Моделирование процесса зарядки пылевой частицы и установления межчастичного расстояния в плазме низкого давления тема диссертации и автореферата по ВАК РФ 01.04.04, кандидат физико-математических наук Шелестов, Александр Сергеевич

  • Шелестов, Александр Сергеевич
  • кандидат физико-математических науккандидат физико-математических наук
  • 2006, Петрозаводск
  • Специальность ВАК РФ01.04.04
  • Количество страниц 122
Шелестов, Александр Сергеевич. Моделирование процесса зарядки пылевой частицы и установления межчастичного расстояния в плазме низкого давления: дис. кандидат физико-математических наук: 01.04.04 - Физическая электроника. Петрозаводск. 2006. 122 с.

Оглавление диссертации кандидат физико-математических наук Шелестов, Александр Сергеевич

ВВЕДЕНИЕ.

1. ПЛАЗМЕННЫЕ ЦЕПОЧКИ И КРИСТАЛЛЫ ПЫЛЕВОЙ ПЛАЗМЫ НИЗКОГО ДАВЛЕНИЯ. ОБЗОР ЛИТЕРАТУРЫ.

1.1 ТЕОРЕТИЧЕССКИЕ ПОДХОДЫ К ПРОЦЕССУ ЗАРЯДКИ И ПОТЕНЦИАЛУ ПЫЛЕВОЙ ЧАСТИЦЫ В ПЛАЗМЕ.

1.1.1 Методы теории зондов применительно к пылевой плазме.

1.1.2 Теория радиального дрейфа.

1.1.3 Теория ограниченных орбит.

1.1.4 Гидродинамическая модель диффузионного приближения.

1.2 Обзор экспериментальных работ по плазменно-пылевым структурам.

1.2.1 Эксперименты по определению межчастичного расстояния.

1.2.2 Экспериментальное определение заряда пылевых частиц.

1.2.3 Основные силы, действующие на пылевые частицы в плазме.

1.3 Обзор работ по математическому моделированию.

1.4 Выводы по литературному обзору и постановка задач.

2. ОДНОМЕРНАЯ МОДЕЛЬ В СФЕРИЧЕСКОЙ СИСТЕМЕ КООРДИНАТ. МЕТОД ПРЯМОГО ИНТЕГРИРОВАНИЯ УРАВНЕНИЯ ПУАССОНА.

2.1 Описание метода.

2.2 Результаты численных расчётов.

2.3 Условия применимости и трудности метода.

3. МОДЕЛИРОВАНИЕ ПРОЦЕССА ЗАРЯДКИ ПЫЛЕВОЙ ЧАСТИЦЫ МЕТОДОМ МОЛЕКУЛЯРНОЙ ДИНАМИКИ. ОДНОМЕРНЫЙ СЛУЧАЙ В СФЕРИЧЕССКОЙ СИСТЕМЕ КООРДИНАТ.

3.1 Описание метода молекулярной динамики.

3.2 Моделирование максвелловского распределения ионов по скоростям.

3.3 Концентрация электронов вблизи отталкивающего сферического зонда с учетом ухода электронов на зонд.

3.4 Критерий установления межчастичного расстояния.

3.5 Исходные уравнения.

3.6 Безразмерные переменные.

3.7 Алгоритм вычислений.

3.8 Результаты расчета.

4. ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ЗАРЯДКИ ПЫЛЕВОЙ ЧАСТИЦЫ ДЛЯ НИТЕВИДНЫХ ПЛАЗМЕННЫХ КРИСТАЛЛОВ. ДВУМЕРНЫЙ СЛУЧАЙ В ЦИЛИНДРИЧЕСКОЙ СИСТЕМЕ КООРДИНАТ.

4.1 Постановка задачи.

4.2 Исходные уравнения.

4.3 Интегральные параметры процесса.

4.4 Безразмерные переменные.

4.5 Взвешивание и раздача заряда и полей в цилиндрических координатах.

4.6 Максвелловское распределение. Цилиндрические координаты.

4.7 Линейное взвешивание по концентрации.

4.8 Алгоритм двумерного метода молекулярной динамики.

4.9 Анализ погрешности типов взвешивания при различных радиальных изменениях концентраций (цилиндрический случай).

