысами, а в работе [Baquerizo et al, 2002] были рассмотрены рассеяние краевых волн проницаемыми прибрежными структурами, которые расположены перпендикулярно к береговой линии. Кроме того, в работах [Chen & Guza, 1998; Chen & Guza, 1999] изучено резонансное рассеяние прогрессивных краевых волн вдольбереговой периодической топографией. Недавно, в работе [Kurkin & Pelinovsky, 2003] краевые волны в жидкости с двумерной топографией, когда глубина медленно изменяется во вдольбереговом направлении, были изучены для различных форм подводного рельефа. Следует также отметить работу [Liu et al, 1998] по эволюции начального импульсного возмущения, показывающего формирование отдельных диспергирующих цугов и слабодисперсионную модель краевых волн, развитую в [Sheremet & Guza, 1999].
Нелинейные аспекты теории краевых волн даже для простой геометрии бассейна изучены еще недостаточно и все имеющиеся аналитические результаты получены для случая откоса постоянного уклона. Впервые нелинейная теория краевых волн была развита в работе [Whitham, 1976], в которой было получено нелинейное дисперсионное соотношение для низшей моды. Позднее в работе [Akylas, 1983] было выведено уравнение Шредингера, описывающее динамику модуляционной неустойчивости краевых волн Стокса низшей моды. Свойства нелинейных краевых волн теоретически и экспериментально изучались в работе [Yeh, 1985] в рамках нелинейного уравнения Шредингера. Недавно были получены некоторые точные решения полных нелинейных уравнений гидродинамики, описывающие волны в невращающемся океане над шельфом с постоянным уклоном [Constantin, 2001]. Однако исследование нелинейных свойств краевых волн высших мод до настоящего времени проведено не было. В настоящей диссертации получено нелинейное дисперсионное соотношение для краевых волн старших мод, распространяющихся над плоским откосом, а также показана возможность образования краевых волн большой амплитуды в результате совместного действия эффектов модуляционной неустойчивости и дисперсионного сжатия.
При учете нелинейных членов в уравнениях движения происходит перераспределение энергии в спектре волны, что в случае резонансного взаимодействия может привести к достаточно сильному росту отдельных мод и рассматриваться как дополнительный механизм усиления краевых волн в дальней зоне. Резонансные нелинейные взаимодействия краевых волн в рамках теории слабо нелинейных волновых взаимодействий рассматривались в работах [Кочергин и Пелиновский, 1989; Kirby et al, 1995], где было показано существование резонансных триад для линейного откоса и вычислены коэффициенты взаимодействия для некоторых конкретных триад. Причем, коэффициенты, вычисленные в работе [Kirby et al, 1995] для краевых волн, распространяющиеся в одном направлении, оказались равными нулю. Поэтому возможные нелинейные эффекты при взаимодействии триад краевых волн оставались до конца неясными. В работах [Кочер-гин, 1989; Galletta & Vittori, 2004] анализировались условия резонансного взаимодействия для профилей глубины сложной формы, однако коэффициенты нелинейного взаимодействия не вычислялись. Следует отметить, что теория слабо нелинейных волновых взаимодействий ранее применялась в работах [Guza & Davis, 1974; Fuller & Mysak, 1977; Воляк и др., 1986] для рассмотрения механизма генерации краевых волн, при котором в отвечающей условиям синхронизма взаимодействующей триаде происходил обмен энергией между краевыми и приходящими из глубокой воды волнами.
Актуальность работы
Настоящее исследование посвящено изучению нелинейных аспектов динамики краевых волн. Естественно, что в первую очередь важно понимание интенсивных волн, содержащих значительную энергию. В связи с этим огромный интерес представляют краевые волны большой амплитуды, которые являются неотъемлемой частью волнового режима прибрежной зоны. В силу нелинейных эффектов их поведение может быть достаточно сложным.
Исследование краевых волн большой амплитуды необходимо для разработки прогностических моделей аномальных волн, в частности для объяснения кратковременных затоплений прибрежной зоны (аналога волн-убийц), оценки перестройки прибрежного и донного рельефа, объяснения структуры и изменчивости вдольбереговых течений. Предложенная в работе гидродинамическая теория для описания нелинейной динамики краевых волн может применяться для изучения природных явлений и интерпретации результатов натурных и лабораторных экспериментов. Поэтому исследование краевых волн большой амплитуды представляется актуальным и практически значимым.
Цели диссертации
Основной целью диссертации является изучение нелинейных эффектов в поле краевых волн в рамках длинноволновых моделей гидродинамики идеальной несжимаемой жидкости. В частности, предполагается:
1. Изучить дисперсионные эффекты, приводящие к образованию аномально больших краевых волн, распространяющихся над цилиндрическим рельефом. Исследовать влияние частотной отсечки в дисперсионном соотношении для краевых волн высших мод на процесс дисперсионного сжатия.
2. Вычислить нелинейные поправки к дисперсионному соотношению для краевых волн старших мод над плоским откосом. Исследовать процессы появления краевых "волнубийц" в результате действия эффектов дисперсионного сжатия и нелинейной самомодуляции в рамках нелинейного уравнения Шредингера.
3. Определить условия резонансного трехволнового взаимодействия и вычислить коэффициенты нелинейного взаимодействия краевых волн для различных профилей шельфов. Исследовать пространственно-временную динамику резонансных триад краевых волн и оценить характерные масштабы нелинейного взаимодействия краевых волн на реальных шельфах.
Научная новизна и основные положения, выносимые на защиту
Научная новизна диссертационной работы определяется полученными оригинальными результатами:
1. Показано, что дисперсионные эффекты могут приводить к возникновению кратковременных трехмерных импульсов большой амплитуды - «краевых волн-убийц». Этот процесс продемонстрирован для краевых волн над вогнутым экспоненциальным шельфом.
