Регуляция транскрипции гена гемолизина II Bacillus cereus тема диссертации и автореферата по ВАК РФ 03.00.03, кандидат биологических наук Родикова, Екатерина Александровна

  • Родикова, Екатерина Александровна
  • кандидат биологических науккандидат биологических наук
  • 2007, Пущино
  • Специальность ВАК РФ03.00.03
  • Количество страниц 112
Родикова, Екатерина Александровна. Регуляция транскрипции гена гемолизина II Bacillus cereus: дис. кандидат биологических наук: 03.00.03 - Молекулярная биология. Пущино. 2007. 112 с.

Оглавление диссертации кандидат биологических наук Родикова, Екатерина Александровна

СПИСОК СОКРАЩЕНИЙ

ВВЕДЕНИЕ

Глава 1. ОБЗОР ЛИТЕРАТУРЫ

1.1. В. cereus как объект для изучения гемолизинов

1.2. Гемолизины Bacillus cereus и их гены 11 1.2.1. Сфингомиелиназа и цереолизин АВ 11 1.2.2.11ереолизин (гемолизин I)

1.2.3. Гемолизин BL

1.2.4. Гемолизин III

1.2.5. Цитотоксин К (CytK)

1.2.6. Гемолизин II

1.3. Регуляторы продукции гемолизинов В. cereus

1.3.1. Плейотроппый регулятор PlcR

1.3.2. Регулятор гомеостаза железа (Fur)

1.3.3. Регулятор экспрессии гемолизина II В.cereus- IIlyllR

1.4. TetR семейство транскрииционпых регуляторов 24 1.4. 1. Регулятор TetR

1.4.2. Регулятор QacR

1.4.3. Регулятор EthR

1.4.4. Репрессор СргВ

1.4.5. Белок AcrR

1.4.6. Белок Mtr

1.4.7. Betl - регулятор превращения холина в глицинбетаин в Е. coli

1.4.8. Регулятор АгрА 36 1.4.9. Белок IlapR регулирует гены факторов вирулентности в Vibrio cholerae.

Глава 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

2.1. Материалы и реактивы

2.1.1. Штаммы бактерий и плазмидные вектора

2.1.2. Среды и основные буферы

2.1.3. Материалы и реактивы

2.2. Методы исследования

2.2.1. Выделение тотальной Д1IK и^ микроорганизмов рода Bacillus

2.2.2. Выделение тотальной РНК.

2.2.3. Выделение плазмидпой ДНК

2.2.4. Препаративное выделение фрагмента ДНК

2.2.5. Получение компетентных клеток E.coli и их трансформация

2.2.6. Анализ рскомбинаптных клопов

2.2.7. ПЦР-амнлификация ДНК

2.2.8. Проведение реакций модификации ДНК

2.2.9. Плазмидные конструкции '

2.2.10. Определение и анализ первичной последовательности ДНК

2.2.11. Электрофорез в полиакриламидпом и агарозном гелях

2.2.12. Реакция удлинения праймера

2.2.13. Экспрессия и очистка белков

2.2.13.1. Экспрессия и очистка рекомбинантного белка Fur

2.2.13.2. Экспрессия и очистка РПК-полимеразы

2.2.13.3. Экспрессия и очистка HlyllR

2.2.14. Взаимодействие белков с ДНК

2.2.15. Взаимодействие PIIK-полимеразы с HlyllR

2.2.16. Защита ДНК от расщепления ДНказой I

2.2.17. Определение транскрипционной активности промоторов

2.2.18. Пермангапатный фут-принтинг

2.2.19. Спектры кругового дихроизма

2.2.20. Измерения флуоресценции анизотропии

Глава 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Структура регуляториой области гена гемолизина II

3.2. Анализ выведенной аминокислотной последовательности HlyllR

3.3. HlyllR негативно регулирует транскрипции гена гемолизина II

3.4. Взаимодействие HlyllR с оператором гена гемолизина II

3.5. Промогорно-операторный район гена hlyllR

3.6. Fur негативно регулирует транскрипцию гена гемолизина II in vitro

3.6.1. Получение рекомбинантпого белка Fur- 6His

3.6.2. Взаимодействие Fur с промоторно-онераторпой область гена гемолизина II

3.6.3. Влияние Fur па экспрессию гена гемолизина II 86 ВЫВОДЫ 88 СПИСОК ЛИТЕРА ТУРЫ

СПИСОК СОКРАЩЕНИЙ dATP - дезоксиаденозии-5'-трифосфат dNTP - дезоксинуклеозид-5'-трифосфат ddNTP - дидезоксинуклеозид-5'-трифосфат

ДДС - Na - додсцилсульфатнатрия

НДТА - этилендиаминтетрауксусиая кислота

ОП545- оптическое поглощение при 540 им

ОПбоо - оптическое поглощение при 600 им

ДИК - дезоксирибонуклеиповая кислота

PI IK - рибонуклеиновая кислота мРПК - матричная рибонуклеиновая кислота

РНКаза - рибонуклеаза

ИГ1ТГ - изопроиилтиогалактозид кДа - килодальтон ф.п. - нар нуклсотидов т.п.н. - тысяч пар нуклеотидов

Трис - трис(гидроксиметил)аминометан

ПЦР - нолимеразная цепкая реакция

X-gal - 5-бром-4-хлор-3-индолил-р-уалактозид

SDS - додецил сульфат натрия

ТВЕ - трис-боратпый буфер

Рекомендованный список диссертаций по специальности «Молекулярная биология», 03.00.03 шифр ВАК

Введение диссертации (часть автореферата) на тему «Регуляция транскрипции гена гемолизина II Bacillus cereus»

Актуальность работы. Исследование молекулярных основ натогенности микроорганизмов является одной из фундаментальных задач микробиологии и медицины. Среди многообразия веществ, вырабатываемых бактериями для обеспечения проникновения в макроорганизм, преодоления его защитных систем и развития инфекционного процесса, особое место занимают токсины, которые для многих бактерий являются основными факторами натогенности. Известно, что патогенные свойства того или иного микроорганизма в значительной мере определяются как спектром его сгруктурпых генов, кодирующих факторы патогенности, так и механизмами, обеспечивающими регуляцию экспрессии этих генов. Выяснение механизмов регуляции сопряжено с изучением белок-белкового и ДНК-белкового взаимодействий и представляется одним из наиболее актуальных направлений в исследовании молекулярных основ натогенности и вирулентности микроорганизмов.

