Многоцелевые законы цифрового управления подвижными объектами тема диссертации и автореферата по ВАК РФ 05.13.01, доктор наук Сотникова Маргарита Викторовна
- Специальность ВАК РФ05.13.01
- Количество страниц 371
Оглавление диссертации доктор наук Сотникова Маргарита Викторовна
ВВЕДЕНИЕ
1. Актуальность, цели и основные результаты диссертации
2. Краткое содержание работы
ГЛАВА 1. ПРОБЛЕМЫ ПОСТРОЕНИЯ СИСТЕМ ЦИФРОВОГО
УПРАВЛЕНИЯ ПОДВИЖНЫМИ ОБЪЕКТАМИ
1.1. Обсуждение задач многоцелевого цифрового
управления движением
1.2. Математические модели подвижных объектов
1.3. Многоцелевая структура цифровых законов управления
1.4. Обзор литературы по теме исследования
ГЛАВА 2. ЦИФРОВАЯ КОРРЕКЦИЯ МНОГОЦЕЛЕВОГО УПРАВЛЕНИЯ ДВИЖЕНИЕМ СУДОВ
В УСЛОВИЯХ МОРСКОГО ВОЛНЕНИЯ
2.1. Постановка задач цифровой динамической коррекции
2.2. Динамическая коррекция для регулярного волнения
2.3. Практическое применение метода коррекции
для регулярного волнения
2.4. Синтез фильтрующих корректоров на базе Яда-подхода
ГЛАВА 3. УПРАВЛЕНИЕ С ПРОГНОЗИРУЮЩЕЙ МОДЕЛЬЮ
В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ
3.1. Астатические алгоритмы управления
с прогнозирующей моделью
3.2. Алгоритмы управления с нелинейной прогнозирующей
моделью в режиме реального времени
3.3. Пример управления с прогнозом для морского судна, движущегося в режиме циркуляции
3.4. Управление с прогнозом для маятника Фуруты и
в задаче динамического позиционирования судна
ГЛАВА 4. УПРАВЛЕНИЕ С ПРОГНОЗИРУЮЩЕЙ МОДЕЛЬЮ
С УЧЕТОМ МОДАЛЬНЫХ И РОБАСТНЫХ СВОЙСТВ
4.1. Прогнозирующее управление с обеспечением
желаемых модальных свойств
4.2. Прогнозирующее управление с обеспечением
робастной устойчивости
4.3. Пример синтеза прогнозирующего управления с учетом робастных свойств для системы магнитной левитации
ГЛАВА 5. ДИНАМИЧЕСКОЕ ПОЗИЦИОНИРОВАНИЕ
С ВИЗУАЛЬНОЙ ИНФОРМАЦИЕЙ В КОНТУРЕ
ОБРАТНОЙ СВЯЗИ
5.1. Задача визуального динамического позиционирования подвижных объектов
5.2. Многоцелевой подход к формированию
визуальной обратной связи
5.3. Визуальное динамическое позиционирование
морского судна и колесного робота
ГЛАВА 6. МНОГОЦЕЛЕВОЕ ЦИФРОВОЕ УПРАВЛЕНИЕ
В ЗАДАЧЕ ВИЗУАЛЬНОГО ПОЗИЦИОНИРОВАНИЯ
6.1. Многоцелевое цифровое управление в задаче визуального динамического позиционирования
6.2. Цифровое управление с прогнозом для совместной системы контуров изображения и скорости
6.3. Цифровые законы управления для визуального динамического
позиционирования морского судна и колесного робота
6.4. Синтез многоцелевого закона управления для движения
робота вдоль визуально заданной линии
ГЛАВА 7. СИСТЕМА АВТОМАТИЧЕСКОГО СИНТЕЗА
МОРСКИХ АВТОПИЛОТОВ
7.1. Задачи автоматического синтеза многоцелевых
законов управления
7.2. Метод синтеза базового закона управления по состоянию
7.3. Автоматический синтез асимптотического наблюдателя
7.4. Автоматический синтез динамического корректора
7.5. Особенности автоматической настройки корректора
в режиме «точный»
ГЛАВА 8. АЛГОРИТМЫ ФОРМИРОВАНИЯ МАРШРУТОВ ДВИЖЕНИЯ С УЧЕТОМ ПРОГНОЗА
ПОГОДНЫХ УСЛОВИЙ
8.1. Постановка задачи формирования маршрутов
8.2. Алгоритмы формирования маршрутов на графах
8.3. Алгоритмы формирования маршрутов
на конечном наборе допустимых траекторий
8.4. Примеры решения задач о построении маршрутов
ЗАКЛЮЧЕНИЕ
ЛИТЕРАТУРА
Рекомендованный список диссертаций по специальности «Системный анализ, управление и обработка информации (по отраслям)», 05.13.01 шифр ВАК
Управление с оптимизацией и прогнозом в режиме реального времени2009 год, кандидат физико-математических наук Сотникова, Маргарита Викторовна
Динамическая коррекция многоцелевых законов управления подвижными объектами2015 год, кандидат наук Смирнова, Мария Александровна
Цифровые законы управления движением судов в условиях морского волнения2012 год, кандидат физико-математических наук Арефина, Антонина Игоревна
Практическое применение оптимизационного подхода в задачах управления морскими судами2018 год, кандидат наук Ван Хонбо
Алгоритмы оптимизации переходных режимов в цифровых системах управления подвижными объектами2011 год, кандидат физико-математических наук Лепихин, Тимур Андреевич
Введение диссертации (часть автореферата) на тему «Многоцелевые законы цифрового управления подвижными объектами»
ВВЕДЕНИЕ
1. Актуальность, цели и основные результаты диссертации
В настоящее время постоянно растет интенсивность применения систем автоматического управления динамическими объектами, используемыми в различных отраслях науки и техники. Этот процесс сопровождается лавинообразным расширением круга вопросов, связанных с такими системами, которые успешно решаются с помощью современных компьютерных технологий. При этом особо значимую роль играют системы автоматического управления подвижными объектами в силу их высокой ответственности за обеспечение необходимой функциональности и безопасности эксплуатации.