2. Вычислены нелинейные поправки для первых восемнадцати мод краевых волн Стокса в рамках теории возмущений. Показано, что в отличие от наинизшей моды волны старших мод имеют более несинусоидальную форму. Выведено нелинейное уравнение Шредингера для краевых волн Стокса высших мод. Показано, что волны любой моды являются модуляционно неустойчивыми. Коэффициент нелинейности спадает с увеличением номера моды, так что нелинейные эффекты при прочих равных условиях играют меньшую роль с увеличением номера моды.
3. Численно исследованы процессы появления краевых «волн-убийц» в результате дисперсионного сжатия и нелинейной самомодуляции. Показано, что дисперсионное сжатие может приводить к большим амплитудам необычных волн, однако, они более часто появляются за счет нелинейной самомодуляции. Выполнена оценка времени жизни краевых «волн-убийц» (10 мин), и она находится в удовлетворительном согласии с длительностью наводнения (3 мин), произошедшего на Черном море в 2000 г.
4. Определена структура коэффициентов нелинейного трехволнового взаимодействия для произвольного профиля дна. Детальные вычисления даны для краевых волн, распространяющихся над откосом постоянного уклона, шельфом-ступенькой и вогнутым экспоненциальным откосом.
5. Подтверждено, что для некоторых из триад краевых волн, распространяющихся в попутном направлении над откосом постоянного уклона, коэффициенты взаимодействия оказываются равными нулю, однако этот вывод не распространяется на все по8 путные волны, как это можно было заключить из предыдущих работ. Коэффициенты резонансного трехволнового взаимодействия определяются степенными функциями частоты и угла наклона; для фиксированной частоты они возрастают с уменьшением угла наклона откоса.
6. Определены условия резонансного взаимодействия и вычислены коэффициенты нелинейного взаимодействия краевых волн для шельфа-ступеньки и вогнутого экспоненциального шельфа. Показано, что наиболее сильная нерегулярность поля появляется для шельфа - ступеньки, так как поле по существу не ослабляется на мелководной части шельфа.
Практическая значимость результатов работы
Полученные теоретические результаты, показывающие возможность образования аномально больших краевых волн, могут быть использованы для прогнозирования появления больших краевых волн в океане, которые могут интенсифицировать процессы перераспределения донных наносов и изменения береговой линии, а также приводить к аномальным и кратковременным наводнениям локального характера, наблюдаемым в прибрежной зоне. Ряд исследованных здесь эффектов (нелинейная самомодуляция, дисперсионное сжатие) должен проявляться в механике сжимаемого газа в приложении к динамике атмосферы в силу общности математических моделей механики жидкости и газа.
Полученные результаты используются в российских и международных исследовательских проектах (РФФИ, ИНТАС, и др.), выполняемых с участием автора диссертации.
Апробация работы
Основные результаты диссертации представлялись на следующих международных конференциях: XXXI - XXXIII Международных летних школах «Современные проблемы механики» (Санкт Петербург, Россия, 2003 - 2005); XIII и XIV зимних школах по механике сплошных сред (Екатеринбург, Россия, 2003, 2005); Международной конференции «Потоки и структуры в жидкости» (Санкт Петербург, Россия, 2003); Шестом международном симпозиуме по прибрежной механике, Владивосток, Россия, 2004; Генеральные Ассамблеи Европейского геофизического общества (Ницца, Франция, 2003, 2004; Вена, Австрия, 2005); Международном симпозиуме «Актуальные проблемы физики нелинейных волн», Н. Новгород, Россия, 2003; Совместной ассамблеи геофизических обществ, Монреаль, Канада, 2004; Всесоюзной молодежной научно-технической конференции «Будущее технической науки», Н. Новгород, Россия, 2004, 2005; Международной научно-технической конференции «Молодые ученые - науке, технологиям и профессиональному образованию» (Москва, Россия, 2003). Результаты диссертации докладывались также на семинарах Института прикладной физики РАН и Нижегородского государственного технического университета.
Диссертант является лауреатом стипендии Правительства РФ (2004, 2005), стипендии им. академика Г.А. Разуваева (2004) и победителем конкурса грантов Министерства образования для аспирантов (№ А04 - 2.13 - 388) 2004 г.
Список публикаций
Основные положения диссертации представлены в статьях:
1. Дубинина В.А., Куркин А.А., Полухина О.Е. Фокусировка краевых волн на шельфе моря // Известия РАН. Физика атмосферы и океана. 2003. Т. 39. № 6. С. 839 - 848.
2. Дубинина В.А., Куркин А.А., Пелиновский Е.Н., Полухина О.Е. Слабонелинейные периодические краевые волны Стокса // Известия РАН. Физика атмосферы и океана. 2004. Т. 40. № 4. С. 525 - 530.
3. Дубинина В.А., Куркин А.А., Полухина О.Е. Нелинейная динамика краевых волн над линейно наклонным дном // Известия РАН. Физика атмосферы и океана. 2005. Т. 41. №2. С. 124- 128.
4. Бацына Е.К., Дубинина В.А., Куркин А.А., Полухина О.Е. Нелинейные резонансные трехволновые взаимодействия краевых волн над вогнутым экспоненциальным шельфом // Известия Академии инженерных наук им. A.M. Прохорова. Прикладная математика и механика. 2005. Т.13. С. 86 - 99.
5. Дубинина В.А., Куркин А.А., Пелиновский Е.Н., Полухина О.Е. Резонансные трехволновые взаимодействия краевых волн Стокса // Известия РАН. Физика атмосферы и океана. 2006. Т. 42. (в печати).
6. Дубинина В.А., Куркин А.А., Полухина О.Е. О нелинейных взаимодействиях в триадах краевых волн на шельфе моря // Океанология. 2006. Т. 46. (в печати) трудах конференций:
7. Dubinina V.A., Kurkin А.А., Poloukhina О.Е. Nonlinear properties of long edge waves abovea cylindrical shelf // Proceedings of Sixth (2004) ISOPE Pacific/Asia Offshore Mechanics Symposium. Vladivostok. Russia. 2004. P. 157 - 162.