Для проведения исследований в данном направлении интересными объектами являются представители бацилл цереусной группы. Бактерии этой группы широко распространены в природе и имеют ярко выраженное филогенетическое родство, морфологическое и физиолого-биохимическое сходство па фоне широкого диапазона их патогенных свойств. В. cereus, занимая но патогенному статусу промежуточное положение среди представителей данной группы бацилл и продуцируя широкий спектр гемолизинов, может служить удобной моделью для изучения этих токсинов.

Пщс одной причиной, которая побуждает к активному изучению регуляции экспрессии токсинов, вырабатываемых В. cereus и его ближайшими родственниками B.thuringiensis и В. anthracis, является огромная значимость этих микроорганизмов для человека. В. cereus - один из основных бактериальных загрязнителей производимых промышленностью продуктов питания, лекарственных и косметических препаратов. B.thuringiensis, широкомасштабно используемый в качестве инсектицидных препаратов, неконтролируемо выбрасывается в окружающую среду. В. anlhracis печально известен как опасный патоген, вызывающий сибирскую язву. Поэтому изучение регуляции отдельных токсинов, продуцируемых данными бактериями, для определения степени их безопасности для животных и человека является актуальной задачей.

Хорошо известно, что В. cereus производит ряд внеклеточных токсинов, обладающих гемолитической активностью и рассматриваемых в качестве потенциальных факторов патогепности (Turnbull, 1986; Drobniewski, 1993). Гемолизин П принадлежи!' к семейству ^-складчатых пороформирующих токсинов (PFT), имеет высокую степень гомологии (31,2% идентичности) с а токсином Staphylococcus aureus и вносит значительный вклад в суммарную гемолитическую активность штаммов В. cereus и В. thuringiensis.

Несмотря па то, что гемолитические токсины В. cereus активно изучаются, на сегодняшний день весьма мало известно об их генетической регуляции, также как и о регуляции других факторов вирулентности этого микроорганизма. Подробно описан лишь один плейотронный регулятор, PlcR, который является активатором генов фосфолииаз, иегемолитического и гемолитического энтеротоксинов, а также некоторых других генов В. cereus и В. thuringiensis (Lereclus et al., 1996; Agaisse, 1999, Ivanova et. al., 2003). Ныло показано влияние еще одного гена,/7hA, на продукцию фосфолииаз, гемолизина 131, и ряда других внеклеточных факторов вирулентности у штаммов В. cereus и В. thuringiensis (Ghelardi et al., 1999). Но в данном случае это влияние сводится к регуляции экспорта белков из клетки, а не затрагивает их синтез. Сравнительно недавно был описан еще один плейотронный транскрипционный регулятор Fur (ferric uptake repressor), регулирующий как процессы усвоения и накопления железа бактериальной клеткой, так и биосинтез некоторых факторов патогепности (Harvie et al., 2005). Между тем вопрос о регуляции экспрессии генов токсинов неразрывно связан с вопросом регуляции патогенных свойств и весьма актуален. Такие исследования заслуживают самого серьезного внимания, поскольку их результаты являются необходимым первоначальным этапом, закладывающим основу для дальнейшего выяснения сложных механизмов координированной регуляции генов, обеспечивающих пагогенность микроорганизмов цереусной группы.

Цели и задачи исследования.

Целыо настоящей работы являлось исследование регуляции транскрипции гена гемолизина II В. cereus. Для достижения указанной цели последовательно ставились следующие задачи:

- исследовать организацию регуляторной области гена гемолизина 11;

- исследовать участие белка HlyllR в регуляции экспрессии гена hlyll;

- изучить особенности узнавания и взаимодействия HlyllR с операторами гена hlyll;

- исследовать участие глобального регулятора Fur в транскрипции гена hlyll.

Данная работа выполнена в лаборатории молекулярной микробиологии Института биохимии и физиологии микроорганизмов имени Г. К. Скрябина РАН.

Научная новизна работы. Впервые получены данные о регуляции экспрессии потенциального фактора патогенности В. cereus - гемолизина II. Показано, что в промоторпо-онераторпой области гена hlyll расположено два операторных участка -сайты связывания двух регуляторпых белков HlyllR и Fur.

Продемонстрировано, что белок HlyllR негативно регулирует транскрипцию гена гемолизина II В. cereus, препятствуя образованию открытого промоторпого комплекса. Установлено, что в промоторно-операторной области гена hlyll расположено три потенциальных перекрывающихся сайта связывания HlyllR, с которыми одновременно взаимодействует только два димера регуляторного белка. Показано, что в отличие от ряда ДПК-связывающих белков HlyllR не способен вносить значительных копформациоппых изменений в ДНК сайга мишепи. Показано негативное влияние па транскрипцию гена гемолизина II B.cereus глобального транскрипционного регулятора Fur.

Практическое значение работы. Исследование регуляции экспрессии бактериальных токсинов не только представляет несомненный научный интерес, но и важно в практическом плане, как создание основы для осуществления направленного контроля процесса патогенеза. Знания о регуляции экспрессии генов, кодирующих токсины, может быть использовано при создании принципиально новых терапевтических и профилактических подходов, а также новых лекарственных препаратов, что позволит отказаться от традиционной терапии антибиотиками. Полученные данные но исследованию молекулярных механизмов регуляции экспрессии генов гемолизинов Б. cereus могут использоваться в дальнейших исследованиях по разработке методов направленной регуляции патогенеза у В. anthracis, как наиболее близкого к В. cereus микроорганизма Кроме того, данные исследования важны и для сельского хозяйства, в котором применяется ряд микроорганизмов, содержащих потенциальные факторы патогенности (В. thuringiensis).

Похожие диссертационные работы по специальности «Молекулярная биология», 03.00.03 шифр ВАК

Заключение диссертации по теме «Молекулярная биология», Родикова, Екатерина Александровна

ВЫВОДЫ:

1. Нелок HlyllR, специфически связываясь с 22 п.п. инвертированным повтором иромоторно-операторной области гена гемолизина II В. cereus, негативно регулирует транскрипцию гена hly II.

2. HlyllR, понижая аффинность РНК - полимеразы к промоторпо-операторной ДНК, препятствует образованию каталитически активного открытого промоторпого комплекса.