4.10 Результаты моделирования.

5. СРАВНЕНИЕ РЕЗУЛЬТАТОВ ЧИСЛЕННОГО ЭКСПЕРИМЕНТА С ОПЫТНЫМИ ДАННЫМИ.

5.1 Итоговые зависимости.

5.2 Экспериментальные данные.

Рекомендованный список диссертаций по специальности «Физическая электроника», 01.04.04 шифр ВАК

Введение диссертации (часть автореферата) на тему «Моделирование процесса зарядки пылевой частицы и установления межчастичного расстояния в плазме низкого давления»

Актуальность работы: Физика пылевой плазмы — активно развивающаяся область науки, которая вызывает в настоящее время все возрастающий интерес, связанный с наблюдением необычных явлений, требующих понимания и объяснения. Одно из такого рода явлений, обнаруженных в низкотемпературной плазме, — образование плазменного кристалла, то есть пространственно-упорядоченной структуры из мелкодисперсных частиц (плазменной пыли).

Пылевая плазма представляет собой ионизованный газ, содержащий пылинки — частицы твёрдого вещества. Такая плазма широко распространена во Вселенной: в планетных кольцах, хвостах комет, межпланетных и межзвёздных облаках, вблизи искусственных спутников Земли, в пристеночной области термоядерных установок с магнитным удержанием, а также в плазменных реакторах, дугах, разрядах. Экспериментально в лабораторных условиях пылевую плазму впервые получил Ирвинг Лэнгмюр в 20-х годах прошлого века [1]. Однако, активно изучать её начали лишь в последнее время. Повышенный интерес к свойствам пылевой плазмы возник с развитием технологий плазменного напыления и травления в микроэлектронике, а также производства тонких плёнок. Наличие твёрдых частиц, которые попадают в плазму в результате разрушения электродов и стенок разрядной камеры приводит к загрязнению поверхности полупроводниковых микросхем и возмущает плазму часто непредсказуемым образом. Чтобы предотвратить или хотя бы уменьшить эти негативные явления, необходимо разобраться в том, каким образом идут процессы образования и роста конденсированных частиц в газоразрядной плазме, как плазменные пылинки влияют на свойства разряда, что именно приводит к их структурному упорядочиванию.

Размеры пылевых частиц относительно велики — от долей микрона до нескольких десятков, иногда сотен микрон. Их заряд может иметь чрезвычайно большую величину и превышать заряд электрона в сотни и тысячи раз. Средняя кулоновская энергия взаимодействия частиц, пропорциональная квадрату заряда, может намного превосходить их среднюю тепловую энергию. Получается плазма, которую называют сильно неидеальной, поскольку её поведение не подчиняется законам идеального газа (плазму можно рассматривать как идеальный газ, если энергия взаимодействия частиц много меньше их тепловой энергии). Именно такая плазма представляет интерес для изучения процессов, отвечающих за образование плазменных кристаллов.

Плазменные кристаллы подобны пространственным структурам в жидкости или твёрдом теле. Здесь могут происходить фазовые переходы типа плавления и испарения. Экспериментальные исследования ведутся во многих лабораториях мира, в том числе в условиях микрогравитации на международной космической станции. Если частицы пылевой плазмы достаточно велики, то плазменный кристалл можно наблюдать невооружённым глазом.

Наиболее значимым процессом в образовании кристаллической структуры является процесс зарядки пылевой частицы в плазме и установление распределения потенциала вокруг нее. Наличие в пылевой плазме большого числа взаимовлияющих и конкурирующих процессов делает её трудной для аналитического изучения. Поэтому большую роль в изучении пылевой плазмы играет математическое моделирование и численные эксперименты.

Теоретические расчеты основаны на модельном падении потенциала вблизи поверхности частицы и в большинстве случаев не учитывают существенной рекомбинации ионов на пылевых частицах в плазме. Таким образом, существенно завышается уход электронов и ионов на пылевые частицы в плазме, а, следовательно, увеличивается объемная ионизация и ионы, образующие основную долю тока на частицу, образуются непосредственно вблизи пылинок, тогда как теории ионного тока на зонд полагают его формирование из бесконечности. Этим же недостатком обладают и работы по математическому моделированию, где ионный ток часто задается уже сформированным вне ячейки. И только для режима с высокими давлениями существуют работы, учитывающие ионизацию в объеме.

