Изучение структурно-функциональной организации генома вируса натуральной оспы тема диссертации и автореферата по ВАК РФ 03.00.03, кандидат биологических наук Тотменин, Алексей Владимирович

  • Тотменин, Алексей Владимирович
  • кандидат биологических науккандидат биологических наук
  • 2004, Кольцово
  • Специальность ВАК РФ03.00.03
  • Количество страниц 216
Тотменин, Алексей Владимирович. Изучение структурно-функциональной организации генома вируса натуральной оспы: дис. кандидат биологических наук: 03.00.03 - Молекулярная биология. Кольцово. 2004. 216 с.

Оглавление диссертации кандидат биологических наук Тотменин, Алексей Владимирович

ВВЕДЕНИЕ.

1. ОБЗОР ЛИТЕРАТУРЫ.

1.1. Молекулярно-биологическая организация ортопоксвирусов.

1.2. Организация генома ортопоксвирусов.

1.3. Гены круга хозяев.

Ц 1.4. Молекулярные факторы вирулентности ортопоксвирусов.

1.5. Структурные перестройки в геномах ортопоксвирусов.

1.6. Модели возникновения дупликаций, транспозиций и делеций концевых последовательностей.

1.7. Гомологичная рекомбинация.

2. МАТЕРИАЛЫ И МЕТОДЫ.

2.1. Материалы.

2.2. Выделение и анализ плазмидной ДНК.

2.3. Получение компетентных клеток Е.соИ.

2.4. Трансформация компетентных клеток Е.соИ.

2.5. Получение геномных библиотек в космидном векторе.

2.6. Компьютерный анализ данных секвенирования.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ.

3.1. Создание плазмидных и космидных клонотек фрагментов ДНК ВНО

Щ штамма Индия-1967.

3.1.1. Получение и характеризация коллекций гибридных плазмид, содержащих НтбIII- и А7ю1-фрагменты ДНК ВНО штамма Индия-1967.

3.1.2. Получение и характеризация библиотеки космид, содержащих ///жШ1-фрагменты ДНК ВНО штамма Индия-1967.

3.1.3. Использование полученных клонотек фрагментов ДНК ВНО-ИНД для секвенирования полной кодирующей последовательности генома данного вируса.

3.2. Получение и характеризация коллекции гибридных плазмид, содержащих Л7/о1-фрагменты генома ВНО штамма Гарсия-1966.

3.3. Создание международного репозитория гибридных плазмид, содержащих фрагменты ДНК ВНО.

3.4. Организация генома вируса variola major ВНО-ИНД.

3.5. Сравнение геномов вирусов ВНО major и ВОВ.

3.6. Организация генома штамма Гарсия-1966 ВНО minor alastrim.

3.7. Сравнение геномов вирусов ВНО и вируса оспы верблюдов.

3.8. Сравнение организации молекулярных факторов вирулентности ВНО, ВОВиВОВБ.

3.9. Интегральная схема преодоления вирусом натуральной оспы защитных барьеров организма.

3.10. Молекулярная эволюция ортопоксвирусов.

3.10.1. Различия в нуклеотидных последовательностях ДНК вирусов натуральной оспы и осповакцины.

3.10.2. Механизмы рекомбинационных перестроек ортопоксвирусных ДНК.

4. ВЫВОДЫ.

Рекомендованный список диссертаций по специальности «Молекулярная биология», 03.00.03 шифр ВАК

Введение диссертации (часть автореферата) на тему «Изучение структурно-функциональной организации генома вируса натуральной оспы»

Актуальность проблемы. В 1980г. Всемирная Ассамблея Здравоохранения известила мир о ликвидации оспы на земном шаре. Это достижение явилось результатом осуществлявшейся Всемирной Организацией Здравоохранения (ВОЗ) и продолжавшейся свыше 20 лет беспримерной международной программы. Завершающим шагом этой программы предполагалось уничтожение хранящихся в двух лабораториях мира (Сотрудничающие центры ВОЗ по ортопоксвирусам Российской Федерации и США) штаммов вируса натуральной оспы (ВНО). Однако, в целях сохранения информации об этом уникальном вирусе ВОЗ сочла необходимым предварительно осуществить исследования по расшифровке структуры его генома.

До начала этих исследований не существовало научно обоснованных заключений об эволюционном происхождении и взаимосвязях ортопоксвирусов, патогенных для человека. Отсутствовала информация о молекулярных факторах патогенности ВНО. Большинство исследований в этом направлении были выполнены на вирусе осповакцины (ВОВ).

Наиболее прямым подходом к решению стоящих вопросов является секвенирование и сравнительный компьютерный анализ организации геномов ВНО и ВОВ.

Цель и задачи исследования. Целью настоящего исследования было создание и характеризация клонсггек фрагментов ДНК высоко- и низковирулентного штаммов вируса натуральной оспы и выполнение работы по секвенированию и компьютерному анализу организации вирусных генов и их белковых продуктов.

В процессе работы решались следующие задачи:

1. Получение представительных клонотек фрагментов генома вируса натуральной оспы штаммов Индия-1967 (ВНО-ИНД) и Гарсия-1966 (ВНО-ГАР) в плазмидных и ко см ид пых векторах. Надежная консервация полученного банка клонов фрагментов ДНК двух изученных штаммов вируса натуральной оспы в составе Международного репозитория ДНК ВНО.

2. Проведение секвенирования полных последовательностей нуклеотидов геномов ВНО-ИНД и ВНО-ГАР.

3. Построение полных генетических карт геномов двух изученных штаммов ВНО.

4. Осуществление подробного сравнительного анализа структурно-функцио-нальной организации изучаемых геномов вируса натуральной оспы и вируса осповакцины штаммов Копенгаген (ВОВ-КОП) и Вестерн Резерв (ВОВ-\У11).

5. Выполнение детального сравнительного анализа внутривидовых и межвидовых структурных перестроек ДНК ортопоксвирусов и выявление эволюционных взаимосвязей ВНО и ВОВ.

Научная новизна и практическая значимость работы. Получена представительная библиотека гибридных плазмид и космид, несущих фрагменты генома ВНО-ИНД и ВНО-ГАР. Впервые определена полная нуклеотидная последовательность генома высоковирулентного (ВНО-ИНД) и низковирулентного (ВНО-ГАР) штаммов вируса натуральной оспы. Осуществлен подробный анализ организации геномов ВНО-ИНД и ВНО-ГАР и сравнение их с геномами вирусов осповакцины и оспы верблюдов. Выявлены потенциальные гены вирулентности ВНО. Выполнен детальный ф сравнительный анализ внутривидовых и межвидовых структурных перестроек ДНК ортопоксвирусов и сформулирована модель их возникновения. Впервые на основании анализа спектра коротких делеций в геноме ВНО относительно ВОВ сделан вывод об их видоспецифичности и независимом эволюционном происхождении ВНО и ВОВ от общего прародителя. Проведена надежная консервация полученных клонотек фрагментов ДНК двух изученных штаммов вируса натуральной оспы в составе Международного репозитория ДНК ВНО, что дает возможность использовать их в последующих научных исследованиях.

Публикации и апробация работы. По материалы диссертации опубликованы 17 статей в реферируемых изданиях. Результаты работы были представлены на международных конференциях: 9-th International Conference on Poxviruses and Iridoviruses (Les Diablerets, Switzerland, 1992), 9th International Congress of Virology (Glasgow, Scotland, 1993), 10th International Conference on Poxviruses and Iridoviruses (Banff, Alberta, Canada, 1994), 11th International Meeting on Poxviruses and Iridoviruses (Toledo, Spain, 1996), 12th International Poxvirus Simposium (St. Thomas, USA, 1998), International Conference on Bacterial and Viral Virulence Factors (Smolenice, Slovakia, 2000), 13th International Poxvirus and Iridovirus Symposium (Montpellier, France, 2000).

Вклад автора. Создание и характеризация клонотек фрагментов геномной ДНК штаммов Индия-1967 и Гарсия-1966 ВНО, компьютерный анализ организации генома штамма Гарсия-1966 ВНО, анализ структурных перестроек в нуклеотидных последовательностях ДНК вирусов натуральной ^ оспы и осповакцины выполнены лично автором; анализ организации генома штамма Индия-1967 ВНО выполнен автором совместно с В.М. Блиновым и сотрудниками лаборатории теоретической биологии и вирусологии ГНЦ ВБ «Вектор»; секвенирование ДНК вирусов натуральной оспы выполнено сотрудниками отдела молекулярной биологии геномов и отдела молекулярной вирусологии ГНЦ ВБ «Вектор» при участии автора.

1. ОБЗОР ЛИТЕРАТУРЫ

Похожие диссертационные работы по специальности «Молекулярная биология», 03.00.03 шифр ВАК

Заключение диссертации по теме «Молекулярная биология», Тотменин, Алексей Владимирович

4. ВЫВОДЫ

Щ 1. Получены и охарактеризованы клонотеки гибридных плазмид и космид, содержащих Hindlll- и Л7?о1-фрагменты ДНК вируса натуральной оспы штамма Индия-1967 (ВНО-ИНД) и покрывающих в совокупности весь вирусный геном. Создана и охарактеризована коллекция гибридных плазмид, содержащих Л7?о1-фрагменты ДНК вируса натуральной оспы штамма Гарсия-1966 (ВНО-ГАР). id Клонотеки гибридных ДНК ВНО паспортизованы и сданы на хранение в Международный репозиторий штаммов и ДНК ВНО (ГНЦ ВБ «Вектор»).

