Численное моделирование течений несжимаемой жидкости в аэрогидродинамических установках тема диссертации и автореферата по ВАК РФ 05.13.18, кандидат физико-математических наук Лапин, Василий Николаевич
- Специальность ВАК РФ05.13.18
- Количество страниц 153
Оглавление диссертации кандидат физико-математических наук Лапин, Василий Николаевич
Введение.
Глава 1. Постановка задачи.
§1.1. Обобщенная форма записи моделей уравнений невязкого и турбулентного течений.
1.1.1. Уравнения в абсолютной системе координат.
1.1.2. Уравнения в относительной системе координат.
1.1.3. Общая векторная запись основных уравнений в дифференциальной и интегральной формах.
§1.2. Модели турбулентности.
1.2.1. Стандартная к-г модель турбулентности.
1.2.2. Двухслойная к-г модель турбулентности.
1.2.3. Метод крупных вихрей.
§1.3. Законы подобия и приведенные величины.
§1.4. Краевые условия и сегментация области.
1.4.1. Сегментация области.
1.4.2. Постановки задачи численного моделирования течений в аэрогидродинамических установках.
1.4.3. Краевые условия в модели невязкого течения.
1.4.4. Краевые условия для турбулентных течений. Метод пристеночных функций.
1.4.5. Задание давления в выходном сечении.
Глава 2. Численный метод.
§2.1. Метод искусственной сжимаемости и конечных объемов решения уравнений движения.
§2.2. Метод решения уравнений моделей турбулентности.:.
§2.3. Численная реализация краевых условий.
2.3.1. Реализация краевых условий для основных уравнений.
2.3.2. Численная реализация метода пристеночных функций.
Глава 3. Тестовые расчеты.
§3.1. Турбулентное течение в плоском канале.
§3.2. Турбулентное течение в плоском канале за обратным уступом.
§3.3. Вязкое нестационарное обтекание кругового цилиндра.
§3.4. Закрученное течение в круглой трубе.
Глава 4. Моделирование течений в аэрогидродинамических установках.
§ 4.1. Расчеты стационарных течений в отдельных элементах радиально-осевой гидротурбины.
4.1.1. Течение в рабочем колесе.
4.1.2. Течение в отсасывающей трубе.
§4.2. Совместные расчеты стационарных течений в направляющем аппарате, рабочем колесе и отсасывающей трубе радиально-осевой гидротурбины в циклической постановке.
§ 4.3. Расчеты стационарных течений во всем проточном тракте радиально-осевой гидротурбины в приближении замороженного колеса.
§4.4. Расчеты течений в радиально-осевой гидротурбине в полной нестационарной постановке.
4.4.1. Режим неполной загрузки.
4.4.2. Оценка области влияния прецессии вихревого жгута.
4.4.3. Режим оптимального КПД.
4.4.4. Режим номинальной мощности.
4.4.5. Оценка КПД на основе численной модели невязкого течения.
§ 4.5. Моделирование вихревого жгута методом крупных вихрей.
4.5.1. Моделирование вихревого жгута в коническом диффузоре.
4.5.2. Моделирование вихревого жгута в отсасывающей трубе
§4.6. Расчеты течений в поворотно-лопастной гидротурбине.
4.6.1. Расчет течения во всем проточном тракте поворотно-лопастной гидротурбины в приближении замороженного колеса.
4.6.2. Моделирование зазоров.
§4.7. Течение в питательном насосе.
4.7.1. Сегментация области течения и организация расчета.
4.7.2. Рассчитанные режимы течения и анализируемые характеристики насоса.
4.7.3. Результаты расчетов.
§ 4.8. Расчеты течений воздуха в радиальном вентиляторе.
4.8.1. Исходная геометрия вентилятора и ее модификации.
4.8.2 Структура потока в различных модификациях вентилятора.