Так как межчастичное расстояние определяет величину рекомбинационных поверхностей в плазме и, следовательно, скорость ионизации, то можно ожидать, что, исходя из процессов зарядки пылевых частиц с учетом объемной ионизации, имеются некоторые критерии установления конкретного межчастичного расстояния. Таким образом, построение более адекватных математических моделей для процессов, происходящих в пылевой плазме и приводящих к структурному упорядочиванию пылевых частиц, является актуальной задачей и несет в себе большой потенциал.

Работа не предполагает рассмотрение коллективных явлений в плазме (пылевой звук, различные типы возмущений), рассматривается ближний порядок полей и расположения частиц в плазме.

Цель работы заключалась в построении математической модели зарядки пылевой частицы в плазме низкого давления с учетом ионизации в межчастичной области, выработке критерия образования упорядоченных пылевых структур и определении, на основе полученных результатов численного эксперимента, параметров плазменных кристаллов, что являлось бы научно-обоснованной базой для объяснения имеющихся опытных данных.

Научная новизна работы определяется тем, что в ней впервые:

• проведено компьютерное моделирование ионного тока на частицу в плазме низкого давления с учетом ионизации в области возмущения в широком диапазоне изменения параметров плазмы, размеров пылевых частиц и межчастичных расстояний.

• получен критерий установления межчастичного расстояния, основанный на максимуме силы, действующей на единицу поверхности заряженной пылинки со стороны электрического поля плазмы.

• на основании результатов численного эксперимента с применением разработанной модели показано, что основополагающим параметром в процессе формирования упорядоченных пылевых структур в плазме низкого давления является отношение размера пылинки к электронному дебаевскому радиусу г°/.

• проведено двумерное моделирование плазменных цепочек, образование которых может являться начальной фазой формирования кристаллической структуры.

Научно-практическая значимость работы определяется тем, что в ней получена новая важная информация, способствующая развитию представлений о механизмах формирования плазменных кристаллов и критерии их образования.

Данный критерий позволяет определить параметры плазмы и условия, при которых будет происходить формирование упорядоченной пылевой структуры. Разработаны модели зарядки пылинки в плазме, рассчитаны параметры формирующихся плазменных кристаллов при данных условиях в плазме для различных размеров пылинок.

Основные положения выносимые на защиту:

1. Разработана математическая модель процесса зарядки пылевой частицы в плазме низкого давления, учитывающая ионизацию в области возмущения.

2. Предложен критерий установления межчастичного расстояния пылевых структур, согласно максимуму силы, действующей на частицу со стороны окружающей ее плазмы.

3. Показано, что при заданных параметрах плазмы и размерах частиц существует установившийся размер ячейки Зейтца-Вигнера.

4. Установлено, что определяющим в образовании кристаллических структур в пылевой плазме является отношение размера частиц к электронному дебаевскому радиусу.

5. Получены зависимости потенциала, заряда, полной энергии, энергии пылинки в поле плазмы, силы, действующей на пылинку со стороны поля плазмы, а также ионного тока в широком диапазоне изменения параметров плазмы, размеров пылевых частиц и межчастичных расстояний, при различных давлениях и температурах.

6. Предложено выражение для описания хода потенциала вблизи заряженной пылинки в упорядоченной плазменно-пылевой структуре.

Апробация работы: Основные результаты диссертационной работы были доложены на:

- Заочной электронной конференции «Современные наукоёмкие технологии», проводимой Российской академией естествознания (РАЕ), 20-25 февраля 2005г.

- Заочной электронной конференции «Фундаментальные исследования», проводимой РАЕ, 20-25 февраля 2005г.

- Второй международной научно-практической конференции «Исследование, разработка и применение высоких технологий в промышленности» 7-9 февраля 2006 г., Санкт-Петербург, Россия.

- Конференции «Фундаментальные и прикладные проблемы современной физики», Демидовские чтения, Москва-Екатеринбург-Томск, Россия, 25 февраля - 6 марта 2006 г.

- Второй всероссийской конференции молодых ученых «Физика и химия высокоэнергетических систем», 4-6 мая 2006 г., Томск, Россия.

