Катехоламины и оксид азота в регуляции функций вазопрессинергических нейронов гипоталамуса тема диссертации и автореферата по ВАК РФ 03.00.13, кандидат биологических наук Ямова, Любовь Анатольевна

  • Ямова, Любовь Анатольевна
  • кандидат биологических науккандидат биологических наук
  • 2004, Санкт-Петербург
  • Специальность ВАК РФ03.00.13
  • Количество страниц 182
Ямова, Любовь Анатольевна. Катехоламины и оксид азота в регуляции функций вазопрессинергических нейронов гипоталамуса: дис. кандидат биологических наук: 03.00.13 - Физиология. Санкт-Петербург. 2004. 182 с.

Оглавление диссертации кандидат биологических наук Ямова, Любовь Анатольевна

ОГЛАВЛЕНИЕ.

СПИСОК ОСНОВНЫХ СОКРАЩЕНИЙ.

ВВЕДЕНИЕ.

Глава 1. ОБЗОР ЛИТЕРАТУРЫ.

1.1. Вазопрессин: краткая характеристика гормона.

1.2. Вазопрессин и гипоталамо-гипофизарная система млекопитающих.

1.2.1. Структура гипоталамо-гипофизарной системы млекопитающих.

1.2.2. ВП-ергические нейроны гипоталамуса в условиях осмотической стимуляции.

1.3. Катехоламины - нейромодуляторы функций организма.

1.3.1. Катехоламины: общие сведения о локализации, синтезе и функциональном значении.

1.3.2. Участие норадреналина в регуляции функционального состояния ВП-ергических нейронов гипоталамуса.

1.3.2.1. Влияние норадреналина на секрецию ВП гипоталамическими нейронами.

1.3.2.2. Норадреналин как посредник в регуляции функций ВП-ергических нейронов.

К 1.4. N0 и вазопрессинергическая система гипоталамуса.

1.4.1. N0: синтез, роль в системе NO/цГМФ/цГМФ-зависимая протеинкиназа.

1.4.2. Участие N0 в регуляции функций вазопрессинергических нейронов.

1.5. Связь N0 с катехоламинами в гипоталамо-гипофизарной системе.

1.6. N0 и катехоламины в апоптозе нейронов.

1.6.1. Апоптоз: общие сведения о сигнальных белках апоптоза и о путях его инициации.

1.6.1.1. Каспазы и апоптоз.

1.6.1.2. Пути инициации апоптоза.

1.6.1.3. Роль белков семейства Вс1-2 в регуляции апоптоза.

1.6.2. Роль N0 в апоптозе.

1.6.3. Участие КА в процессе апоптоза.

Глава 2. МАТЕРИАЛЫ И МЕТОДЫ.

2.1. Экспериментальные модели.

2.1.1. Модели in vitro.

2.1.2. Модели in vivo.

2.2. Гистологическая обработка материала.

2.2.1. Иммуногистохимический метод.

2.2.2. Метод гибридизации in situ.

2.3. Морфофункциональный анализ материала.

2.4. Статистический анализ результатов.

Глава 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ. ф 3.1. Функциональное состояние ВП-ергических нейронов СОЯ и ПВЯ при инкубации переживающих срезов гипоталамуса в среде, содержащей ДА или НА.

3.2. Синтез и выведение ВП нейронами СОЯ и ПВЯ под действием

НА и агонистов АР в опытах in vitro.

3.3. Синтез и выведение ВП нейронами СОЯ и ПВЯ дегидратированных крыс в условиях блокады синтеза катехоламинов.

3.4. Экспрессия hNOS нейронами СОЯ и ПВЯ у дегидратированных крыс в условиях блокады синтеза катехоламинов.

3.5. Синтез и выведение ВП нейронами СОЯ и ПВЯ у мышей дикого типа и мышей-нокаутов по гену hNOS в условиях блокады синтеза катехоламинов.

3.6. Экспрессия сигнальных белков апоптоза нонапептидергическими нейронами СОЯ и ПВЯ у мышей дикого типа и мышей-нокаутов по гену hNOS в условиях дегидратации и блокады синтеза катехоламинов.

3.7. Экспрессия каспазы-9 и Вс1-2 нейронами СОЯ и ПВЯ под влиянием

НА и агонистов АР в опытах in vitro.

Глава 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ.

4.1. Влияние НА и ДА на функцию ВП-ергических нейронов

СОЯ и ПВЯ гипоталамуса крыс в опытах in vitro.

4.2. Влияние НА и агонистов АР на синтез и выведение ВП нейронами

Ф СОЯ и ПВЯ.

4.3. Участие КА в регуляции функционального состояния ВП-ергических нейронов СОЯ и ПВЯ у дегидратированных крыс.

4.4. Влияние блокады синтеза катехоламинов на экспрессию hNOS нонапептидергическими нейронами СОЯ и ПВЯ дегидратированных крыс.

4.5. Влияние низкого уровня катехоламинов на синтез и выведение ВП нейронами СОЯ и ПВЯ у мышей дикого типа и мышей-нокаутов по гену hNOS.

4.6. Влияние дегидратации и блокады синтеза катехоламинов на экспрессию сигнальных белков апоптоза нонапептидергическими нейронами СОЯ и ПВЯ у мышей дикого типа и мышей-нокаутов по гену hNOS.

4.7. Влияние НА и агонистов АР на экспрессию каспазы-9 и Вс1нейронами СОЯ и ПВЯ в опытах in vitro.

Рекомендованный список диссертаций по специальности «Физиология», 03.00.13 шифр ВАК

Введение диссертации (часть автореферата) на тему «Катехоламины и оксид азота в регуляции функций вазопрессинергических нейронов гипоталамуса»

Актуальность проблемы.

Функции многих регуляторных систем организма направлены на поддержание гомеостаза, что обеспечивает создание условий, оптимальных для реализации существующих регуляторных программ. Ведущая роль в регуляции водно-солевого обмена принадлежит вазопрессинергической системе гипоталамуса [Scharrer, Scharrer, 1963; Поленов, 1968, 1983]. Вазопрессин (ВП) относится к числу нейрогормонов с разнообразными функциями. Память и регуляция клеточного роста, сокращение гладких мышц и гликогенолиз, сон и стрессорные реакции организма — вот неполный перечень его внепочечных функций [Поленов, 1970, 1986; Филаретова, 1985; Чернышева, 1995; Landgraf, 2001]. Многообразны и почечные эффекты ВП: увеличение фильтрации, стимуляция транспорта хлорида натрия в толстой ^ восходящей петле Генле, наконец, повышение проницаемости собирательных трубок для воды и мочевины [Scharrer, Scharrer, 1963; Поленов, 1968, 1983; Теппермен, Теппермен, 1989; Багров, Манусова, 1994]. Нетрудно увидеть, что эти, кажущиеся разрозненными, эффекты ВП объединены одной общей целью - создать оптимальные условия для реабсорбции «осмотически свободной» воды. Именно возможность раздельного регулирования реабсорбции электролитов и воды лежит в основе поддержания постоянства осмотической концентрации крови, что является основной стратегией осморегуляции.

В виду всего выше сказанного, ВП является ключевым звеном механизма осморегуляции. В связи с этим большой интерес представляет изучение процессов регуляции синтеза и выведения ВП. ВП у € млекопитающих синтезируется в основном в нейронах паравентрикулярных

ПВЯ) и супраоптических (СОЯ) ядер гипоталамуса, откуда он впоследствии транспортируется по аксонам и выделяется, главным образом, в задней доле ф гипофиза, откуда он поступает в общий кровоток, а также в капиллярных сплетениях наружной зоны срединного возвышения. Известно, что на биосинтез и выведение ВП в основном оказывает влияние осмотическое давление плазмы крови (осмотическая регуляция) и кровяное давление или объем крови (неосмотическая регуляция) [Sladek, Knigge, 1977; Share, 1996]. Причиной изменения выше перечисленных параметров могут быть осмотические нагрузки (обогащенная глюкозой, липидами или белками пища, солевая диета), а также функциональные состояния организма, связанные с повышением осмотического давления плазмы крови или других жидкостных сред (лактация, кровопотери, диурез, потоотделение).

Показано, что в процессе передачи сигналов на ВП-ергические нейроны гипоталамуса принимают участие такие нейротрансмиттеры, как катехоламины (КА), ацетилхолин, гамма-аминомасляная кислота (ГАМК), & гистамин [Hornby, Piekut, 1987; Чернышева, 1995; Bealer, Abell, 1995].

Однако механизмы, с помощью которых данные нейротрансмиттеры передают клеточный сигнал, а часто даже сам характер влияния на ВП-ергические нейроны остаются еще во многом невыясненными.

Возможность участия КА в регуляции функционального состояния гипоталамических ВП-ергических нейронов подтверждается данными о наличии синаптических контактов между КА- и нонапептидергическими нейронами в пределах гипоталамуса [Shioda, Nakai, 1992, 1996; Michaloudi et al., 1997]. Важно также отметить, что на нейронах СОЯ и ПВЯ обнаружены все типы адренорецепторов (АР) [Hornby, Piekut, 1987; Takano et al., 1989; Khanna et al., 1993]. При этом, имеющиеся в литературе данные свидетельствуют о возможности как активирующего, так и на ингибиторного * действия КА на синтез и выведение ВП, что указывает на необходимость дальнейших исследований в данной области [Yamashita Н. et al., 1988;

Harland D et al., 1989; Ji Y. et al., 1998; Cole R.L., Sawchenko P.E., 2002]. ^ Кроме KA, важную роль в регуляции функций ВП-ергических нейронов гипоталамуса выполняет продукт нейрональной NO-синтазы (hNOS) - оксид азота (N0). В этом случае литературные данные также достаточно противоречивы и указывают как на активирующее [Kadowaki К. et al., 1994; Kadekaro М. et al., 1997, 1998], так и на ингибиторное [Ota М. et al., 1993] действие NO на синтез и выведение ВП гипоталамическими нейронами. Нельзя также исключать возможность взаимодействия КА и NO в процессе реализации внутриклеточных механизмов регуляции функционального состояния ВП-ергических нейронов. Но конкретных литературных данных по этому вопросу нам обнаружить не удалось. Как КА, так и NO кроме выполнения нейромодуляторной функции могут участвовать в инициации программированной клеточной гибели, при этом, действие этих веществ на апоптоз не является однозначным и во многом зависит от типа клеток и Ш условий опыта [Alagarsamy S. et al., 1997; Mayer В., Hemmens В., 1997; Brune В. et al., 1998; Noh J.S. et al, 1999]. Однако, практически ничего не известно об участии КА и N0 в регуляции апоптоза нонапептидергических нейронов.

Цель и задачи исследования.