2. Впервые секвенированы геномы высоковирулентного ВНО-ИНД и низковирулентного ВНО-ГАР. Нуклеотидные последовательности ВНО-ИНД (185578 п.н.) и ВНО-ГАР (186 986 п.н.) аннотированы и зарегистрированы в Международном банке данных EMBL Data

Library под номерами Х69198 и Y16780.

3. Построены полные генетические (трансляционные) карты геномов ВНО-ИНД и ВНО-ГАР, содержащие соответственно 200 и 206 потенциальных открытых рамок трансляции. Осуществлен сравнительный анализ структурно-функциональной организации геномов вирусов натуральной оспы, осповакцины (ВОВ) и оспы верблюдов (ВОВБ). Впервые выявлены видоспецифичные различия генетических стратегий ВНО, ВОВ и ВОВБ.

4. Выполнен детальный сравнительный анализ внутривидовых и межвидовых структурных перестроек ДНК на примере двух штаммов ВНО и двух штаммов ВОВ, на основании которого сделано заключение, что ВНО и ВОВ эволюционировали от общего вируса-прародителя независимыми путями.

Список литературы диссертационного исследования кандидат биологических наук Тотменин, Алексей Владимирович, 2004 год

1. Клонирование ДНК. Методы: Пер. с англ. / Под ред. Д. Гловера. М: Мир, 1988.-538 с.

2. Маниатис Т., Фрич Э., Сэмбрук Дж. Молекулярное клонирование. М: Мир, 1984.- 480 с.

3. Маренникова С.С., Шелухина Э.М., Ефремова Е.В. Новый аспект в биологии вируса оспы коров. // Acta Virol. 1984. - Т 28. - С. 437-444.

4. Пенмен Ш. Метаболизм вирусов и клеточная архитектура. // Вирусология / Под ред. Б. Филдса, Д. Найпа. М.: Мир, 1989. Т.1. -С.307-328.

5. Приходько Г.Г., Дегтярев С.Х., Речкунова Н.И., Сосновцев С.В., Чижиков В.Е. Общий метод определения участков расщепления ДНК эндонуютеазами рестрикции. // Биотехнология. 1990. - № 1. - С. 12-16.

6. Сафронов П.Ф., Петров H.A., Рязанкина О.И., Тотменин A.B., Щелкунов С.Н., Сандахчиев JI.C. Гены круга хозяев вируса оспы коров. // Докл. Академии наук. 1996. - Т. 249. - С. 829-833.

7. Сенкевич Т.Г., Арасланов P.P., Вовк Т.С., Лопарев В.Н., Черное В.И. Рекомбинанты вирусов осповакцины и эктромелии, вызывающиехарактерные для вируса эктромелии поражения у мышей. // Молекул, генет., микробиол. и вирусол. 1989. - Т. 8, С. 20-23.

8. Щелкунов С.Н., Блинов В.М., Ресенчук С.М., Денисов С.И., Тотменин А.В., Сандахчиев JT.C. Семейство анкиринподобных белков ортопоксвирусов. // Докл. РАН. 1993. - Т. 328. - С. 256-258.

9. Aguado В., Selmes I.P., Smith G.L. Nucleotide sequence of 21.8 kbp of variola major virus strain Harvey and comparison with vaccinia virus. // J.Gen.Virol. 1992. - V. 73 ( Pt 11). - P. 2887-2902.

10. Ahn B.Y., Gershon P.D., Jones E.V., Moss B. Identification of гроЗО, a vaccinia virus RNA polymerase gene with structural similarity to a eucaiyotic transcription elongation factor. // Mol. Cell. Biol. 1990a. - V. 10.-№ 10.-P. 5433-5441.

11. Ahn B.Y., Jones E.V., Moss B. Identification of the vaccinia virus gene encoding an 18-kilodalton subunit of RNA polymerase and demonstration of a 5' Poly(A) leader on its early transcript. // J. Virol. 1990b. - V. 64. - № 6. -P. 3019-3024.

12. Ahn B.Y., Moss B. Glutaredoxin homolog encoded by vaccinia virus is a virion-associated enzyme with thioltransferase and dehydroascorbate reductase activities. // Proc. Natl. Acad. Sci. USA. 1992a. - V. 89. - № 15 -P. 7060-7064.

13. Ahn B.Y., Moss B. RNA polymerase-associated transcription specificity factor encoded by vaccinia virus. // Proc. Natl. Acad. Sci. USA. 1992b. -V. 89.-№8.-P. 3536-3540.

14. Ahn B.Y., Rosel J., Cole, N.B., Moss B. Identification and expression of rpol9, a vaccinia virus gene encoding a 19-kilodalton DNA-dependent RNA polymerasee subunit. // J. Virol. 1992. - V. 66. - № 2. - P. 971-982.

15. Ahuja S.K., Gao J.L., Murphy P.M. Chemokine receptors and molecular mimicry. // Immunol.Today. 1994. - V. 15. -№ 6. - P. 281-287.

16. Albertini A.M., Hofer M., Calos M.P., Miller J.H. On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions. // Cell. 1982. - V. 29. - № 2. - P. 319-328.

17. Alcami A., Smith G.L. A soluble receptor for interleukin-1 beta encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. // Cell. 1992. - V. 71. - № l.-P. 153-167.

18. Alcami A., Smith G.L. Cytokine receptors encoded by poxviruses: a lesson in cytokine biology. // Immunol.Today. 1995a. - V. 16. - № 10. - P. 474478.

19. Alcami A., Smith G.L. Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. // J. Virol. 1995b. - V. 69. - № 8. - P. 4633-4639.

20. Alcami A., Smith G.L. A mechanism for the inhibition of fever, by a virus. // Proc. Natl. Acad. Sci. USA. 1996. - V. 93. - № 20. - P. 11029-11034.

21. Almazan F., Tscharke D.C., Smith G.L. The vaccinia virus superoxide dismutase-like protein (A45R) is a virion component that is nonessential for virus replication.//J. Virol. 2001. - V. 75.-№ 15.-P. 7018-7029.

22. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. // Nucleic Acids Res. 1997. - V. 25. - № 17. - P. 3389-3402.

23. Amegadzie B.Y., Ahn B.-Y., Moss B. Identification, sequence, and expression of the gene encoding a Mr 35,000 subunit of the vaccinia virus

24. DNA-dependent RNA polymerase. // J. Biol. Chem. 1991a. - V. 266. - № 21.-P. 13712-13718.

25. Appleyard G., Hapel A.J., Boulter E.A. An antigenic difference between intracellular and extracellular rabbitpox virus. // J.Gen.Virol. 1971. - V. 13. - № 1. - P. 9-17.

26. Archard L.C., Mackett M. Restriction endonuclease analysis of red cowpox virus and its white pock variant. // J.Gen.Virol. 1979. - V. 45. - № 1. - P. 51-63.

27. Archard L.C., Mackett M., Barnes D.E., Dumbell K.R. The genome structure of cowpox virus white pock variants. // J.Gen. Virol. 1984. - V. 65 ( Pt 5). - P. 875-886.

28. Ayares D., Chekuri L., Song K.Y., Kucherlapati R. Sequence homology requirements for intermolecular recombination in mammalian cells. // Proc. Natl. Acad. Sci. USA. 1986. - V. 83. - № 14. - P. 5199-5203.

29. Baek S.H., Kwak J.Y., Lee S.H., Lee T., Ryu S.H., Uhlinger D.J., Lambeth J.D. Lipase activities of p37, the major envelope protein of vaccinia virus. // J. Biol. Chem. -1997. V. 272. - № 51. - P. 32042-32049.

30. Ball L.A. High-frequency homologous recombination in vaccinia virus DNA.//J. Virol. 1987.-V. 61.-№6.-P. 1788-1795.

31. BanhamA.H., Smith G.L. Vaccinia virus gene B1R encodes a 34-kDa serine/threonine protein kinase that localizes in cytoplasmic factories and is packaged into virions. // Virology. 1992. - V. 191. - № 2. - P. 803-812.

32. BanhamA.H., Smith G.L. Characterization of vaccinia virus gene B12R. // J. Gen. Virol. 1993. - V. 74. -№ 12. - P. 2807-2812.

33. Baroudy B.M., Venkatesan S., Moss B. Incompletely base-paired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain. // Cell. 1982. - V. 28. - № 2. - P. 315-324.

34. Baroudy B.M., Venkatesan S., Moss B. Structure and replication of vaccinia virus telomeres. // Cold Spring Harb.Symp.Quant.Biol. 1983. - V. 47 Pt 2. - P. 723-729.

35. Baxby D. Smallpox-like viruses from camels in Iran. // Lancet. 1972. - V. 2. -№7786. -P. 1063-1065.

36. Bayliss C.D., Smith G.L. Vaccinia virion protein I8R has both DNA and RNA helicase activities: implications for vaccinia virus transcription. // J. Virol. 1996. - V. 70. - № 2. - P. 794-800.

37. Beattie E., Tartaglia J., Paoletti E. Vaccinia virus-encoded eIF-2 alpha homolog abrogates the antiviral effect of interferon. // Virology. 1991. - V. 183.-№ 1. - P. 419-422.

38. Beattie E., Paoletti E., Tartaglia J. Distinct patterns of IFN sensitivity observed in cells infected with vaccinia K3L- and E3L- mutant viruses. //. Virology. 1995. - V. 210. - № 2. - P. 254-263.

39. Bedson H.S., Dumbell K.R. Hybrids derived from the viruses of variola major and cowpox. // J.Hyg.(Lond). 1964. - V. 62. - P. 147-158.

40. Bedson H.S., Dumbell K.R. Hybrids derived from the viruses of alastrim and rabbit pox. // J.Hyg.(Lond). 1964. - V. 62. - P. 141-146.

41. Benzer S. On the topography of the genetic fine structure. // Proc. Natl. Acad. Sci. USA. 1961. - V. 47. - P. 403-415.