Рекомендованный список диссертаций по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК
Численные методы моделирования и оптимизации в гидродинамике турбомашин2006 год, доктор физико-математических наук Черный, Сергей Григорьевич
Оптимизационное проектирование проточных частей гидротурбин и анализ течения в них методами математического моделирования2010 год, кандидат физико-математических наук Банников, Денис Викторович
Численное моделирование турбулентности на характерных режимах течений в каналах гидромашин и гидропневмоагрегатов2003 год, кандидат технических наук Почернина, Надежда Ивановна
Вихревая интенсификация теплообмена и ее численное моделирование в элементах теплообменников2005 год, доктор технических наук Кудрявцев, Николай Анатольевич
Прямое численное моделирование дозвуковых турбулентных течений газа1998 год, доктор физико-математических наук Ключников, Игорь Геннадьевич
Введение диссертации (часть автореферата) на тему «Численное моделирование течений несжимаемой жидкости в аэрогидродинамических установках»
Диссертационная работа посвящена моделированию трехмерных течений в радиально-осевых и поворотно-лопастных гидротурбинах [1], центробежных водяных насосах [2], а также вентиляторах [3]. Течения жидкости в гидротурбинах и насосах, а также воздуха при малых числах Маха (М < 0.1), имеющее место в вентиляторах, с достаточной точностью описываются уравнениями динамики несжимаемой жидкости. Характерные числа Рей-нольдса течений варьируются в этих устройствах в диапазоне 105<11е<107. Поэтому за основу их математического моделирования берутся либо уравнения Эйлера (невязкое приближение), либо - осредненные по Рейнольдсу или отфильтрованные на сеточном фильтре уравнения Навье-Стокса (турбулентное приближение).
Актуальность работы. В настоящее время повышение качества аэрогидродинамических установок является весьма актуальной задачей, необходимость решения которой обусловлена острой конкуренцией среди их производителей на мировом рынке, а также тенденцией роста требований к энергосбережению установок при их эксплуатации.
Аэрогидродинамическое проектирование установок производится путем перебора форм и выбора тех, которые при заданных режимах обеспечат наилучшие характеристики. При этом численное моделирование течений занимает определяющее место, так как позволяет оперативно отображать влияние вариации форм проточного тракта на характеристики. Поэтому совершенствование методов моделирования течений является, безусловно, актуальной задачей.
Значительное повышение производительности вычислительных систем обуславливает использование все более сложных моделей и постановок задач для адекватного описания течений, учета их особенностей, ранее недоступных для моделирования. Это обстоятельство обуславливает, в свою очередь, актуальность решения нестационарных задач о пульсациях давления в лопастной системе и отсасывающей трубе, которые приводят к большим гидродинамическим потерям, вибрации и шуму.
Среди авторов, занимающихся решением задач моделирования течений в аэрогидродинамических установках, можно отметить Степанова Г.Ю. [4], Калашникова В.В. и Косторного С.Д. [5], исследовавших обтекания решеток в плоском и осесимметричном приближениях, Подвидза Г.Л. [6], Заболотно-гого Ф.Т. [7], Топажа Г.И. и Захарова A.B. [8], использовавших квазитрехмерное приближение.
В настоящее время разработка методов вычислительной гидродинамики и развитие вычислительной техники достигли уровня, позволяющего серийно рассчитывать пространственные течения в реальных аэрогидродинамических установках в различных, в том числе, полных постановках иприб-лижениях. Такие подходы дают более точные результаты, чем упомянутые квазитрехмерные, плоские и осесимметричные приближения. Особенно это касается расчетов течений в установках с небольшим количеством лопастей. Кроме того, такой подход более универсален, так как требует меньше дополнительных предположений о структуре течения, а следовательно, может быть применен к более широкому классу установок.
Одними из первых работ, посвященных численному моделированию трехмерных течений в гидродинамических установках, были - [9-10], в которых описывались течения в рабочем колесе радиально-осевой гидротурбины, а также работа [И], в которой рассматривались вопросы использования трехмерных расчетов вязкого течения для конструирования и анализа центробежных компрессоров. В России над моделированием течений в гидротурбинах и насосах в пространственной постановке работают группы исследователей под руководством Черного С.Г. [12-18], Смирнова Е.М. [19-22] и др.
Моделирование пространственного потока в работах [9-17, 19-22] осуществлялось в циклической постановке, в которой принимается допущение, что течения во всех межлопаточных каналах направляющего аппарата и межлопастных каналах рабочего колеса одинаковы. Поэтому вычисления проводятся лишь в одном канале направляющего аппарата или рабочего колеса. Значения параметров потока в других межлопаточных и межлопастных каналах могут быть получены с помощью нескольких поворотов векторов скорости и давления вокруг оси рабочего колеса на угол периода. Угол периода определяется количеством лопаток в направляющем аппарате или лопастей в рабочем колесе. Такая постановка является наиболее экономичной, но она не дает возможности учитывать окружную неравномерность потока и связанные с ней нестационарные эффекты.
Взаимодействие вращающихся (ротор) и неподвижных (статор) частей турбомашины и вызванная им окружная неравномерность потока могут быть учтены при расчете течения в полной стационарной постановке. В этой постановке, еще называемой приближением «замороженного» колеса, фиксируется положение рабочего колеса и одновременно рассчитывается течение во всех межлопаточных и межлопастных каналах. Учет вращения рабочего колеса осуществляется за счет угловой скорости со, присутствующей в уравнениях сохранения импульса. При передаче параметров течения между вращающимися и неподвижными частями установки их усреднение в окружном направлении, в отличие от циклической постановки, не производится. Полная стационарная постановка описана и использовалась применительно к течениям во всем проточном тракте гидротурбин в работах [18, 23-25].