Целью работы было изучение участия КА и NO в регуляции синтеза и выведения ВП, а также в регуляции экспрессии сигнальных белков апоптоза ВП-ергическими нейронами СОЯ и ПВЯ гипоталамуса. Для достижения этой цели были поставлены следующие задачи:

1. Оценить влияние КА и активации различных типов адренорецепторов на синтез и выведение ВП нейронами СОЯ и ПВЯ в опытах in vitro и in vivo.

2. Показать влияние изменения уровня КА, а также вклад различных типов адренорецепторов в регуляцию экспрессии сигнальных белков апоптоза клетками СОЯ и ПВЯ.

3. Оценить возможность взаимодействия КА и N0 в процессе регуляции функционального состояния ВП-ергичеких нейронов СОЯ и ПВЯ, а также в регуляции экспрессии этими нейронами сигнальных белков апоптоза в опытах in vivo на мышах дикого типа и мышах нокаутах по гену hNOS.

Научная новизна результатов исследования.

В работе впервые продемонстрировано, что КА могут оказывать противоположное действие на выведение ВП из перикарионов нейронов СОЯ и ПВЯ и из нервных окончаний задней доли гипофиза: ингибирующее действие в первом случае и активирующее - во втором.

Впервые показано, что N0 опосредует влияние снижения уровня КА на интенсивность синтеза ВП. При этом, тормозное действие КА и NO на выведение ВП из перикарионов носит аддитивый характер.

Активация разных типов адренорецепторов может оказывать различное (как активирующее, так и тормозное) действие на активность синтеза и выведения ВП гипоталамическими нейронами СОЯ и ПВЯ.

В работе впервые удалось показать участие NO в экспрессии сигнальных белков апоптоза нонапептидергическими нейронами СОЯ и ПВЯ в условиях осмотического воздействия.

Полученные данные впервые позволили предположить наличие в нонапептидергических нейронах СОЯ и ПВЯ рецепторных путей инициации апоптоза, действующих через адренорецепторы.

Основные положения, выносимые на защиту.

1. КА тормозят синтез ВП и его выведение из перикарионов ВПергических нейронов СОЯ и ПВЯ гипоталамуса, при этом влияние КА на синтез ВП опосредуется тормозным действием N0. В задней доле гипофиза отмечается противоположное действие КА и NO на выведение ВП из нервных окончаний в общий кровоток: активирующее действие КА и тормозное действие NO.

2. Активация разных типов адренорецепторов может оказывать различное действие на активность синтеза и выведения ВП, а также усиливать экспрессию сигнальных белков апоптоза нонапептидергическими нейронами СОЯ и ПВЯ.

3. NO необходим для активации экспрессии про- и антиапоптозных сигнальных белков апоптоза ВП-ергическими нейронами СОЯ и ПВЯ в условиях осмотической активации ВП-ергической системы гипоталамуса,

V вызванной дегидратации.

Теоретическая и практическая значимость работы.

Совокупность результатов работы позволила сформулировать научную гипотезу об ингибиторном действии КА и NO на выведение ВП из перикарионов нейронов СОЯ и ПВЯ. Тормозное действие КА на выведение ВП может иметь особо важное значение при осмотической стимуляции, когда для предотвращения истощения ВП-ергической системы гипоталамуса необходимо влияние сдерживающего фактора.

Полученные результаты важны для понимания механизмов регуляции водно-солевого обмена у млекопитающих, что имеет большое значение для разработки методических подходов лечения различного рода нарушений, приводящих к серьезным заболеваниям сердечно-сосудистой системы. Изучение экспрессии сигнальных белков апоптоза при различных функциональных нагрузках может быть полезно для понимания механизмов регуляции апоптоза при различных повреждающих воздействиях.

Работа выполнена по плану научных исследований лаборатории сравнительной сомнологии и нейроэндокринологии Института эволюционной физиологии и биохимии им. И.М. Сеченова РАН в рамках проекта РФФИ (01-04-48825).

Апробация работы и публикация результатов исследования.

Основные материалы диссертации доложены и обсуждены на V Всероссийской конференции "Нейроэндокринология-2000" (С.-Петербург, 2000), на II Российской конференции молодых ученых с международным участием (Москва, 2001), на XVIII съезде физиологического общества имени И.П. Павлова (Казань, 2001), на Второй научной конференции с международным участием "Эндокринная регуляция физиологических функций в норме и патологии" (Новосибирск, 2002), на международном симпозиуме "Neuron differentiation and plasticity - regulation by intercellular signals" (Москва, 2003), на Всероссийской конференции с международным участием "Нейроэндокринология-2003" (С.-Петербург, 2003). По материалам диссертации опубликовано 8 тезисов докладов на Российских и международных конференциях и 4 научные статьи в рецензируемых российских журналах.

Похожие диссертационные работы по специальности «Физиология», 03.00.13 шифр ВАК

Заключение диссертации по теме «Физиология», Ямова, Любовь Анатольевна

ВЫВОДЫ

1. Показано аддитивное ингибирующее действие катехоламинов и N0 на выведение вазопрессина из тел нейронов в супраоптическом и паравентрикулярном ядрах гипоталамуса. В задней доле гипофиза отмечается противоположное действие катехоламинов и N0 на выведение вазопрессина из нервных окончаний в общий кровоток; в этом случае катехоламины активируют, а N0 тормозит выведение вазопрессна из нейрогипофиза.

2. Снижение уровня катехоламинов в мозге активирует синтез вазопрессина нейронами гипоталамуса, причем для реализации влияния катехоламинов на синтез иРНК вазопрессина необходимо участие N0.

3. Активация разных типов адренорецепторов может оказывать различное влияние на функциональное состояние вазопрессинергических нейронов гипоталамуса. Так, активация cii-адренорецепторов ингибирует синтез вазопрессина и, возможно, его выведение, активация а2-адренорецепторов подавляет выведение вазопрессина, но не влияет на его синтез, а активация Р-адренорецепторов приводит к увеличению синтеза вазопрессина нейронами супраоптического и паравентрикулярного ядер гипоталамуса крыс.

4. Показано существование самостоятельных адренорецептор-опосредованных путей регуляции экспрессии каспазы-9 и Bcl-2 нонапептидергическими нейронами гипоталамуса, не исключающее, однако, возможности инициации апоптоза катехоламинами за счет активации нерецепторных внутриклеточных механизмов.

5. Специфическая функциональная нагрузка (дегидратация), а также снижение уровня катехоламинов в мозге не только влияют на синтез и выведение вазопрессина нейронами супраоптического и паравентрикулярного ядер гипоталамуса, но также вызывают усиление экспрессии сигнальных белков апоптоза клетками обоих ядер. При этом нейрональная NO-синтаза необходима для активации экспрессии сигнальных белков апоптоза только при дегидратации животных. Снижение уровня катехоламинов оказывает активирующее действие на синтез проапоптозых белков и не вызывает усиления экспрессии антиапоптозного белка Вс1-2.

ЗАКЛЮЧЕНИЕ

В исследовании проводилась одновременная оценка активности синтеза ВП и его выведения как из перикарионов ВП-ергических нейронов, так и из нейрогипофиза. Такой подход позволил выявить различия в действии КА на синтез и на выведение ВП нейронами гипоталамуса, а также оценить вклад N0 в регуляцию функций ВП-ергических нейронов и, таким образом, более полно охарактеризовать процесс секреции ВП нейронами СОЯ и ПВЯ при различных экспериментальных воздействиях.

Данные, полученные в опытах in vitro и in vivo, свидетельствуют о тормозном действии КА и NO на выведение ВП из перикарионов ВП-ергических нейронов СОЯ и ПВЯ как в контроле, так и в условиях осмотической стимуляции ВП-ергической системы гипоталамуса. Наиболее вероятным в процессе регуляции функционального состояния ВП-ергических нейронов СОЯ и ПВЯ на уровне перикарионов является аддитивное тормозное действие КА и NO на выведение ВП из тел клеток в аксоны и противоположное (активирующее для КА и ингибирующее для NO) действие на выведение ВП из нервных окончаний задней доли гипофиза в общий кровоток.

В опытах in vitro не удалось показать участия КА в регуляции синтеза ВП нейронами СОЯ и ПВЯ, что может быть связано с используемыми низкими (физиологическими) концентрациями КА. При этом использованные концентрации НА и ДА были достаточны для торможения выведения ВП из тел нейронов. В опытах in vivo, проведенных на крысах, мышах дикого типа и мышах-нокаутах по гену hNOS, применение блокатора синтеза КА на фоне дегидратации не вызвало изменений в активности синтеза ВП нейронами СОЯ и ПВЯ по сравнению с просто дегидратироваными животными, что может быть связано с сильной активацией нейронов исследуемых ядер в условиях осмотической стимуляции. Однако, введение a-mpt недегидратированным животным позволило показать тормозное действие КА на синтез ВП, которое, очевидно, опосредуется N0.

Опыты in vitro на переживающих срезах гипоталамуса показали, что активация различных типов АР может по-разному влиять на активность синтеза и выведения ВП нейронами СОЯ и ПВЯ гипоталамуса. Так, активация a г АР подавляет синтез ВП и возможно его выведение, активация аг-АР также подавляет выведение ВП, но не влияет на его синтез, а активация Р-АР приводит к стимуляции синтеза ВП нейронами СОЯ и ПВЯ гипоталамуса крыс. Столь различные эффекты при действии агонистов разных типов АР могут иметь большое физиологическое значение, обеспечивая пластичность ВП-ергической системы гипоталамуса при различных функциональных состояниях.

Оценка экспрессии каспазы-9 и Вс1-2 нонапептидергическими нейронами СОЯ и ПВЯ в опытах in vitro, проведенных с применением агонистов АР, позволяет предположить существование самостоятельных АР-опосредованных путей регуляции содержания про- и антиапоптозных белков в нейронах исследуемых ядер, не исключая, однако, существования нерецепторных внутриклеточных механизмов регуляции процесса апоптоза.

Полученные нами данные указывают на то, что активация экспрессии hNOS в условиях дегидратации может иметь важное значение не только для регуляции процессов синтеза и выведения ВП нейронами СОЯ и ПВЯ, но и оказывать проапотозное действие на клетки обоих ядер по каспаза-9- и р53-зависимым путям. Сильным повреждающим фактором для нейронов СОЯ и ПВЯ является снижение уровня КА в мозге, которое активирует экспрессию проапоптозных белков каспазы-9 и р53, не приводя при этом к активации экспрессии основного антиапоптозного белка Вс1-2. Причем в этом случае проапоптозное действие низкого уровня КА в мозге носит NO-независимый характер. Данные, полученные на мышах-нокаутах по гену hNOS, позволяют предположить, что основным звеном механизма регуляции программированной клеточной гибели, на которое в первую очередь оказывает влияние N0, является именно антиапоптозный белок Bcl-2.

Важно отметить выявленные различия в реакции нейронов СОЯ и ПВЯ на экспериментальные воздействия. Эти различия выражались в разной активности синтеза и выведения ВП, а также активности экспрессии сигнальных белков апоптоза нейронами ядер в ответ на осмотическую стимуляцию и изменение уровня КА. Выявленные различия могут быть связаны с различными функциями, выполняемыми нейронами СОЯ и ПВЯ, а также с разной чувствительностью этих нейронов к применяемым воздействиям.