8. Pelinovsky E., Lechuga A., Poloukhina O., Kurkin A., Dubinina V. Freak edge waves // Proceedings of Int. Conf. "Waves-2005". 2005. P. 1 - 9. а также в тезисах конференций:
9. Дубинина В.А., Куркин А.А., Полухина О.Е. Захваченные волны над наклонной прибрежной отмелью при наличии вращения // Сборник тезисов докладов 13 зимней школы по механике сплошных сред. Екатеринбург: УрО РАН. 2003. С. 141.
10. Poloukhina О., Kurkin A., Dubinina V. Focusing of large-amplitude edge and Rossby waves // Geophysical Research Abstracts. 2003. V. 5. P. 1504.
11. Dubinina V., Kurkin A., Poloukhina O. Coastal trapped waves in a rotating ocean // XXXI Summer School - Conference "Advanced Problems in Mechanics". Book of Abstracts. St. Petersburg. Russia. 2003. P. 37 - 38.
12. Dubinina V., Kurkin A., Poloukhina O. Anomalous high trapped waves above a concave exponential beach // International Conference on Fluxes and Structures in Fluids. Abstracts. St. Petersburg. 2003. P. 46 - 48.
13. Dubinina V.A., Kurkin A.A., Poloukhina O.E. Weakly nonlinear periodic Stokes edge waves // Proceedings of International Symposium "Topical Problems of Nonlinear Wave Physics". Nizhny Novgorod. Russia. 2003. P. 331 - 332.
14. Дубинина B.A., Куркин A.A., Полухина O.E. Краевые волны над шельфом: нелинейная теория // В сб. Молодые ученые - 2003 / Материалы международной научно-технической конференции "Молодые ученые - науке, технологиям и профессиональному образованию". 1 - 4 октября 2003 г., г. Москва. - М.: МИРЭА, 2003. С. 225 -227.
15. Poloukhina О., Pelinovsky Е., Kurkin A., Dubinina V. Nonlinear instability of edge waves // Geophysical Research Abstracts. 2004. V. 6. P. 634.
16. Poloukhina O., Kurkin A., Dubinina V. Extreme Edge Waves Above a Cylindrical Shelf // Eos. Trans. AGU, 85 (17), Joint Assembly Suppl., Abstract OS33B-06, 2004.
17. Pelinovsky E.N., Poloukhina О. E., Kurkin A.A., Dubinina V.A. Nonlinear Dynamics of Stokes Edge Waves // Eos. Trans. AGU, 84 (52), Ocean Sci. Meet. Suppl., Abstract OS21F-02, 2004.
18. Бацына E.K., Дубинина B.A., Куркин A.A., Полухина О.Е. Нелинейные взаимодействия краевых волн над вогнутым экспоненциальным шельфом // Сборник тезисов докладов 14 зимней школы по механике сплошных сред. Екатеринбург: УрО РАН, 2005. С. 28.
19. Poloukhina О., Pelinovsky Е., Kurkin A., Dubinina V. Nonlinear interactions of edge waves above a uniform beach // Geophysical Research Abstracts. 2005, V. 7. P. 192.
Личный вклад автора
В совместных работах научному руководителю доц. Куркину А.А. и проф. Пели-новскому Е.Н. принадлежат постановка задачи и обсуждение результатов, доц. Полухиной О.Е. - выбор методов исследования. Во всех работах автору принадлежит выполнение большинства аналитических и численных расчетов, а также непосредственное участие в обсуждении и интерпретации полученных результатов. В вычислениях, описанных в статье [4], принимала участие студ. Бацына Е.К.
Автор выражает благодарность научному руководителю доценту Куркину А.А., профессору, лауреату Государственной премии России Пелиновскому Е.Н. и доценту Полухиной О.Е. за их большую помощь и безграничное терпение, проявленные ими при обсуждении настоящей диссертации.
Также автор благодарит коллектив кафедры «Прикладная математика» Нижегородского государственного технического университета, проф. Петрухина Н.С., проф. Митякова С.Н., проф. Потапова А.И., Листопада Е.Ф. за создание благожелательной, творческой атмосферы на кафедре, позволившей автору закончить диссертацию.
Похожие диссертационные работы по специальности «Механика жидкости, газа и плазмы», 01.02.05 шифр ВАК
Влияние эффектов обрушения на трансформацию и накат длинных волн на берег2013 год, кандидат физико-математических наук Родин, Артём Александрович
Динамические процессы на шельфе и прогноз морских опасных явлений: на примере о. Сахалин2006 год, доктор физико-математических наук Шевченко, Георгий Владимирович
Эффекты нелинейной дисперсии при взаимодействии волн в жидкости2000 год, доктор физико-математических наук Шуган, Игорь Викторович
Волновые и диффузионные процессы в жидком слое конечной толщины: аналитические решения2014 год, кандидат наук Гиниятуллин, Айрат Рафаэлевич
Динамика нелинейных длинных внутренних волн в стратифицированной жидкости2004 год, доктор физико-математических наук Талипова, Татьяна Георгиевна
Заключение диссертации по теме «Механика жидкости, газа и плазмы», Дубинина, Валентина Александровна
3.5 Выводы
Суммируем результаты исследований нелинейного взаимодействия краевых волн, полученные в этой главе:
1. Выведены коэффициенты нелинейного взаимодействия краевых волн для произвольного профиля дна, соответствующие интегральные выражения содержат модовые функции и дисперсионные соотношения краевых волн.