В современных условиях компьютерные технологии применяются повсеместно на всех стадиях проектирования систем управления подвижными объектами, начиная от анализа и синтеза, математического и имитационного моделирования, и заканчивая бортовой реализацией разработанных алгоритмов на базе цифровой вычислительной техники.
С одной стороны, это обусловлено высокими, постоянно растущими и часто противоречивыми требованиями, которые предъявляются к качеству функционирования систем управления при необходимости выполнения обширного комплекса условий и ограничений.
С другой стороны, существенные и быстро развивающиеся мощности современных средств вычислительной техники и возможности системного и инструментального программного обеспечения позволяют ставить на реальную основу все более сложные задачи, развивая и модернизируя существующие решения, повышая их надежность и эффективность.
Значительным преимуществом компьютерных технологий является экономичность использования разработанных на их основе методов и соответствующего программного обеспечения, позволяющие заменить во многих случаях процесс настройки, тестирования и адаптации алгоритмов управления в реальных услови-
ях соответствующими вычислительными экспериментами.
Отмеченные обстоятельства обусловливают необходимость расширения областей использования компьютерных технологий, требуют разработки новых вычислительных методов и реализующих их алгоритмов и программ для выполнения научно-исследовательских и проектно-конструкторских работ с системами управления на всех этапах.
Особую роль играют компьютерные технологии при бортовой реализации современных систем управления на базе средств цифровой вычислительной техники. Данный вариант обладает рядом преимуществ по сравнению с аналоговыми системами, в частности, сюда относятся гибкость, универсальность, простота настройки и обслуживания, компактность и другие особенности [57, 66, 97, 120].
Важно отметить, что бортовая реализация алгоритмов управления требует, чтобы вычисления производились достаточно быстро, укладываясь в режим реального времени. Это особенно актуально для динамических объектов с малой инерционностью. Однако вычислительные мощности бортовой компьютерной техники, как правило, существенно ограничены, что связано с постоянным стремлением к уменьшению их габаритов, веса и потребляемой энергии, а также с необходимостью выполнения на их основе в процессе функционирования объекта ряда задач, не связанных непосредственно с управлением [95], [132], [153].
В связи с указанными обстоятельствами, крайне важной представляется разработка эффективных алгоритмов, обеспечивающих разумный компромисс между качеством функционирования системы управления и объемом требуемых для этого вычислительных ресурсов.
Повсеместное использование в настоящее время цифровых устройств, как на стадии лабораторных исследований, так и в процессе практической реализации, приводит к естественному стремлению к разработке алгоритмов управления, изначально ориентированных на функционирование в дискретном времени. Это требует развития соответствующих вычислительных методов и алгоритмов, базирующихся на математических моделях объектов управления, представленных
разностными уравнениями.
Важнейшую роль играют вопросы оптимизации функционирования подвижных объектов по различным критериям. Обеспечение желаемого качества процессов обычно достигается путем формализованной математической постановки оптимизационных задач и разработки вычислительных методов их решения.
Заметим, что оптимизация может осуществляться как однократно в лабораторных условиях, так и непосредственно на борту подвижного объекта в процессе его функционирования. В первом случае допустимо использование алгоритмов, требующих значительные вычислительные ресурсы, а во втором - наоборот, на передний план выходят вопросы экономии времени счета и необходимого объема памяти. В обоих случаях применение оптимизационного подхода, базирующегося на широком использовании возможностей современных компьютерных технологий, позволяет существенно повысить эффективность синтеза систем управления и в конечном итоге качество функционирования.
Особо значимо, что автоматическое функционирование подвижных объектов в современных условиях является многорежимным. При этом каждому из возможных режимов соответствует свой локальный комплекс требований, которые должны обеспечиваться работой системы управления движением.
Достижение высокого качества процессов управления подвижными объектами, функционирующими в различных условиях, как правило, обеспечивается путем адаптивной перенастройки алгоритмов управления на борту в режиме реального времени. Такая перенастройка может выполняться периодически, например, по мере изменения характеристик внешних возмущений, действующих на объект [18], [93], [104].