Список литературы диссертационного исследования кандидат биологических наук Ямова, Любовь Анатольевна, 2004 год

1. Агроскин Л.С., Папаян Г.В. Опыт цифровой телевизионной цитофотометрии // Цитология. 1988. - Т.З. - С. 503-510.

2. Алешин Б.В. Гистофизиология гипоталамо-гипофизарной системы. — М.: Медицина, 1971. 439 с.

3. Багров Я.Ю., Манусова Н.Б. Роль гипоталамических нонапептидов в регуляции вегетативных функций // Нейроэндокринология, СПб. —1994. кн. Вторая, ч. Вторая - С. 191-225.

4. Гриневич В.В., Поленов А.Л. Эволюция нонапептидергических нейросекреторных формаций гипоталамуса у позвоночных животных // Ж. эвол. биохим. и физиол. 1994. -Т.30. — С. 170-192.

5. Козлова О.Н. Тирозингидроксилаза головного мозга в регуляции доминантного поведения самцов лабораторных мышей в популяции // Автореферат на соискание ученой степени кандидата биологических наук. 1994.- 17с.

6. Красновская И.А., Кузик В.В. Гомориположительные элементы гипоталамо-гипофизарной нейросекреторной системы крыс (иммуногистохимическое исследование) // Арх. анатомии, гистологии и эмбриологии. 1985. - Т.89. - С. 38-44.

7. Луцик Е.А. Эфферентные и афферентные связи нейросекреторных центров гипоталамуса. Афферентные связи // Нейроэндокринология, СПб. -1993. кн. Вторая, ч. Первая - С. 270-299.

8. Поленов А.Л. Гипоталамическая нейросекреция // Л.: Наука,-1968.-159с.

9. Поленов А.Л. Морфофункциональные основы нейросекреторных (пептидергических) и адренергических регулирующих механизмов гипоталамуса // в кн.: XI съезд Всес. физиол. об-ва. 1970. - Т.1. -С.311-315.

10. Ю.Поленов А.Л. Эволюция гипоталамо-гипофизарногонейроэндокринного комплекса // Руководство по физиологии. Эволюционная физиология. Л.: Наука. 1983. -ч.2. — С.53-109.

11. П.Поленов A.JI. Роль Гомориположительной гипоталамо-гипофизарной нейросекреторной системы в регуляции размножения (сравнительный морфологический и эколого-гистофизиологический анализ) // Ж. эвол. биохим. и физиол. -1986. -Т.22. С.406-418.

12. Поленов A.JI., Константинова М.С., Гарлов П.Е. Гипоталамо-гипофизарный нейроэндокринный комплекс// в кн.: Нейроэндокринология, ч. Первая, кн. Первая. 1993. - С. 139-187.

13. Смиттен Н.А., Шаляпина В.Г. Периферическая нейроэндокринная хромафинная система позвоночных // в кн.: Нейроэндокринология, ч. Первая, кн. Вторая. 1993. - С. 362-391.

14. Таранухин А.Г., Глазова М.В., Евтеева С.Е., Ямова JI.A., Черниговская Е.В. Участие катехоламинов и оксида азота в регуляции апоптоза в нонапептидергических нейронах гипоталамуса крыс // Ж. эвол. биохим. и физиол. 2002. - Т.38. - С. 615-619.

15. Таранухин А.Г. Экспрессия сигнальных белков апоптоза в нонапептидергических нейронах гипоталамуса // Автореферат на соискание ученой степени кандидата биологических наук. 2003. -23с.

16. Теппермен Дж., Теппермен X. Физиология обмена веществ и эндокринной системы. М.: «Мир», 1989. - 656 с.

17. Угрюмов М.В. Нейроэндокринная регуляция в онтогенезе (структурно-функциональные основы). М.: Наука, 1989. - 247 с.

18. Филаретова Л.П. Значение паравентрикулярных и вентромедиальных ядер гипоталамуса в активации гипофизарно-адренокортикальной системы //Физиол. Ж. СССР. 1985. -Т. 71. - С. 1063-1066.

19. Черниговский А. В. PhotoM, программное обеспечение анализа компьютерного цифрового телевизионного изображения // http://t lambda.chat.ru

20. Чернышева М.П. Эфферентные и афферентные связи нейросекреторных центров гипоталамуса. Эфферентные проекции. // Нейроэндокринология, СПб. -1993. кн. Вторая, ч. Первая - С. 230270.

21. Чернышева М.П. Гормоны животных. Введение в физиологическую эндокринологию: учебное пособие. СПб.: "Глаголь", 1995. - 296 с.

22. Ahern G.P., Hsu S.F., Jackson M.B. Direct actions of nitric oxide on rat neurohypophysial K+ channels // J. Physiol. 1999. - V.520, Ptl. - P. 165176.

23. Akaike A., Tamura Y., Terada K., Nakata N. Regulation by neuroprotective factors of NMDA receptor mediated nitric oxide synthesis in the brain and retina // Prog. Brain. Res. 1994. - V.103. - P. 391-403.

24. Alagarsamy S., Phillips M., Pappas Т., Johnson K.M. Dopamine neurotoxicity in cortical neurons // Drug Alcohol Depend. 1997. - V.48. -P. 105-111.

25. Amaya F., Tanaka M., Hayashi S., Tanaka Y., Ibata Y. Hypothalamo-pituitary-adrenal axis sensitisation after chronic salt loading // Neuroendocrinology. 2001. - V.73. - P. 185-193.

26. Andoh Т., Chock P.B., Chiueh C.C. Preconditioning-mediated neuroprotection: role of nitric oxide, cGMP, and new protein expression // Ann. NY Acad. Sci. 2002. - V.962. - P. 1-7.

27. Armstrong W.E., Warach S., Hatton G.I., McNeill Т.Н. Subnuclei in the rat hypothalamic paraventricular nucleus: a cytoarchitectural, horseradish peroxidase and immunocytochemical analysis // Neuroscience 1980. — V.5.-P. 1931-1958.

28. Armstrong W.E., Gallagher M.J., Sladek C.D. Noradrenergic stimulation of supraoptic neuronal activity and vasopressin release in vitro: mediation by alpha 1-receptor //Brain Res. 1986.- V.365.- P. 192-197.

29. Banasiak K.J., Haddad G.G. Hypoxia-induced apoptosis: effect of hypoxic severity and role of p53 in neuronal cell death // Brain Res. 1998. — V.797. -P. 295-304.

30. Banasiak K.J., Cronin Т., Haddad G.G. Bcl-2 prolongs neuronal survival during hypoxia-induced apoptosis // Brain Res. Mol. Brain Res. 1999. -V.72.-P. 214-225.

31. Barberis C., Tribollet E. Vasopressin and oxytocin receptors in the central nervous system // Crit. Rev. Neurobiol. 1996. - V. 10. - P. 119-154.

32. Bealer S.L., Abell S.O. Paraventricular nucleus histamine increases blood pressure by adrenoreceptor stimulation of vasopressin release // Am. J. Physiol. 1995. - V.269. - P. 80-85.

33. Blanco F.J., Ochs R.L., Schwarz H., Lotz M. Chondrocyte apoptosis induced by nitric oxide // Am. J. Pathol. 1995. - V.146. - P. 75-85.

34. Boudaba C., Di S., Tasker J.G. Presynaptic noradrenergic regulation of glutamate inputs to hypothalamic magnocellular neurons // J. Neuroendocrinol. V. 15. - P. 803-810.

35. Bozzi Y., Vallone D., Borrelli E. Neuroprotective role of dopamine against hippocampal cell death // J. Neurosci. 2000. - V.20. - P. 8643-8649.

36. Brann D.W., Bhat G.K., Lamar C.A., Mahesh V.B. Gaseous transmitters and neuroendocrine regulation // Neuroendocrinology 1997. - V.65. — P. 385395.

37. Brooks D.P., Share L., Crofton J.T. Central adrenergic control of vasopressin release // Neuroendocrinology. — 1986. V.42. - P. 416-420.

38. Brune В., von Knethen A., Sandau K.B. Nitric oxide and its role in apoptosis // European Journal of Pharmacology. 1998. - V.351. — P. 261272.

39. Budihardjo I., Oliver H., Lutter M., Luo X., Wang X. Biochemical pathways of caspase activation during apoptosis // Annu. Rev. Cell Dev. Biol. 1999. -V.15.-P. 269-290.

40. Bugajski J., Boiycz J., Gadek-Michalska A., Glod R. Effect of L-NAME, a specific nitric oxide synthase inhibitor, on corticotropin-releasing hormone-elicited ACTH and corticosterone secretion // J. Physiol. Pharmacol. 1998 (a). - V.49. - P. 607-616.

41. Bugajski J., Gadek-Michalska A., Glod R., Borycz J., Bugajski A.J. Blockade of nitric oxide formation impairs adrenergic-induced ACTH and corticosterone secretion // J. Physiol. Pharmacol. 1999. - V.50. - P. 327334.

42. Buijs R.M. Intra- and extrahypothalamic vasopressin- and oxytocin-pathways in the rat // Cell Tiss. Res. 1978. - V.192. - P. 423-435.

43. Buller K.M., Smith D.W., Day T.A. Differential recruitment of hypothalamic neuroendocrine and ventrolateral medulla catecholamine cells by non-hypotensive and hypotensive hemorrhages // Brain Res. 1999. -V.834. - P. 42-54.

44. Campbell-Thompson M. L., Verlander J. W., Curran K. A. In situ hybridization of H-K-ATPase b-subunit mRNA in rat and rabbit kidney // Am. J. Physiol. 1995. - V.3. - P. 345-354.

45. Canals S., Casarejos M.J., Rodriguez-Martin E., de Bernardo S., Mena M.A. Neurotrophic and neurotoxic effects of nitric oxide on fetal midbrain cultures // J. Neurochem. 2001. - V.76. - P. 56-68.

46. Canova C., Baudet C., Chevalier G., Brachet P., Wion D. Noradrenaline inhibits the programmed cell death induced by 1,25-dihydroxyvitamin D3 in glioma // Eur. J. Pharmacol. 1997. - V.319. - P. 365-368.

47. Cao L., Sun X., Shen E. Nitric oxide stimulates both the basal and reflex release of vasopressin in anesthetized rats // Neurosci. Lett. 1996. - V.221. -P. 49-52.

48. Cheng N., Maeda Т., Kume Т., Kaneko S., Kochiyama H., Akaike A., Goshima Y., Misu Y. Differential neurotoxicity induced by L-DOPA and dopamine in cultured striatal neurons // Brain Res. 1996. - V.743. - P. 278-283.