Наиболее полной и точной является нестационарная постановка, в которой описывается эволюция во времени явлений происходящих в течении. В отличие от приближения замороженного колеса, в котором возможно моделирование только процессов с периодом меньшим времени перехода одной лопасти на место другой, нестационарная постановка позволяет рассчитывать процессы с любыми периодами. В частности, моделировать прецессию вихревого жгута, период которой превосходит период вращения рабочего колеса в 2-5 раз. Среди работ, посвященных моделированию течений в нестационарной постановке можно отметить статьи [26-29], в которых описываются нестационарные течения в отсасывающей трубе гидротурбины, работу [30] в которой моделируется течение в водометном движителе, работы [31-32], посвященные моделированию нестационарных течений, во всем проточном тракте гидротурбины.
В каждом сегменте проточного тракта аэрогидродинамической установки в потоке доминируют физические процессы, характерные именно для этого сегмента. В соответствии с этим необходимо выбирать подходящие модели для описания течений в этих сегментах. С одной стороны модель должна отображать основные особенности течения, а с другой - быть экономичной. Например, в рабочем колесе гидротурбины основную роль играет процесс отъема рабочим колесом у жидкости ее вращательного момента. Этот процесс достаточно точно описывается простой стационарной моделью невязкой жидкости в циклической постановке. В то же время на потери энергии в отсасывающей трубе значительное влияние оказывают вязкие свойства жидкости. Также эти свойства играют большую роль в механизме формирования и последующей эволюции прецессирующего вихревого жгута за рабочим колесом на определенных режимах работы турбомашин, оказывающего значительное влияние на работу всей турбины. Поэтому для адекватного описания течения в отсасывающей трубе необходима эффективная турбулентная модель. Хотя имеются работы, в которых показывается, что многие особенности течений, наблюдаемые в действительности и обусловливаемые действием вязкости жидкости, достаточно хорошо описываются численной моделью невязкой жидкости [33-36].
Несмотря на большой прогресс в области построения новых моделей турбулентности особое место при моделировании пространственных течений в проточных частях турбомашин продолжает занимать стандартная k-s модель турбулентности [17-18, 37-40], используемая для замыкания уравнений Рейнольдса (осредненных по Рейнольдсу уравнений Навье-Стокса - RANS). Она остается одной из наиболее надежных и экономичных моделей.
В [40] проведены обширные численные исследования течения в отсасывающей трубе гидротурбины с использованием пакета CFX-Tascflow и различных моделей турбулентности. Один из основных выводов этой работы состоит в том, что стандартная к-s модель турбулентности позволяет достаточно точно предсказывать картину течения в отсасывающей трубе и ее энергетические характеристики. В тех режимах работы, где к-s модель демонстрирует недостаточную точность, использование других моделей, таких как к-со и модели рейнольдсовых напряжений, не позволяет улучшить совпадение с экспериментом.
В последние годы интенсивно развивались направления исследования турбулентных течений, базирующиеся на методе крупных вихрей (LES -Large Eddy Simulation), который получил широкое развитие и применение, благодаря возросшему уровню вычислительных мощностей, что позволяет проводить типичные расчеты на его основе за приемлемое время. В методе крупных вихрей основная часть кинетической энергии турбулентности разрешается напрямую, а влияние всех меньших, чем размер расчетной сетки масштабов учитывается в виде той или иной под сеточной модели.
За прошедшее время было опробовано достаточно большое количество подсеточных моделей, фильтров, граничных условий (обзор ранних работ в этой области содержится [41-42]). Тем не менее, до сих пор нет полной ясности с выбором оптимального варианта подсеточной модели и размеров фильтра; к этому добавляются трудности вычислительной реализации. В связи с этим, наиболее предпочтительной в практическом плане является алгебраическая модель Смагоринского [41].
По сравнению с подходом, основанном на осредненных по Рейнольдсу уравнениях Навье-Стокса, метод крупных вихрей более универсален, поскольку допущения замыкающей модели применяются только к подсеточ-ным, энергетически малозначащим масштабам. При этом сама замыкающая модель может быть проще, так как мелкомасштабная турбулентность по природе своей более «универсальна» по сравнению с крупномасштабной. С другой стороны, с ростом числа Рейнольдса уменьшается масштаб анизотропных вихревых структур, которые должны описываться явно. Соответственно, должен уменьшаться и шаг сетки. Так для описания турбулентного течения в пристеночном слое, требуется, как указано в [43-45] , чтобы безразмерное расстояние до стенки у+ в ближайшем к ней узле было порядка единицы. В удаленной от твердых стенок области развитой турбулентности также требуются очень подробные сетки, например, в [46], показывается необходимость использования сетки с числом ячеек 4*106 для описания свободной затопленной струи в воде при невысоком для реальных установок числе Рейнольдса 25000.