Иной вариант адаптации к текущим условиям состоит в использовании алгоритмов управления с прогнозирующими моделями (Model Predictive Control, MPC) [83], [96], [136]. Этот подход целиком базируется на применении оптимизации, которую необходимо выполнять практически непрерывно, повторяя ее на
каждом такте работы в дискретном времени. Идеология MPC позволяет формировать управление на основе нелинейных моделей динамики с учетом имеющихся ограничений и требований.
В обоих вариантах адаптации требуется модификация существующих и разработка новых методов оптимизации и соответствующих алгоритмов, позволяющих выполнять адаптивную перенастройку с учетом ограниченности бортовых вычислительных ресурсов.
Подчеркнем, что многорежимность функционирования при разнообразии и противоречивости локальных требований, предъявляемых к качеству динамики для каждого режима в отдельности, существенно осложняет проектирование систем управления. В связи с этим обстоятельством ключевым моментом в работе служит обеспечение априорной многоцелевой направленности, подразумевающей достижение желаемой динамики во всех возможных режимах с учетом всей совокупности требований. Один из возможных вариантов синтеза таких систем основывается на использовании специализированной многоцелевой структуры, предложенной в работах [18], [19]. Ее применение при решении различных задач управления движением морских судов с линейными моделями динамики представлено в работах [15, 18, 19, 21, 25, 28].
Тем не менее, в настоящее время остается неисследованным ряд вопросов, относящихся к теории синтеза цифровых многоцелевых законов управления с учетом специфики дискретных систем. Особого внимания заслуживают исследования, направленные на расширение возможности использования многоцелевой структуры для нелинейных систем с адаптивной бортовой перенастройкой алгоритмов управления в режиме реального времени. К кругу нерешенных до настоящего времени вопросов следует также отнести проблемы разработки алгоритмов управления с многоцелевой направленностью для различных классов подвижных объектов, включая мобильные колесные роботы и роботы-манипуляторы, летательные аппараты и другие объекты.
Множество вопросов, требующих дополнительного изучения, в настоящее
время имеется и в области цифрового управления с прогнозом [106], [130]. Прежде всего, к ним относится исследование вопросов устойчивости движений замкнутых систем, робастности по отношению к неопределенностям в задании прогнозирующей модели, возможности реализации соответствующих алгоритмов в режиме реального времени.
В современных условиях исключительное внимание уделяется вопросам синтеза систем автоматического управления автономными подвижными объектами. Многие задачи управления ими невозможно или неэффективно решать без использования визуальной информации и алгоритмов компьютерного зрения. В частности, сюда относятся задачи визуального динамического позиционирования, следования вдоль визуально заданной линии, автоматического докования, обхода препятствий и др.
Учитывая многорежимность функционирования таких объектов, представляет особый интерес развитие многоцелевого подхода применительно к синтезу управления с использованием визуальной информации в контуре обратной связи.
Отмеченный круг нерешенных или недостаточно изученных вопросов, определяет актуальность проведения исследований, направленных на внедрение современных методов анализа и синтеза законов управления динамическими объектами в цифровые системы, реализующие эти законы в режиме реального времени. Наиболее значимым и важным в настоящее время представляется развитие соответствующих математических методов, алгоритмов и программ, а также их адаптация для решения задач управления конкретными классами динамических объектов с применением цифровых систем.
Конечным результатом должно служить существенное повышение качества процессов управления, поддержка адаптивных свойств для различных классов подвижных объектов при существенном снижении вычислительных затрат, необходимых как при выполнении исследовательского проектирования, так и в процессе бортовой цифровой реализации систем управления.
Целью диссертационной работы является проведение исследований, на-
правленных на развитие математических методов и алгоритмов для решения задач анализа и синтеза многоцелевых цифровых систем автоматического управления подвижными объектами. В центре внимания находятся методы оптимизации процессов в замкнутых системах, многоцелевая направленность и адаптивность законов управления, возможность их реализации в режиме реального времени.
Указанная глобальная цель диссертационной работы конкретизируется в рамках следующих направлений исследования:
• формализация задач об оптимальной настройке динамических корректоров в составе многоцелевой структуры управления движением морских судов и разработка методов их решения;
• разработка метода синтеза квазиоптимальных цифровых фильтров на основе H х -подхода, обеспечивающих желаемые динамические свойства замкнутой системы на низких частотах;
• формирование алгоритмов управления с прогнозирующими моделями с учетом требований астатизма и ограничений, определяемых применением в режиме реального времени;
• развитие методов управления с прогнозирующими моделями, обеспечивающих робастную устойчивость замкнутой системы с учетом желаемых модальных свойств в линейном приближении;
• исследование вопросов и разработка законов управления с многоцелевой структурой в задаче визуального динамического позиционирования подвижных объектов;
• разработка методов и алгоритмов автоматического синтеза многоцелевых цифровых законов управления курсом морских судов на борту;
• разработка алгоритмов оптимизации маршрутов морских судов на трансокеанских переходах с учетом статических и динамических ограничений, а также периодически поступающих прогнозов погодных условий в районе плавания.
Основные результаты, полученные на основе проведенных исследований,
и выносимые на защиту .
1. Формализована проблема синтеза динамических корректоров в составе многоцелевых цифровых законов управления движением судов в условиях морского волнения с учетом динамических ограничений. Разработаны новые методы решения оптимизационных задач в рамках этой проблемы.