- IV конференции «Фундаментальные и прикладные исследования. Образование, экономика и право», Римини, Италия, 9-16 сентября 2006 г.

- Заочной электронной конференции «Математическое моделирование», проводимой Российской академией естествознания (РАЕ), 15-20 сентября 2006г. и опубликованы в виде статей и тезисов докладов конференций;

1. Сысун В.И., Хахаев А.Д., Олещук О.В., Шелестов А.С. Заряд и потенциал пылевой частицы в плазме низкого давления с учётом ионизации в области возмущения // «Физика плазмы» 2005, т.31, №9, с. 834-841, Plasma Physics Reports, Vol. 31, № 9,2005, pp.772-779.

2. Сысун В.И., Хахаев А.Д., Олещук О.В., Шелестов А.С. Формирование ионного потока на пылевую частицу в плазме // «Современные наукоёмкие технологии» 2005, №3, с. 30-34.

3. Шелестов А.С., Подопригора А.В. Моделирование ионного потока на пылевую частицу в плазме методом «крупных частиц в ячейке» // «Фундаментальные исследования» 2005, №3, с. 60-62.

4. Шелестов А.С., Сысун А.В., Двумерная модель заряда пылевой частицы в плазме низкого давления // сборник трудов «Высокие технологии, фундаментальные и прикладные исследования, образование», изд - во Политехнического университета, том 5 стр. 310-312, материалы Второй международной научно - практической конференции «Исследование, разработка и применение высоких технологий в промышленности» 7-9 февраля 2006 г., Санкт-Петербург, Россия.

5. Шелестов А.С., Сысун В.И., Численное моделирование параметров низкотемпературной плазмы методом крупных частиц // Материалы конференции «Фундаментальные и прикладные проблемы современной физики», Демидовские чтения, Москва-Екатеринбург-Томск, Россия, 25 февраля - 6 марта 2006 г., стр. 21-22.

6. Шелестов А.С., Модель расчета параметров кристаллических структур пылевой плазмы низкого давления // Материалы Второй всероссийской конференции молодых ученых «Физика и химия высокоэнергетических систем», 4-6 мая 2006 г., Томск, Россия, стр. 338 - 341

7. Сысун А.В., Шелестов А.С., Критерий установления межчастичного расстояния в пылевой плазме // Материалы IV конференции «Фундаментальные и прикладные исследования. Образование, экономика и право», Римини, Италия, 9-16 сентября 2006 г.

8. Sysun А.V., Shelestov A.S., Criterion of intergrain distance establishing in dusty plasma // European Journal of Natural History, 2006, №5, pp.86-88.

9. Шелестов A.C., Сысун A.B., Моделирование процесса зарядки пылевой частицы в плазме низкого давления методом молекулярной динамики // Материалы заочной электронной конференции «Математическое моделирование», проводимой Российской академией естествознания (РАЕ), 15-20 сентября 2006г.

Вклад автора. Исследования проведены в период 2003 - 2006 г. при непосредственном участии автора, которым сформулированы и обоснованы задачи диссертации. Разработка математической модели проведена при содействии Сысун А. В. Результаты раздела 2 были получены при содействии Подопригора А. В. В коллективных работах автору принадлежат изложенные в диссертации защищаемые положения. Все численные расчеты и написание текстов программ проведены автором.

Обьем и структура диссертации. Диссертация состоит из введения, 5 разделов, заключения, списка литературы и трех приложений. Диссертация содержит 108 стр., 28 рисунков, 10 таблиц и 55 наименований библиографических ссылок.

Похожие диссертационные работы по специальности «Физическая электроника», 01.04.04 шифр ВАК

Заключение диссертации по теме «Физическая электроника», Шелестов, Александр Сергеевич

Выводы

1) При линейном и квадратичном уменьшении концентрации с радиусом ближе всего линейное взвешивание по концентрации

2) При спаде концентрации обратно-пропорционально радиусу - точнее всего линейное взвешивание по заряду.

3) Квадратичное взвешивание по заряду является средним, но сложнее и занимает больше машинного времени.

4.10 Результаты моделирования

Результаты моделирования двумерного цилиндрического случая для Te/Tj=0, при различных размерах пылинки и ячейки Зейтца-Вигнера приведены в таблице 9.