Таким образом, метод крупных вихрей при решении практических задач о течениях в аэрогидродинамических установках, где характерные числа г п
Рейнольдса варьируются в диапазоне 10 <Re<10 , требует чрезмерных затрат вычислительных ресурсов. В настоящее время он может использоваться только для решения модельных задач и описания течений в отдельных элементах установок. Аналогичный вывод делается в [47], где утверждается, что использование метода крупных вихрей для расчета обтекания самолета будет возможно примерно к 2045г.
К промежуточным между методом крупных вихрей и уравнениями Рейнольдса подходам можно отнести «метод очень крупных вихрей» (Very Large Eddy Simulation - VLES), встречающийся в литературе так же под названием «метод моделирования отсоединенных вихрей» (Detached Eddy Simulation - DES), гибридный RANS/LES метод. В данном подходе, как и в методе крупных вихрей, непосредственно описываются вихри, масштабы которых больше размера сетки. Для замыкания используются модели аналогичные, используемым для уравнений Рейнольдса, в которые тем или иным образом закладывается ограничение на максимальный размер описываемых ими вихрей равное шагу сетки. Так, в [27] используется модифицированная к-s модель с ограничением на величину кинетической энергии, в [48] - модифицированная модель Спаларта-Аллмараса. Суть модификации заключается в замене фигурирующего в диссипативном члене этой модели в качестве линейного масштаба турбулентности расстояния до стенки, на характерный размер вихря, определяемый по шагу сетки.
Данный подход обладает меньшими требованиями к размеру расчетной сетки по сравнению с методом крупных вихрей, но для него также необходима нестационарная постановка задачи, требующая больших вычислительных ресурсов. Поэтому его применение для серийных расчетов течений в аэрогидродинамических установках остается ограниченным.
Цель работы заключается в совершенствовании и расширении возможностей численного метода решения трехмерных уравнений динамики несжимаемой жидкости, предложенного в работе [16], путем повышения его точности и быстродействия, распространения на нестационарные пространственные задачи, решаемые в рамках различных постановок и моделей; установлении на основе результатов численного моделирования базовых свойств пространственных течений в турбомашинах и влияния на них определяющих параметров; решении практически важных задач о течениях в аэрогидродинамических установках.
Научная новизна изложенных в диссертационной работе результатов заключается в следующем. Создана оригинальная система моделей, алгоритмов и программного инструментария, позволившая решать задачи численного моделирования пространственных невязких и турбулентных, стационарных и нестационарных течений в проточных трактах аэрогидродинамических установок.
На основе вычислительных экспериментов выявлены новые особенности течений в аэрогидродинамических установках, определены индивидуальные свойства математических моделей и алгоритмов, указаны области их применимости в зависимости от характера изучаемых процессов и режимов работы.
Практическая значимость диссертационной работы определяется возможностью использования ее результатов (моделей, алгоритмов и их программной реализации, результатов расчетов) при решении ряда прикладных задач численного моделирования течений в аэрогидродинамических установках. В том числе для расчета интегральных параметров режимов работы: мощность, КПД; динамических характеристик: шумов, нестационарных нагрузок на элементы установки и локальных характеристик потока: вихрей, кавитационных зон.
Результаты диссертационной работы используются в проектных исследованиях в филиале «Ленинградский металлический завод» концерна «Силовые машины».
Публикации. По теме диссертации опубликовано 9 работ [18, 29, 32, 35-36, 38-39, 49-50], в том числе (в скобках в числителе указан общий объем этого типа публикаций, в знаменателе - объем, принадлежащий лично автору) 1 монография [18] (13/2.5 печ. л.), 1 статья в издании, рекомендованном ВАК для представления результатов докторских диссертаций [38] (1/0.3 печ. л.), 3 - в международных рецензируемых журналах [35-36, 39] (4.2/1.5 печ. л.), 4 - в трудах международных и всероссийских конференций [32, 49-50] (2.2/0.8 печ. л.), 1 - в тезисах международных конференций [29] (0.1/0.05 печ. л.).