3. Операторная область гена гемолизина II содержит три потенциальных перекрывающихся сайта связывания HlyllR. Во взаимодействие с регулятором одновременно вовлечены только два из них.

4. Велок Fur блокирует транскрипцию гена гемолизина II, конкурируя с РНК-полимеразой за участок связывания в экспериментах.

Список литературы диссертационного исследования кандидат биологических наук Родикова, Екатерина Александровна, 2007 год

1. Agaisse И., Gominet М., Okstad О.A., Kolsto А-В., Lereclus D. (1999) PIcR is а pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol. Microbiol., V. 32, P. 1043-1053.

2. Ahlert J, Shepard E, Lomovskaya N, Zazopoulos E, Staffa A, Bachmann BO, I Iuang K, Fonstein L, Czisny A, Whitwam RE, Farnet CM, Thorson JS. (2002) The calicheamicin gene cluster and its iterative type I enediyne PKS. Science., V. 297, P. 1173-6.

3. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, V.25, P. 3389-402.

4. Altschmied L, Hillen W. (1984) ГЕТ repressor.tet operator complex formation induces conformational changes in the tet operator DNA. Nucleic Acids Res., V. 12, P. 2171-80.

5. Andreeva ZI, Nestcrcnko VF, Yurkov IS, Budarina ZI, Sineva EV, Solonin AS. (2006) Purification and cytotoxic properties of Bacillus cereus hemolysin II. Protein Expr Vurif, V. 47, P.186-93.

6. Andreeva ZI, Nesterenko VF, Fomkina MG, Ternovsky VI, Suzina NE, Bakulina AY, Solonin AS, Sineva EV. (2007) The properties of Bacillus cereus hemolysin II pores depend on environmental conditions. Biochim Biophys Acta., V. 1768, P. 253-63.

7. Aramaki H, Yagi N, Suzuki M. (1995) Residues important for the function of a multihelical DNA binding domain in the new transcription factor family of Cam and I'ct repressors. Protein Eng., V. 8, P. 1259-66.

8. Aramaki II, Sagara Y, Kabata II, Shimamoto N, Horiuchi T. (1995a) Purification and characterization of a cam repressor (CamR) for the cytochrome P-450cam hydroxylase operon on the Pseudomonas pulida CAM plasmid. J Bacterial., V. 177, P. 3120-7.

9. Arribas JM, Caballero P, Baos V, Casarrubios E. (1988) Etiologic diagnosis of Turner's syndrome by radiography of the hand. Rev Clin Esp., V. 183, P. 154-5. Spanish.

10. Auger S, Krin E, Aymerich S, Gohar M. (2006) Autoinducer 2 affects biofilm formation by Bacillus cereus. Appl Environ Microbiol., V. 72, P. 937-41.

11. Baichoo N, Wang T, Ye R, Helmann JD. (2002) Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol., V. 45, P. 1613-29.

12. Baida G.B. and Kuzmin N.P. (1995) Cloning and primary structure of a new hemolysin gene from Bacillus cereus. Biochim Biophys. Acta, V. 1264, P. 151-154.

13. Baida G.E. and Kuzmin N.P. (1996) Mechanism of action of hemolysin III from Bacillus cereus. Biochim Biophys. Acta, V. 1284, P. 122-124.

14. Baida G.E., Sidorov I.A. and Kuzmin N.P. (1997) Hemolysin III from Bacillus cereus. P. 48. Abstracts of the First International Workshop on The Molecular Biology of B. cereus, B. anthracis and B. thuringiensis, May 23-25, Oslo.

15. Baida G, Budarina ZI, Kuzmin NP, Solonin AS. (1999) Complete nucleotide sequence and molecular characterization of hemolysin II gene from Bacillus cereus. FEMS Microbiol Lett., V. 180, P. 7-14.

16. Barne KA, Bown JA, Busby SJ, Minchin SD. (1997) Region 2.5 of the Escherichia coli RNA polymerase sigma70 subunit is responsible for the recognition of the 'extended-10' motif at promoters. EMBO J., V. 16, P. 4034-40.

17. Baulard AR, Betts JC, Engohang-Ndong J, Quan S, McAdam RA, Brcnnan PJ, Locht C, Besra GS. (2000) Activation of the pro-drug ethionamide is regulated in mycobacteria./ Biol Chem., V. 275, P. 28326-31.

18. Baumeister R, Helbl V, Hillen W. (1992) Contacts between Tet repressor and tet operator revealed by new recognition specificities of single amino acid replacement mutants. J Mol Biol, V. 226, P. 1257-70.

19. Bccskci, A., and L. Serrano (2000) Engineering stability in gene networks by autoregulation. Nature, V. 405, P. 590-593.

20. Beecher D.J. and Macmillan J.D. (1990) A novel bicomponent hemolysin from Bacillus cereus. Infect. Immun., V. 58, P. 2220-2227.

21. Beecher D.J. and Macmillan J.D. (1991) Characterization of the components of hemolysin BL from Bacillus cereus. Infect. Immun., V. 59, P. 1778-1784.

22. Beecher D.J. and Wong A.C.L. (1994) Improved purification and characterization of hemolysin BL, a hemolytic dermonecrotic vascular permeability factor from Bacillus cereus. Infect. Immun., V. 62, P. 980-986.

23. Beecher D.J. and Wong A.C.L. (1994a) Identification of hemolysin BL-producing Bacillus cereus isolates by a discontinuous hemolytic pattern in blood agar. Appl. Environ. Microbiol., V. 60, P. 1646-1651.

24. Beecher D.J., Pulido J.S., Barney N.P., Wong A.C.L. (1995) Extracellular virulence factors in Bacillus cereus endophthalmitis: Methods and implication of involvement of hemolysin BL. Infect. Immun., V. 63, P. 632-639.

25. Beecher D.J., Schoeni J.L. and Wong A.C.L. (1995a) Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect. Immun., V. 63, P. 4423-4428.

26. Beecher D.J. and Wong A.C.L. (1997) Tripartite hemolysin BL from Bacillus cereus: hemolytic analysis of component interactions and a model for its characteristic paradoxical zone phenomenon. J. Biol. Chem., V. 272, P. 233-239.

27. Bernheimcr A.W. and Grushoff P. (1967a) Extracellular hemolysins of aerobic sporogenic Bacilli. J. Bacteriol., V. 93, P. 1541-1543.