49. Chopp M., Li Y., Zhang Z.G., Freytag S.O. P53 expression in brain after middle cerebral artery occlusion in the rat // Biochem. Biophys. Res. Commun. 1992. - V.182. - P. 1201-1207.

50. Chu H.P., Etgen A.M. Ovarian hormone dependence of alpha(l)-adrenoceptor activation of the nitric oxide-cGMP pathway: relevance for hormonal facilitation of lordosis behavior // J. Neurosci. 1999. - V.19. - P. 7191-7197.

51. Ciosek J., Gusek J.W., Morawska J. The hypothalamic and neurohypophyseal vasopressin and oxytocin content under various states of adrenergic transmission in dehydrated and subsequently rehydrated rats // Acta Physiol. Pol. 1985. - V.36. - P. 229-241.

52. Ciosek J., Gusek J.W. Thyrotropin-releasing hormone (TRH) and vasopressin and oxytocin release: in vitro as well as in vivo studies // Exp. Clin. Endocrinol. 1992. - V. 100. - P. 152-159.

53. Clark R.S., Chen J., Watkins S.C., Kochanek P.M., Chen M., Stetler R.A., Loeffert J.E., Graham S.H. Apoptosis-suppressor gene bcl-2 expression after traumatic brain injury in rats // J. Neurosci. 1997. - V. 17. - P. 9172-9182.

54. Cole R.L., Sawchenko P.E. Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of the hypothalamus // J. Neurosci. 2002. - V.22. - P. 959-969.

55. Cregan S.P. MacLaurin J.G., Craig C.G., Robertson G.S., Nicholson D.W., Park D.S., Slack R.S. Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons // J. Neurosci. 1999. -V.19.-P. 7860-7869.

56. Creveling C.R., Lundstrom J., McNeal E.T., Tice L. Daly J.W. Dihydroxytryptamines: Effects on noradrenergic function in mouse heart in vivo // Mol. Pharmacol. 1975. - V.l 1. - P. 211-222.

57. Daftary S.S., Boudaba C., Szabo K., Tasker J.G. Noradrenergic excitation of magnocellular neurons in the rat hypothalamic paraventricular nucleus via intranuclear glutamatergic circuits // J. of Neuroscience 1998. - V.l8. - P. 10619-10628.

58. Dawson V.L., Dawson T.M., Bartley D.A., Uhl G.R., Snyder S.H. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures // J. Neurosci. 1993. - V.13. - P. 2651-2661.

59. Dawson T.M., Snyder S.H. Gases as biological messengers: Nitric oxide and carbon monoxide in the brain// J. Neurosci. 1994. - V.l4. - P. 5147-5159.

60. Day T.A., Randlo J.C., Renaud L.P. Opposing alpha- and beta-adrenergic mechanism mediate dose-dependent actions of noradrenaline on supraoptic vasopressin neurons in vitro // Brain Res. 1985. - V.358. - P. 171-179.

61. Deng G., Su J.H., Ivins K.J., Van Houten В., Cotman C.W. Bcl-2 facilitates recovery from DNA damage after oxidative stress // Exp. Neurol. — 1999. -V.l59.-P. 309-318.

62. De Souza E.B., Kuyatt B.L. Alpha 1-adrenergic receptors in the neural lobe of the rat pituitary: autoradiographic identification and localization // Endocrinology. 1987. - V.120. - P. 2227-2233.

63. Dieguez C., Foord S.M., Peters J.R. Alpha 1-adrenoceptors and alpha 1-adrenoreceptor-mediated thyrotropin release in cultures of euthyroid and hypothyroid rat anterior pituitary cells // Endocrinology 1985. - V.l 17. -P. 624-630.

64. Domyancic A.V., Morilak D.A. Distribution of alphal A adrenergic receptor mRNA in the rat brain visualized by in situ hybridization // J. Сотр. Neurol. 1997. - V.386. - P. 358-378.

65. Donehower L.A., Harvey M., Slagle B.L., McArthur M.J., Montgomery C.A. Jr., Butel J.S., Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours // Nature. 1992. - V.356. -P. 215-221.

66. Dragovich Т., Rudin C.M., Thompson C.B. Signal transduction pathways that regulate cell survival and cell death // Oncogene. 1998. - V.l7. - P. 3207-3213.

67. D'Sa-Eipper C., Leonard J.R., Putcha G., Zheng T.S., Flavell R.A., Rakic P., Kuida K., Roth K.A. DNA damage-induced neural precursor cell apoptosis requires p53 and caspase 9 but neither Bax nor caspase 3 // Development. — 2001.-V.128.-P. 137-146.

68. Duncan G.E., Oglesby S.A., Greenwood R.S., Meeker R.B., Hayward J.N., Stumpf W.E. Metabolic mapping of functional activity in the rat brain and pituitary after water deprivation // Neuroendocrinology. 1989. - V.49. - P. 489-495.

69. Duvilanski B.H., Zambruno C., Seilicovich A. Role of nitric oxide in control of prolactin release by the adenohypophysis // Proc. Natl. Acad. Sci. 1995. -V.92.-P. 170-174.

70. Earnshaw W.C., Martins L.M., Kaufmann S.H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis // Annu. Rev. Biochem. 1999. - V.68. - P. 383-424.

71. E1 Fazaa S., Gharbi N., Kamoun A., Somody L. Vasopressin and Al noradrenaline turnover during food or water deprivation in the rat // Сотр. Biochem. Physiol. C. Toxicol. Pharmacol. 2000. - V.l26. - P. 129-137.

72. E1-Husseini A.E., Williams J., Reiner P.B., Pelech S., Vincent S.R. Localization of the cGMP-dependent protein kinases in relation to nitric oxide synthase in the brain // J. Chem. Neuroanat. 1999. - V.17. - P.45-55.

73. Enokido Y., Araki Т., Tanaka K., Aizawa S., Hatakana H. Involvement of p53 in DNA strand break-induced apoptosis in postmitotic CNS neurons // Eur. J. Neurosci. 1996. - V.8. -P. 1812-1821.

74. Farlie P.G., Dringen R., Rees S.M., Kannourakis G., Bernard O. Bcl-2 transgene expression can protect neurons against developmental and induced cell death // Proc. Natl. Acad. Sci USA. 1995. - V.92. - P. 4397-4401.

75. Fehsel K., Kronke K.D., Meyer K.L., Huber H., Wahn W., Kolb-Bachofen V. Nitric oxide induced apoptosis in mouse thymocytes // J. Immunol. — 1995. V.155. - P. 2858-2865.

76. Foo N.C., Carter D., Murphy D., Ivell R. Vasopressin and oxytocin gene expression in rat testis // Endocrinology 1991. - V. 128. - P. 2118-2128.

77. Fu W., Luo H., Parthasarathy S., Mattson M.P. Catecholamines potentiate amyloid beta-peptide neurotoxicity: involvement of oxidative stress, mitochondrial dysfunction, and perturbed calcium homeostasis // Neurobiol. Dis. 1998. - V.5. - P. 229-243.

78. Galfi M., Janaky Т., Toth R., Prohaszka G., Juhasz A., Varga C., Laszlo F.A. Effects of dopamine and dopamine-active compounds on oxytocin and vasopressin production in rat neurohypophyseal tissue cultures // Regul. Pept. 2001. - V.98. - P. 49-54.

79. George J.M. Vasopressin and oxytocin are depleted from rat hypothalamic nuclei after oral hypertonic saline // Science. 1976. - V. 193. - P. 146-148.

80. Gross A., McDonnell J.M., Korsmeyer S.J. Bcl-2 family members and the mitochondria in apoptosis // Genes and Dev. 1999. - V.13. - P. 18991911.

81. Guzek J.W. Studies on the vasopressin and oxytocin storage in the hypothalamus and neurohypophysis // Acta Physiol. Pol. 1987. - V.38. -P. 445-450.

82. Han S.K., Mytilineou C., Cohen G. L-DOPA up-regulates glutathione and protects mesencephalic cultures against oxidative stress // J. Neurochem. — 1996.-V.66.-P. 501-510.

83. Harland D., Gardiner S.M., Bennett T. Paraventricular nucleus injections of noradrenaline: cardiovascular effects in conscious Long-Evans and Brattleboro rats // Brain Res. 1989. - V.496. - P. 14-24.

84. Hatakeyama S., Kawai Y., Ueyama Т., Senba E. Nitric oxide synthase-containing magnocellular neurons of the rat hypothalamus synthesize oxytocin and vasopressin and express Fos following stress stimuli // J. Chem. Neuroanat. 1996. - V.l 1. - P. 243-256.

85. Hattori A., Luo Y., Umegaki H., Munoz J., Roth G.S. Intrastriatal injection of dopamine results in DNA damage and apoptosis in rats // Neuroreport. — 1998. V.9. - P. 2569-2572.

86. Helmreich D.L., Itoi K., Lopez-Figueroa M.O., Akil H., Watson S.J. Norepinephrine-induced CRH and AVP gene transcription within the hypothalamus: differential regulation by corticostrone // Brain Res. Mol. Brain Res. 2001. - V.88. - P. 62-73.

87. Hockenbery D., Nunes G., Milliman C., Schreiber R.D., Korsmeyer S.J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. // Nature. 1990. - V.348. - P. 334-336.

88. Honda K., Negoro H., Dyball R.E.J. The osmoreceptor complex in the rat: evidence for interactions between the supraoptic and other diencephalic nuclei // J. Physiol. 1990. - V.431. - P. 225-241.

89. Horie K., Obika K., Foglar R., Tsujimoto G. Selectivity of the imidazoline alpha-adrenoceptor agonist (oxymetazoline and cirazoline) for human cloned alpha 1-adrenoceptor subtypes // Br. J. Pharmacol. 1995. — V.116.-P. 1611-1618.

90. Hornby P.J., Piekut D.T. Catecholamine distribution and relationship to magnocellular neurons in the paraventricular nucleus of the rat // Cell Tissue Res. 1987. - V.248. - P. 239-246.

91. Hortelano S., Dallaporta В., Zamzami N., Hirsch Т., Susin S.A., Marzo I., Bosca L., Kroemer G. Nitric oxide induces apoptosis via triggering mitochondrial permeability transition // FEBS Lett. 1997. - V.410. - P. 373-377.

92. Hoyt K.R., Reynolds I.J., Hastings T.G. Mechanism of dopamine-induced cell death in cultured rat forebrain neurons: Interactions with anddifferences from glutamate-induced cell death // Exp. Neurol. 1997. -V.143. — P. 269-281.

93. Hu Y., Benedict M.A., Ding L., Nunez G. Role of cytochrome с and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis // EMBO J. 1999. - V. 18. - P. 3586-3595.

94. Huang P.L. Neuronal and endothelial nitric oxide synthase gene knockout mice // Braz. J. Med. Biol. Res. 1999. - V.32. - P. 1353-1359.

95. Hughes P.E., Alexi Т., Schreiber S.S. A role for the tumour suppressor gene p53 in regulating neuronal apoptosis // Neuro Report. 1997. - V.8. -P. 5-12.