2. Разработаны новые алгоритмы управления подвижными объектами с прогнозирующей моделью в обратной связи с учетом свойств устойчивости, аста-тизма и применимости этих алгоритмов в режиме реального времени.
3. Предложена новая схема формирования прогнозирующего управления, обеспечивающего робастную устойчивость замкнутой системы с учетом желаемых модальных свойств в линейном приближении.
4. Построены новые эффективные методы синтеза многоцелевых законов управления с визуальной информацией в контуре обратной связи для задачи динамического позиционирования подвижных объектов.
5. Разработаны алгоритмы автоматического синтеза многоцелевых законов управления курсом морских судов, обеспечивающие возможность адаптивной перенастройки на борту в режиме реального времени в зависимости от условий функционирования.
6. Формализована задача оптимизации выбора маршрутов движения морских судов и предложены методы ее приближенного решения, позволяющие снизить затраты топлива и время перехода с учетом прогноза погодных условий.
Теоретическая и практическая ценность результатов диссертации.
Научная новизна и теоретическая значимость полученных результатов определяются созданием новых методов анализа и синтеза цифровых законов управления подвижными объектами, обеспечивающих желаемое качество их функционирования во всех возможных режимах эксплуатации с учетом внешних возмущающих воздействий. Эти методы допускают автономное применение на борту в режиме реального времени при наличии существенно ограниченных бортовых вычислительных ресурсов.
Особая значимость разработанных методов в теоретическом плане состоит в развитии многоцелевого подхода к аналитическому синтезу законов автоматического управления движением.
В отличие от предшествующих работ по данному направлению, полученные результаты распространены на цифровые, нелинейные и прогнозирующие системы управления.
Теоретический вклад внесен в развитие методов синтеза цифровых динамических корректоров в составе многоцелевой структуры, обеспечивающих минимизацию среднеквадратичных функционалов точности и интенсивности управления. На основе теории Ню -оптимизации представлены новые алгоритмы синтеза
цифровых фильтров, учитывающие требования к динамике объекта при действии низкочастотных возмущений.
Сформированы новые методы управления динамическими объектами с использованием прогнозирующих моделей, в том числе с обеспечением желаемых робастных свойств замкнутой системы и астатизма.
Указанные новые теоретические достижения успешно применены для развития идеологии многоцелевого цифрового управления с использованием визуальной информации в канале обратной связи.
Практическая значимость работы состоит в ее исходной ориентации на решение проблем высокоэффективного применения в режиме реального времени цифровых законов управления подвижными объектами, обеспечивающих желаемое качество процессов в замкнутой системе в различных режимах движения. Предложенные новые математические методы и вычислительные алгоритмы позволяют существенно повысить эффективность решения сложных задач управления движением. Эти результаты успешно используются в реальном исследовании и проектировании систем управления подвижными объектами, в частности морскими судами и колесными роботами (Грант РФФИ № 14-07-00083А, Контракты СПбГУ № 9.21.1717.2014, 9.21.808.2011, 9.21.809.2011).
Работоспособность и эффективность принятого подхода подтверждена
многочисленными конкретными примерами синтеза цифровых законов управления для различных объектов. Особое внимание в работе уделено задачам управления морскими судами. Развиты алгоритмы автоматического синтеза морских автопилотов. Разработана методика решения задач о выборе оптимальных маршрутов движения на базе прогноза действия внешних возмущений. Подробно рассмотрены задачи визуального динамического позиционирования.
Достигнутое качество динамических процессов управления вполне сопоставимо с системами, синтезированными другими путями, а по ряду показателей существенно их превосходит.
Апробация работы. Результаты, полученные в диссертации, докладывались на международных конференциях «Устойчивость и процессы управления» (SCP'2005, SCP'2010, SCP'2015) (Санкт-Петербург, 2005, 2010, 2015), III, IV и V всероссийской научной конференции «Проектирование инженерных и научных приложений в среде MATLAB» (Санкт-Петербург, 2007 Астрахань, 2009, Харьков, 2011), на международном семинаре Beam Dynamics & Optimization (BD0'2008, BD0'2010) (St. Petersburg, Florida, USA, 2008, Санкт-Петербург, Россия, 2010), на IV, V, VI, VII, IX и X Международной научно-практической конференции «Современные информационные технологии и ИТ-образование» (Москва, 2009, 2010, 2011, 2012, 2014, 2015), на XIV конференции молодых ученых «Навигация и управление движением» (XIV КМУ 2012) (Санкт-Петербург, 2012), на IV и V Международной научной конференции «Современные проблемы прикладной математики, теории управления и математического моделирования» (ПМТУММ-2011, 2012) (Воронеж, 2011, 2012), на VI, VII и VIII Международной научной конференции «Современные методы прикладной математики, теории управления и компьютерных технологий» (ПМТУКТ-2013, 2014, 2015) (Воронеж, 2013, 2014, 2015), на международных конференциях: 9th IFAC Conference on Manoeuvring and Control of Marine Craft (MCMC 2012) (Arenzano, Italy, 2012), 9th IFAC Conference on Control Applications in Marine Systems (CAMS 2013) (Osaka, Japan, 2013), 14th
International Conference on Control, Automation and Systems (ICCAS 2014) (Korea, KINTEX, 2014), 2014 International Conference on Computer Technologies in Physical and Engineering Applications (ICCTPEA, IVESC) (Saint-Petersburg, 2014), 10th IFAC Conference on Manoeuvring and Control of Marine Craft (MCMC 2015) (Copenhagen, Denmark, 2015), а также на семинарах кафедры компьютерных технологий и систем СПбГУ.