28. Bernheimer A.W. and Grushoff P. (19676) Cereolysin: production, purification and partial characterization. J.Gen. Microbiol., V. 46, P. 143-150.

29. Bowman M.N., Ottolenghi A.C. and Mengel C.E. (1971) Effects of phospholipase С on human erythrocytes. J. Membr. Biol., V. 4, P. 156-164.

30. Brillard J, Lereclus D. (2004) Comparison of cytotoxin cytK. promoters from Bacillus cereus strain ATCC 14579 and from a B. cereus food-poisoning strain. Microbiology., V. 150, P. 2699-705.

31. Bsat N, Helmann JD. (1999) Interaction of Bacillus subtilis Fur (ferric uptake repressor) with the dhb operator in vitro and in vivo. J Bacteriol., V. 181, P. 4299-307.

32. Budarina ZI, Sinev MA, Mayorov SG, Tomashevski AY, Shmelev IV, Kuzmin NP. (1994) Hemolysin II is more characteristic of Bacillus thuringiensis than Bacillus cereus. Arch Microbiol., V. 161, P. 252-7.

33. Bujard II, Gentz R, Lanzer M, Stueber D, Mueller M, Ibrahimi I, Haeuptle MT, Dobberstein B. (1987) Л T5 promoter-based transcription-translation system for the analysis of proteins in vitro and in vivo. Methods Enzymol., V. 155, P. 416-33.

34. Busby S., Kolb A., Minchin S. (1994) DNA-protein interaction: principles and protocols.// Methods in molecular biology, ed. by G. Geoff Kneale. Humana press Inc., Ottowa, New Jersey., V. 30, P. 397-411.

35. Callcgan MC, Kane ST, Cochran DC, Gilmore MS, Gominet M, Lereclus D. (2003) Relationship of plcR-regulated factors to Bacillus endophthalmitis virulence. Infect Immun., V. 71, P. 3116-24.

36. Carlson C.R., Caugant D.A. Kolsto A.-B. (1994) Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl. Environ. Microbiol., V. 60, P. 1719-1725.

37. Carlson C.R., Johansen T. and Kolsto A.-B. (1996) The chromosome map of Bacillus thuringiensis subsp. canadensis HD224 is highly similar to that of the Bacillus cereus type strain АТС С 14579. FEMS Microbiol. Lett., V. 141, P. 163-167.

38. Chater KF. (1993) Genetics of differentiation in Streptomyces. Annu Rev Microbiol., V. 47, P. 685-713.

39. Claus D. and Berkeley R. C. W. (1996) Genus Bacillus. Р/ 1105-1139. Bergey's Manual of Systematic Bacteriology, Sneath P. II. A., Main N. A, Sharpe M. E. Holt J. G. (eds.), Williams and Wilkins, Baltimore, MD.

40. Coolbaugh J.C. and Williams R.P. (1978) Production and characterization of two hemolysins of Bacillus cereus. Can. J. Microbiol., V. 24, P. 1289-1295.

41. Compan I, Touati D. (1993) Interaction of six global transcription regulators in expression of manganese superoxide dismutase in Escherichia coli K-12. J Ikicleriol., V. 175, P. 1687-96.

42. Cousin SL Jr, Whittington WL, Roberts MC. (2003) Acquired macrolide resistance genes and the 1 bp deletion in the mtrR promoter in Neisseria gonorrhoeae./ Antimicrob Chemother., V. 51, P. 131-3.

43. Coy M, Neilands JB. (1991) Structural dynamics and functional domains of the fur protein. Biochemistry., V. 30, P. 8201-10.

44. Delany, I., R. leva, C. Alaimo, R. Rappuoli, and V. Scarlato. (2003) The iron-responsive regulator Fur is transcriptionally autoregulated and not essential in Neisseria meningitidis. J. Bacteriol., V. 185, P. 6032-6041.

45. De Lorenzo V, Herrero M, Giovannini F, Neilands JB. (1988) Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli. Eur J Biochem., V.173, P. 537-46.

46. De Lorenzo V, Giovannini F, Herrero M, Neilands JB. (1988a) Metal ion regulation of gene expression. Fur repressor-operator interaction at the promoter region of the aerobactin system of pColV-K30. J Mol Biol., V. 203, P. 875-84.

47. Dover LG, Corsino PE, Daniels IR, Cocklin SL, Tatituri V, Bcsra GS, Futtcrer K. (2004) Crystal structure of the TetR/CamR family repressor Mycobacterium tuberculosis EthR implicated in ethionamide resistance. J Mol Biol., V. 340, P. 1095-105.

48. Drobniewski F.A. (1993) Bacillus cereus and related species. Clin. Microbiol. Rev. V. 6, P. 324-338.

49. Duncan R. Ilarvie, Susana Vilchez, James R. Stegglcs and David J. Hilar. (2004) Bacillus cereus Fur regulates iron metabolism and is required for full virulence. Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge.

50. Eckhardt Т. (1978) A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid, V. 1, P. 584-588.

51. Escolar L, Perez-Martin J, de Lorenzo V. (1999) Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacleriol., V. 181, P. 6223-9.

52. Escolar L, Perez-Martin J, de Lorenzo V. (2000) Evidence of an unusually long operator for the fur repressor in the aerobactin promoter of Escherichia coli. J Biol Chem., V. 275, P. 24709-14.

53. Eshoo MW. (1988) lac fusion analysis of the bet genes of Escherichia coli: regulation by osmolarity, temperature, oxygen, choline, and glycine betaine. J Bacleriol., V. 170, P. 5208-15.

54. Fagerlund A, Ween O, Lund T, Hardy SP, Granum PE. (2004) Genetic and functional analysis of the cytK family of genes in Bacillus cereus. Microbiology., V. 150, P. 2689-97.

55. Fedhila S, Daou N, Lereclus D, Nielsen-LeRoux C. (2006) Identification of Bacillus cereus internalin and other candidate virulence genes specifically induccd during oral infection in insects. Mol Microbiol., V. 62, P. 339-55.

56. Fossum K. (1963) Separation of hemolysin and egg yolk turbidity factor in cell-free extracts of Bacillus cereus. Ada Path. Microbiol. Scand., V. 59, P. 400-406.

57. Fralick JA. (1996) Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J Bacleriol., V. 178, P. 5803-5.

58. Fuangthong M, Helmann JD. (2003) Recognition of DNA by three fcrric uptake regulator (Fur) homologs in Bacillus subtilis. J Bacterial., V. 185, P. 6348-57.