42. Blasco R., Cole N.B., Moss B. Sequence analysis, expression, and deletion of a vaccinia virus gene encoding a homolog of profilin, a eukaryotic actin-binding protein. // J. Virol. 1991. - V. 65. - № 9. - P. 4598-4608.

43. Blasco R., Moss B. Role of cell-associated enveloped vaccinia virus in cell-to-cell spread. //J. Virol. 1992. - V. 66. - № 7. - P. 4170-4179.

44. Blomquist M.C., Hunt L.T., Barker W.C. Vaccinia virus 19-kilodalton protein: relationship to several mammalian proteins, including two growth factors. // Proc. Natl. Acad. Sci. USA. 1984. - V. 81. - № 23. - P. 73637367.

45. Born T.L., Morrison L.A., Esteban D.J., VandenBos T., Thebeau L.G., Chen N., Spriggs M.K., Sims J.E., Buller R.M. A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response. // J.Immunol. 2000. -V. 164.-№6.-P. 3246-3254.

46. Brick D.J., Burke R.D., Minkley A.A., Upton C. Ectromelia virus virulence factor p28 acts upstream of caspase-3 in response to UV light-induced apoptosis. //J. Gen. Virol. 2000. - V. 81. -№ 4. - P. 1087-1097.

47. Brown C.K., Turner P.C., Moyer R.W. Molecular characterization of the vaccinia virus hemagglutinin gene. // J. Virol. 1991. - V. 65. - № 7. - P. 3598-3606.

48. Brown G.D., Moyer R.W. The white pock mutants of rabbit poxvirus: V. In vitro translation of early host range mutant mRNA. // Virology. 1983. - V. 126.-№ 1.-P. 381-390.

49. Brown G.D., Peluso R.W., Moyer S.A., Moyer R.W. A simple method for the preparation of extracts from animal cells which catalyze efficient in vitro protein synthesis. // J.Biol.Chem. 1983. - V. 258. - № 23. - P. 1430914314.

50. Brown J.P., Twardzik D.R., Marquardt H., Todaro G.J. Vaccinia virus encodes a polypeptide homologous to epidermal growth factor and transforming growth factor. // Nature. 1985. - V. 313. - № 6002. - P. 491492.

51. Brown S.D., Piechaczyk M. Insertion sequences and tandem repetitions as sources of variation in a dispersed repeat family. // J.Mol.Biol. 1983. - V. 165.-№2.-P. 249-256.

52. Broyles S.S., Fesler B.S. Vaccinia virus gene encoding a component of the viral early transcription factor. // J. Virol. 1990. - V.64. - № 4. - P.1523-1529.

53. Broyles S.S., Moss B. Identification of the vaccinia virus gene encoding nucleoside triphosphate phosphohydrolase I, a DNA-dependent ATPase. // J. Virol. 1987.-V. 61. -№ 5.-P. 1738-1742.

54. Buller R.M., Smith G.L., Cremer K., Notkins A.L., Moss B. Decreased virulence of recombinant vaccinia virus expression vectors is associatedwith a thymidine kinase-negative phenotype. // Nature. 1985. - V. 317. - № 6040.-P. 813-815.

55. Buller R.M., Chakrabarti S., Cooper J. A., Twardzik D.R., Moss B. Deletion of the vaccinia virus growth factor gene reduces virus virulence. // J. Virol. -1988. V. 62. - № 3. - P. 866-874.

56. Buller R.M., Palumbo G.J. Poxvirus pathogenesis. // Microbiol.Rev. 1991. -V. 55. - № 1. - P. 80-122.

57. Cairns J. The initiation of vaccinia infection. // Virology. 1960. - V. 11.-P. 603-623.

58. Calderara S., Xiang Y., Moss B. Orthopoxvirus IL-18 binding proteins: affinities and antagonist activities. // Virology. 2001. - V. 279. - № 1. - P. 22-26.

59. Calos M.P., Galas D., Miller J.H. Genetic studies of the lac repressor. VIII. DNA sequence change resulting from an intragenic duplication. // J.Mol.Biol. 1978. - V. 126. - № 4. - P. 865-869.

60. Chambers S.P., Prior S.E., Barstow D.A., Minton N.P. The pMTL nic-cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. // Gene. 1988. - V. 68. - № 1. -P. 139-149.

61. Chang H.W., Watson J.C., Jacobs B.L. The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. // Proc. Natl. Acad. Sci. USA. 1992. - V. 89. - № 11.-P. 4825-4829.

62. Chang W., Lim J.G., Hellstrom I., Gentry L.E. Characterization of vaccinia virus growth factor biosynthetic pathway with an antipeptide antiserum. // J. Virol. 1988. - V. 62. - № 3. - P. 1080-1083.

63. Chapin C.V. Variation in type of infectious disease as shown by the history of smallpox in the United States 1895-1912. // J. Infect. Dis. 1913. - V. 13. -P. 171-196.

64. Chapin C.V. and Smith J. Permanency of the mild type of smallpox. // J. Prevent. Med. 1932. - V. 6. - P. 273-320.

65. Chen W., Drillien R., Spehner D., Buller R.M. Restricted replication of ectromelia virus in cell culture correlates with mutations in virus-encoded host range gene. // Virology. 1992. - V.187. - № 2. - P. 433-442.

66. Chernos V.I., Antonova T.P., Senkevich T.G. Recombinants between vaccinia and ectromelia viruses bearing the specific pathogenicity markers of both parents. // J.Gen.Virol. 1985. - V. 66 ( Pt 3). - P. 621-626.

67. Christen L.M., Sanders M., Wiler C., Niles E.G. Vaccinia virus nucleoside triphosphate phosphohydrolase I is an essential viral early gene transcription termination factor. // Virology. 1998. - V. 245. - № 2. - P.360-371.

68. Chung C.S., Hsiao J.C., Chang Y.S., Chang W. A27L protein mediates vaccinia virus interaction with cell surface heparan sulfate. // J. Virol. -1998. V. 72. - № 2. - P. 1577-1585.

69. Clark A.G. Invasion and maintenance of a gene duplication. // Proc. Natl. Acad. Sci. USA. 1994. - V. 91. -№ 8. - P. 2950-2954.

70. Colby C., Duesberg P.H. Double-stranded RNA in vaccinia virus infected cells. // Nature. 1969. - V. 222. - № 197. - P. 940-944.

71. Collins J., Hohn B. Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage lambda heads. // Proc. Natl. Acad. Sci. USA. 1978. - V. 75. - № 9. - P. 4242-4246.

72. Dales S., Siminovitch L. The development of vaccinia virus in Earle's L strain cells as examined by electron microscopy. // J. Biophys. Biochem. Cytol. 1961. - V. 10. - P. 475-503.

73. Dallo S., Esteban M. Isolation and characterization of attenuated mutants of vaccinia virus. // Virology. 1987. - V. 159. - № 2. - P. 408-422.

74. Davis R.E., Mathews C.K. Acidic C terminus of vaccinia virus DNA-binding protein interacts with ribonucleotide reductase. // Proc. Natl. Acad. Sci. USA. 1993. - V. 90. - № 2. - P. 745-749.

75. De Korte W.E. Amaas, or kaffir milk-pox. // Lancet. 1904. - V. 1. - P. 1273-1276.

76. DeLange A.M., Macaulay C., Block W., Mueller T., McFadden G. Tumorigenic poxviruses: construction of the composite physical map of the Shope fibroma virus genome. // J. Virol. 1984. - V. 50. - № 2. - P. 408416.

77. DeLange A.M., Reddy M., Scraba D., Upton C., McFadden G. Replication and resolution of cloned poxvirus telomeres in vivo generates linear minichromosomes with intact viral hairpin termini. // J. Virol. 1986. - V. 59.-№2.-P. 249-259.

78. Douglass N.J., Richardson M., Dumbell K.R. Evidence for recent genetic variation in monkeypox viruses. // J.Gen.Virol. 1994. - V. 75 ( Pt 6). - P. 1303-1309.

79. Drillien R., Koehren F., Kirn A. Host range deletion mutant of vaccinia virus defective in human cells. // Virology. 1981. - V. 111. - № 2. - P. 488499.

80. Dumbell K.R., Huq F. Epidemiological implications of the typing of variola isolates. // Trans.R.Soc.Trop.Med.Hyg. 1975. - V. 69. -№ 3. - P. 303-306.

81. Dumbell K.R., Archard L.C. Comparison of white pock (h) mutants of monkeypox virus with parental monkeypox and with variola-like viruses isolated from animals. // Nature. 1980. - V. 286. - № 5768. - P. 29-32.

82. Dumbell K.R., Huq F. The virology of variola minor. Correlation of laboratory tests with the geographic distribution and human virulence of variola isolates. //Am .J.Epidemiol. 1986. - V. 123. -№ 3. - P. 403-415.

83. Duncan S.A., Smith G.L. Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress. // J. Virol. 1992a.-V. 66.-№3.-P. 1610-1621.

84. Duncan S.A., Smith G.L. Vaccinia virus gene SalF5R is non-essential for virus replication in vitro and in vivo. II J. Gen. Virol. 1992b. - V. 73. - № 5. -P. 1235-1242.

85. Dyster L.M., Niles E.G. Genetic and biochemical characterization of vaccinia virus genes D2L and D3R which encode virion structural proteins. // Virology. 1991. - V. 182. - № 2. - P. 455-467.

86. Earl P.L., Jones E.V., Moss B. Homology between DNA polymerase of poxviruses, herpesviruses, and adenoviruses: Nucleotide sequence of the vaccinia virus DNA polymerase gene. // Proc. Natl. Acad. Sci. USA. 1986. - V. 83. -№11.-P. 3659-3663.