2. Подтверждено, что для некоторых триад краевых волн Стокса, распространяющихся в попутном направлении по линейному склону, коэффициенты взаимодействия оказываются равными нулю, однако этот вывод не распространяется на все попутные моды, и в общем случае попутные моды нелинейно взаимодействуют между собой. Коэффициенты резонансного трехволнового взаимодействия краевых волн определяются степенными функциями частоты и угла наклона; для фиксированной частоты они возрастают с уменьшением угла наклона откоса.
3. Определены условия резонансного взаимодействия и вычислены коэффициенты нелинейного межмодового взаимодействия для нескольких низших мод краевых волн для шельфа-ступеньки и вогнутого экспоненциального шельфа.
4. Исследована пространственная и временная структура резонансной триады; даже в случае постоянных амплитуд (равновесные значения) выявлена сложная интерференционная структура волнового поля для трех моделей шельфов. Показано, что наиболее сильная нерегулярность поля появляется для шельфа - ступеньки, так как поле по существу не ослабляется на мелководной части шельфа.
5. Выполнены оценки проявления нелинейных эффектов в поле реальных краевых волн, в частности для условий Курильских островов. Рассчитанные характерные времена и расстояния нелинейного взаимодействия позволяют сделать вывод о возможности выполнения условий синхронизма и нелинейного взаимодействия реальных краевых волн в прибрежной зоне океана.
Заключение
Сформулируем основные результаты, выносимые на защиту:
1. Показано, что дисперсионные эффекты могут приводить к возникновению кратковременных трехмерных импульсов большой амплитуды - "краевых волн-убийц". Этот процесс продемонстрирован для краевых волн над вогнутым экспоненциальным шельфом.
2. Вычислены нелинейные поправки для первых восемнадцати мод краевых волн Стокса в рамках теории возмущений. Показано, что волны любой моды являются модуляционно неустойчивыми. Поскольку коэффициент нелинейности спадает с увеличением номера моды, роль нелинейных эффектов для волн одной и той же длины ослабевает.
3. Численно исследованы процессы появления краевых "волн-убийц" в результате совместного действия эффектов дисперсионного сжатия и нелинейной самомодуляции. Показано, что дисперсионное сжатие может приводить к большим амплитудам необычных волн, однако, они более часто появляются за счет нелинейной самомодуляции. Выполнена оценка времени жизни краевых «волн-убийц» (10 мин), и она находится в удовлетворительном согласии с длительностью наводнения (3 мин), произошедшего на Черном море в 2000 г.
4. Выведены коэффициенты нелинейного взаимодействия краевых волн для произвольного профиля дна, соответствующие интегральные выражения содержат модовые функции и дисперсионные соотношения краевых волн.
5. Подтверждено, что для некоторых триад краевых волн, распространяющихся в попутном направлении по линейному склону, коэффициенты взаимодействия оказываются равными нулю, однако этот вывод не распространяется на все попутные моды, и в общем случае попутные моды нелинейно взаимодействуют между собой.
6. Определены условия резонансного взаимодействия и вычислены коэффициенты нелинейного взаимодействия краевых волн для шельфа-ступеньки и вогнутого экспоненциального шельфа. Показано, что наиболее сильная нерегулярность поля появляется для шельфа - ступеньки, так как поле по существу не ослабляется на мелководной части шельфа.
Список литературы диссертационного исследования кандидат физико-математических наук Дубинина, Валентина Александровна, 2005 год
1. Абрамович М., Стиган И. Справочник по специальным функциям с формулами, графиками и математическими таблицами. М.: Наука, 1979. 832 с.
2. Абузяров З.К. Морское волнение и его прогнозирование. Л.: Гидрометеоиздат, 1981. 166 с.
3. Бацына Е.К., Дубинина В.А., Куркин А.А., Полухина О.Е. Нелинейные взаимодействия краевых волн над вогнутым экспоненциальным шельфом // Сборник тезисов докладов 14 зимней школы по механике сплошных сред. Екатеринбург: УрО РАН. 20056. С. 28.
4. Виноградова М.Б., Руденко О.В., Сухорукое А.П. Теория волн. М.: Наука. Главная редакция физико-математической литературы, 1979. 384 с.
5. Вольцингер Н.Е., Клеванный К.А., Пелиновский Е.Н. Длинноволновая динамика прибрежной зоны. Л.: Гидрометеоиздат, 1989.
6. Воляк К.И., Ляхов Г.А., Шуган И.В. Параметрическая генерация краевых волн // Дистанционное зондирование океана. М.: Наука, 1986. С. 114 118.
7. Глуховский Б.Х. Исследования морского волнения. JL: Гидрометеоиздат, 1966. 284 с.
8. Давидан И.Н., Лопатухин Л.И., Рожков В.А. Ветровое волнение в Мировом океане. Л.: Гидрометеоиздат, 1985. 256 с.
9. Дубинина В.А., Куркин А.А., Пелиновский Е.Н., Полухина О.Е. Слабонелинейные периодические краевые волны Стокса // Известия РАН. Физика атмосферы и океана. 2004. Т. 40. № 4. С. 525 530.
10. П.Дубинина В.А., Куркин А.А., Пелиновский Е.Н., Полухина О.Е. Резонансные трехволновые взаимодействия краевых волн Стокса // Известия РАН. Физика атмосферы и океана. 2006. Т. 42. (в печати).
11. Дубинина В.А., Куркин А.А., Полухина О.Е. Фокусировка краевых волн на шельфе моря // Известия РАН. Физика атмосферы и океана. 2003а. Т. 39. № 6. С. 839 848.
12. Дубинина В.А., Куркин А.А., Полухина О.Е. Захваченные волны над наклонной прибрежной отмелью при наличии вращения // Сборник тезисов докладов 13 зимней школы по механике сплошных сред. Екатеринбург: УрО РАН, 20036. С. 141.
13. Дубинина В.А., Куркин А.А., Полухина О.Е. Нелинейная динамика краевых волн над линейно наклонным дном // Известия РАН. Физика атмосферы и океана. 2005. Т. 41. №2. С. 124- 128.