96. Hurbin A., Orcel H., Alonso G., Moos F., Rabie A. The vasopressin receptors colocalize with vasopressin in the magnocellular neurons of the rat supraoptic nucleus and are modulated by water balance // Endocrinology. — 2002.-V.143.-P. 456-466.

97. Inamura N., Araki Т., Enokido Y., Nishio C., Aizawa S., Hatanaka H. Role of p53 in DNA strand break-induced apoptosis in organotypic slice culture from the mouse cerebellum // J. Neurosci Res. 2000. - V.60. - P. 450-457.

98. Itoi K., Helmreich D.L., Lopez-Figueroa M.O., Watson S.J. Differential regulation of corticotropin-releasing hormone and vasopressin gene transcription in the hypothalamus by norepinephrine // J. Neuroscience- 1999. V. 19. - P. 5464-5472.

99. Ivell R., Furuya K., Brackmann B. Expression of the oxytocin and vasopressin genes in human and baboon gonadal tissues // Endocrinology -1990. V.127. - P. 2990-2996.

100. Jacobson M.D., Burne J.F., King M.P., Miyashita Т., Reed J.C., Raff M.C. Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA // Nature. -1993.-V.361.-P. 365-366.

101. Janus J., Guzek J.W. The vasopressin content in the neurohypophysis under conditions of intracerebroventricular beta-adrenergic blockade in euhydrated and dehydrated rats // Acta Physiol. Pol. 1987. - V.38. - P. 402-409.

102. Janus J., Guzek J.W. Vasopressin and oxytocin neurohypophysial content under conditions of beta-adrenergic blockade in euhydrated and dehydrated rats: further studies // Exp. Clin. Endocrinol. 1988. - V.91. - P. 78-84.

103. Janus J., Guzek J.W. The vasopressin and oxytocin content in the neurohypophysis under conditions of increased beta-adrenergic transmission in euhydrated and dehydrated rats // Exp. Clin. Endocrinol. 1990. - V.95. -P. 293-299.

104. Ji Y., Mei J., Lu S. Opposing effects of intracerebroventricularly injected norepinephrine on oxytocin and vasopressin neurons in the paraventricular nucleus of the rat // Neurosci Lett. 1998. - V.244. — P. 1316.

105. Jiang X., Wang X. Cytochrome с promotes caspase-9 activation by inducing nucleotide binding to Apaf-1 // J. Biol. Chem. 2000. - V.275. -P. 31199-31203.

106. Jordan J., Galindo R.S., Prehn J.H.M., Weichselbaum R.R., Beckett M., Ghadge G.D., Roos R.P., Leiden J.M., Miller R.J. p53 expression induced apoptosis in hyppocampal pyramidal neuron cultures // J. Neurosci. -1997.-V.17.-P. 1397-1405.

107. Jorgensen H., Riis M., Knigge U., Kjaer A., Warberg J. Serotonin receptors involved in vasopressin and oxytocin secretion // J. Neuroendocrinol. 2003. - V.l5. - P. 242-249.

108. Junn E., Mouradian M.M. Apoptotic signaling in dopamine-induced cell death: the role of oxidative stress, p38 mitogen-activated protein kinase, cytochrome с and caspases // J. Neurochem. 2001. — V.78. - P. 374-383.

109. Kadekaro M., Liu H., Terrell M.L., Gestl S., Bui V., Summy-Long J.Y. Role of NO on vasopressin an oxytocin release and blood pressure responses during osmotic stimulation in rats // Am. J. Phisiol. — 1997. -V.273.-P. 1024-1030.

110. Kadekaro M., Terrell M.L., Liu H., Gestl S., Bui V., Summy-Long J.Y. Effects of L-NAME on cerebral metabolic, vasopressin, oxytocin, and blood pressure responses in hemorrhaged rats // Am. J. Phisiol. 1998. -V.274.-P. 1070-1077.

111. Kalimo H. Ultrastructural studies on the hypothalamic neurosecretory neurons of the rat. III. Paraventricular and supraoptic neurons during lactation and dehydration // Cell Tissue Res. 1975. - V. 163. - P. 151-168.

112. Keane R.W., Kraydieh S., Lotocki G., Alonso O.F., Aldana P., Dietrich W.D. Apoptotic and antiapoptotic mechanisms after traumatic brain injury // J. Cereb. Blood Flow Metab. 2001. - V.21. - P. 1189-1198.

113. Kerr J.F., Wyllie A.H., Currie A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics // Br. J. Cancer. 1972. - V.26. - P. 239-257.

114. Kerr J.F.R., Winterford C.M., Harmon B.V. Apoptosis its significance in cancer and cancer therapy // Cancer. - 1994. - V.73. - P. 2013-2026.

115. Khanna A.S., Waisman D.M. Metabolism and intracellular processing of protein hormones // Hormones and their actions. 1988. - Pt.l. - P.l 17132.

116. Khanna S., Sibbald J.R., Day T.A. Alpha 2-adrenoreceptor modulation of Al noradrenergic neuron input to supraoptic vasopressin cells // Brain Res. 1993. - V.13. - P. 164-167.

117. Kim Y.I., Dudley C.A., Moss R.L. Inhibitory effect of norepinephrine on the single-unit activity of caudally projecting paraventricular neurons // Synapse. 1989. - V.3. - P. 213-224.

118. Kiss A., Jezova D., Aguilera G. Activity of the hypothalamic pituitary adrenal axis and sympathoadrenal system during food and water deprivation in the rat // Brain Res. 1994. - V.663. - P. 84-92.

119. Kitamura Y., Ota Т., Matsuoka Y., Tooyama I., Kimura H., Shimohama S., Nomura Y., Gebicke-Haerter P.J., Taniguchi T. Hydrogen peroxide-induced apoptosis mediated by p53 protein in glial cells // Glia. -1999.-V.25.-P. 154-164.

120. Kjaer A., Knigge U., Rouleau A. Dehydration-induced release of vasopressin involves activation of hypothalamic histaminergic neurons // Endocrinology- 1994.-V.135.-P. 675-681.

121. Klemfuss H., Seiden L.S. Hypothalamic catecholamine metabolism is increased by acute water imbalance // Pharmacol. Biochem. Behav. 1986. -V.24.-P. 229-235.

122. Kluck R.M., Bossy-Wetzel E., Green D.R., Newmeyer D.D. The release of cytochrome с from mitochondria: A primary site for Bcl-2 regulation of apoptosis // Science. 1997. - V.275. - P. 1132-1136.

123. Knigge U., Willems E., Kjaer A. Histaminergic and catecholaminergic interactions in the central regulation of vasopressin and oxytocin secretion // Endocrinology 1999. - V.140. - P. 3713-3719.

124. Knoblach S.M., Nikolaeva M., Huang X., Fan L., Krajewski S., Reed J.C., Faden A.I. Multiple caspases are activated after traumatic brain injury: evidence for involvement in functional outcome // J. Neurotrauma. — 2002. -V.19.-P. 1155-1170.

125. Kovacs K.J., Makara G.B. Factors from the paraventricular mediate inhibitory effect of alpha-2-adrenergic drugs on ACTH secretion // Neuroendocrinology -1993. V.57. - P. 346-350.

126. Kriegsfeld L.J., Dawson T.M., Dawson V.L., Nelson R.J., Snyder S.H. Aggressive behavior in male mice lacking the gene for neuronal nitricoxide synthase requires testosterone // Brain Res. 1997. - V.769. - P. 6670.

127. Kriegsfeld L.J., Eliasson M.J., Demas G.E., Blackshaw S., Dawson T.M., Nelson R.J., Snyder S.H. Nocturnal motor coordination deficits in neuronal nitric oxide synthase knock-out mice // Neuroscience. 1999. -V.89.-P. 311-315.

128. Kroemer G., Zamzami N., Susin S.A. Mitochondrial control of apoptosis // Immunol. Today. 1997. - V. 18. - P. 44-51.

129. Kuida K. Caspase-9 // Int. J. Biochem. Cell Biol. 2000. - V.32. - P. 121-124.

130. Landgraf R. Neuropeptides and anxiety-related behavior // Endocr. J. -2001.-V.48.-P. 517-533.

131. Lane D.P. A death in the life of p53 // Nature. 1993. - V.362. - P. 786-787.

132. Larsen P.J., Moller M., Mikkelsen J.D. Efferent projections from the periventricular and medial parvocellular subnuclei of the hypothalamic PVN to circumventricular organs // J. Compar. Neurol. 1991. - V.306. - P. 162179.

133. Larsen P.J., Vrang N. Neurons projecting to the hypothalamus from the brainstem Al catecholaminergic cell group express glutamate-R2,3 receptor immunoreactivity // Brain Res. 1995. - V.705. - P. 209-215.

134. Lee C.S., Han J.H., Jang Y.Y., Song J.H., Han E.S. Differential effect of catecholamines and MPP(+) on membrane permeability in brain mitochondria and cell viability in PC 12 cells // Neurochem. Int. 2002. -V.40.-P. 361-369.

135. Leibowitz S.F., Eidelman D., Suh J.S., Diaz S., Sladek C.D. Mapping study of noradrenergic stimulation of vasopressin release // Exp. Neurol. -1990.-V.110.-P. 298-305.

136. Leist M., Nicotera P. Apoptosis, excitotoxicity, and neuropathology // Exp. Cell Res. 1998. - V.239. - P. 183-201.

137. Lewen A., Matz P., Chan P.H. Free radical pathways in CNS injury // J. Neurotrauma. 2000. - V. 17. - P. 871-890.

138. Li Y., Chopp M., Zhang Z.G., Zaloga C., Niewenhuis L., Gautam S. P53-immunoreactive protein and p53 mRNA expression after transient middle cerebral artery occlusion in rats // Stroke. 1994. - V.25. - P. 849855.

139. Li J., Billiar T.R., Talanian R.V., Kim Y.M. Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation // Biochem. Biophys. Res. Commun. 1997. - V.240. - P. 419-424.

140. Li H., Zhu H., Xu C.J., Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis // Cell. -1998.-V.94.-P. 491-501.

141. Li D.P., Pan H.L. Potentiation of glutamatergic synaptic input to supraoptic neurons by presynaptic nicotinic receptors // Am. J. Physiol. Regul. Integr. Сотр. Physiol. 2001. - V.281. - P. 1105-1113.

142. Lindquist J.M., Fredriksson J.M., Rehnmark S., Cannon В., Nedergaard J. Beta3- and alpha 1-adrenergic Erkl/2 activation is Src- but not Gi mediated in Brown adipocytes // J. Biol. Chem. 2000. - V.275. - P. 22670-22677.

143. Liu J., Mori A. Monoamine metabolism provides an antioxidant defense in the brain against oxidant- and free radical-induced damage // Arch. Biochem. Biophys. 1993. - V.302. - P. 118-127.