87. Engelstad M., Howard S.T., Smith G.L. A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. // Virology. 1992. - V. 188.-№2.-P. 801-810.

88. Engelstad M., Smith G.L. The vaccinia virus 42-kDa envelope protein is required for the envelopment and egress of extracellular virus and for virus virulence. // Virology. 1993. - V. 194. - № 2. - P. 627-637.

89. Esposito J.J., Cabradilla C.D., Nakano J.H., Obijeski J.F. Intragenomic sequence transposition in monkeypox virus. // Virology. 1981. - V. 109. -№2.-P. 231-243.

90. Esposito J.J., Knight J.C. Orthopoxvirus DNA: a comparison of restriction profiles and maps. // Virology. 1985. - V. 143. - № 1. - P. 230-251.

91. Evans D.H., Stuart D., McFadden G. High levels of genetic recombination among cotransfected plasmid DNAs in poxvirus-infected mammalian cells. // J. Virol. 1988. - V. 62. - № 2. - P. 367-375.

92. Evans E., Klemperer N., Ghosh R., Traktman P. The vaccinia virus D5 protein, which is requered for DNA replication, is a nucleic acidindependent nucleoside triphosphatase. // J. Virol. 1995. - V.69. - № 9. - P. 5353-5361.

93. Farabaugh P.J., Schmeissner U., Hofer M., Miller J.H. Genetic studies of the lac repressor. VII. On the molecular nature of spontaneous hotspots in the lacl gene of Escherichia coli. II J.Mol.Biol. 1978. - V. 126. - № 4. - P. 847857.

94. Fathi Z., Dyster L.M., Seto J., Condit R.C., Niles E.G. Intragenic and intergenic recombination between temperature-sensitive mutants of vaccinia virus. // J.Gen.Virol. 1991. - V. 72 ( Pt 11). - P. 2733-2737.

95. Fenner F. The biological characters of several strains of vaccinia, cowpox and rabbitpox viruses. // Virology. 1958. - V. 5. - № 3. - P. 502-529.

96. Fenner F., Comben B.M. Genetic studies with mammalian poxviruses. I. Demonstration of recombination between two strains of vaccina virus. // Virology. 1958. - V. 5. - № 3. - P. 530-548.

97. Fenner, F., Henderson, D.A., Arita, I., Jezek, Z., and Ladnyi I.D. "Smallpox and Its Eradication". 1988. - World Health Organization, Geneva, Switzerland.

98. Fenner F., Sambrook J.F. Conditional lethal mutants of rabbitpox virus. II. Mutants (p) that fail to multiply in PK-2a cells. // Virology. 1966. - V. 28. -№ 4. - P. 600-609.

99. Fenner, F., Wittek, R., and Dumbell, K.R. "The Orthopoxviruses". 1989. -Academic Press, Inc., San Diego.

100. Frischknecht F., Moreau V., Rottger S., Gonfloni S., Reckmann I., Superti-Furga G., Way M. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. // Nature. 1999. - V.401. - № 6756. - P. 926929.

101. Funahashi, S., Sato, T., Shida, H. Cloning and characterization of the gene encoding the major protein of the A-type inclusion body of cowpox virus. // J. Gen. Virol. 1988. - V. 69. - P. 35-47.

102. Gagliardini V., Fernandez P.A., Lee R.K., Drexler H.C., Rotello R.J., Fishman M.C., Yuan J. Prevention of vertebrate neuronal death by the crmA gene. // Science. 1994. - V. 263. -№ 5148. - P. 826-828.

103. Garon C.F., Barbosa E., Moss B. Visualization of an inverted terminal repetition in vaccinia virus DNA. // Proc. Natl. Acad. Sci. USA. 1978. - V. 75.-№ 10.-P. 4863-4867.

104. Gemmell A., Fenner F. Genetic studies with mammalian poxviruses. III. White (u) mutants of rabbitpox virus. // Virology. 1960. - V. 11. - P. 219235.

105. Gershon P.D., Ahn B.-Y., Garfield M., Moss B. Poly(A) polymerase and a dissociable polyadenylation stimulatory factor encoded by vaccinia virus. // Cell. 1991.-V.66.-№6.-P. 1269-1278.

106. Gershon P.D., Moss B. Early transcription factor subunits are encoded by vaccinia virus late genes. // Proc. Natl. Acad. Sci. USA. 1990. - V.87. - № 11.-P. 4401-4405.

107. Geshelin P., Berns K.I. Characterization and localization of the naturally occurring cross-links in vaccinia virus DNA. // J.Mol.Biol. 1974. - V. 88. -№4.-P. 785-796.

108. Gillard S., Spehner D., Drillien R., Kirn A. Localization and sequence of a vaccinia virus gene required for multiplication in human cells. // Proc. Natl. Acad. Sci. USA. 1986. - V. 83. - № 15. - P. 5573-5577.

109. Goebel S.J., Johnson G.P., Perkus M.E., Davis S.W., Winslow J.P., Paoletti E. The complete DNA sequence of vaccinia virus. // Virology. 1990. - V. 179. -№ l.-P. 247-263.

110. Golini F., Kates J.R. Transcriptional and translational analysis of a strongly expressed early region of the vaccinia virus genome. // J. Virol. 1984. -V.49. - № 2. - P. 459-470.

111. Grady L.J., Paoletti E. Molecular complexity of vaccinia DNA and the presence of reiterated sequences in the genome. // Virology. 1977. - V. 79. -№ 2.-P. 337-341.

112. Gross C.H., Shuman S. The nucleoside triphosphatase and helicase activities of vaccinia virus NPH-II are essential for virus replication. // J. Virol. -1998. V.72. - № 6. - P. 4729-4736.

113. Guan K., Broyles S.S., Dixon J.E. A Tyr/Ser protein phosphatase encoded by vaccinia virus. //Nature. 1991. - V.350. - № 6316. - P. 359-362.

114. Gubser C., Smith G.L. The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. // J.Gen.Virol. 2002. - V. 83. - № Pt 4.-P. 855-872.

115. Gvakharia B.O., Koonin E.K., Mathews C.K. Vaccinia virus G4L gene encodes a second glutaredoxin. // Virology. 1996. - V.226. - № 2. - P. 408411.

116. Haenlin M., Steller H., Pirrotta V., Mohier E. A 43 kilobase cosmid P transposon rescues the fs(l)K10 morphogenetic locus and three adjacent Drosophila developmental mutants. // Cell. 1985. - V. 40. - № 4. - P. 827837.

117. Harford C.G., Hamlin A., Rieders E. Electron microscopic autoradiography of DNA synthesis in cells infected with vaccinia virus. // Exp.Cell Res. -1966.-V. 42. № 1. - P. 50-57.

118. Hirt P., Hiller G., Wittek R. Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. // J. Virol. 1986. - V. 58. - № 3. -P. 757-764.

119. Hsiao J.C., Chung C.S., Chang W. Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells. // J. Virol. 1999. - V. 73. - № 10. - P. 8750-8761.

120. Hsu D.H., de Waal M.R., Fiorentino D.F., Dang M.N., Vieira P., de Vries J., Spits H., Mosmann T.R., Moore K.W. Expression of interleukin-10 activity by Epstein-Barr virus protein BCRF1. // Science. 1990. - V. 250. - № 4982. - P. 830-832.

121. Hu F.Q., Smith C.A., Pickup D.J. Cowpox virus contains two copies of an early gene encoding a soluble secreted form of the type II TNF receptor. // Virology. 1994. - V. 204. - № 1. - P.343-356.

122. Hu X., Wolffe E.J., Weisberg A.S., Carroll L.J., Moss B. Repression of the A8L gene, encoding the early transcription factor 82-kilodalton subunit, inhibits morphogenesis of vaccinia virions. // J. Virol. 1998. - V. 72. - № 1. -P. 104-112.

123. Hughes S.J., Johnston L.H., De Carlos A., Smith G.L. Vaccinia virus encodes an active thymidylate kinase that complements a cdc8 mutant of Saccharomyces cerevisiae. II J. Biol. Chem. 1991. - V. 266. - № 30. - P. 20103-20109.

124. Ichihashi Y., Takahashi T., Oie M. Identification of a vaccinia virus penetration protein. // Virology. 1994. - V.202. - № 2. - P. 834-843.

125. Isaacs S.N., Kotwal G.J., Moss B. Vaccinia virus complement-control protein prevents antibody-dependent complement-enhanced neutralization of infectivity and contributes to virulence. // Proc. Natl. Acad. Sci. USA. -1992a. V. 89. - № 2. - P. 628-632.

126. Isaacs S.N., WolfFe E.J., Payne L.G., Moss B. Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. // J. Virol. 1992b. - V. 66. - № 12. - P. 7217-7224.

127. Ishii K., Moss B. Role of vaccinia virus A20R protein in DNA replication: construction and characterization of temperature-sensitive mutants. // J. Virol. 2001. - V. 75. - № 4. - P.1656-1663.

128. Jin D.Y., Li Z.L., Jin Q., Hao Y.W., Hou Y.D. Vaccinia virus hemagglutinin. A novel member of the immunoglobulin superfamily. // J.Exp.Med. 1989. - V. 170. - № 2. - P. 571-576.

129. Joklik W.K., Becker Y. The replication and coating of vaccinia DNA. // J.Mol.Biol. 1964. - V. 10. - P. 452-474.

130. Kane E.M., Shuman S. Temperature-sensitive mutations in the vaccinia virus H4 gene encoding a component of the virion RNA polymerase. // J. Virol. 1992. - V.66. - № 10. - P.5752-5762.