14. Дубинина В.А., Куркин А.А., Полухина О.Е. О нелинейных взаимодействиях в триадах краевых волн на шельфе моря // Океанология. 2006. Т. 46. (в печати)
15. Ефимов В.В., Куликов Е.А., Рабинович А.Б., Файн И.В. Волны в пограничных областях океана. Л.: Гидрометеоиздат, 1985. 280 с.
16. Захаров В.Е. Устойчивость периодических волн конечной амплитуды на поверхности глубокой жидкости // ПМТФ. 1968. № 2. С. 86 94.
17. Захаров В.Е., Манаков С.В., Новиков С.П., Питаевский Л.П. Теория солитов. Метод обратной задачи рассеяния. М.: Наука, 1980. 319 с.
18. Захаров В.Е., Шабат А.Б. Точная теория двумерной самофокусировки и одномерной автомодуляции волн в нелинейных средах // ЖЭТФ. 1971. Т. 61. С. 118 134.
19. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М: Наука, 1976. 576 с.
20. Кочергин И.Е., Пелиновский Е.Н. Нелинейное взаимодействие триады краевых волн // Океанология. 1989. Т. 29. № 6. С. 899 903.
21. Кузнецов Е.А. О солитонах в параметрически неустойчивой плазме // ДАН СССР. 1977. Т. 236. С. 575 577.
22. Куркин А.А., Пелиновский Е.Н. Волны-убийцы: факты, теория и моделирование. -Н. Новгород: НГТУ, 2004. 158 с.
23. Лавренов И.В. Математическое моделирование ветрового волнения в пространственно неоднородном океане. - СПб.: Гидрометеоиздат, 1998. 500 с.
24. Ламб Г. Гидродинамика / Пер. с англ. Л.: ГИТТЛ, 1947. 928 с.
25. Ле Блон П., Майсек Л. Волны в океане. -М.: Мир, 1981. Ч. 1. 480 с.
26. Музылев С.В., Одуло А.Б. Волны во вращающейся стратифицированной жидкости у наклонного берега // Доклады АН СССР. 1980. Т. 250. С. 331 335.
27. Никонов А.А. Черномор выходит на берег // Знание-сила. 2001. № 9. С. 78 84.
28. Никонов А.А. Слабые цунами в Керченско-Таманской области во второй половине XX века // Фундаментальные и прикладные проблемы мониторинга и прогноза стихийных бедствий: Материалы 4-го Севастопольского международного семинара. Севастополь. 2001. С.33 37.
29. Ньюэлл А. Солитоны в математике и физике. М.: Мир, 1989.
30. Одуло А.Б. Краевые волны во вращающейся стратифицированной жидкости у наклонного берега//Известия АН СССР. ФАО. 1974. Т. 10. №3. С. 310-312.
31. Островский Л.А., Потапов А.И. Введение в теорию модулированных волн. М.: Физматлит, 2003. 400 с.
32. Пелиновский Е.Н. Нелинейная динамика волн цунами. Горький: ИПФ АН СССР, 1982.
33. Пелиновский Е.Н. Гидродинамика волн цунами. Н. Новгород: Институт прикладной физики РАН, 1996. 276 с.
34. Пелиновский Е.Н., Фридман В.Е., Энгельбрехт Ю.К. Нелинейные эволюционные уравнения. Таллин: Валгус, 1984. 154 с.
35. Пелиновский Е., Хариф К. Дисперсионное сжатие волновых пакетов как механизм возникновения аномально высоких волн на поверхности океана // Известия АИН РФ. 2000. Т. 1.Р. 50-61.
36. Рабинович А.Б. Длинные гравитационные волны в океане: захват, резонанс, излучение. СПб.: Гидрометеоиздат, 1993. 325 с.
37. Таланов В.И. О самофокусирующихся волновых пучках в нелинейной среде // Письма в ЖЭТФ. 1965. Т. 2. № 5. С. 218 222.
38. Уизем Д.Б. Линейные и нелинейные волны. М: Мир, 1977.
39. Файн И.В., Шевченко Г.В., Куликов Е.А. Исследование лучевым методом захватывающих свойств Курильского шельфа // Океанология. 1983. Т. 23. № 1. С. 23 26.
40. Aagaard Т. Multiple-bar morphodynamics and its relation to low-frequency edge waves //J. Coastal Res. 2004. V. 7. P. 801 813.
41. Ablowitz M.J., Herbst B.M. On homoclinic structure and numerically induced chaos for the Nonlinear Schrodinger equation // SIAM J. Appl. Math. 1990. V. 50. P. 339 351.
42. Agnon Y., Mei C.C. Trapping and resonance of long shelf waves due to groups of short waves // J. Fluid Mech. 1988. V. 195. P. 201 -221.
43. Aida I. Water level oscillations on the continental shelf in the vicinity of Miyagi-Enoshima // Bull. Earth. Res. Inst. 1967. V. 45. Pt. 1. P. 61 78.
44. Akylas T.R. Large-scale modulation of edge waves // J. Fluid Mech. 1983. V. 132. P. 197-208.
45. Badulin S., Tomita H. Effect of vertical shear current on appearance of large-amplitude waves // PACON'99 Proceedings (June 23-25, 1999, Moscow). Moscow. 2000. P. 380 - 390.
46. Ball F.K. Edge waves in the ocean of finite depth // Deep-Sea Res. 1967. V. 14. P. 179- 188.
47. Baquerizo A., Losada M.A., Lozada I.J. Edge wave scattering by a coastal structure // Fluid Dynamics Research. 2002. V. 31. P. 275 287.
48. Bauer B.O., Greenwood B. Modification of a linear bar-trough system by a standing edge wave // Mar. Geol. 1990. V. 92. P. 177 204.
49. Beardsley R., Mofjeld H., Wimbush M. et al. Ocean tides and weather-induced bottom pressure fluctuations in the Middle Atlantic Bight // J. Geophys. Res. 1977. V. 82. № 21. P. 3175 -3182.