Личный вклад автора. В работе [18] автор участвовал в постановке задач, конструировании численных алгоритмов решения основных уравнений, исследовании моделей турбулентности, им решены задачи о течениях в питательном насосе и вентиляторе. В публикации [38] автор участвовал в разработке двухслойной модели турбулентности, осуществлял ее программную реализацию и апробацию. В работе [39] автором реализован метод пристеночных функций для расчета турбулентных течений, им проведены вычислительные эксперименты. В публикациях [32, 35-36] автору принадлежат конструирование и реализация алгоритмов решения нестационарных уравнений, обработка полученных результатов. В работе [49] автор участвовал в постановке задач, им проведены вычислительные эксперименты, и анализ полученных результатов. В публикациях [29,50] автору принадлежат концепция исследования, разработка программного инструментария, проведение расчетов, интерпретация результатов.
На защиту выносятся
• численный метод расчета течений несжимаемой жидкости, полученный обобщением неявного метода конечных объемов и искусственной сжимаемости (Ю.А. Грязин, С.Г. Черный, С.В. Шаров, П.А. Шашкин), имеющий более высокую разрешающую способность и применимый для расчета пространственных невязких и турбулентных, стационарных и нестационарных течений;
• численные алгоритмы расчета турбулентных течений, обладающие однородностью и в пристеночной области;
• результаты решения задач в различных постановках о прецессии вихревого жгута, выявившие механизмы его формирования и область влияния на течение в проточном тракте;
• результаты решения ряда прикладных задач о течениях в аэрогидродинамических установках.
Апробация работы. Основные результаты диссертации докладывались на Международной конференции «Современные проблемы прикладной математики и механики: теория, эксперимент и практика» (1ШАММ-2001, Новосибирск, 2001), Конференции молодых ученых по математике, математическому моделированию и информатике (Новосибирск, 2001), Международной конференции «Вычислительные технологии и математическое моделирование в науке, технике и образовании» (ВТММ-2002, Алматы, Казахстан, 2002), Международной конференции молодых ученых по математическому моделированию и информатике (Новосибирск, 2002), Международной конференции по вычислительной механике и современным прикладным программным системам (ВМСППС-2003, Владимир, 2003), Международных конференциях «Вычислительные и информационные технологии в науке, технике и образовании» (ВИТ, Казахстан, Усть-Каменогорск, 2003, Алматы, 2004), 12-й Международной конференции по методам Аэрофизических исследований, (ЮМАЯ, Новосибирск, 2004), 11-м Международном симпозиуме по нестационарной аэродинамике, аэроакустике и аэроупругости турбома-шин (Москва, 2006), обсуждались на семинарах в Институте вычислительных технологий СО РАН, Институте теоретической и прикладной механики СО РАН, Институте теплофизики СО РАН, Институте гидродинамики СО РАН,
Структура и объем диссертации. Диссертация состоит из введения, четырех глав и заключения. Список литературы содержит 68 наименований. Общий объем диссертации составляет 153 страницы, включая 10 таблиц и 80 рисунков.
Похожие диссертационные работы по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК
Разработка методов и алгоритмов расчета гидродинамических и прочностных характеристик энергетического оборудования и его элементов2009 год, кандидат технических наук Золотаревич, Валерий Павлович
Численное исследование пространственных течений несжимаемой жидкости в элементах гидродинамических устройств1999 год, кандидат физико-математических наук Шаров, Сергей Васильевич
Методика прогнозирования энергетических характеристик гидротурбин на основе расчёта трехмерного вязкого течения несжимаемой жидкости2013 год, кандидат наук Поспелов, Александр Юрьевич
Математическое моделирование рабочих процессов в центробежных насосах низкой и средней быстроходности для решения задач автоматизированного проектирования2003 год, доктор технических наук Жарковский, Александр Аркадьевич
Новые численные модели гидродинамики турбомашин2014 год, кандидат наук Авдюшенко, Александр Юрьевич
Заключение диссертации по теме «Математическое моделирование, численные методы и комплексы программ», Лапин, Василий Николаевич
ЗАКЛЮЧЕНИЕ
1. Улучшен метод расчета течений несжимаемой жидкости (Ю.А. Грязин, С.Г. Черный, C.B. Шаров, П.А. Шашкин). Вместо, вносящего в схему излишнюю диссипацию, расщепления матрицы Якоби невязкого потока по ее спектральному радиусу применено расщепление по собственным значениям, обеспечивающее минимально необходимую величину схемной вязкости. Предложены и обоснованы различные способы задания давления на выходной границе, включающие в себя: условие радиального равновесия, вытекающее из основных уравнений и не вносящее возмущений на искусственных границах сегментации; условие его стратификации в поле силы тяжести; привлечение информации снизу по потоку в случае возвратных течений, позволяющее более корректно рассчитывать давление в случае противопотока на выходной границе. Результаты решения ряда содержательных модельных и прикладных задач показали, что модифицированный численный метод обладает более высокой точностью.