131. Kane E.M., Shuman S. Vaccinia virus morphogenesis is blocked by a temperature-sensitive mutation in the 17 gene that encodes a virion component. // J. Virol. 1993. - V. 67. - № 5. - P. 2689-2698.

132. Kaverin N.V., Varich N.L., Surgay V.V., Chernos V.I. A quantitative estimation of poxvirus genome fraction transcribed as "early" and "late" mRNA.//Virology. 1975.-V. 65.-№ 1. - P. 112-119.

133. Kao S.-Y., Bauer W.R. Biosynthesis and phosphorylation of vaccinia virus structural protein VP11. // Virology. 1987. - V. 159. - № 2. - P.339-407.

134. Keck J.G., Baldick C.J., Moss B. Role of DNA replication in vaccinia virus gene expression: A naked template is required for transcription of three late trans-activator genes. // Cell. 1990. - V. 61. - № 5. - P. 801-809.

135. Keck J.G., Feigenbaum F., Moss B. Mutational analysis of a predicted zinc-binding motif in the 26-kilodalton protein encoded by the vaccinia virus

136. A2L gene: correlation of zinc binding with late transcriptional transactivation activity. U J. Virol. 1993a. - V. 67. - № 10. - P. 5749-5753.

137. Keck J.G., Kovacs G.R., Moss B. Overexpression, purification, and late transcription factor activity of the 17-kilodalton protein encoded by the vaccinia virus AIL gene. // J. Virol. 1993b. - V. 67. - № 10. - P. 57405748.

138. Kerr S.M., Smith G.L. Vaccinia virus encodes a polypeptide with DNA Iigase activity. //Nucl. Acids Res. 1989. - V. 17. - № 22. - P. 9039-9050.

139. Klemperer N., McDonald W., Boyle K., Unger B., Traktman P. The A20R protein is a stoichiometric component of the processive form of vaccinia virus DNA polymerase. // J. Virol. 2001. - V. 75. - № 24. - P. 1229812307.

140. Koonin E.V. A highly conserved sequence motif defining the family of MutT-related proteins from eubacteria, eukaryotes and viruses. // Nucleic Acids Res. 1993. - V. 21. - № 20. - P. 4847-4849.

141. Kotwal G.J., Moss B. Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. // Nature. 1988a. - V. 335.-№6186.-P. 176-178.

142. Kotwal G.J., Moss B. Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. // Virology. -1988b. V. 167. - № 2. - P. 524-537.

143. Kotwal G.J., Moss B. Vaccinia virus encodes two proteins that are structurally related to members of the plasma serine protease inhibitor superfamily. //J. Virol. 1989. - V. 63. - P. 600-606.

144. Kovacs G.R., Moss B. The vaccinia virus H5R gene encodes late gene transcription factor 4: purification, cloning and overexpression. // J. Virol.1996.-V. 70.-№ 10.-P. 6796-6802.f

145. Kovacs G.R., Vasilakis N., Moss B. Regulation of viral intermediate gene expression by the vaccinia virus B1 protein kinase. // J. Virol. 2001. - V. 75.-№9.-P. 4048-4055.

146. Kumar S., Tamura K., Jakobsen I.B., Nei M. MEGA2: molecular evolutionary genetics analysis software. // Bioinformatics. 2001. - V. 17. -№12.-P. 1244-1245.

147. Lake J.R., Cooper P.D. Deletions of the terminal sequences in the genomes of the white pock (u) and host-restricted (p) mutants of rabbitpox virus. // J.Gen.Virol. 1980. - V. 48. - № 1. - P. 135-147.

148. Lambert S., Yu H., Prchal J.T., Lawler J., Ruff P., Speicher D., Cheung M.C., Kan Y.W., Palek J. cDNA sequence for human erythrocyte ankyrin. // Proc. Natl. Acad. Sci. USA. 1990. - V. 87. -№ 5. - P. 1730-1734.

149. Law K.M., Smith G.L. A vaccinia serine protease inhibitor which prevents B virus-induced cell fusion. // J. Gen. Virol. 1992. - V. 73. - № 3. - P. 549557.

150. Lee-Chen G.-J., Bourgeois N., Davidson K., Condit R.C., Niles E.G. Structure of the transcription and termination sequence of seven early genes in the vaccinia virus Hindlll D fragment. // Virology. 1988. - V. 163. - № l.-P. 64-79.

151. Lin S., Chen W., Broyles S.S. The vaccinia virus B1R gene product is a serine/threonine protein kinase. // J. Virol. 1992. - V. 66. - № 5. - P. 27172723.

152. Loh P.C., Riggs J.L. Demonstration of the sequential development of vaccinial antigens and virus in infected cells: observations with cytochemical and differential fluorescent procedures. // J. Exp. Med. 1961. -V. 114.-P. 149-160.

153. Lopez P., Espinosa M., Greenberg B., Lacks S.A. Generation of deletions in pneumococcal mal genes cloned in Bacillus subtilis. II Proc. Natl. Acad. Sci. USA. 1984. - V. 81. -№ 16. - P. 5189-5193.

154. Lux S.E., John K.M., Bennett V. Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. // Nature. 1990. - V. 344. -№6261.-P. 36-42.

155. Maa J.-S., Esteban M. Structural and functional characterization of cell surface binding protein of vaccinia virus. // J. Virol. 1987. - V. 61. - № 12. -P. 3910-3919.

156. Maa J.-S., Rodriguez J.F., Esteban M. Structural and functional characterization of a cell surface binding protein of vaccinia virus. // J. Biol. Chem.- 1990.-V. 265.-№3.-P. 1569-1577.

157. Mackett M., Archard L.C. Conservation and variation in Orthopoxvirus genome structure. // J.Gen.Virol. 1979. - V. 45. - № 3. - P. 683-701.

158. Marotta C.A., Wilson J.T., Forget B.G., Weissman S.M. Human beta-globin messenger RNA. III. Nucleotide sequences derived from complementary DNA. // J. Biol. Chem. 1977. - V. 252. - № 14. - P. 5040-5053.

159. Martin K.H., Grosenbach D.W., Franke C.A., Hruby D.E. Identification and analysis of three myristylated vaccinia virus late proteins. // J. Virol. 1997. - V.71.-№7.-P. 5218-5226.

160. Martinez-Pomares L., Thompson J.P., Moyer R.W. Mapping and investigation of the role in pathogenesis of the major unique secreted 35-kDa protein of rabbitpox virus. // Virology. 1995. - V. 206. - № 1. - P. 591600.

161. Massague J., Pandiella A. Membrane-anchored growth factors. // Annu.Rev.Biochem. 1993. - V. 62. - P. 515-541.

162. Massung R.F., Liu L.I., Qi J., Knight J.C., Yuran T.E., Kerlavage A.R., Parsons J.M., Venter J.C., Esposito J.J. Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975. // Virology. 1994. -V. 201.-№2.-P. 215-240.

163. Massung R.F., Knight J.C., Esposito J.J. Topography of variola smallpox virus inverted terminal repeats. // Virology. 1995. - V. 211. - № 1. - P. 350355.

164. Maxam A.M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. // Methods Enzymol. 1980. - V. 65. - № 1. - P. 499560.

165. McClain M.E., Greenland R.M. Recombination between rabbitpox virus mutants in permissive and nonpermissive cells. // Virology. 1965. - V. 25. -P. 516-522.

166. McClain M.E. The host range and plaque morphology of rabbitpox virus (Rpu+) and its u mutants on chick fibroblast, PK-2A, and L929 cells. // Aust.J.Exp.Biol.Med.Sci. 1965. - V. 43. - P. 31-44.

167. McFadden G., Dales S. Biogenesis of poxviruses: mirror-image deletions in vaccinia virus DNA. // Cell. 1979. - V. 18. - № 1. - P. 101-108.

168. McGeoch D.J. Protein sequence comparisons show that 'pseudoproteases' encoded by the poxviruses and certain retroviruses belong to the deoxyuridine triphosphatase family. // Nucl. Acids Res. 1990. - V. 18. - P. 4105-4110.

169. Mcintosh A.A., Smith G.L. Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. // J. Virol. 1996. - V. 70. -№ 1. - P. 272-281.

170. Meis R.J., Condit R.C. Genetic and molecular biological characterization of vaccinia virus gene which renders the virus dependent on isatin-P-thiasemicarbazone (IBT). // Virology. 1991. - V. 182. - № 2. - P. 442-454.

171. Merchlinsky M., Moss B. Resolution of linear minichromosomes with hairpin ends from circular plasmids containing vaccinia virus concatemer junctions. // Cell. 1986. - V. 45. - № 6. - P. 879-884.

172. Merchlinsky M., Moss B. Nucleotide sequence required for resolution of the concatemer junction of vaccinia virus DNA. // J. Virol. 1989. - V. 63. - № 10.-P. 4354-4361.

173. Merchlinsky M. Intramolecular homologous recombination in cells infected with temperature-sensitive mutants of vaccinia virus. // J. Virol. 1989. - V. 63.-№5.-P. 2030-2035.

174. Meyer H., Neubauer H., Pfeffer M. Amplification of'variola virus-specific' sequences in German cowpox virus isolates. // J.Vet.Med.B Infect.Dis.Vet.Public Health. 2002. - V. 49. - № 1. - P. 17-19.

175. Miller C.G., Justus D.E., Jayaraman S., Kotwal G.J. Severe and prolonged inflammatory response to localized cowpox virus infection in footpads of

176. C5-deficient mice: investigation of the role of host complement in poxvirus pathogenesis. // Cell Immunol. 1995. - V. 162. - № 2. - P. 326-332.

177. Moore J.B., Smith G.L. Steroid hormone synthesis by a vaccinia enzyme: a new type of virus virulence factor. // EMBO J. 1992. - V. 11. - № 5. - P. 1973-1980.