2. Краткое содержание работы
Диссертационная работа изложена на 371 листе и состоит из введения, восьми глав, заключения и списка литературы, включающего 173 наименования.
Первая глава имеет вводный характер. Ее основное содержание составляет определение круга вопросов, рассматриваемых в диссертации. В частности, формализуется и обосновывается идеология многоцелевого подхода к синтезу цифровых законов управления подвижными объектами, вводится понятие многоцелевой структуры обратной связи и обсуждаются вопросы настройки элементов этой структуры. Приводится краткий обзор литературы по теме исследований.
Вторая глава посвящена вопросам многоцелевого цифрового управления движением судов в условиях морского волнения. Основное внимание уделяется двум вариантам движения - «точному» и «экономичному». Исследуются оптимизационные задачи о минимизации среднеквадратичных функционалов, характеризующих точность стабилизации и интенсивность работы исполнительных органов. Разрабатываются методы их решения, позволяющие синтезировать цифровые динамические корректоры в составе многоцелевых законов управления.
Рассматривается усложненный вариант синтеза цифровых фильтров, в котором учитываются динамические свойства замкнутой системы на низких частотах. Осуществляется формализация задачи фильтрации с учетом требования устойчивости замкнутой системы и ограниченности ее переходной характеристики по регулируемой переменной. Доказывается, что эта задача представляет собой проблему теории Я^-оптимизации. Разрабатывается спектральный метод ее ре-
шения, базирующийся на идеологии интерполяции Неванлинны-Пика.
Третья глава диссертации посвящена вопросам использования прогнозирующих моделей в замкнутом контуре управления с практической цифровой реализацией в режиме реального времени. На каждом такте функционирования управление формируется в результате решения оптимизационной задачи о построении программной последовательности векторов, обеспечивающей минимум некоторого функционала качества.
Исследуются вопросы обеспечения астатизма замкнутых систем с прогнозом, предлагается идеология применения прогнозирующих алгоритмов в режиме реального времени, рассматриваются способы построения терминального множества.
В четвертой главе предложена схема управления с прогнозом, обеспечивающего желаемые модальные и робастные свойства замкнутой системы в линейном приближении. Осуществляется формализованная постановка задачи параметрического синтеза на множестве регуляторов, обеспечивающих на каждом шаге расположение корней характеристического полинома номинальной замкнутой системы внутри заданной области в единичном круге. При этом допустимое множество включает дополнительное ограничение, гарантирующее устойчивость замкнутой системы для любой возмущенной модели. Исследуется возможность сведения данной задачи к конечномерной безусловной оптимизации.
В пятой главе исследуются вопросы динамического позиционирования с использованием визуальной информации в контуре обратной связи. Предлагается двухэтапный подход к синтезу обратных связей, основой которого является разделение контуров управления изображением и скоростью подвижного объекта. Используется многоцелевая структура законов управления, и доказываются утверждения, обосновывающие выбор ее настраиваемых параметров. Применение разработанных алгоритмов иллюстрируется на примерах визуального динамического позиционирования морского судна и колесного робота.
Шестая глава посвящена вопросам цифровой реализации многоцелевых
законов управления в задаче визуального динамического позиционирования. Разрабатывается алгоритм управления с прогнозом, позволяющий учесть имеющиеся ограничения на управляющие и контролируемые переменные. При этом в качестве прогнозирующей модели принята совместная система, включающая контуры изображения и скорости подвижного объекта. В качестве дополнительного примера рассматривается задача синтеза многоцелевого закона управления, обеспечивающего движение колесного робота вдоль визуально заданной линии.
Седьмая глава посвящена разработке алгоритмов автоматического синтеза морских автопилотов. В качестве основы принята многоцелевая структура законов управления. Основное внимание уделяется разработке алгоритмической и программной поддержки для автоматического поиска настраиваемых элементов многоцелевой структуры в режиме реального времени. Предлагаются такие методы расчета, которые позволяют производить бортовую адаптивную перенастройку алгоритмов управления в зависимости от условий функционирования.
Восьмая глава посвящена вопросам оптимизации маршрутов движения морских судов на трансокеанских переходах с учетом прогноза погодных условий. Качество выбора маршрута оценивается временем перехода или расходом топлива. Для обеспечения возможности практической реализации выполняется математическая формализация проблемы путем ее сведения к задаче конечномерной оптимизации. Предлагаются два подхода к поиску квазиоптимальных маршрутов. Первый из них сводится к построению графа с последующим поиском оптимального пути на нем, а второй - к выбору оптимального маршрута на конечном наборе допустимых траекторий. Оба подхода ориентированы на реализацию в условиях существенного ограничения времени, выделяемого на решение задачи построения маршрута.