ЗАКЛЮЧЕНИЕ

Исходя из поставленной задачи, построены одномерная и двумерная модели процесса зарядки пылевой частицы в плазме низкого давления. Предложен критерий установления межчастичного расстояния в упорядоченных плазменно-пылевых структурах.

Из проведенных численных экспериментов и теоретического анализа вытекают следующие основные результаты диссертационной работы:

1. Разработана математическая модель процесса зарядки пылевой частицы в плазме низкого давления, учитывающая ионизацию в области возмущения.

2. Предложен критерий установления межчастичпого расстояния пылевых структур, согласно максимуму силы, действующей на частицу со стороны окружающей ее плазмы.

3. Показано, что при заданных параметрах плазмы и размерах частиц существует установившийся размер ячейки Зейтца-Вигнера.

4. Установлено, что определяющим в образовании кристаллических структур в пылевой плазме является отношение размера частиц к электронному дебаевскому радиусу.

5. Получены зависимости потенциала, заряда, полной энергии, энергии пылинки в иоле плазмы, силы, действующей на пылинку со стороны поля плазмы, а также ионного тока в широком диапазоне изменения параметров плазмы, размеров пылевых частиц и межчастичных расстояний, при различных давлениях и температурах.

6. Предложено выражение для описания хода потенциала вблизи заряженной пылинки в упорядоченной плазменно-пылевой структуре.

Список литературы диссертационного исследования кандидат физико-математических наук Шелестов, Александр Сергеевич, 2006 год

1. Langmuir 1., Mott-Smith H.M., Gen.Electr.Rev.,1924,v.27, p.p. 449,538,616,762,810; Phys.Rev., 1926,v.26,p.727-763.

2. Bohm D.,ed. H.Guthric and R.K.Wakering. New York.: McCraw-Hill. 1949.

3. Kennedy R.V., Allen J.E. J. Plasma Phisics. V.67. 2002. pp.243-250.

4. Allen J.E., Annaratone B.M., U. de Angeles J. Plasma Phisics. V.63. 2000. p.299.

5. Bernstain I., Rabinowitz I. Phys. Fluids, 1959. V.2. P.l 12-121.

6. Laframboise J.G. Rarefield Gas Dynamics. New York, Academic Press, 1966. V.II. P22. Univ. of Toronto, Institute of Aerospace Studies, 1966. Report 100.

7. Hall L.S., Fries R.R. Proc. 7th Int. Conf. Phen. Ion. Gases. 1966. V.3. P.15-19.

8. Kennedy R.V., Allen J.E. J. Plasma Phisics. V.69. 2003. pp.485-506

9. Швейгерт B.A., Швейгерт И.В., Богданов B.M. и др. ЖЭТФ. Т.115. 1999. с.877

10. Зобнин А.В., Нефёдов А.П., Синельников В.А., Фортов В.Е.ЖЭТФ. т. 118. 3(9) 2000 с. 554-559

11. Паль А.Ф., Старостин А.Н., Филиппов А.В. Физика плазмы. Т.27. 2001 2.с.155-164. т.28. 2002. №1. с.32-44.

12. Morfill G. Е. "Plasma Crystal" Preprint Max Planck Institute for Extraterrestrial Physics Germany, Garching, 1994

13. Thomas H, Morfill G et al. Phys. Rev. Lett. 73 5 652 (1994)

14. Chu J H, Lin I, Phys. Rev. Lett. 72 25 4009 (1994)

15. Allen J et al. Proc. Ann. Plasma Phys. Conf. (Scotland: Pearth, 1996)

16. Chu J.H., Lin I, Physica A 205 183 (1994)

17. Fortov V E, Nefedov A F Phys. Lett. A 218 89 (1996)

18. Fortov V.E., Nefedov A.P., Torchinskij V.M., Molotkov V.I.,Khrapak A.G., Petrov O.F., Volikhin K.F., J.E. T. F. Lett., 64, 2 25 (1996)

19. Khakhaev A. D., Luizova L. A., Piskunov A. A., Podryadchikov S. F., Pushcarev A. V., Shtykov A. S., XVI International Conference on Gas Discharges and their Applications, Xi'an, China, September 11-13, 2006. 2006. V. 1. P. 341— 344.