178. Morgan J.R., Cohen L.K., Roberts B.E. Identification of the DNA sequence encoding the large subunit of the mRNA-capping enzyme of vaccinia virus. //J. Virol. 1984. - V. 52.-№ l.-P. 206-214.

179. Morgan J.R., Roberts B.E. Organization of RNA transcripts from a vaccinia virus early gene cluster. // J. Virol. 1984. - V. 51. - № 2. - P. 283-297.

180. Moss B. Poxviridae: The viruses and their replication. In "Virology" (B.N. Fields, D.M. Knipe, R.M. Chanock, T.P. Monath, P.M. Howley, J.L. Melnick, B. Roizman, and S.E. Straus, Eds.), Vol. 2. 1996. - LippincottRaven. Philadelphia, pp. 2637-2671.

181. Moss B., Winters E., Cooper N. Instability and reiteration of DNA sequences within the vaccinia virus genome. // Proc. Natl. Acad. Sci. USA.1981.-V.78.-№3.-P. 1614-1618.

182. Moss B., Winters E., Cooper J.A. Deletion of a 9,000-base-pair segment of the vaccinia virus genome that encodes nonessential polypeptides. // J. Virol. 1981. - V. 40. -№ 2. - P. 387-395.

183. Mossman K., Upton C., Buller R.M., McFadden G. Species specificity of ectromelia virus and vaccinia virus interferon-gamma binding proteins. //

184. Virology. 1995. - V. 208. - № 2. - P. 762-769.

185. Moyer R.W., Graves R.L., Rothe C.T. The white pock (mu) mutants of rabbit poxvirus. III. Terminal DNA sequence duplication and transposition in rabbit poxvirus. // Cell. 1980. - V. 22. - № 2 Pt 2. - P. 545-553.

186. Moyer R.W., Rothe C.T. The white pock mutants of rabbit poxvirus. I. Spontaneous host range mutants contain deletions. // Virology. 1980. - V. 102.-№ l.-P. 119-132.

187. Moyer R.W., Graves R.L. The mechanism of cytoplasmic orthopoxvirus DNA replication. // Cell. 1981. - V. 27. - № 2 Pt 1. - P. 391-401.

188. Moyer R.W., Graves R.L. The white pock mutants of rabbit poxvirus. IV. The late white pock (mu) host range (hr) mutants of rabbit poxvirus are blocked in morphogenesis. // Virology. 1982. - V. 119. - № 2. - P. 332346.

189. Najarro P., Traktman P., Lewis J.A. Vaccinia virus blocks gamma interferon signal transduction: viral VH1 phosphatase reverses Statl activation. // J. Virol. 2001. - V. 75. - № 7. - P. 3185-3196.

190. Nakano E., Panicali D., Paoletti E. Molecular genetics of vaccinia virus: demonstration of marker rescue. // Proc. Natl. Acad. Sci. USA. 1982. - V. 79.-№5.-P. 1593-1596.

191. Ng A., Tscharke D.C., Reading P.C., Smith G.L. The vaccinia virus A41L protein is a soluble 30 kDa glycoprotein that affects virus virulence. // J. Gen. Virol. 2001. - V. 82. -№ 9. - P. 2095-2105.

192. Niles E.G., Lee-Chen G.-J., Shuman S., Moss B., Broyles S.S. Vaccinia virus gene D12L encodes the small subunit of the viral mRNA capping enzyme. // Virology. 1989. - V. 172. - № 2. - P. 513-522.

193. Niles E.G., Seto J. Vaccinia virus gene D8 encodes a virion transmembrane protein. // J. Virol. 1988. - V. 62. - № 10. - P. 3772-3778.

194. Novick D., Kim S.H., Fantuzzi G., Reznikov L.L., Dinarello C.A., Rubinstein M. Interleukin-18 binding protein: a novel modulator of the Thl cytokine response. // Immunity. 1999. - V. 10. - № 1. - P. 127-136.

195. Oguiura N., Spehner D., Drillien R. Detection of a protein encoded by the vaccinia virus C7L open reading frame and study of its effect on virus multiplication in different cell lines. // J.Gen.Virol. 1993. - V. 74 ( Pt 7). -P. 1409-1413.

196. Oie M., Shida H., Ichihashi Y. The function of the vaccinia hemagglutinin in the proteolytic activation of infectivity. // Virology. 1990. - V. 176. - № 2.-P. 494-504.

197. Okamura H., Tsutsui H., Kashiwamura S., Yoshimoto T., Nakanishi K. Interleukin-18: a novel cytokine that augments both innate and acquired immunity. // Adv.Immunol. 1998. - V. 70. - P. 281-312.

198. Ortiz M.A., Paez E. Identification of viral membrane proteins required for cell fusion and viral dissemination that are modified during vaccinia virus persistence. // Virology. 1994. - V. 198. - № 1. - P. 155-168.

199. Owen J.E., Schultz D.W., Taylor A., Smith G.R. Nucleotide sequence of the lysozyme gene of bacteriophage T4. Analysis of mutations involving repeated sequences. // J.Mol.Biol. 1983. - V. 165. - № 2. - P. 229-248.

200. Paez E., Esteban M. Nature and mode of action of vaccinia virus products that block activation of the interferon-mediated ppp(A2'p)nA-synthetase. // Virology. 1984. - V. 134. - № 1. - P. 29-39.

201. Paez E., Esteban M. Interferon prevents the generation of spontaneous deletions at the left terminus of vaccinia virus DNA. // J. Virol. 1985. - V. 56.-№ l.-P. 75-84.

202. Paez E., Dallo S., Esteban M. Generation of a dominant 8-MDa deletion at the left terminus of vaccinia virus DNA. // Proc. Natl. Acad. Sci. USA. -1985. V. 82. - № 10. - P. 3365-3369.

203. Palumbo G.J., Pickup D.J., Fredrickson T.N., Mclntyre L.J., Buller R.M. Inhibition of an inflammatory response is mediated by a 38-kDa protein of cowpox virus. // Virology. 1989. - V. 172. - № 1. - P. 262-273.

204. Palumbo G.J., Glasgow W.C., Buller R.M. Poxvirus-induced alteration of arachidonate metabolism. // Proc. Natl. Acad. Sci. USA. 1993. - V. 90. - № 5. - P. 2020-2024.

205. Palumbo G.J., Buller R.M., Glasgow W.C. Multigenic evasion of inflammation by poxviruses. // J. Virol. 1994. - V. 68. - № 3. - P. 17371749.

206. Panicali D., Davis S.W., Mercer S.R., Paoletti E. Two major DNA variants present in serially propagated stocks of the WR strain of vaccinia virus. // J. Virol. 1981.-V. 37.-№3.-P. 1000-1010.

207. Panicali D., Paoletti E. Construction of poxviruses as cloning vectors: Insertion of the thymidine kinase gene from herpes simplex into the DNA of infectious vaccinia virus. // Proc. Natl. Acad. Sci. USA. 1982. - V. 79. - № 16.-P.4927-4931.

208. Parkinson J.E., Sanderson C.M., Smith G.L. The vaccinia virus A38L gene product is a 33-kDa integral membrane glycoprotein. // Virology. 1995. -V. 214. - № l.-P. 177-188.

209. Parkinson J.E., Smith G.L. Vaccinia virus gene A36R encodes a Mr43-50K protein on the surface of extracellular enveloped virus. // Virology. 1994. -V. 204.-№ l.-P. 376-390.

210. Parks R.J., Evans D.H. Enhanced recombination associated with the presence of insertion and deletion mutations in poxvirus-infected cells. // Virology. 1991. - V. 184. - № 1. - P. 299-309.

211. Parsons B.L., Pickup D.J. Tandemly repeated sequences are present at the ends of the DNA of raccoonpox virus. // Virology. 1987. - V. 161. - № 1. -P. 45-53.

212. Patel A.H., Gaffney D.F., Subak-Sharpe J.H., Stow N.D. DNA sequence of the gene encoding a major secreted protein of vaccinia virus, strain Lister. // J.Gen.Virol. 1990. - V. 71 ( Pt 9). - P. 2013-2021.

213. Payne L. Polypeptide composition of extracellular enveloped vaccinia virus. //J. Virol. 1978.-V. 27.-№ 1,-P. 28-37.

214. Payne L.G. Identification of the vaccinia hemagglutinin polypeptide from a cell system yielding large amounts of extracellular enveloped virus. // J. Virol. 1979. - V. 31. -№ 1. - P. 147-155.

215. Payne L.G. Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia. // J.Gen. Virol. 1980. - V. 50. - № 1. - P. 89-100.

216. Payne L.G. Characterization of vaccinia virus glycoproteins by monoclonal antibody precipitation. // Virology. 1992. - V. 187. - № 1. - P. 251-260.

217. Perkus M.E., Panicali D., Mercer S., Paoletti E. Insertion and deletion mutants of vaccinia virus. // Virology. 1986. - V. 152. - № 2. - P. 285-297.

218. Perkus M.E., Goebel S.J., Davis S.W., Johnson G.P., Limbach K., Norton E.K., Paoletti E. Vaccinia virus host range genes. // Virology. 1990. - V. 179.-№ l.-P.276-286.

219. Perkus M.E., Goebel S.J., Davis S.W., Johnson G.P., Norton E.K., Paoletti E. Deletion of 55 open reading frames from the termini of vaccinia virus. // Virology.- 1991.-V. 180. l.-P. 406-410.

220. Pickup D.J., Bastia D., Stone H.O., Joklik W.K. Sequence of terminal regions of cowpox virus DNA: arrangement of repeated and unique sequence elements. // Proc. Natl. Acad. Sci. USA. 1982. - V. 79. - № 23. -P. 7112-7116.