ГЛАВА 1. ПРОБЛЕМЫ ПОСТРОЕНИЯ СИСТЕМ ЦИФРОВОГО УПРАВЛЕНИЯ ПОДВИЖНЫМИ ОБЪЕКТАМИ
Данная глава носит вводный характер и определяет общий круг вопросов, рассматриваемых в диссертации. Ее основное содержание составляет обоснование многоцелевого подхода к синтезу цифровых законов управления подвижными объектами, принятого в качестве базового в диссертационном исследовании.
В первом параграфе дается общее представление задач, формализующих многоцелевое проектирование цифровых законов управления. Во втором параграфе обсуждаются два варианта математических моделей подвижных объектов, рассматриваемых в диссертации. В первом из них вывод уравнений динамики осуществляется, следуя законам Ньютона, а во втором - базируется на уравнениях Лагранжа второго рода.
В третьем параграфе вводится понятие многоцелевой структуры цифровых законов управления. Приводятся утверждения, в которых обосновываются свойства этой структуры для линейных стационарных моделей динамики подвижных объектов. Обсуждаются вопросы настройки элементов многоцелевой структуры для нелинейных моделей.
В последнем параграфе дается краткий обзор литературы по теме исследований.
1.1. Обсуждение задач многоцелевого цифрового управления движением
Одной из ключевых особенностей функционирования большинства современных подвижных объектов является многорежимность. При этом к каждому режиму обычно предъявляется некоторая совокупность требований, которые должны быть обеспечены с помощью системы управления. Указанные требования на формальном уровне связываются с функционалами качества, заданными на движениях замкнутой системы. Таким образом, система управления подвиж-
ного объекта должна быть многоцелевой, то есть обеспечивать требуемое качество его функционирования в различных режимах движения.
Для формализации задачи многоцелевого синтеза рассмотрим математическую модель подвижного объекта, представленную в общем виде следующей системой разностных уравнений:
Похожие диссертационные работы по специальности «Системный анализ, управление и обработка информации (по отраслям)», 05.13.01 шифр ВАК
Многоцелевое управление подвижными объектами с компенсацией запаздывания2024 год, кандидат наук Севостьянов Руслан Андреевич
Управление движением морских судов с учетом неопределенностей в задании внешних возмущающих воздействий2015 год, кандидат наук Смирнов, Михаил Николаевич
Исследование и разработка бортовых информационно-вычислительных систем управления параметрами движущих объектов2013 год, кандидат технических наук Аунг Со Лвин
Информационное обеспечение оптимизации процессов управления судном в условиях изменяющегося судового хода2007 год, кандидат технических наук Лутков, Сергей Алексеевич
Адаптивное управление плоским движением надводного роботизированного объекта2016 год, кандидат наук Власов, Сергей Михайлович
Список литературы диссертационного исследования доктор наук Сотникова Маргарита Викторовна, 2016 год
ЛИТЕРАТУРА
1. Александров, А. Ю. Устойчивость разностных систем / А. Ю. Александров, А. П. Жабко. - СПб.: НИИ Химии СПбГУ, 2003. - 112 с.
2. Александров, А. Ю. Устойчивость движений неавтономных динамических систем / А. Ю. Александров. - СПб.: Изд-во С.-Петерб. ун-та, 2004. - 186 с.
3. Александров, А. Ю. Метод сравнения и устойчивость движений нелинейных систем / А. Ю. Александров, А. В. Платонов. - СПб.: Изд-во С.-Петерб. ун-та, 2012. - 263 с.
4. Александров, А. Ю. Устойчивость движений дискретных динамических систем / А. Ю. Александров, А. П. Жабко, А. В. Платонов. - СПб.: Издательский Дом Федоровой Г.В., 2015. - 154 с.
5. Оптимизация линейных инвариантных во времени систем управления / Ф. А. Алиев, В. Б. Ларин, К. И. Науменко, В. Н. Сунцев. - Киев: Наукова думка, 1978. - 327 с.
6. Антомонов, Ю. Г. Синтез оптимальных систем / Ю. Г. Антомонов. -Киев: Наукова думка, 1972. - 320 с.
7. Барабанов, А. Е. Оптимизация по равномерно-частотным показателям (Н-теория) / А. Е. Барабанов, А. А. Первозванский // Автоматика и телемеханика. - 1992. - № 9. - С. 3-32.
8. Бокова, Я. М. Вычислительные аспекты спектрального метода Ню-оптимального синтеза / Я. М. Бокова, Е. И. Веремей // Теория и системы управления. - 1995. - №4. - С. 88-96.
9. Бородай, И. К. Качка судов на морском волнении / И. К. Бородай, Ю. А. Нецветаев. - Л.: Судостроение, 1969. - 432 с.
10. Брайсон, А. Прикладная теория оптимального управления / А. Брайсон, Хо Ю-Ши. - М.: Мир, 1972. - 544 с.
11. Веремей, Е. И. Синтез оптимальных регуляторов методом построения дифференциального уравнения устойчивого подсемейства экстремалей / Е. И.
Веремей. - М., 1978. - 19 с. - Деп. в ВИНИТИ 31 окт. 1978, №3413-78.