20. Melzer A Homann, A. Piel Phys. Rev. E. v. 53 3 2757 (1996)

21. Walch В, Horanyi M., Robertson S., Phys.Rev. Lett., 75, 838, (1995)

22. Sitkafoose A. A., et. al., Phys.Rev. Lett., 84, 6034, (2000)

23. Фортов B.E. и др.ДЭТФ 114, 2004, (1998)

24. Fortov V.E. et al, Phys.Rev. Lett., A 229 317 (1997)

25. Нефедов А.П. и др., письма в ЖЭТФ, 72 313 (2000)

26. Barkan A., D'Angelo N., Merlino R., Phys.Rev. Lett., 73, 3093, (1994)

27. Fortov V.E. et al, Phys. Rev. Lett., 87 205002 (2001)

28. Фортов B.E., Храпак C.A., Храпак А.Г., Молотков В.И., Петров О.Ф., УФН, т.174, 5 (2004)

29. Цытович В.Н., УФН, т.167 1 (1997)

30. Filinov V. S., Petrov О. F., Fortov V. Е., Molotkov V. I., Khahaev A. D., Podryadchikov S. F., Contrib. Plasma Phys. 2005. V. 45. № 3-4. P. 177-185.

31. Игнатов A M Физика плазмы 27 323 (1996)

32. Morfill G, Khodataev Ya K, Tsytovich V N Comm. Plasma Phys. Contr. Fusion 17 342 1996)

33. Лифшиц E.M., Питаевский Л.П., Физическая кинетика, М.Наука (1979)

34. Epstein P.S, Phys.Rev, 23 710 (1924)

35. Draine B.T., Salpeter E.E., Astrophys J., (1979)

36. Nitter Т., Plasma Sources Sci.Technol. 5, 93, (1996)

37. Daugherty J.E., Porteous R.K., Graves D.B., J.Appl.Phys., 73, 1617, (1993)

38. Hamaguchi S., Farouki R. Т., Phys. Rev.,E 49, 4430 (1994)

39. Hamaguchi S., Farouki R. Т., Phys. Plasmas, 1, 2110 (1994)

40. Ходатаев Я. К., Бингхем Р., Тараканов В. П., Цытович В. Н., Физика плазмы. 1996. №22. С. 1028

41. Winske D., Murillo М., Selwyn G., Bull. Amer. Phys. Soc., 1997.

42. Otani N., Bhattacharjee A., Phys. Rev. Lett. 1997. № 78. P. 1468.

43. Nairn C.M.C., Annaratone B.M., Allen J.E. Plasma Sources Sci. Technol. V.7. 1998. p.478.

44. Иньков Л. В., Левченко В. Д., Сигов Ю. С., Тез. докл. XXV Звенигородской конф. по физике плазмы и УТС, 178, Звенигород, 2—6 марта, 1998

45. Иньков Л. В., В. Д. Левченко, 10. С. Сигов., Прикладная Физика, 2000 3, с 138-145.

46. J. P. Baeuf, Physical Review A., v.46, 12, p.7910, 1992.

47. A.B. Зобнин, А.П. Нефедов, B.A. Синельщиков, B.E. Фортов, ЖЭТФ, 2000, т. 118, 3(9), стр. 554-559

48. Ваулина О.С., Репин АЛО., Петров О.Ф., Физика плазмы, 2006, т.32, 6, с.528 531.

49. Tonks L., Langmnuir I. Phisycal Review. 1929. v.34. p.876-922

50. Lam S.H. Phys. Fluids, 1965. V.8. P. 1002. P.73-87

51. Allen J.E., Boyd R.L., Reynolds R., Proc. Phys. Soc. 1957. V.B70. P.297-304.

52. Мартынов H. H. Matlab 7. Элементарное введение. M., 2005. 416 c.

53. Swift I.D., Schwar M. JR., Electric probes for plasma diagnostics, Iriffe Books, pp. 321, London, 1971.

54. P. Бэдсел, А. Ленгтон, «Физика плазмы и численное моделирование», Москва, Энергоатомиздат, 1989 г., 456 с

55. Р. Хокни, Дж. Иствуд, «Численное моделирование методом частиц», Москва, Энергоатомиздат, 1987 г., 640 с.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.