59. Gaal T, Ross W, Estrem ST, Nguyen LI I, Burgess RR, Gourse RE. (2001) Promoter recognition and discrimination by EsigmaS RNA polymerase. Mol Microbiol., V. 42, P. 93954.

60. Gominet M, Slamti L, Gilois N, Rose M, Lereclus D. (2001) Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Mol Microbiol., V. 40, P. 963-75.

61. Granum P.E. and Lung T. (1997) Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett., V. 157, P. 223-228.

62. Grkovic S, Brown MH, Roberts NJ, Paulsen IT, Skurray RA. (1998) QaeR is a repressor protein that regulates expression of the Staphylococcus aureus multidrug el'llux pump QacA.J Biol Chem., V. 273, P. 18665-73.

63. Grkovic S, Brown MH, Skurray RA. (2001) Transcriptional regulation of multidrug efflux pumps in bacteria. Semin Cell Dev Biol., V. 12, P. 225-37.

64. Grkovic S, Brown MH, Schumacher MA, Brennan RG, Skurray RA. (2001a) The staphylococcal QacR multidrug regulator binds a correctly spaced operator as a pair of dinners. J Bacterial., V. 183, P. 7102-9.

65. I lager P.W. and Rabinowitz J.C. (1985) Translational specificity in Bacillus subtilis. P. 1-32. The molecular biology of the Bacilli, Dubnau D.A. (ed.), Acad. Press, New York.

66. Hager PW, Rabinowitz JC. (1985a) Inefficient translation of T7 late mRNA by Bacillus subtilis ribosomes. Implications for species-specific translation. J Biol Chem., V. 260, P. 1516315167.

67. I Iagman KE, Pan W, Spratt BG, Balthazar JT, Judd RC, Shafer WM. (1995) Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology, V. 141, P. 611-22.

68. Hantke K. (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol., V. 4, P. 172-7.

69. Ilara O, Beppu T. (1982) Mutants blocked in streptomycin production in Streptomyces griseus the role of A-factor. J Antibiot (Tokyo)., V. 35, P. 349-58.

70. Ilara O, Beppu T. (1982a) Induction of streptomycin-inactivating enzyme by A-factor in Streptomyces griseus. J Antibiot (Tokyo)., V. 35, P. 1208-15.

71. Harvie DR, Vilchez S, Steggles JR, Ellar DJ. (2005) Bacillus cereus Fur regulates iron metabolism and is required for full virulence. Microbiology, V. 151, P. 569-77.

72. Hayes A, llobbs G, Smith CP, Oliver SG, Butler PR. (1997) Environmental signals triggering methylenomycin production by Streptomyces coelicolor A3(2). J Bacteriol., V. 179, P. 5511-5.

73. Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna 1, Kolsto AB. (2000) Bacillus anthracis, Bacillus cereus, and Bacillus lhuringiensis--one species on the basis of genetic evidence. Appl Environ Microbiol, V. 66, P. 2627-30.

74. Heinrichs J.II., Beecher D.J., Macmillan J.D., Zilinskas B.A. (1993) Molecular cloning and characterization of the ША gene encoding the В component of hemolysin BL from Bacillus cereus. J. Bacterial., V. 175, P. 6760-6765.

75. Hinrichs W, Kisker C, Duvcl M, Muller A, Tovar K, Hillen W, Saenger W. (1994) Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science, V. 264, P. 418-20.

76. Ilillen W, Bcrcns C. (1994) Mechanisms underlying expression of TnlO encoded tetracycline resistance. Annu Rev Microbiol., V. 48, P. 345-69.

77. Hinrichs, W., C. Kisker, M. Du'vel, A. Muller, K. Tovar, W. Ilillen, and W. Saenger. (1994) Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science, V. 264, P. 418-420.

78. Hirata T, Saito A, Nishino K, Tamura N, Yamaguchi A. (2004) Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936). Antimicrob Agents Chemother., V. 48, P. 2179-84.

79. Honda Т., Shiba A., Seo S., Yamamoto J., Matsuyama J., and Miwatani T. (1991) Identity of hemolysins produced by Bacillus thuringiensis and Bacillus cereus. FEMS Microbiol. Lett., V. 79, P. 205-210.

80. Horinouchi S, Beppu T. (1990) Autoregulatory factors of secondary metabolism and morphogenesis in actinomycetes. Crit Rev Biotechnol., V. 10, P. 191-204.

81. Horinouchi S, Beppu T. (1994) A-factor as a microbial hormone that controls cellular differentiation and secondary metabolism in Slreplomyces griseus. Mol Microbiol., V. 12, P. 859-64.

82. Horinouchi S, Ohnishi Y, Kang DK. (2001) The A-factor regulatory cascade and cAMP in the regulation of physiological and morphological development in Slreplomyces griseus. J Ind Microbiol Biotechnol., V. 27, P. 177-82.

83. Horinouchi S. (2002) A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Slreplomyces griseus. Front BioscL, V. 7, P. 2045-57.

84. Ikezava II., Mori M. and Taguchi R. (1980) Studies on sphingomyelinase of Bacillus cereus: Hydrolytie and hemolytic actions on erythrocyte membranes. Arch. Biochem. Biophys., V. 199, P. 572-577.

85. Ikezawa II., Matsushita M., Tomita M., Taguchi R. (1986) Effects of metal ions on sphingomyelinase activity of Bacillus cereus. Arch. Biochem. Biophys., V. 249, P. 588-595.

86. Johnson C.E. and Bonventre P.F. (1967) Lethal toxin of Bacillus cereus. I.Relationships and nature of toxin, hemolysin , and phospholipase. J. BaclerioL, V. 94, P. 306-316.

87. Kaneko M, Yamaguchi A, Sawai T. (1985) Energetics of tetracycline efflux system encoded by TnlO in Escherichia coli.FEBS Lett. V. 193, P. 194-8.

88. Kashlcv, M., Nudler, E., Severinov, K., Borukhov, S., Komissarova, N. & Goldfarb, A. (1996) Ilistidine-tagged RNA polymerase of Escherichia coli and transcription in solid phase. Methods Enzymol, V. 274, P.326-334.

89. Kato, J., A. Suzuki, II. Yamazaki, Y. Ohnishi, and S. Horinouchi (2002) Control by A-factor of a metallocndopeptidase gene involved in aerial mycelium formation in Slreptomyces griseus. J. Bacleriol., V. 184, P. 6010-6025.