12. Веремей, Е. И. Метод синтеза оптимальных регуляторов, допускающий техническую реализацию / Е. И. Веремей, Ю. П. Петров // Математические методы исследования управляемых механических систем. - Л.: Изд-во Ленингр. ун-та. - 1982. - С. 24-31.
13. Веремей, Е. И. Частотный метод синтеза оптимальных регуляторов для линейных систем со скалярным возмущением (Часть 1) / Е. И. Веремей // Известия вузов СССР. Электромеханика. - 1985. - № 10. - С. 52-57.
14. Веремей, Е. И. Частотный метод синтеза оптимальных регуляторов для линейных систем со скалярным возмущением (Часть 2) / Е. И. Веремей // Известия вузов СССР. Электромеханика. - 1985. - № 12. - С. 33-39.
15. Веремей, Е. И. Многоцелевая стабилизация динамических систем одного класса / Е. И. Веремей, В. М. Корчанов // Автоматика и телемеханика. - 1988. -№ 9. - С. 126-137.
16. Веремей, Е. И. Абсолютный минимум среднеквадратичного критерия качества в задаче синтеза со скалярным возмущением / Е. И. Веремей // Известия ВУЗов СССР. Приборостроение. - 1989. - Том XXXII, № 1. - С. 10-15.
17. Веремей, Е. И. Методы и алгоритмы среднеквадратичного многоцелевого синтеза : дис. ... д-ра физ.-мат. наук : 05.13.16 / Веремей Евгений Игоревич. -СПб., 1995. - 353 с.
18. Веремей, Е. И. Синтез алгоритмов робастного управления движением подводных лодок вблизи взволнованной поверхности моря / Е. И. Веремей, В. В. Еремеев, В. М. Корчанов // Гироскопия и навигация. - 2000. - № 2. - С. 34-43.
19. Компьютерное моделирование систем управления движением морских подвижных объектов / Е. И. Веремей, В. М. Корчанов, М. В. Коровкин, С. В. Погожев. - СПб.: НИИ Химии СПбГУ, 2002. - 370 с.
20. О создании нового поколения цифровых систем управления движением скоростных судов с управляемыми крыльями и интерцепторами / Е. И. Веремей [и др.] // XXIX Сборник трудов Междуведомственного совета по управлению дви-
жением судов и специальных аппаратов. - М.: Ин-т проблем управления РАН, 2002. - С. 12-25.
21. Веремей, Е. И. Принципы адаптивного управления движением ПЛ в условиях развитого морского волнения / Е. И. Веремей, В. М. Корчанов // Сб. докладов 5-й Международной конф. по морским интеллектуальным технологиям «МОРИНТЕХ-2003». - СПб., 2003. - С. 164-174.
22. Веремей, Е. И. Анализ в среде MATLAB робастных свойств систем стабилизации плазмы / Е. И. Веремей // Exponenta Pro: Математика в приложениях: Науч.-практ. журн. - 2003. - №3. - С. 20-27.
23. Веремей, Е. И. Спектральный подход к оптимизации систем управления по нормам пространств H2 и H / Е. И. Веремей // Вестник Санкт-Петербургского Университета. Серия 10: Прикладная математика. Информатика. Процессы управления. - 2004. - Вып. 1. - С. 48-59.
24. Веремей, Е. И. Применение пакета NCD для решения задач модальной параметрической оптимизации / Е. И. Веремей, М. В. Коровкин // Труды II Всероссийской научной конференции «Проектирование научных и инженерных приложений в среде MATLAB». - М.: ИПУ РАН, 2004. - С. 884-896.
25. Веремей, Е. И. Синтез законов многоцелевого управления движением морских объектов / Е. И. Веремей // Гироскопия и навигация. - 2009. - № 4. -С. 3-14.
26. Веремей, Е. И. Алгоритм подхода к редукции гармонических возмущений / Е. И. Веремей // Автоматизация и современные технологии. - 2010. -№ 11. - С. 34-42.
27. Веремей, Е. И. Линейные системы с обратной связью: учебное пособие / Е. И. Веремей. - СПб.: Издательство «Лань», 2013. - 448 с.
28. Веремей, Е. И. Многоцелевая структура законов управления морскими подвижными объектами / Е. И. Веремей, М. В. Сотникова // Труды: XII Всероссийское совещание по проблемам управления (ВСПУ-2014). - М.: Институт проблем управления им. В.А. Трапезникова РАН, 2014. - С. 3289-3300.
29. Войткунский, Я. И. Мореходность судов / Я. И. Войткунский, И. К. Бородай, Ю. А. Нецветаев. - Л.: Судостроение, 1982. - 288 с.
30. Гилл, Ф. Практическая оптимизация / Ф. Гилл, У. Мюррей, М. Райт; пер. с англ. В. Ю. Лебедева; под ред. А. А. Петрова. - М.: Мир, 1985. - 509 с.
31. Головешкин, В. А. Операционная чувствительность алгоритмов / В. А. Головешкин, М. В. Ульянов, А. Н. Выборнов // Автоматизация и современные технологии. - 2015. - № 8. - С. 41-46.