144. Liu Q.S., Jia Y.S., Ju G. Nitric oxide inhibits neuronal activity in the supraoptic nucleus of the rat hypothalamic slices // Brain Res. Bull. 1997. -V.43.-P. 121-125.

145. Liu H., Terrell M.L., Bui V., Summy-Long J.Y., Kadekaro M. Nitric oxide control of drinking, vasopressin and oxytocin release and blood pressure in dehydrated rats // Physiol. Behav. 1998. - V.63. - P. 763-769.

146. Lopez-Collazo E., Mateo J., Miras-Portugal M.T., Bosca L. Requirement of nitric oxide and calcium mobilization for the induction of apoptosis in adrenal vascular endothelial cells // FEBS Lett. 1997. -V.413.-P. 124-128.

147. Lorsbach R.B., Murphy W.J., Lowenstein C.J., Snyder S.H., Russell S.W. Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing // J. Biol. Chem. 1993. - V.268. - P. 19081913.

148. Love S. Apoptosis and brain ischaemia // Prog. Neuropsychopharmacol. Biol. Psychiatry. — 2003. — V.27. — P. 267-282.

149. Lud Cadet J., Harrington В., Ordonez S. Bcl-2 overexpression attenuates dopamine-induced apoptosis in an immortalized neural cell line by suppressing the production of reactive oxygen species // Synapse. — 2000. -V.35.-P. 228-233.

150. Ludwig R.L., Bates S., Vousden K.H. Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function // Mol. Cell. Biol. 1996. - V. 16. - P. 4952-4960.

151. Ludwig M., Опака Т., Yagi K. Vasopressin regulation of noradrenaline release within the supraoptic nucleus // J. of Neuroendocrinology 2000. - V. 12. - P. 477-479.

152. Ludwig M., Sabatier п., Dayanithi G., Russell J.A., Leng G. The active role о dendrites in the regulation of magnocellular neurosecretory cell behavior // Prog. Brain Res. 2002. - V.139. - P. 247-256.

153. Luo X., Budihardjo I., Zou H., Slaughter C., Wang X. Bid, a Bcl-2 interacting protein, mediates cytochrome с release from mitochondria in response to activation of cell surface death receptor // Cell. 1998. — V.94. -P. 481-490.

154. Luo C., Lu Y., Jiang J., Zhu C. Changes of bcl-x(L) and bax mRNA expression following traumatic brain injury in rats // Chin. J. Traumatol. -2002. — V.5. P. 299-302.

155. Lutz-Bucher В., Koch В. Evidence for an inhibitory effect of nitric oxides о neuropeptide secretion from isolated neural lobe of the rat pituitary gland // Neurosci. Lett. 1994. - V. 165. - P. 48-50.

156. Majno G., Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death // Am. J. Pathol. 1995. - V.146. - P. 3-15.

157. Martin L.J., Kaiser A., Yu J.W., Natale J.E., Al-Abdulla N.A. Injury-induced apoptosis of neurons in adult brain is mediated by p53-dependent and p53-independent pathways and requires Bax //J. Сотр. Neurol. 2001. -V.433.-P. 299-311.

158. Mashimo H., Goyal R.K. Lessons from genetically engineered animal models. IV. Nitric oxide synthase gene knockout mice // Am. J. Physiol. -1999.-V.277.-P. 745-750.

159. Mastrangelo D., de Saint Hilaire-Kafi Z., Gaillard J.M. Effects of clonidine and alpha-methyl-p-tyrosine on the carbachol stimulation of paradoxical sleep // Pharmacol. Biochem. Behav. 1994. -V.48.-P. 93-100.

160. Mayer В., Hemmens B. Biosynthesis and action of nitric oxide in mammalian cells // TIBS. 1997. - V.22. - P. 477-481.

161. McCann S.M., Karanth S., Kimura M., Yu W.H., Rettori V. The role of nitric oxide (NO) in control of hypothalamic-pituitary function // Rev. Bras. Biol. 1996. - V.56. - P. 105-112.

162. McCann S.M., Antunes-Rodrigues J., Franci C.R. Role of the hypothalamic pituitary adrenal axis in the control of the response to stress and infection // Br. J. of medical and biological research 2000. — V.33. — P. 1121-1131.

163. McDonnell T.J., Deane N., Piatt F.M., Nunez G., Jaeger U., McKearn J.P., Korsmeyer S.J. bcl-2-immunoglobulin transgenic mice demonstrate extended В cell survival and follicular lymphoproliferation // Cell. 1989. -V.57.-P. 79-88.

164. McGahan L., Hakim A.M., Robertson G.S. Hippocampal myc and p53 expression following transient global ischemia // Mol. Brain Res. 1998. -V.56.-P. 133-145.

165. Miura Т., Muraoka S., Ogiso T. Lipid peroxidation inhibited by monoamines // Res. Commun. Mol. Pathol. Pharmacol. 1996. - V.93. - P. 57-67.

166. Miyagawa A., Okamura H., Ibata Y. Coexistence of oxytocin and NADPH-diaphorase in magnocellular neurons of the paraventricular and the supraoptic nuclei of the rat hypothalamus // Neurosci. Lett. 1994. - V.171. -P. 13-16.

167. Mohr S., Zech В., Lapetina E.G., Brune B. Inhibition of caspase-3 by S-nitrosation and oxidation caused by nitric oxide // Biochem. Biophys. Res. Commun. 1997. - V.238. - P. 387-391.

168. Morita M., Kita Y., Notsu Y. Mechanism of AVP release and synthesis in chronic salt-loaded rats // J. Pharm. Pharmocol. 2001. — V.53. -P. 1703-1709.

169. Moriya R.,Uehara Т., Nomura Y. Mechanism of nitric oxide-induced apoptosis in human neuroblastoma SH-SY5Y cells // FEBS Lett. 2000. -V.484.-P. 253-260.

170. Morris В., Livingston A. Autoradiographic demonstration of alpha 2 adrenoceptors in the bovine neurohypophysis // Cell Tissue Res. 1984. -V.237.-P. 387-389.

171. Morrison R.S., Kinoshita Y., Johnson M.D., Guo W., Garden G.A. P53-dependent cell death signalling in neurons //Neurochem. Res. — 2003. -V.28.-P. 15-27.

172. Mostafapour S.P., Del Puerto N.M., Rubel E.W. Bcl-2 overexpression eliminates deprivation-induced cell death of brainstem auditory neurons // J. Neurosci. 2002. - V.22. - P. 4670-4674.

173. Murad F. Regulation of cytosolic guanylyl cyclase by nitric oxide: the NO-cyclic GMP signal transduction system // Advances in Pharmacology -1994.-V.26.-P. 19-30.

174. Murphy D., Levy A., Lightman S., carter D. Vasopressin RNA in the neural lobe of the pituitary: dramatic accumulation in response to salt loading // Proc. Natl. Acad. Sci USA. 1989. - V.86. - P. 9002-9005.

175. Murphy A.N., Fiskum G. Bcl-2 and Ca(2+)-mediated mitochondrial dysfunction in neural cell death // Biochem. Soc. Symp. 1999. - V.66. - P. 33-41.

176. Muzio M., Stockwell B.R., Salvesen G.S., Dixit V.M. An induced proximity model for caspase-8 activation // J. Biol. Chem. 1998. - V.273. -P. 2926-2930.

177. Negro-Vilar A. The median eminence as a model to study presinaptic regulation of neural peptide release // Peptides. 1982. - V.3. - P. 305-310.

178. Ng Y.K., Xue Y.D., Wong P.T. Different distributions of nitric oxide synthase-containing neurons in the mouse and rat hypothalamus // Nitric Oxide 1999. - V.3. - P. 383-92.

179. Nicotera P., Ankarcrona M., Bonfoco E. Neuronal apoptosis versus necrosis induced by glutamate or free radicals // Apoptosis 1996. - V.l. -P. 5-10.

180. Nishio E., Fukushima K., Shiozaki M., Watanabe Y. Nitric oxide donor SNAP induces apoptosis in smooth muscle cells through cGMP-independent mechanism // Biochem. Biophys. Res. Commun. 1996. -V.221.-P. 163-168.

181. Noh J.S., Gwag B.J. Attenuation of oxidative neuronal necrosis by a dopamine D1 agonist in mouse cortical cell cultures // Exp. Neurol. 1997. -V.146.-P. 604-608.

182. Noh J.S., Kim E.Y., Kang J.S., Kim H.R., Oh Y.J., Gwag B.J. Neurotoxic and neuroprotective actions of catecholamines in cortical neurons//Exp. Neurol. 1999.-V.l 59.-P. 217-224.

183. Nordmann J.J. Hormone content and movement of neurosecretory granules in the rat neural lobe during and after dehydration // Neuroendocrinology. 1985. - V.40. - P. 25-32.

184. Okere C.O., Murata E., Higuchi T. Perivascular localization of nitric oxide synthase in the rat adenohypophysis: potential implications for function and cell-cell interaction // Brain Res. 1998. - V.784. - P.337-40.

185. Orloff J., Handler J. The role of adenosine 3', 5'-phosphate in the action of antidiuretic hormone // Am. J. Med. 1967. - V.42. - P. 757-765.

186. Ortiz P.A., Garvin J.L. Cardiovascular and renal control in NOS-deficient mouse models // Am. J. Physiol. Regul. Integr. Сотр. Physiol. -2003.-V.284.-P. 628-638.

187. O'Shea R.D., Gundlach A.L. Food or water deprivation modulates nitric oxide synthase (NOS) activity and gene expression in rat hypothalamic neurones: correlation with neurosecretory activity? // J. Neuroendocrinol. -1996.-V.8.-P. 417-425.

188. Ostrowski N.L., Lolait S.J., Young III W.S. Cellular localization of vasopressin Via receptor messenger ribonucleic asid in adult male rat brain, pineal and brain vasculature // Endocrinology 1994. - V.135. - P. 15111527.

189. Ota M., Crofton J.T., FestavanG.T., Share L. Evidence that nitric oxide can act centrally to stimulate vasopressin release // Neuroendocrinology 1993. - V.57. - P. 955-959.

190. Palkovits M. Afferents onto neuroendocrine cells // Current topics in neuroendocrinology. Morphology of hypothalamus and its connections. Berlin-Heidelberg: Springer-Verlag. 1986 (a). - V.7. - P. 197-222.

191. Palkovits M. Neuropeptides in the median eminence // Neurochem. Intern. 1986 (b).-V.9.- P. 131-139.

192. Pandiella A., Elahi F.R., Vallar L., Spada A. Alpha 1-adrenergic stimulation of in vitro growth hormone release and cytosolic free Ca2+ in rat somatotrophs // Endocrinology 1988. - V.122. - P. 1419-1425.

193. Plesnila N., Zinkel S., Amin-Hanjani S., Qiu J., Korsmeyer S.J., Moskowitz M.A. Function of BID a molecule of the bcl-2 family - in ischemic cell death in the brain // Eur. Surg. Res. - 2002. - V.34. - P. 37-41.