50. Blondeaux P., Vittori G. The nonlinear excitation of synchronous edge waves by a monochromatic wave normally approaching a plane beach // J. Fluid Mech. 1995. V. 301. P. 251 -268.
51. Bowen A.J. Rip currents. 1. Theoretical investigation // J. Geophys. Res. 1969. V. 74. № 23. P. 5467 5478.
52. Bowen A.J., Guza R.T. Edge waves and surf beat // J. Geophys. Res. 1978. V. 83. № C4. P. 1913 1920.
53. Bowen A.J., Huntley D.A. Waves, long waves and nearshore morphology // Marine Geology. 1984. V. 60. № 1/4. P. 1 13.
54. Bowen A.J., Inman D.L. Rip currents. 2. Laboratory and field observations // J. Geophys. Res. 1969. V. 74. № 23. P. 5479 5490.
55. Bowen A.J., Inman D.L. Edge waves crescentic bars // J. Geophys. Res. 1971. V. 76. №36. P. 8662-8671.
56. Bryan K.P., Hows P.A., Bowen A.J. Field observations of bar-trapped edge waves // J. Geoph. Research. 1998. V. 103. P. 1285 1305.
57. Buchwald V.T., de Szoeke R.A. The response of a continental shelf to a travelling pressure disturbance // Austral. J. Mar. Freshwater Res. 1973. V. 24. P. 143 158.
58. Chen Y., Guza R.T. Resonant scattering of edge waves by longshore periodic topography // J. Fluid Mech. 1998. V. 369. P. 91 123.
59. Chen Y., Guza R.T. Resonant scattering of edge waves by longshore periodic topography: finite beach slope // J. Fluid Mech. 1999. V. 387. P. 255 269.
60. Clauss G., Bergman J. Gaussian wave packets a new approach to seakeeping tests of ocean structures // Applied Ocean Research. 1986. V. 8. № 4. P. 18 - 33.
61. Constantin A. Edge waves along a sloping beach // J. Phys. A: Math. Gen. 2001. V. 34. P. 9723-9731.
62. Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M. Method for solving the Korteweg-de Vries equation // Phys. Rev. Lett. 1967. V. 19. P. 1095 1097.
63. Guza R.T., Inman D.L. Edge waves and beach cusps // J. Geophys. Res. 1975. V. 80. №21. P. 2997-3012.
64. Dolan R., Ferm J. Crescentic landforms along the Atlantic coast of the United States // Science. 1968. V. 159. № 3815. P. 627 629.
65. Dubinina V., Kurkin A., Poloukhina O. Coastal trapped waves in a rotating ocean // XXXI Summer School Conference "Advanced Problems in Mechanics". Book of Abstracts. St. Petersburg. Russia. 2003a. P. 37 - 38.
66. Dubinina V., Kurkin A., Poloukhina O. Anomalous high trapped waves above a concave exponential beach // International Conference on Fluxes and Structures in Fluids. Abstracts. St. Petersburg. 2003b. P. 46 48.
67. Dubinina V.A., Kurkin A.A., Poloukhina O.E. Weakly nonlinear periodic Stokes edge waves // Proceedings of International Symposium "Topical Problems of Nonlinear Wave Physics". Nizhny Novgorod. Russia. 2003c. P. 331 332.
68. Dubinina V.A., Kurkin A.A., Poloukhina O.E. Nonlinear properties of long edge waves abovea cylindrical shelf // Proceedings of Sixth (2004) ISOPE Pacific/Asia Offshore Mechanics Symposium. Vladivostok. Russia. 2004. P. 157 162.
69. Dysthe К. В., Trulsen K. Note on breather type solutions of the NLS as a model for freak-waves // Physica Scripta. 1999. V. T82. P. 48 52.
70. Eckart C. Surface waves in water of variable depth // Mar. Phys. Lab., Scripps Inst. Oceanogr. 1951. Wave Rep. № Ю0. S10. Ref. 51-12. 99 p.
71. Foda M.A., Mei C.C. Nonlinear excitation of long trapped waves by a group of short swell //J. Fluid Mech. 1981. V. 111. P. 319 345.
72. Fornberg B. A practical guide to pseudospectral methods. Cambridge University Press. 1998.231 р.
73. Fuller J.D., Mysak L.A. Edge waves in presence of irregular coastline // J. Phys. Ocean-ogr. 1977. V. 7. P. 846- 855.
74. Gallagher B. Generation of surf beat by non-linear wave interaction // J. Fluid Mech. 1971. V. 49. Pt. l.P. 1 -20.
75. Galletta V., Vittori G. Nonlinear effects on edge wave development // European Journal of Mechanics B\ Fluids. 2004. V. 23. P. 861 878.
76. Gonzalez F.I., Satake K., Boss E.F., Mofjeld H.O. Edge Wave and Non-Trapped Modes of the 25 April 1992 Cape Mendocino Tsunami // Pure and Appl. Geophys. 1995. V. 144. № 3/4. P. 409 426.
77. Groen P., Groves G.W. Surges // in M.N. Hill (ed.) The sea. Chap. 7. Physical oceanography. V. 1. NY.: John Wiley @ Sons, 1962. P. 611 - 646.
78. Guza R.T., Bowen A.J. The resonant instabilities of long waves obliquely incident on a beach // J. Geophys. Res. 1975. V. 80. № 33. P. 4529 4534.
79. Guza R.T., Bowen A.J. Finite amplitude edge waves // J. Mar. Res. 1976. V. 34. № 2. P. 269 293.
80. Guza R.T., Davis R.E. Excitation of edge waves by waves incident on beach // J. Geophys. Res. 1974. V. 79. P. 1285 1291.