2. Расширены возможности метода. В алгоритме расчета турбулентных течений улучшена реализация метода пристеночных функций в части учета эмпирического закона стенки при определении вязких потоков на стенке в основных уравнениях, вычислении члена генерации G в уравнении для кинетической энергии турбулентности и скорости ее диссипации s в ближайшей к твердой стенке ячейке. Для расчета s предложены два способа, заключающиеся в модификации s -уравнения в пристеночной области. В первом - уравнение модифицируется только в ближайшей к стенке ячейке, второй - прёдставляет собой двухслойную к-а модель, в которой переход от алгебраического уравнения к дифференциальному осуществляется с помощью непрерывной управляющей функции. Оба способа позволяют сохранить однородность численного алгоритма. Метод обобщен на задачи о нестационарных пространственных течениях. Для моделирования турбулентных нестационарных течений применен метод крупных вихрей.
3. Решена задача о прецессируюгцем вихревом жгуте в отдельно взятых конусе и отсасывающей трубе гидротурбины в приближениях к-в модели и метода крупных вихрей. Установлено, что при задании осесимметричного входного потока прецессирующий вихревой жгут не моделируется в рамках к-е модели, но хорошо передается методом крупных вихрей. Показано, что прецессия вызывает пульсации давления в потоке, затухающие к выходному сечению отсасывающей трубы.
4. Для определения механизмов формирования и эволюции прецессирующе-го вихревого жгута решена задача о нестационарном течении во всем проточном тракте гидротурбины в приближении численной модели невязкой жидкости. В данном приближении получен прецессирующий вихревой жгут при тех же режимах работы, что и в эксперименте. Установлено, что основными факторами его формирования являются окружная неравномерность потока, учитываемая этой постановкой и аппроксимационная вязкость схемы. Показано воздействие прецессии вихревого жгута на течение вверх по потоку: перед рабочим колесом присутствуют обусловленные ей пульсации давления.
5. Решены практически важные задачи о течениях в аэрогидродинамических установках:
• впервые в России в трехмерной постановке выполнено численное моделирование течения в различных модификациях радиального вентилятора с осевым выходом потока;
• проведены расчеты пространственных течений в питательном насосе, включая отводные, переводные и подводные каналы, показавшие, что предположение об осесимметричности потока, используемое при построении известных двумерных моделей течения, не выполняется из-за наличия вихрей в проточном тракте при всех режимах работы насоса;
• на основе результатов проведенного численного моделирования течений в поворотно-лопастной гидротурбине в различных постановках установлена необходимость учета концевых зазоров в окрестностях внутренней и внешней кромок лопасти для описания вызванных вихрями областей пониженного давления за кромками, важных для определения кавитационных характеристик турбины; обоснована возможность пренебрежения этими зазорами при расчете интегральных параметров гидротурбины (КПД, мощности, напора).
Список литературы диссертационного исследования кандидат физико-математических наук Лапин, Василий Николаевич, 2006 год
1. Гидротурбинное оборудование Санкт-Петербург: филиал концерна «Силовых машин» Ленинградский металлический завод. - 2004. - 32 с.
2. Кузнецов A.B., Панаиотти С.С., Савельев А.И. Автоматизированное проектирование центробежного насоса. М.: МГТУ им. Н.Э. Баумана. - 2002. -48 с.
3. Гримитлин A.M., Иванов О.П., Пухкал В.А. Насосы, вентиляторы, компрессоры в инженерном оборудовании зданий // «Авок северо-запад Санкт-Петербург» 2006-210с.
4. Степанов Г.Ю. Гидродинамика решеток турбомашин. М.: Физматгиз, 1962.-512 с.
5. Калашников В.В., Косторной С.Д. Численный метод решения задачи обтекания произвольно расположенных тел идеальной жидкостью // Ж. вы-числ. матем. и матем. физ. 1992. - Т. 32. - № 8. - С. 967-975.
6. Подвидз Г.Л. Расчет квазитрехмерного течения в меж лопаточном канале осевой турбомашины. Изв. АН СССР. Механика жидкости и газа. -1970. -№3.~ С. 170-173.
7. Заболотный Ф.Т. Расчет установившегося осесимметричного вихревого течения несжимаемой невязкой жидкости в радиально-осевой турбома-шине // Изв. АН СССР. Энергетика и транспорт. 1979. - № 3. - С. 147155.