194. Plochocka-Zulinska D., Krukoff T.L. Increased gene expression of neuronal nitric oxide synthase in brain of adult spontaneously hypertensive rats // Brain Res. Mol. Brain Res. 1997. - V.48. - P.291-297.

195. Popovik E., Haynes L.W. Survival and mitogenesis of neuroepithelial cells are influenced by noradrenergic but not cholinergic innervation in cultured embryonic rat neopallium // Brain Res. 2000. - V.853. - P. 227235.

196. Porat S., Simantov R. Bcl-2 and p53: role in dopamine-induced apoptosis and differentiation // Ann. N. Y. Acad. Sci. 1999. - V.893. - P. 372-375.

197. Porat S., Premkumar A., Simantov R. Dopamine induces phenotypic differentiation or apoptosis in a dose-dependent fashion: involvement of the dopamine transporter and p53 // Dev. Neurosci. 2001. - V.23. - P. 432440.

198. Prast H., Heistracher M., Philippu A. In vivo modulation of the histamine release in the hypothalamus by adrenoreceptor agonists and antagonists // Naunyn Schmiedebergs Arch. Pharmacol. 1991. - V. 144. -P. 183-186.

199. Premkumar A., Simantov R. Mitochondrial voltage-dependent anion channel is involved in dopamine-induced apoptosis // J. Neurochem. — 2002. -V.82.-P. 345-352.

200. Pugazhenthi S., Nesterova A., Jambal P., Audesirk G., Kern M., Cabell L., Eves E., Rosner M.R., Boxer L.M., Reusch J.E. Oxidative stress-mediated down-regulation of bcl-2 promoter in hippocampal neurons // J. Neurochem. 2003. - V.84. - P. 982-996.

201. Purring-Koch C., McLendon G. Cytochrome с binding to Apaf-1: The effects of dATP and ionic strength // Proc. Natl. Acad. Sci. USA. 2000. -V.97.-P. 11928-11931.

202. Raasch W., Muhle H., Dominiak P. Modulation of MAO activity by imidazoline and guanidine derivatives // Ann. NY. Acad. Sci. — 1999. -V.881. -P. 313-331.

203. Raby W.N., Renaud L.P. Dorsomedial medulla stimulation activates rat supraoptic oxytocin and vasopressin neurons through different pathways // J. Physiol. 1989. - V.417. - P. 279-294.

204. Randle J.C., Mazurek M., Kneifel D. Alpha 1-adrenergic receptor activation releases vasopressin and oxytocin from perfused rat hypothalamic explants //Neurosci Lett. 1986. - V.65. - P. 219-223.

205. Raymond V., Leung P.C.K., Veilleux R., Labrie F. Vasopressin rapidly stimulates phosphatidic acid-phosphatidilinositol turnover in rat anterior pituitary cells // FEBS Lett. 1985. - V.182. - P. 196-204.

206. Reid I.A. Role of nitric oxide in the regulation of renin and vasopressin secretion // Frontiers in Neuroendocrinology 1994. - V.l5. -P. 351-383.

207. Rettori V., McCann S.M. Role of nitric oxide and alcohol on gonadotropin release in vitro and in vivo // Ann. N. Y. Acad. Sci. 1998. -V.840.-P. 185-193.

208. Rivier C. Role of gaseous neurotransmitters in the hypothalamic-pituitary-adrenal axis // Ann. N Y Acad. Sci. 2001. - V.933. - P. 254-264.

209. Rohn T.T., Rissman R.A., Davis M.C., Kim Y.E., Cotman C.W., Head E. Caspase-9 activation and caspase cleavage of tau in the Alzheimer's disease brain // Neurobiol. Dis. 2002. - V.l 1. - P. 341-354.

210. Rosenberg P.A. Catecholamine toxicity in cerebral cortex in dissociated cell culture // J. Neurosci. 1988. - V.8. - P. 2887-2894.

211. Rosse Т., Olivier R., Monney L., Rager M., Conus S., Fellay I., Jansen В., Borner C. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome с // Nature. 1998. - V.391. - P. 496-499.

212. Roth K.A., D'Sa C. Apoptosis and brain development // Ment. Retard. Dev. Disabil. Res. Rev. 2001. - V.7. - P. 261-266.

213. Sabatier N., Richard P., Dayaniti G. Activation of multiple intracellular transduction signals by vasopressin in vasopressin-sensitive neurons of the rat supraoptic nucleus // J. of Physiol. 1998. - V.513. - P. 699-710.

214. Sakhi S., Sun N., Wing L.L., Mehta P., Schreiber S.S. Nuclear accumulation of p53 protein following kainic acid-induced seizures // Neuro Report. 1996. - V.7. - P. 493-496.

215. Sakhi S., Bruce A., Sun N., Tocco G., Baudiy M., Schreiber S.S. Induction of tumor suppressor p53 and DNA fragmentation in organotypic hippocampal cultures following excitotoxin treatment // Exp. Neurol. -1997. -V.145.- P. 81-88.

216. Saphier D. Electrophysiology end neuropharmacology of noradrenergic projections to rat PVN magnocellular neurons // Am. J.

217. Physiol. 1993.-V.246.-P. 891-902.

218. Sawchenko P.E., Swanson L.W. Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat // J. Compar. Neurol. 1982. -V.205.-P. 260-272.

219. Sawchenko P.E., Swanson L.W. The organization of forebrain afferents to the paraventricular and supraoptic nuclei of the rat // J. Compar. Neurol.- 1983. -V.218.- P. 121-144.

220. Scaffidi C., Fulda S., Srinivasan A., Friesen C., Li F., Tomaselli K.J., Debatin K-M., Krammer P.H., Peter M.E. Two CD95 (Apo-l/Fas) signaling pathways // EMBO J. 1998. - V. 17. - P. 1675-1687.

221. Scaffidi C., Schmitz I., Zha J., Korsmeyer S.J., Krammer P.H., Peter M.E. Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. // J. Biol. Chem. 1999. - V.274. - P. 22532-22538.

222. Scharrer E., Scharrer B. Neuroendocrinology // N.Y.-Lond.: Columbia

223. University Press.-1963 .-289 p.

224. Schmidt H.H.W., Lohmann S.M., Walter U. The nitric oxide and cGMP signal transduction system: regulation and mechanism of action // Biochim. et Biophys. Acta. 1993. - V.l 178. - P. 153-175.

225. Serino R., Ueta Y., Hanamiya M., Nomura M., Yamamoto Y., Yamaguchi K.I., Nakashima Y., Yamashita H. Increased levels of hypothalamic neuronal nitric oxide synthase and vasopressin in salt-loaded Dahl rat // Auton. Neurosci. 2001. - V.87. - P. 225-235.

226. Share L. Control of vasopressin release: an old but continuing story // News Physiol. Sci. 1996. - V.l 1. - P. 7-13.

227. Shibuya I., Kabashima N., Ibrahim N., Setiadji S.V., Ueta Y., Yamashita H. Pre- and postsynaptic modulation of the electrical activity of rat supraoptic neurons // Exp. Physiol. 2000. - V.85. - P. 145-151.

228. Shioda S., Nakai Y. Noradrenergic innervation of vasopressin-containing neurons in the rat hypothalamic supraoptic nucleus // Neurosci Lett. 1992.-V. 140.-P. 215-208.

229. Simonian N.A., Coyle J.T. Oxidative stress in neurodegenerative diseases // Annu. Rev. Pharmacol. Toxicol. 1996. - V.36. - P. 83-106.

230. Sladek C.D., Knigge K.M. Osmotic control of vasopressin release by rat hypothalamo-neurohypophyseal explants in organ culture // Endocrinology. -1977.-V.101.-P. 1834-1838.

231. Sladek C.D., Kapoor J.R. Neurotransmitter/neuropeptide interactions in the regulation of neurohypophyseal hormone release // Exp. Neurol. 2001. -V.171.-P. 200-209.

232. Smith D.W., Sibbald J.R., Khanna S., Day T.A. Rat vasopressin cells responses to simulated hemorrhage: stimulus-dependent role for Al noradrenergic neurons // Am. J. Physiol. 1995. - V.268. - P. 1336-1342.

233. Smolen A.J. Image analytic techniques for quantification of immunohistochemical staining in the nervous system // Meth. Neurosci. — 1990. — V.3. P. 208-229.

234. Soinila S., Sadeniemi M., Lumme A., Vanhatalo S. Age-related augmentation of the dehydration-induced increase in the supraoptic nitric oxide synthase activity in rats // Neurosci. Lett. 1999. - V.272. - P. 13-16.

235. Stadler Т., Veltmar A., Qadri F., Unger T. Angiotensin II evokes noradrenaline release from paraventricular nucleus in conscious rats // Brain Res. 1992. - V.569. - P. 117-122.

236. Stephens L.R., Logan S.D. Arginine vasopressin stimulates inositol phospholipid metabolism in rat hippocampus // J. Neurochem. 1986. -V.46.-P. 649-651.

237. Stern J.E., Ludwig M. NO inhibits supraoptic oxytocin and vasopressin neurons via activation of GABAergic synaptic inputs // Am. J. Physiol. Regul. Integr. Сотр. Physiol. 2001. - V.280. - P. 1815-1822.

238. Summy-Long J.Y., Bui V., Mantz S., Koehler E., Weisz J., Kadekaro M. Central inhibition of nitric oxide synthase preferentially augments release of oxytocin during dehydration // Neurosci. Lett. 1993. - V.152. - P. 190193.

239. Swanson L.M., Sawchenko P.E. Hypothalamic integration: organization of paraventricular and supraoptical nuclei // Ann. Rev. Neurosci. 1983. - V.6. - P. 269-324.

240. Takano Т., Kubota Y., Wanaka A. Beta-adrenergic receptors in the vasopressin-containing neurons in the paraventricular and supraoptic nucleus of the rat // Brain Res. 1989. - V.499. - P. 174-178.

241. Tamatani M., Ogawa S., Nunez G., Tohyama M. Growth factors prevent changes in Bcl-2 and Bax expression and neuronal apoptosis induced by nitric oxide // Cell Death Differ. 1998 (a). - V.5. - P. 911-919.

242. Tamatani M., Ogawa S., Niitsu Y., Tohyama M. Involvement of Bcl-2 family and caspase-3-like protease in NO-mediated neuronal apoptosis // J. Neurochem. 1998 (b). - V.71. - P. 1588-1596.

243. Tanaka J., Kaba H., Saito H., Seto K. Inputs from the Al noradrenergic region to hypothalamic paraventricular neurons in the rat // Brain Res. 1985. - V.335. - P. 368-371.

244. Tanaka M., Ikeda Т., Hayashi S., Iijima N., Amaya F., Hisa Y., Ibata Y. Nitrergic neurons in the medial amygdala project to the hypothalamic paraventricular nucleus of the rat // Brain Res. 1997. - V.777. - P. 13-21.