81. Guza R.T., Davis R.E. Excitation of edge waves on a beach // J. Geophys. Res. 1975. V. 80. № 33. P. 4529-4534.
82. Guza R.T., Inman D.L. Edge waves and beach cusps // J. Geophys. Res. 1975. V. 80. №21. P. 2997-3012.
83. Gomis D., Monserrat S., Tintore J. Pressure-forced seiches of large amplitude in inlets of the Balearic Islands // J. Geophys. Res. 1992. V. 97.
84. Hasimoto H., Ono H. Nonlinear modulation of gravity waves // J. Phys. Soc. Jpn. 1972. V. 33. P. 805 -811.
85. Haver S., Andersen O. Freak waves: rare realizations of a typical population or typical realization of rare population? // Proc. 10th Int. Offshore and Polar Engineering Conference (May 28 June 2, 2000). Seattle. 2000. P. 123 - 130.
86. Henderson K.L., Peregrine D.H., Dold J.W. Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrodinger equation // Wave Motion. 1999. V. 29. P. 341 -361.
87. Holman R.A. Infragravity energy in the surf zone // J. Geophys. Res. 1981. V. 86. № C7. P. 6442 6450.
88. Holman R.A., Bowen A.J. Bars, bumps and holes: models for the generation of complex beach topography // J. Geophys. Res. 1982. V. 87. № CI. P. 457 468.
89. Holman R.A., Bowen A.J. Longshore structure of infragravity wave motions // J. Geophys. Res. 1984. V. 89. № C4. P. 6446 6452.
90. Huntley D.A. Edge waves in a crescentic bar system // in The coastline of Canada. Pap. 80 10. Ed. By S.B. McCann. Geol. Surv. Of Can. Dartmouth. Nova Scotia. 1980. P. 111-121.
91. Huntley D.A., Bowen A.J. Field observation of edge waves // Nature. 1973. V. 243. № 5403. P. 160- 162.
92. Huntley D.A., Bowen A.J. Beach cups and edge waves // Proc. 16th Coastal Eng. Conf. -Hamburg. 1978. P. 1378 1393.
93. Huntley D.A., Guza R.T., Thornton E.B. Field observation of surf beat. 1. Progressive edge waves // J. Geophys. Res. 1981. V. 86. № C7. P. 6451 6466.
94. Huthnance J.M. On trapped waves over a continental shelf // J. Fluid Mech. 1975. V. 69. Pt. 4. P. 689 704.
95. Ishii H., Abe K. Propagation of tsunami on a linear slope between two flat regions. I. Ei-genwave // J. Phys. Earth. 1980. V. 28. P. 531 541.
96. Johns B. Fundamental mode edge waves over a steeply sloping shelf // J. Mar. Res. 1965. V. 23. P. 200 206.
97. Kenyon K.E. A note on conservative edge wave interaction // Deep Sea Res. 1970. V. 17. P. 197-201.
98. Kharif C., Pelinovsky E., Talipova Т., Slunyaev A. Focusing of nonlinear wave group in deep water // JETP Letters. 2001. V. 73. № 4. P.190 195.
99. Kirby J.T., Putrevu U., Ozkan-Haller H.T. Evolution equations for edge waves and shear waves on longshore uniform beaches // Proc. 26th Int. Conf. Coastal Engineering. 1998. P. 203-216.
100. Komar P. Beach Processes and Sedimentation. N.J.: Prentice-Hall. 1998.
101. Kriebel D. Efficient Simulation of Extreme Waves in a Random Sea // Abstract of Workshop "Rogue Waves'2000", November 29-30, 2000. Brest, 2000. P. 25 30.
102. Kurkin A.A., Pelinovsky E.N. Shallow-water edge waves above an inclined bottom slowly varied in along-shore direction // European Journal of Mechanics B/Fluids. 2003. V. 22. P. 305-316.
103. Lake B.M., Yuen H.C., Rungaldier H., Ferguson W.E. Nonlinear deep-water waves: Theory and experiment Part 2. Evoluation of a continuous wave train // J. Fluid Mech. 1977. V. 83. P. 49 74.
104. Lavrenov I. The wave energy concentration at the Agulhas current of South Africa // Natural Hazards. 1998. V. 17. P. 117- 127.
105. Lawton G. Monsters of the deep // New Scientist. 2001. № 2297. P. 28 32.
106. Lemon D.D. Seiche excitation in a coastal bay edge waves travelling on the coastal shelf / M. Sc. Thesis. Univ. of Brit. Columbia, Vancouver, 1975. 81 p.
107. Liu P.L.F., Yeh H., Lin P., Chang K.T., Cho Y.S. Generation and evolution of edge-wave packets // Physics Flueids. 1998. V. 10. № 7. P. 1635 1657.
108. Masselink G. Alongshore variation in beach cusp morphology in a coastal embayment // Earth Surface Processes and Landforms. 1999. V. 24. P. 335 347.
109. Masselink G., Russell P., Coco G., Huntley D. Test of edge wave forcing during formation of rhythmic beach morphology // J. Geophys. Res. 2004. V. 109. C06003. doi: 10.1029/2004 JC002339.
110. Miles J.W. Parametrically excited standing edge waves // J. Fluid Mech. 1990. V. 214. P. 43 -57.
111. Monserrat S., Ibbetson A., Thorpe A. Atmospheric gravity waves and "rissaga" phenomena // Quart. J. Roy. Met. Soc. 1991a. V. 117. P. 553 570.
112. Monserrat S., Ramis C., Thorpe A. Large-amplitude pressure oscillation in the western Mediterranean // Geophys. Res. Let. 1991b. V. 18. № 2. P. 183 186.
113. Munk W.H. Long ocean waves // In: The Sea. Ideas and Observations on Progress in the Study of the Sea. New York: J. Wiley. 1962. P. 647 - 663.
114. Munk W.H., Snodgrass F.E., Carrier G.F. Edge waves on the continental shelf // Science. 1956. V. 123. № 3187. P. 127 132.