90. Kato, J.-Y., I. Miyahisa, M. Mashiko, Y. Ohnishi, and S. Horinouchi (2004) A single target is sufficient to account for biological effects of the A-factor rcccptor protein of Slreptomyces griseus. J. Bacleriol., V. 186, P. 2206-2221.

91. Klein JR, Plapp R. (1992) Locations of the cnvCD genes on the physical map of the Escherichia coli chromosome./ Bacleriol., V. 174, P. 3828-9.

92. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature., V. 405, P. 914-9.

93. Kovalevskiy OV, Lebedev AA, Surin AK, Solonin AS, Antson AA. (2007) Crystal structure of Bacillus cereus HlyllR, a transcriptional regulator of the gene for pore-forming toxin hemolysin II. J Mol Biol., V. 365, P. 825-34.

94. Kovacikova G, Skorupski K. (2002) Regulation of virulence gene expression in Vibrio cholerae by quorum sensing: HapR functions at the aphA promoter. Mol Microbiol., V. 46, P. 1135-47.

95. Kunin CM, I Iua TH, Van Arsdale White L, Villarcjo M. (1992) Growth of Escherichia coli in human urine: role of salt tolerance and accumulation of glycine bctaine. J Infect Dis., V. 166, P. 1311-5.

96. Laemmli U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, V. 227, P. 680-685.

97. Lamark T, Styrvold OB, Strom AR. (1992) Efllux ofcholinc and glycine betainc from osmoregulating cells of Escherichia coli. FEMS Microbiol Lett., V. 75, P. 149-54.

98. Lamark T, Rokenes TP, McDougall J, Strom AR. (1996) The complex bet promoters of Escherichia coli: regulation by oxygen (ArcA), choline (Betl), and osmotic stress./ Bacteriol., V. 178, P. 1655-62.

99. Landfald B, Strom AR. (1986) Choline-glycine betaine pathway confcrs a high level of osmotic tolerance in Escherichia coli. J Bacterial., V. 165, P. 849-55.

100. Lavrrar JL, Christoffersen CA, Mcintosh MA. (2002) Fur-DNA interactions at the bidirectional fepDGC-entS promoter region in Escherichia coli. J Mol Biol., V. 322, P. 983-95.

101. Lee, E. II., C. Rouquette-Loughlin, J. P. Folster, and W. M. Shafer (2003) FarR regulates the /wv4Z?-encoded efflux pump of Neisseria gonorrhoeae viab an MtrR regulatory mechanism. J. Bacterial., V 185, P. 7145-7152.

102. Levy SB, McMurry LM, Barbosa TM, Burdett V, Courvalin P, Ilillen W, Roberts MC, Rood J I, Taylor DE. (1999) Nomenclature for new tetracycline resistance determinants. Antimicrab Agents Chemother., V. 43, P. 1523-4.

103. Lcreclus D, Agaisse II, Grandvalet C, Salamitou S, Gominet M. (2000) Regulation of toxin and virulcnce gene transcription in Bacillus thuringiensis. lntJ Med Microbiol., V. 290, P. 295-9.

104. Lucas CE, Ilagman KE, Levin JC, Stein DC, Shafer WM. (1995) Importance of lipooligosaccharide structure in determining gonococcal resistance to hydrophobic antimicrobial agents resulting from the mtr efflux system. Mol Microbiol., V. 16, P. 1001-9.

105. Lucas СЕ, Balthazar JT, Hagman KE, Shafer WM. (1997) The MtrR repressor binds the DNA sequence between the mtrR and mtrC genes of Neisseria gonorrhoeae. J Bacteriol., V. 179, P. 4123-8.

106. Lundblad JR, Laurance M, Goodman RH. (1996) Fluorescence polarization analysis of protein-DNA and protein-protein interactions. Mol Endocrinol., V. 10, P. 607-12.

107. Ma D, Cook DN, Hearst JE, Nikaido II. (1994) Efflux pumps and drug resistance in gram-negative bacteria. Trends Microbiol., V. 2, P. 489-93.

108. Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE. (1995) Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol., V. 16, P. 4555.

109. Ma D, Alberti M, Lynch C, Nikaido H, Hearst JE. (1996) The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol Microbiol., V. 19, P. 101-12.

110. Mails G., Bayley II., Cheley S. (2002) Properties of Bacillus cereus hemolysin II: a heptameric transmembrane pore. Protein Sci., V. 11. P. 1813-1824.

111. Makrides S.C. (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev., V. 60, P. 512-538.

112. Marmur J. (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. V. 3, P. 208-218.

113. Mavroidi A, Tzouvelekis LS, Kyriakis KP, Avgerinou H, Daniilidou M, Tzelepi E. (2001) Multidrug-resistant strains of Neisseria gonorrhoeae in Greece. Antimicrob Agents Chemother., V. 45, P. 2651-4.

114. Mikshis N1, Eremin SA, Bolotnikova MF. (1999) Correlation of the virulence of Bacillus anlhracis with expression of signs, coded for by chromosomal genes. Mol Gen Mikrobiol Virusol., V. 4, P. 25-8.

115. Natsume R, Ohnishi Y, Senda T, Morinouchi S. (2004) Crystal structure of a gamma-butyrolactone autoregulator receptor protein in Streptomyces coelicolor A3(2). J Mol Biol., V. 336, P. 409-19.

116. Nikaido II. (1996) Multidrug efflux pumps of gram-negative bacteria. J Bacleriol., V. 178, P. 5853-9.

117. Nikaido H. (1998) Antibiotic resistance caused by gram-negative multidrug efflux pumps. Clin Infect Dis., Suppl I, P. 32-41.

118. Oethinger M, Podglajen I, Kern WV, Levy SB. (1998) Overexpression of the niarA or soxS regulatory gene in clinical topoisomerase mutants of Escherichia coli. Antimicrob Agents Chemother., V. 42, P. 2089-94.

119. Ohnishi Y, Kameyama S, Опака H, Ilorinouchi S. (1999) The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus : identification of a target gene of the A-factor receptor. Mol Microbiol., V. 34, P. 102-11.

120. Okusu II, Ma D, Nikaido H. (1996) AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants.J Bacterial., V. 178, P. 306-8.