221. Pickup D.J., Bastia D., Joklik W.K. Cloning of the terminal loop of vaccinia virus DNA. // Virology. 1983. - V. 124. - № 1. - P. 215-217.

222. Pickup D.J., Ink B.S., Parsons B.L., Hu W., Joklik W.K. Spontaneous deletions and duplications of sequences in the genome of covvpox virus. // Proc. Natl. Acad. Sci. USA. 1984. - V. 81. -№ 21. - P. 6817-6821.

223. Porter A.G. The prospects for therapy with tumour necrosis factors and their antagonists. // Trends Biotechnol. -1991. V. 9. - № 5. - P. 158-162.

224. Post L.E., Arfsten A.E., Davis G.R., Nomura M. DNA sequence of the promoter region for the alpha ribosomal protein operon in Escherichia coli. // J.Biol.Chem. 1980. - V. 255. - № 10. - P. 4653-4659.

225. Prescott D.M., Kates J., Kirkpatrick J.B. Replication of vaccinia virus DNA in enucleated L-cells. //J.Mol.Biol. 1971. - V. 59. -№ 3. - P. 505-508.

226. Rajagopal I., Ahn B.-Y., Moss B., Mathews C.K. Roles of vaccinia virus ribonucleotide reductase and glutaredoxin in DNA precursor biosynthesis. // J. Biol Chem. 1995. - V. 270. -№46. - P. 27415-27418.

227. Ramsey-Ewing A., Moss B. Restriction of vaccinia virus replication in CHO cells occurs at the stage of viral intermediate protein synthesis. // Virology.1995. V. 206. -№ 2. - P. 984-993.

228. Ramsey-Ewing A.L., Moss B. Complementation of a vaccinia virus hostrange K1L gene deletion by the nonhomologous CP77 gene. // Virology.1996.-V. 222.-№ l.-P. 75-86.

229. Ravanello M.P., Hruby D.E. Conditional lethal expression of the vaccinia virus L1R myristylated protein reveals a role in virion assembly. // J. Virol. -1994. V. 68. -№ 10. - P. 6401-6410.

230. Ray C.A., Black R.A., Kronheim S.R., Greenstreet T.A., Sleath P.R., Salvesen G.S., Pickup D.J. Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme. // Cell. -1992. V. 69. -№ 4. - P. 597-604.

231. Rempel R.E., Traktman P. Vaccinia virus B1 kinase: phenotypic analysis of temperature-sensitive mutants and enzymatic characterization of recombinant proteins. // J. Virol. 1992. - V. 66. - № 7. - P. 4413-4426.

232. Resenchuk S.M., Blinov V.M. ALIGNMENT SERVICE: creation and processing of alignments of sequences of unlimited length. // Comput.Appl.Biosci. 1995. - V. 11. - № 1. - P. 7-11.

233. Ribas E. Alastrim, amaas or milk-pox. // Trans. R. Soc. Trop. Med. Hyg. -1910.-V. 4.-P. 224-232.

234. Rivas C., Gil J., Melkova Z., Esteban M., Diaz-Guerra M. Vaccinia virus E3L protein is an inhibitor of the interferon (i.f.n.)-induced 2-5A synthetase enzyme. // Virology. 1998. - V. 243. - № 2. - P. 406-414.

235. Rochester S.C., Traktman P. Characterization of the single-stranded DNA binding protein encoded by the vaccinia virus 13 gene. // J. Virol. 1998. -V. 72.-№4.-P. 2917-2926.

236. Rodriguez D., Esteban M., Rodriguez J.R. Vaccinia virus A17L gene product is essential for an early step in virion morphogenesis. // J. Virol. -1995. V. 69. - № 8. - P. 4640-4648.

237. Rodriguez J.F., Esteban M. Mapping and nucleotide sequence of the vaccinia virus gene that encodes a 14-kilodalton fusion protein. //J. Virol. -1987.-V.61 .-№ 11.-P. 3550-3554.

238. Rodriguez J.F., Kahn J.S., Esteban M. Molecular cloning, encoding sequence, and expression of vaccinia virus nucleic acid-dependent nucleoside triphosphatase gene. // Proc. Natl. Acad. Sci. USA. 1986. - V. 83.-P. 9566-9570.

239. Roper R.L., Moss B. Envelope formation is blocked by mutation of a sequence related to the HKD phospholipid metabolism motif in the vaccinia virus F13L protein. // J. Virol. 1999. - V. 73. - № 2. - P. 1108-1117.

240. Roper R.L., Payne L.G., Moss B. Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. // J. Virol. 1996. - V. 70. - № 6. -P. 3753-3762.

241. Roper R.L., Wolffe E.J., Weisberg A., Moss B. The envelope protein encoded by the A33R gene is required for formation of actin-containing microvilli and efficient cell-to-cell spread of vaccinia virus. // J. Virol. -1998. V. 72. - № 5. - P. 4192-4204.

242. Rosales R., Sutter G., Moss B. A cellular factor is required for transcription of vaccinia viral intermediate-stage genes. // Proc. Natl. Acad. Sci. USA. -1994. V. 91. - № 9. - P. 3794-3798.

243. Rosel J.L. and Moss B. Transcriptional and translational mapping and nucleotide sequence analysis of a vaccinia virus gene encoding the precursor of the major core polypeptide 4b. //J. Virol. 1985. - V. 56. - P. 830-838.

244. Rutherfiird K.J., Chen S.A., Shively J.E. Isolation and amino acid sequence analysis of bovine adrenal 3 beta-hydroxysteroid dehydrogenase/steroid isomerase. // Biochemistry. 1991. - V. 30. - № 33. - P. 8108-8116.

245. Salzman N.P. The rate of formation of vaccinia deoxyribonucleic acid and vaccinia virus. //Virology. 1960. - V. 10.-P. 150-152.

246. Sambrook J.F., McClain M.E., Easterbrook K.B., McAuslan B.R. A mutant of its multiplication in three cell types. // Virology. 1965. - V. 26. - № 4. -P. 738-745.

247. Sanderson C.M., Parkinson J.E., Hollinshead M., Smith G.L. Overexpression of the vaccinia virus A38L integral membrane protein promotes Ca2+ influx into infected cells. // J. Virol. 1996. - V. 70. - № 2. -P. 905-914.

248. Sanz P., Moss B. Identification of a transcription factor, encoded by two vaccinia virus early genes, that regulates the intermediate stage of viral gene expression. // Proc. Natl. Acad. Sci. USA. 1999. - V. 96. - № 6. - P. 26922697.

249. Sarov I., Joklik W.K. Studies on the nature and location of the capsid polypeptides of vaccinia virions. // Virology. 1972. - V. 50. - № 2. - P. 579-592.

250. Schmitt J.F.C., Stunnenberg H.G. Sequence and transcriptional analysis of the vaccinia virus Hindlll I fragment. // J. Virol. 1988. - V. 62. - № 6. - P. 1889-1897.

251. Schnierle B.S., Gershon P.D., Moss B. Cap-specific mRNA (nucleotide-O2-)-methyltransferase and poly(A) polymerase stimulatory activities of vaccinia virus are mediated by a single protein. // Proc. Natl. Acad. Sci. USA. 1992.-V. 89.-№7.-P. 2897-2901.

252. Schultz G.S., White M., Mitchell R., Brown G., Lynch J., Twardzik D.R., Todaro G.J. Epithelial wound healing enhanced by transforming growthfactor-alpha and vaccinia growth factor. // Science. 1987. - V. 235. - № 4786.-P. 350-352.

253. Schwarz D.A., Katayama C.D., Hedrick S.M. Schlafen, a new family of growth regulatory genes that affect thymocyte development. // Immunity. -1998. V. 9. - № 5. - P. 657-668.

254. Seki M., Oie M., Ichihashi Y., Shida H. Hemadsorption and fusion inhibition activities of hemagglutinin analyzed by vaccinia virus mutants. // Virology. 1990. - V. 175. -№ 2. - P. 372-384.

255. Senkevich T.G., Koonin E.V., Buller R.M.L. A poxvirus protein with a RING zinc finger motif is of crucial importance for virulence. // Virology. -1994.-V. 198. -№ l.-P. 118-128.

256. Senkevich T.G., White C.L., Koonin E.V., Moss B. A viral member of the ERV1/ALR protein family participates in a cytoplasmic pathway of disulfide bond formation. // Proc. Natl. Acad. Sci. USA. 2000. - V. 97. - P. 12068-12073.

257. Seregin S.V., Babkina I.N., Nesterov A.E., Sinyakov A.N., Shchelkunov S.N. Comparative studies of gamma-interferon receptor-like proteins of variola major and variola minor viruses // FEBS Lett. 1996. - V.382. - № 1-2. - P. 79-83.

258. Shida H. Nucleotide sequence of the vaccinia virus hemagglutinin gene. // Virology. 1986. - V. 150. - № 2. - P. 451-462.

259. Shida H. Vaccinia virus hemagglutinin. // Subcell.Biochem. 1989. - V. 15. p. 405-440.

260. Shors T., Keck J.G., Moss B. Down regulation of gene expression by the vaccinia virus D10 protein. // J. Virol. 1999. - V. 73. - № 1 - P. 791-796.

261. Shors T., Kibler K.V., Perkins K.B., Seidler-Wulff R., Banaszak M.P., Jacobs B.L. Complementation of vaccinia virus deleted of the E3L gene by mutants of E3L. // Virology. 1997. - V. 239. - № 2. - P. 269-276.

262. Shuman S. Vaccinia virus RNA helicase: An essential enzyme related to the DE-II family of RNA-dependent NTPases. // Proc. Natl. Acad. Sci. USA. -1992. V. 89. - № 22. - P. 10935-10939.