115. Munk W.H., Snodgrass F.E., Gilbert F. Long waves on the continental shelf: an experiment to separate trapped and leaky modes // J. Fluid Mech. 1964. V. 20. Pt. 4. P. 529 544.
116. Munk W.H., Snodgrass F.E., Wimbush M.H. Tides off shore: Transition from California coastal to deep sea water // Geophys. Fluid Dyn. 1970. V. 1. № 1/2. P. 161 235.
117. Oltman-Shey J., Guza R. Infragravity edge wave observations on two California beach // J. Phys. Oceanogr. 1987. V. 17. № 5. P. 644 663.
118. Osborne A., Onorato M., Serio M. The nonlinear dynamics of rogue waves and holes in deep-water gravity wave train // Phys. Letters. 2000. V. A275. P. 386 393.
119. Pelinovsky E., Lechuga A., Poloukhina O., Kurkin A., Dubinina V. Freak edge waves // Proceedings of Int. Conf. "Waves-2005". 2005. P. 1 9.
120. Pelinovsky E.N., Poloukhina О. E., Kurkin A.A., Dubinina V.A. Nonlinear Dynamics of Stokes Edge Waves // Eos. Trans. AGU, 84 (52). Ocean Sci. Meet. Suppl. Abstract OS21F-02. 2004.
121. Pelinovsky E., Talipova Т., Kharif C. Nonlinear dispersive mechanism of the freak wave formation in shallow water// Physica D. 2000. V. 147. P. 83 94.
122. Peregrine D. Interaction of water waves and currents // Adv. Appl. Mech. 1976. V. 16. P. 9-117.
123. Peregrine D.H. Water waves, nonlinear Schrodinger equations and their solutions // J. Austral. Math. Soc., Ser. B. 1983. V. 25. P. 16-43.
124. Poloukhina O., Kurkin A., Dubinina V. Focusing of large-amplitude edge and Rossby waves // Geophysical Research Abstracts. 2003. V. 5. P. 1504.
125. Poloukhina O., Kurkin A., Dubinina V. Extreme Edge Waves Above a Cylindrical Shelf// Eos. Trans. AGU, 85 (17). Joint Assembly Suppl. Abstract OS33B-06. 2004a.
126. Poloukhina O., Pelinovsky E., Kurkin A., Dubinina V. Nonlinear instability of edge waves // Geophysical Research Abstracts. 2004b. V. 6. P. 634.
127. Poloukhina O., Pelinovsky E., Kurkin A., Dubinina V. Nonlinear interactions of edge waves above a uniform beach // Geophysical Research Abstracts. 2005. V. 7. P. 192.
128. Reid R.O. Effect of Coriolis force on edge waves, I. Investigation of the normal modes // J. Mar. Res. 1958. V. 16. P. 109 144.
129. Sand S.E., Hansen N.E., Minting P., Gudmestad O.T., Sterndorf M.J. Freak wave kinematics // Water Waves Kinematics / eds. A. Torum and O.T. Gudmestad. Kluwer: Netherlands, 1990. P. 535 - 549.
130. Sezawa K., Kanai K. On shallow water waves transmitted in direction parallels to a sea coast, with special reference to Love waves in heterogeneous media // Bull. Earth. Res. Inst. 1939. V. 17. P. 685-694.
131. Sheremet A., Guza R.T. A weakly dispersive edge wave model // Coastal Engineering. 1999. V. 38. P. 47-52.
132. Short A.D. Multiple offshore bars and standing waves // J. Geophys. Res. 1975. V. 80. № 27. P. 3838 3840.
133. Slunyaev A., Kharif C., Pelinovsky E., Talipova T. Nonlinear wave focusing on water of finite depth // Physica D. V. 173. 2002. P. 77 96.
134. Smith R. Giant waves // J. Fluid Mech. 1976. V. 77. P. 417 431.
135. Stoker T.F., Johnson E.R. The trapping and scattering of topographic waves by estuaries and headlands // J. Fluid Mech. 1991. V. 222. P. 501 524.
136. Stokes G.G. Report on resent researchers in hydrodynamics. — Rep. 16th Meet. Brit.Assoc. Adv. Sci., London, Murray, 1846. P. 1-20.
137. Taha T.R., Ablowitz M.J. Analytical and Numerical Aspects of Certain Nonlinear Evolution Equations. II. Numerical. Nonlinear Schrodinger Equation // J. Сотр. Phys. 1984. V. 55. P. 203-230.
138. Tang Y.M., Grimshaw R. A modal analysis of coastally trapped waves generated by tropical cyclones // J. Phys. Oceanography. 1995. V. 25. P. 1577 1598.
139. Tintore J., Gomis D., Alonso S., Wang D. A theoretical study of large sea level oscillations in the Western Mediterranean // J. Geophys. Res. 1988. V. 93. № C9. P.10797 10803.
140. Ursell F. Edge waves on a sloping beach // Proc. Roy. Soc. London. 1952. V. A214. P. 79 97.
141. White В., Fornberg B. On the chance of freak waves at sea // J. Fluid Mech. 1998. V. 355. P. 113-138.
142. Whitham G.B. Nonlinear effects in edge waves // J. Fluid Mech. 1976. V. 74. P. 353-368.146. www.phys.ocean.dal.ca/people/po/BowenTony.html
143. Yanuma Т., Tsuji Y., Nadai A. Observation of the standing edge waves trapped in the continental shelf region in the vicinity of the Makurazaki harbor, Kagoshima Prefecture // J. Oceanogr. Soc. Japan. 1992. V. 48.
144. Yeh H.H. Nonlinear progressive edge waves: their instability and evolution // J. Fluid Mech. 1985. V. 152. P. 479-499.
145. Yuen H.C., Lake B.M. Nonlinear deep water waves: theory and experiment // Phys. Fluid. 1975. V. 18. P. 956-960.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.