121. Опака H, Ando N, Nihira T, Yamada Y, Beppu T, Horinouchi S. (1995) Cloning and characterization of the A-factor receptor gene from Streptomyces griseus. J Bacterial., V. 177, P. 6083-92.

122. Опака II, Horinouchi S. (1997) DNA-binding activity of the Л-factor receptor protein and its recognition DNA sequences. Mol Microbiol., V. 24, P. 991-1000.

123. Orth P, Cordes F, Schnappinger D, Hillen W, Saenger W, Hinrichs W. (1998) Conformational changes of the Tet repressor induced by tetracycline trapping. J Mol Biol., V. 279, P. 439-47.

124. Orth P, Saenger W, Hinrichs W. (1999) Tetracycline-chelated Mg2+ ion initiates helix unwinding in Tet repressor induction. Biochemistry, V. 38, P. 191-8.

125. Orth P, Schnappinger D, Hillen W, Saenger W, Hinrichs W. (2000) Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat Struct Biol., V. 7, P. :215-9.

126. Pan W, Spratt BG. (1994) Regulation of the permeability of the gonococcal cell envelope by the mtr system. Mol Microbiol., V. 11, P. 769-75.

127. Ramos JL, Martinez-Bueno M, Molina-IIenares AJ, Teran W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R. (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev., V. 69, P. 326-56.

128. Rokenes TP, Lamark T, Strom AR. (1996) DNA-binding properties of the Betl repressor protein of Escherichia coli: the inducer choline stimulates Betl-DNA complex formation./ Bacterial, V. 178, P. 1663-70.

129. Rosenberg M., Court, D. (1979) Regulatory sequences involved in the promotion and termination of DNA transcription. Ann. Rev. Genet., V. 13, P. 319-353.

130. Ryan P.A., Macmillan J.D. and Zilinskas B.A. (1997) Molecular cloning and characterization of the genes encoding the LI and L2 components of hemolysin BL from Bacillus cereus. J. Bacterial., V. 179, P. 2551-2556.

131. Sala, C., F. Forti, E. di Florio, F. Canneva, A. Milano, G. Riccardi, and D. Ghisotti (2003) Mycobacterium tuberculosis FurA autoregulates its own expression. ./. Bacterial, V. 185, P.5357-5362.

132. Salah-Bey K, Thompson CJ. (1995) Unusual regulatory mechanism for a Streptomyces multidrug resistance gene, ptr, involving three homologous protein-binding sites overlapping the promoter region. Mol Microbiol., V. 17, P. 1109-19.

133. Sambrook, J., Fritsch, E. and Maniatis, T. (1989). Molecular cloning: a laboratory manual, Cold Spring Harbor Lab. Press, New York.

134. Sanchez P, Alonso A, Martinez JL. (2002) Cloning and characterization of SmeT, a repressor of the Stenotrophomonas maltophilia multidrug efflux pump SmeDEF. Antimicrob Agents Chemother, V. 46, P. 3386-93.

135. Sanger, F., Nicklen, S. and Coulson, A. (1977). DNA sequencing with chain-terminating inhibitors. PNAS, V. 74, P. 5463-5467.

136. Scatchard G. (1949) The attraction of proteins for small molecules and ions. Ann. NY Acad. Sci., 660-672.

137. Shinagawa K., Ichikawa K., Matsusaka N., Sugii S. (1991) Purification and some properties of a Bacillus cereus mouse lethal toxin. J. Vet. Med. Sci., V. 53, P. 469-474.

138. Schoeni JL, Wong AC. (2005) Bacillus cereus food poisoning and its toxins. ./ Food Prot., V. 68, P. 636-48.

139. Schumacher MA, Miller MC, Grkovic S, Brown MH, Skurray RA, Brennan RG. (2001) Structural mechanisms of QacR induction and multidrug recognition. Science, V. 294, P. 215863.

140. Schumacher MA, Miller MC, Grkovic S, Brown MI I, Skurray RA, Brennan RG. (2002) Structural basis for cooperative DNA binding by two dimers of the multidrug-binding protein QacR. EMBOJ., V. 21, P. 1210-8.

141. Schumacher MA, Brennan RG. (2002) Structural mechanisms of multidrug recognition and regulation by bacterial multidrug transcription factors. Mol Microbiol., V. 45, P. 885-93.

142. Sinev MA, Budarina ZhI, Gavrilcnko IV, Tomashevskii AIu, Kuz'min NP. (1993) Evidence of the existence of hemolysin II from Bacillus cereus: cloning the genetic determinant of hemolysin II Mol Biol (Mosk), V. 27, P. 1218-29.

143. Slamti E, Lereclus D. (2002) A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO J., V. 21, P. 4550-9.

144. Slamti L, Lereclus D. (2005) Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the Bacillus cereus group. J Bacteriol., V. 187, P. 1182-7.

145. Smith A, Hooper N1, Shipulina N, Morgan WT. (1996) Heme binding by a bacterial repressor protein, the gene product of the ferric uptake regulation (fur) gene of Escherichia coli. J Protein Chem., V. 15, P. 575-83.

146. Steitz J.A. (1979) Genetic signals and nucleotide sequences in messenger RNA. P. 349399. Biological regulation and development. V. I. Gene Expression, Goldenberger R.F. (ed.), Plenum Press, New York.

147. Stenfors LP, Mayr R, Scherer S, Granum P.E. (2002) Pathogenic potential of fifty Bacillus weihenstephanensis strains. FEMS Microbiol Lett., V. 215, P. 47-51.

148. Stojiljkovic I, Hantke K. (1995) Functional domains of the Escherichia coli ferric uptake regulator protein (Fur). Mol Gen Genet., V. 247, P. 199-205.

149. Strom, A. R., P. Falkenberg, and B. Landfald (1986) Genetics of osmoregulation in Escherichia coli: uptake and biosynthesis of organic osmolytes. FEMS Microbiol. Rev., V. 39, P. 79-86.

150. Styrvold OB, Falkenberg P, Landfald B, Eshoo MW, Bjornsen T, Strom AR. (1986) Selection, mapping, and characterization of osmoregulatory mutants of Escherichia coli blocked in the choline-glycine betaine pathway. J Bacteriol., V. 165, P. 856-63.

151. Titball R.W. (1993) Bacterial phospholipases C. Microbiol. Rev., V. 57, P. 347-366.

152. Thieffry, D„ A. M. Huerta, E. Perez-Rueda, and J. Collado-Vides (1998) From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays, V. 20, P. 433-440.