8. Захаров A.B., Топаж Г.И. Расчетные исследования структуры вторичного потока в лопастных системах радиально-осевых гидротурбин // Гидротехническое строительство. 1997. - № 2. - С. 18-22.
9. Gode Е. A stacking technicue for multistage 3D flow computation in hydraulic turbomachinery // Proceedings of GAMM Worcshop Sept. Lausanne (Ed. By G.Sottas, I.L. Ryhming) - 1989.
10. Aracawa C., Qian Y., Samejima M., Masuo Y., Kubota T. Turbulent flow simulation of Francis water runner with pseudo compressibility // Proceedings of the9.th GAMM-Conference on numerical methods in fluid mechanics 1991 - p. 259-268.
11. Casey M.V., Dalbert P., Roth P. The Use of 3D Viscous Flow Calculations in the Design and Analysis of Industrial Centrifugal Compressors. // ASME paper, 1990 -N90-GT-2 p. 1-13.
12. Грязин Ю.А., Черный С.Г., Шаров C.B., Шашкин П.А. Об одном методе численного решения трехмерных задач динамики несжимаемой жидкости // Доклады академии наук 1997 - Т. 353, № 4 - с. 478-483.
13. Черный С. Г., Шашкин П.А., Грязин Ю.А. Численное моделирование пространственных турбулентных течений несжимаемой жидкости на основе k-е моделей // Вычислительные технологии СО РАН Новосибирск -1999-Т.4, №2-с. 74-94.
14. Черный С.Г., Чирков Д.В., Лапин В.Н., Скороспелов В.А., Шаров C.B. Численное моделирование течений в турбомашинах. Новосибирск: Наука-2006.-202 с.
15. Смирнов Е.М., Кириллов А.И., Рис В.В. Опыт численного анализа пространственных турбулентных течений в турбомашинах // Научно-технические ведомости. СПб.: СПбГПУ. - 2004. - № 2(36). - С. 55-70.
16. Muntean S., Balit D., Susan-Resiga R., Anton I., Darzan C. 3D flow analysis in the spiral case and distributor of a Kaplan turbine // 22nd LAHR Symp. on Hydraulic Machinery and Systems Stockholm - 2004.
17. Ruprecht A., Heimlich Т., Aschenbrenner Т., Scherer Т. Simulation of vortex rope in a draft tube // Proceedings of the Hydraulic Machinery and Systems 20th IAHR Symposium August 6-9, 2000 Charlotte, North Carolina USA.
18. Helmrich Т., Buntic I., Ruprecht A. Very large eddy simulation for flow in hydraulic turbo machinery // Institute of fluid mechanics and hydraulic machinery -Stuttgart.-2003.
19. Zhengwei W., Lingjiu Z. Simulation of unsteady flow in a Francis turbine draft tube // 21st IAHR Symposium on Hydraulic Machinery and Systems -Lausanne, September 9-12 2002.
20. Chun Н.Н., Park W.G., Jun J.G. Experimental and CFD analysis of rotor-stator interaction of a waterjet pump // Proceedings of 24-th symposium on naval hydrodynamics 2003.
21. Белоцерковский C.M., Ништ М.И. Отрывное и безотрывное обтекание тонких крыльев идеальной жидкостью. М.: Наука, 1978. - 352 с.
22. Комар И.Ф., Лапин B.H., Скороспелов B.A., Черный С.Г., Чирков Д.В., Шаров С.В. Проблемы моделирования течений в турбомашинах // Вестник КазНУ, серия математика, механика, информатика. 2005. - № 2. - С. 2752.
23. Launder В.Е., Spalding D.B. The numerical computation of turbulent flows // Сотр. Methods in Appl. Mech. and Eng. 1974. - Vol 3. - P. 269-289.
24. Кузьминов A.B., Лапин B.H., Черный С.Г. Метод расчета турбулентных течений несжимаемой жидкости на основе двухслойной k-е модели // Вычислительные технологии. — 2001. - Т. 6. -№ 5. — С. 73-86.
25. Cherny S.G., Chirkov D.V., Lapin V.N., Skorospelov V.A., Turuk P.A., Numerical simulation of a turbulent flow in Francis hydroturbine // Russ. J. Nu-mer. Anal. Math Modeling. 2006. - V. 21. - № 5. - P. 425-446.
26. Mauri S. Numerical simulation and flow analysis of an elbow diffuser. EPFL PhD thesis \No 2527, Lausanne 2002.
27. Турбулентные сдвиговые течения (перев. с англ. под ред. А.С. Гиневско-го) М., Машиностроение - 1982.