245. Tasaka Y., Matsumoto H., Inoue Y., Hirata Y. Brain catecholamine concentrations in hyperosmolar diabetic and diabetic rats // Diabetes Res. — 1992.-V.19.-P. 1-7.

246. Tilders F.J., Berkenbosch F., Smelik P.G. Adrenergic mechanisms involved in the control of pituitary-adrenal activity in the rat: a beta-adrenergic stimulatory mechanism // Endocrinology. 1982. - V.l 10. - P. 114-120.

247. Trembleau A., Ugrumov M., Roche D., Calas A. Vasopressin and oxytocin gene expressions in intact rats and under the catecholamine deficiency during ontogenesis // Brain Res. Bull. 1995. - V.37. - P. 437448.

248. Tribollet E., Armstrong W.E., Dubois-Dauphin M. Extrahypothalamic afferent inputs to the supraoptic nucleus area of the rat as determined by retrograde and anterograde tracing techniques // Neuroscience. 1985. -V.15.-P. 135-148.

249. Uberti D., Belloni M., Grilli M., Spano P., Memo M. Induction of tumour-suppressor phosphoprotein p53 in the apoptosis of cultured rat cerebellar neurons triggered by excitatory amino acids // Eur. J. Neurosci. -1998.-V.10.-P. 246-254.

250. Uehara Т., Kikuchi Y., Nomura Y. Caspase activation accompanying cytochrome с release from mitochondria is possibly involved in nitric oxide-induced neuronal apoptosis in SH-SY5Y cells // J. Neurochem. 1999. -V.72.-P. 196-205.

251. Ueta Y., Levy A., Chowdrey H.S., Lightman S.L. Water deprivation in the rat induces nitric oxide synthase (NOS) gene expression in the hypothalamic paraventricular and supraoptic nuclei // Neurosci. Res. 1995. - V.23. — P. 317-319.

252. Usunoff K.G., Kharazia V.N., Valtschanoff J.G., Schmidt H.H., Weinberg R.J. Nitric oxide synthase-containing projections to the ventrobasal thalamus in the rat // Anat. Embryol. (Berl) 1999. -V.200. - P. 265-81.

253. Vaandrager A.B., de Jonge H.R. Signalling by cGMP-dependent protein kinases // Mol. Cell Biochem. 1996. -V. 157. - P. 23-30.

254. Vacher C.M., Fretier P., Creminon C., Calas A., Hardin-Pouzet H. Activation by serotonin and noradrenaline of vasopressin and oxytocin expression in the mouse paraventricular and supraoptic nuclei // J. Neurosci- 2002. V.22 - P. 1513-1522.

255. Vacher C.M., Fretier P., Creminon C., Seif I., De Maeyer E., Calas A., Hardin-Pouzet H. Monoaminergic control of vasopressin and VIP expression in the mouse suprachiasmatic nucleus // J. Neurosci Res. 2003 (a). - V.71. - P. 791-801.

256. Vacher C.M., Hardin-Pouzet H., Steinbusch H.W., Calas A., De Vente J. The effects of nitric oxide on magnocellular neurons could involve multiple indirect cyclic GMP-dependent pathways // Eur. J. Neurosci. -2003 (b).-V.17.-P. 455-466.

257. Vallon V., Traynor Т., Barajas L., Huang Y.G., Briggs J.P., Schnermann J. Feedback control of glomerular vascular tone in neuronal nitric oxide synthase knockout mice // J. Am. Soc. Nephrol. 2001. — V.12. -P. 1599-1606.

258. Vaux D.L., Cory S., Adams J.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells // Nature.- 1988. V.335. - P. 440-442.

259. Velardez M.O., De Laurentiis A., Carmen Diaz M. et. al. Role of phosphodiesterase and protein kinase G on nitric oxide-induced inhibition ofprolactin release from the rat anterior pituitary // Europ. J. Endocrin. 2000. -V.143.-P. 279-284.Г

260. Veltmar A., Culman J., Qadri F., Rascher W., Unger T. Involvement of adrenergic and angiotensinergic receptors in the paraventricular nucleus in the angiotensin II-induced vasopressin release // J. Pharmacol. Exp. Ther. -1992.-V.263.-P. 1253-1260.

261. Vernet D., Bonavera J.J., Swerdloff R.S. Spontaneous expression of inducible nitric oxide synthase in the hypothalamus and other brain regions of aging rats // Endocrinology 1998. - V.l 39. - P. 3254-3261.

262. Villar M.J., Ceccatelli S., Ronnqvist M., Hokfelt T. Nitric oxide synthase increases in hypothalamic magnocellular neurons after salt loadingж) in the rat. An immunohistochemical and in situ hybridization study // Brain

263. Res. 1994. - V.644. - P. 273-281.

264. Visser T.J. Regulation of release of TSH // Front. Horm. Res. 1985. -V.14.-P. 100-136.

265. Wagner C., Godecke A., Ford M., Schnermann J., Schrader J., Kurtz A. Regulation of renin gene expression in kidneys of eNOS- and nNOS-deficient mice // Pflugers Arch. 2000. - V.439. - P. 567-572.

266. Wang X., Robinson P.J. Cyclic GMP-dependent protein kinase and cellular signaling in the nervous system // J. Neurochem. — 1997. — V.68. -p. 443-456.

267. Wei H., Wei W., Bredesen D.E., Perry D.C. Bcl-2 protects against apoptosis in neuronal cell line caused by thapsigargin-induced depletion of intracellular calcium stores // J. Neurochem. 1998. - V.70. - P. 2305-2314.

268. Widerlov E. Dose-dependent pharmacokinetics of a-methyl-p-^ tyrosine (a-MT) and comparison of catecholamine turnover rates after twodoses of a-MT // J. Neural. Transmission. 1979. - V.44. - P. 145-158.

269. Windle R.J., Forsling M.L., Smith C.P., Balment R.J. Patterns of neurohypophyseal hormone release during dehydration in the rat // J. Endocrinol. 1993. - V. 137. - P. 311-319.

270. Wu G., Morris S.M. Arginine metabolism: nitric oxide and beyond // Biochem. J.-1998.-V.336.-P. 1-17.

271. Wyllie A.H., Kerr J.F., Currie A.R. Cell death: the significance of apoptosis // Int. Rev. Cytol. 1980. - V.68. - P. 251-306.

272. Xiang H., Hochman D.W., Saya H., Fujiwara Т., Schwartzkroin P.A., Morrison R.S. Evidence for p53-mediated modulation of neuronal viability // J. Neurosci. 1996. - V. 16. - P. 6753-6765.

273. Xiang H., Kinoshita Y., Knudson C.M., Korsmeyer S.J., Schwartzkroin P.A., Morrison R.S. Bax involvement in p53-mediated neuronal cell death // J. Neurosci. 1998. - V.18. - P. 1363-1373.

274. Yamada K., Emson P., Hokfelt T. Immunohistochemical mapping of nitric oxide synthase in the rat hypothalamus and colocalization with neuropeptides // J. Chem. Neuroanat. 1996. - V.10. - P.295-316.

275. Yamaguchi K., Hama H., Adachi C. Inhibitory role of periventricular dopaminergic mechanisms in hemorrhage-induced vasopressin secretion in conscious rats//Brain Res. 1990. - V.513.-P. 335-338.

276. Yamashita H., Inenaga K., Dyball R.E. Thermal, osmotic and chemical modulation of neural activity in the paraventricular nucleus: in vitro studies // Brain Res. Bull. 1988. - V.20. - P. 825-829.

277. Yamashita Т., Liu X., Опака Т., Honda K., Saito Т., Yagi K. Vasopressin differentially modulates noradrenaline release in the rat supraoptic nucleus // Neuroreport. 2001. -V. 12. - P. 3509-3511.

278. Yang Y., Ozawa H., Yuri K., Kawata M. Postnatal development о NADPH-diaphorase activity in the rat: the role of nitric oxide in the ontogeny of arginine vasopressin and oxytocin // Endocr. J. 2000. — V.47. -P. 601-613.

279. Yasin S., Costa A., Trainer P., Windle R., Forsling M.L., Grossman A. Nitric oxide modulates the release of vasopressin from rat hypothalamic explants//Endocrinology 1993.-V. 133.-P. 1466-1469.

280. Yin X.M., Luo Y., Cao G., Bai L., Pei W., Kuharsky D.K., Chen J. Bid-mediated mitochondrial pathway is critical to ischemic neuronal apoptosis and focal cerebral ischemia // J. Biol. Chem. 2002. - V.277. - P. 42074-42081.

281. Yoon W.J., Won S.J., Ryu B.R., Gwag B.J. Blockade of ionotropic glutamate receptors produces neuronal apoptosis through the Bax-cytochrome C-caspase pathway: the causative role of Ca2+ deficiency // J. Neurochem. 2003. - V.85. - P. 525-533.

282. Yu G. Periventricular region and the posterior pituitary in the rat // Recent Progr. Post. Pituitary Horm. 1988. - P. 43-47.

283. Zemo D.A., McCabe J.T. Salt-loading increases vasopressin and vasopressin lb receptor mRNA in the hypothalamus and choroid plexus // Neuropeptides. 2001. - V.35. - P. 181-188.

284. Zhao B.G., Chapman C., Bicknell R.J. Opioid-noradrenergic interactions in the neurohypophysis. I. Differential opioid receptor regulation of oxytocin, vasopressin, and noradrenaline release // Neuroendocrinology 1988 (a). - V.48. - P. 16-24.

285. Zhong H, Minneman KP. Alpha 1-adrenoceptor subtypes // Eur. J. Pharamacol. 1999. - V.375. - P. 261-276.

286. Zhong H, Lee D., Robeva A., Minneman KP. Signaling pathways activated by alpha 1-adrenergic receptor subtypes in PC12 cells // Life Sci. -2001. V.68. - P. 2269-2276.

287. Zhu Y., Prehn J.H., Culmsee C., Krieglstein J. The beta2-adrenoceptor agonist clenbuterol modulates Bcl-2, Bcl-xl and Bax protein expression following transient forebrain ischemia // Neuroscience. 1999. - V.90. - P. 1255-1263.

288. Zilkha-Falb R., Ziv I., Nardi N., Offen D., Melamed E., Barzilai A. Monoamine-induced apoptotic neuronal cell death // Cell. Mol. Neurobiol. -1997.-V.17.-P. 101-118.

289. Автор выражает сердечную благодарность своему научному руководителю кандидату биологических наук, старшему научному сотруднику Елене Валерьевне Черниговской за неоценимую помощь и поддержку в процессе выполнения работы.

290. Выражаю благодарность заведующему лабораторией «Сравнительной сомнологии и нейроэндокринологии» доктору медицинских наук Генриху Амазасповичу Оганесяну и всему коллективу нейроэндокринологов за повседневную помощь, поддержку и ценные консультации.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.