153. Tomita M., Taguchi I.R., Ikezava H. (1991) Sphingomyelinase of Bacillus cereus as a bacterial hemolysin. J. Toxicol.-Toxin Rev., V. 10, P. 169-207.

154. Turnbull P.C. and Kramer J.M. (1991) Bacillus. P. 296-303. Manual of clinical microbiology, 5th ed., Balows A., Hausler W.J., Herrmann K.L., lsenberg II.D., Shadomy H.J. (eds.), American Society for Microbiology, Washington, D.C.

155. Turnbull P.C.B. (1986) Bacillus cereus toxins. P. 397-448. Pharmacology of Bacterial Toxins, Dorner F. and Drews J., (eds.), Pergamon Press, Oxford.

156. Turnbull P.C., Kramer J.M., Jorgensen K., Gilbert R.J., Melling J. (1979) Properties and production characteristics of vomiting, diarrheal, and necrotizing toxins of Bacillus cereus. Amer. J. Clin. Nutr., V. 32, P. 219-228.

157. Veal WL, Nicholas RA, Shafer WM. (2002) Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J Bacleriol., V. 184, P. 5619-24.

158. Veal WL, Shafer WM. (2003) Identification of a cell envelope protein (MtrF) involved in hydrophobic antimicrobial resistance in Neisseria gonorrhoeae. J Anlimicroh Chemother, V. 51, P. 27-37.

159. Ueda, К., K. Matsuda, II. Takano, and T. Beppu (1999) A putative regulatory element for carbon-source-dependent differentiation in Streptomyces griseus. Microbiology, V. 145, P. 2265-2271.

160. Wissmann A., Baumeister R., Muller G., Hecht В., Pfleiderer K„ Hillen W. (1991) Amino acids determining operator binding specificity in the helix-turn-helix motif of TnlO Tet repressor. EMBO J., V. 10, P. 4145-4152.

161. Yamaguchi, A., N. Ono, T. Akasaka, T. Noumi, and T. Sawai (1999) Metaltetracycline/ II antiporter of Escherichia coli encoded by a transposon, Tn/0. J. Biol. Chem., V. 265, P. 15525-15530.

162. Yamaguchi, A., T. Udagawa, and T. Sawai (1999a) Transport of divalent cations with tetracycline as mediated by the transposon Tn/O-encoded tetracycline resistance protein.J. Biol. Chem., V. 9, P. 4809-4813.

163. Yamazaki, H., Y. Ohnishi, and S. Horinouchi (2000) An A-factor-dependent extracytoplasmic function sigma factor (aAdsA) that is essential for morphological development in Streptomyces griseus. J. Bacleriol., V. 182, P. 4596-4605.

164. Yamazaki, M., Y. Ikuto, A. Ohira, K. Chatcr, and II. Kinashi (2003) Limited regions of homology between linear and circular plasmids encoding methylenomycin biosynthesis in two independently isolated streptomycetes. Microbiology, V. 149, P. 1351-1356.

165. Yamazaki, H., Y. Takano, Y. Ohnishi, and S. Horinouchi (2003a) amfR, an essential gene for aerial mycelium formation, is a member of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus. Mol. Microbiol., V. 50, P. 1173-1187.

166. Yanish-Perron С., Viera J. and Messing J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13 mpl8 and pUC19 vectors. Gene, V. 33, P. 103-119.

167. Yu EW, Aires JR, Nikaido II. (2003) AcrB multidrug efflux pump of Escherichia coli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity./Bacteriol., V. 185, P. 5657-64.

168. Yu EW, McDermott G, Zgurskaya III, Nikaido H, Koshland DE Jr. (2003a) Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science, V. 300, P. 976-80.

169. Zhao J, Aoki T. (1992) Nucleotide sequence analysis of the class G tetracycline resistance determinant from Vibrio anguillarum. Microbiol Immunol., V. 36, P. 1051-60.

170. Zheng M, Doan B, Schneider TD, Storz G. (1999) OxyR and SoxRS regulation of fur./ Bacteriol., V. 181, P. 4639-43.

171. Бицаев A.P. и Езепчук Ю.В. (1987) Молекулярная природа патогенного действия, вызываемого Bacillus cereus. Мол. Генет. Микробиол. Вирусол., N 7, С. 18-23.

172. Гавриленко И.В., Байда Г.Е., Карпов А.В., Кузьмин Н.П. (1993) 11уклеотидная последовательность генов фосфолипазы С и сфингомиелиназы Bacillus cereus ВКМ-В164. Биоорганическая химия, Т. 19, С. 133-138.

173. Гловер Д. (1988) Клонирование ДНК. Методы. Мир, Москва, 538 с. (перевод с английского).

174. Зайцев Е.П., Зайцева Е.М., Бакланова И.В., Горелов В.Н., Кузьмин II.П., Крюков В.М., Ланцов В.А. (1986) Клонирование и секвенирование гена гесА из штамма Pseudomonas aeruginosa. Генетика, Т. 22, С. 2721-2727.

175. Козырев Д. II., Васинова Н. А. (2004) Роль железорегулирусмых ге-нов в надменности бактерий. Цитология, Т. 46, С. 465—473.

176. Мазин А.В., Кузнеделов К.Д., Краев А.С., Холодилов II.Г. и др.( 1990) Методы молекулярной генетики и генной инженерии. Наука, Новосибирск, 248 с.

177. Автор крайне благодарна своему наставнику Будариной Жанне Игоревне за совместную работу на начальных стадиях исследования, многолетнюю моральную и интеллектуальную поддержку, а также за помощь в написании этой работы.

178. Автор выражает признательность Ковалевскому Олегу за плодотворную совместную работу и помощь в создании модели взаимодействия HlyllR с оператором, Северинову Константину за решающее участие в подготовке совместной публикации.

179. Искренняя благодарность Захаровой Марине Викторовне за моральную поддержку, бесценные советы при освоении методик и любезно предоставленные препараты РНК-полимеразы Е. coli и В. cereus.

180. Хотелось бы отдельно поблагодарить всех сотрудников нашей лаборатории за ту необыкновенную атмосферу в коллективе, делающую работу в нем настолько приятной и плодотворной.

181. Отдельно хотелось бы поблагодарить Смолихину Татьяну Ивановну за внимательное отношение и четкую организацию при защите этой работы.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.