28. Ферцигер Дж.Х. Численное моделирование крупных вихрей для расчета турбулентных течений. // Ракетн. техн. и космонавтика 1977 - т. 15, № 9 -с. 56-66.
29. Kim W., Menon S. An unsteady incompressible Navier-Stokes solver for large eddy simulation of turbulent flows // Int. J. Numer. Meth. Fluids. 1999. - V. 31.-P. 983-1017.
30. Rizetta D.P., Visbal M.R., Gaitonde D.V. Large eddy simulation of supersonic compression ramp flow by high-order method // AIAA Journal 2001 - V.39, N 12-p. 2283-2292.
31. Илюшин Б. Б., Красинский Д. В. Моделирование динамики турбулентной круглой струи методом крупных вихрей // Теплофизика и аэромеханика. -2006.-Т. 13, № 1.-С. 49-61.
32. Spalart P.R. Strategies for turbulence modelling and simulation. Intern. Journal of Heat and Fluid Flow 2000 - V. 21 - pp. 252-263.
33. Чжен К.Ю. Расчет течений в каналах и пограничных слоях на основе модели турбулентности, применимой при низких числах Рейнольдса // Ракетная техника и космонавтика. 1982. - № 2. - С. 30-37.
34. Jongen Т., Marx Y.P. Design of an unconditionally stable, positive scheme for the k-s and two-layer turbulence models // Сотр. Fluids. 1997. - № 5. - P. 469-487.
35. Wolfshtein M. The velocity and temperature distribution in one-dimentional flow with turbulence augmentation and pressure gradient // Intern. J. of Heat and Mass Transfer. 1969.-P. 301-318.
36. Sagaut P. Large Eddy Simulation for Incompressible Flows: an Introduction. -Springer-Verlag 2001. - 319 p.
37. Scotti A., Meneveau C., Lilly D.K. Generalized Smagorinsky model for anisotropic grids // Phys. Fluids A. 1993. Vol.9, № 5. - P. 2306-2308.
38. Harten A. High resolution schemes for hyperbolic conservation laws // J. Com-put. Phys. 1983. - V.49. - P.357-393.
39. Chakravarthy S.R., Osher S. A new class of high accuracy TVD schemes for hyperbolic conservation laws // AIAA Paper. 85-0363. - 1985.
40. Белоцерковский O.M., Белоцерковский C.M., Давыдов Ю.М. и др. Моделирование отрывных течений на ЭВМ. М.: АН СССР, Научный совет по комплексной проблеме «Кибернетика» - 1984. - 122 с.
41. Белоцерковский О.М., Давыдов Ю.М. Расчет методом «крупных частиц» трансзвуковых «закритических» режимов обтекания // Ж. вычисл. матем. иматем. физ. 1973. - V. 13.-№ 1.-С. 147-171.
42. Driver D. M., Seegmiller H. L. Features of a reattaching turbulent shear layer in divergent channel flow//AIAA J. 1985. - Vol. 23, № 2. - P. 163-171.
43. Ван-Дайк M. Альбом течений жидкости и газа. М.: Мир. - 1986. - 184 с.
44. Shin B.R., Yoo S.Y. Numerical investigation of laminar flow in curved duct of square cross-section with 90° bend // Proceedings of the First Asian Computational Fluid Dynamics Conference, 16-19 January, 1995. Hong Kong, -1995-P. 647-652.
45. Breuer M., Hanel D. A dual time-stepping method for 3-D, viscous, incompressible vortex flows // Сотр. and Fluids. 1993. - V. 22. - №4/5. p. 467484.
46. Cheng L., Armfield S. A simplified marker and cell method for unsteady flows on non-staggered grid // Int. J. for Numerical Methods in Fluids. 1995. - Vol. 21.-P. 15-34.
47. Кашафутдинов C.T., Лушин B.H. Атлас аэродинамических характеристик крыловых профилей. Сибирский научно-исследовательский ин-т авиации им. С.А. Чаплыгина, 1994. - 76 с.
48. Куибин П.А., Окулов В.Л., Одномерное решение для течений с винтовой симметрией //Теплофизика и аэромеханика 1996 - Т.З, №4 - с.311-315.
49. Fluent Inc FLUENT User guides // Fluent Inc. Lebanon USA 1998.
50. Yakhot V., Orzag S.A., Thangam S., Gatski T.B., Spesiale C.G. Development of turbulence model for shear flows by a double expansion technique // Phys. Fluids- 1992-А7,-1510.
51. Зам. Главного конструктора по НИРк.т.н. И.М. ПЫЛЕВ1. Wl^L? 2006г.
52. Зав. сектором проектиро^шш проточной частик^к.т.н. В.Н. СТЕПАНОВ» 2006г.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.