263. Shuman S., Morham S.G. Domain structure of vaccinia virus mRNA capping enzyme. // J. Biol. Chem. 1990. - V. 265. - № 20. - P. 1196711972.

264. Shuman S., Moss B. Identification of a vaccinia virus gene encoding a type I DNA topoisomerase. // Proc. Natl. Acad. Sci. USA. 1987. - V. 84. - № 21. P. 7478-7482.

265. Simpson D.A., Condit R.C. The vaccinia virus A18R protein plays a role in viral transcription during both the early and the late phases of infection. // J. Virol. 1994. - V. 68. -№ 6. - P. 3642-3649.

266. Slabaugh M.B., Johnson T.L., Mathews C.K. Vaccinia virus induces ribonucleotide reductase in primate cells. // J. Virol. 1984. - V. 52. - № 2. -P. 507-514.

267. Slabaugh M.B., Mathews C.K. Vaccinia virus-induced ribonucleotide reductase can be distinguished from host cell activity. // J. Virol. 1984. - V. 52.-№2.-P. 501-506.

268. Smith G.L., de Carlos A., Chan Y.S. Vaccinia virus encodes a thymidylate kinase gene: Sequence and transcriptional mapping. // Nucl. Acids Res. -1989a.-V. 17.-№ 19.-P. 7581-7590.

269. Smith G.L., Chan Y.S., Kerr S.M. Transcriptional mapping and nucleotide sequence of a vaccinia virus gene encoding a polypeptide with extensive homology to DNA ligases. // Nucl. Acids Res. 1989b. - V. 17. - № 22. - P. 9051-9062.

270. Smith G.L., Howard S.T., Chan, Y.S. Vaccinia virus encodes a family of genes with homology to serine proteinase inhibitors. // J. Gen. Virol. -1989c. V. 70. - № 9. - P. 2333-2343.

271. Smith G.L., Moss B. Infectious poxvirus vectors have capacity for at least 25 000 base pairs of foreign DNA. // Gene. 1983. - V. 25. - № 1. - P. 21* 28.

272. Smith G.L., Chan Y.S. Two vaccinia virus proteins structurally related to the interleukin-1 receptor and the immunoglobulin superfamily. // J.Gen.Virol. -1991.-V. 72 ( Pt 3). P. 511-518.

273. Smith G.L., Chan Y.S., Howard S.T. Nucleotide sequence of 42 kbp of vaccinia virus strain WR from near the right inverted terminal repeat. // J.Gen.Virol. 1991. - V. 72 ( Pt 6). - P. 1349-1376.ft

274. Smith G.L. Vaccinia virus glycoproteins and immune evasion. The sixteenth Fleming Lecture. //J.Gen. Virol. 1993. - V. 74 ( Pt 9). - P. 1725-1740.

275. Sonnhammer E.L., Durbin R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. // Gene. -1995.-V. 167.-№ 1-2.-P. GC1-10.

276. Spehner D., Gillard S., Drillien R., Kirn A. A cowpox virus gene required for multiplication in Chinese hamster ovaiy cells. // J. Virol. 1988. - V. 62.• №4. - P. 1297-1304.

277. Spriggs M.K., Hruby D.E., Maliszewski C.R., Pickup D.J., Sims J.E., Buller R.M., VanSlyke J. Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. //Cell. 1992. - V. 71. -№ 1. - P. 145-152.

278. Spyropoulos D.D., Roberts B.E., Panicali D.L., Cohen L.K. Delineation of the viral products of recombination in vaccinia virus-infected cells. // J.

279. Virol. 1988.- V. 62. -№3.- P. 1046-1054.

280. Stuart D.T., Upton C., Higman M.A., Niles E.G., McFadden G. A poxvirus-encoded uracil DNA glycosylase is essential for virus viability. // J. Virol. -1993. V. 67. - № 5. - P. 2503-2512.

281. Studier F.W., Rosenberg A.H., Simon M.N., Dunn J.J. Genetic and physical mapping in the early region of bacteriophage T7 DNA. // J.Mol.Biol. 1979. -V. 135.-№4.-P. 917-937.

282. Symons J.A., Alcami A., Smith G.L. Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. // Cell. -1995.-V. 81.-№4.-P. 551-560.

283. Takahashi T., Oie M., Ichihashi Y. N-terminal amino acid sequences of vaccinia virus structural proteins. // Virology. 1994. - V. 202. - № 2. - P. 844-852.

284. Tamin A., Villarreal E.C., Weinrich S.L., Hruby D.E. Nucleotide sequence and molecular genetic analysis of the vaccinia virus ///«dill N/M region encoding the genes responsible for resistance to a-amanitin. // Virology. -1988.-V. 165. № l.-P. 141-150.

285. Tengelsen L.A., Slabaugh M.B., Bibler J.K., Hruby D.E. Nucleotide sequence and molecular genetic analysis of the large subunit of ribonucleotide reductase encoded by vaccinia virus. // Virology. 1988. - V. 164. -№ l.-P. 121-131.

286. Tracey K.J., Cerami A. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. // Annu.Rev.Med. 1994. - V. 45. - P. 491-503.

287. Upton C., Macen J.L., Schreiber M., McFadden G. Myxoma virus expresses a secreted protein with homology to the tumor necrosis factor receptor gene family that contributes to viral virulence. // Virology. 1991. - V. 184. - № l.-P. 370-382.

288. Upton C., Mossman K., McFadden G. Encoding of a homolog of the IFN-gamma receptor by myxoma virus. // Science. 1992. - V. 258. - № 5086. -P. 1369-1372.

289. Upton C„ Schiff L., Rice S.A., Dowdeswell T., Yang X., McFadden G. A poxvirus protein with a RING finger motif binds zinc and localizes in virus factories. //J. Virol. 1994. - V. 68. - P. 4186-4195.

290. Upton C., Stuart D., McFadden G. Identification of a poxvirus gene encoding a uracil DNA glycosylase. // Proc. Natl. Acad. Sci. USA. 1993. -V. 90.-P. 4518-4522.

291. Van Meir E., Wittek R. Fine structure of the vaccinia virus gene encoding the precursor of the major core protein 4a. // Arch. Virol. 1988. - V. 102. -№1-2.-P. 19-27.

292. Van Tongeren H.A. Spontaneous mutation of cowpox-virus by means of egg-passage. // Arch.Gesamte Virusforsch. 1952. - V. 5. - № 1. - P. 35-52.

293. Varich N.L., Sychova I.V., Kaverin N.V., Antonova T.P., Chernos V.I. Transcription of both DNA strands of vaccinia virus genome in vivo. II Virology. 1979. - V. 96. - № 2. - P. 412-430.

294. Venkatesan S. Gershowitz A., Moss B. Complete nucleotide sequences of two agjacent early vaccinia virus genes located within the inverted terminal repetition. //J. Virol. 1982. - V. 44. - № 2. - P. 637-646.

295. Weintraub S., Dales S. Biogenesis of poxviruses: genetically controlled modifications of structural and functional components of the plasma membrane. // Virology. 1974. - V. 60. - № 1. - P. 96-127.

296. Weir J.P., Moss B. Nucleotide sequence of the vaccinia virus thymidine kinase gene and the nature of spontaneous frameshift mutations. // J. Virol.1983.-V. 446. -№2.-P. 530-537.

297. Westwood J.C., Harris W.J., Zwartouw H.T., Titmuss D.H., Appleyard G. Studies on the structure of vaccinia virus. // J.Gen.Microbiol. 1964. - V. 34. - P. 67-78.

298. Whitaker-Dowling P., Youngner J.S. Characterization of a specific kinase inhibitory factor produced by vaccinia virus which inhibits the interferon-induced protein kinase.// Virology. 1984.- V. 137.-№ 1.-P. 171-181.

299. Wittek R., Menna A., Schumperli D., Stoffel S., Muller H.K., Wyler R. ///«dill and Sst I restriction sites mapped on rabbit poxvirus and vaccinia virus DNA. // J. Virol. 1977. - V. 23. - № 3. - P. 669-678.

300. Wittek R., Menna A., Muller H.K., Schumperli D., Boseley P.G., Wyler R. Inverted terminal repeats in rabbit poxvirus and vaccinia virus DNA. // J. Virol. 1978.-V. 28.-№ i.p. 171-181.

301. Wittek R., Moss B. Tandem repeats within the inverted terminal repetitionof vaccinia virus DNA. II Cell. 1980. - V. 21. - № 1. - P. 277-284.

302. Wold W.S., Hermiston T.W., Tollefson A.E. Adenovirus proteins that subvert host defenses. // Trends Microbiol. 1994. - V. 2. - № 11. - P. 437443.

303. Wu A.M., Chapman A.B., Platt T., Guarente L.P., Beckwith J. Deletions of distal sequence after termination of transcription at the end of the tryptophanoperon in E. coli. II Cell. 1980. - V. 19. - № 4. - P. 829-836.

304. Xue F., Cooley L. Kelch encodes a component of intercellular bridges in Drosophila egg chambers. // Cell. 1993. - V. 72. - № 5. - P. 681-693.

305. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19vectors. // Gene. 1985. - V. 33. - № l.-P. 103-119.

306. Zhang W., Evans D.H. DNA strand exchange catalyzed by proteins from vaccinia virus-infected cells. // J. Virol. 1993. - V. 67. - № 1. - P. 204-212.

307. Zinoviev V.V., Tchikaev N.A., Chertov O.Yu., Malygin E.G. Identification of the gene encoding vaccinia virus immunodominant protein p35. // Gene. -1994. V. 147. -№ 2. - P. 209-214.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.