32. Дезоер, Ч. Системы с обратной связью: Вход-выходные соотношения / Ч. Дезоер, М. Видьясагар. - М.: Наука, 1972. - 278 с.
33. Джеймс, Х. Теория следящих систем / Х. Джеймс, Н. Николс, Р. Филлипс. - М.: Физматгиз, 1951. - 464 с.
34. Дмитриев, С. П. Задачи навигации и управления при стабилизации судна на траектории / С. П. Дмитриев, А. Е. Пелевин. - СПб.: ГНЦ РФ-ЦНИИ «Электроприбор», 2002. - 160 с.
35. Жабко, А. П. Методы линейной алгебры в задачах управления / А. П. Жабко, В. Л. Харитонов. - СПб.: Изд-во С.-Петерб. ун-та, 1993. - 320 с.
36. Закатов, П. С. Курс высшей геодезии / П. С. Закатов. - М.: Недра, 1976. - 511 с.
37. Зубов, В. И. Лекции по теории управления / В. И. Зубов. - М.: Наука, 1975. - 496 с.
38. Зубов, В. И. Теория оптимального управления судном и другими подвижными объектами / В. И. Зубов. - Л.: Судостроение, 1966. - 352 с.
39. Зубов, В. И. Математические методы исследования систем автоматического регулирования / В. И. Зубов. - Л.: Машиностроение, 1974. - 336 с.
40. Калман, Р. Новые результаты в линейной фильтрации и теории предсказаний / Р. Калман, Р. Бьюси // Труды американского общества инженеров-механиков. Сер. Д. Техническая механика. - 1961. - Т. 83, № 1. - С. 123-141.
41. Катковник, В. Я. Многомерные дискретные системы управления / В. Я.
Катковник, Р. А. Полуэктов. - М.: Наука, 1966. - 420 с.
42. Квакернаак, Х. Линейные оптимальные системы управления / Х. Квакернаак, Р. Сиван. - М.: Мир, 1977. - 650 с.
43. Крамер, Г. Стационарные случайные процессы / Г. Крамер, М. Лидбеттер. - М.: Мир, 1969. - 398 с.
44. Красовский, А. А. Системы автоматического управления полетом и их аналитическое конструирование / А. А. Красовский. - М.: Наука, 1973. - 558 с.
45. Красовский, А. А. Справочник по теории автоматического управления /
A. А. Красовский. - М.: Наука, 1987. - 712 с.
46. Кузовков, Н. Т. Модальное управление и наблюдающие устройства / Н. Т. Кузовков. - М.: Машиностроение, 1976. - 184 с.
47. Ларин, В. Б. О задаче аналитического конструирования регуляторов /
B. Б. Ларин, В. Н. Сунцев // АН СССР. Автоматика и телемеханика. - 1968. -№ 12. - С. 142-144.
48. Ларин, В. Б. Спектральные методы синтеза линейных систем с обратной связью / В. Б. Ларин, К. И. Науменко, В. Н. Сунцев. - Киев: Наукова думка, 1971. - 139 с.
49. Лепихин, Т. А. Методы повышения быстродействия цифровых систем с линейной обратной связью / Т. А. Лепихин // Вестник Санкт-Петербургского университета. Серия 10: Прикладная математика. Информатика. Процессы управления. - 2010. - № 4. - С. 96-108.
50. Летов, А. М. Аналитическое конструирование регуляторов / А. М. Летов // АН СССР. Автоматика и телемеханика. - 1960. - № 4-6; 1961. - № 4, 11.
51. Летов, А. М. Динамика полета и управление / А. М. Летов. - М.: Наука, 1969. - 359 с.
52. Летов, А. М. Математическая теория процессов управления / А. М. Летов. - М.: Наука, 1981. - 256 с.
53. Лукомский, Ю. А. Управление морскими подвижными объектами / Ю. А. Лукомский, В. М. Корчанов. - СПб.: Элмор, 1996. - 320 с.
54. Меррием, К. Теория оптимизации и расчет систем управления с обратной связью / К. Меррием. - М.: Мир, 1967. - 550 с.
55. Мирошник, И. В. Теория автоматического управления. Нелинейные и оптимальные системы / И. В. Мирошник. - СПб: Питер, 2005. - 271 с.
56. Ньютон, Д. Теория линейных следящих систем / Д. Ньютон, Л. Гулд, Д. Кайзер. - М.: Физматгиз, 1961. - 408 с.
57. Олссон, Г. Цифровые системы автоматизации и управления / Г. Олссон, Д. Пиани. - СПб.: Невский Диалект, 2001. - 557 с.
58. Пелевин, А. Е. Идентификация параметров модели объекта в условиях внешних возмущений / А. Е. Пелевин // Гироскопия и навигация. - 2014. -№4 (87). - С. 111-120.
59. Первозванский, А. А. Случайные процессы в нелинейных автоматических системах / А. А. Первозванский. - М.: Физматгиз, 1962. - 352 с.
60. Петров, Ю. П. Оптимизация управляемых систем, испытывающих воздействие ветра и морского волнения / Ю. П. Петров. - Л.: Судостроение, 1973. -216 с.
61. Петров, Ю. П. Вариационные методы теории оптимального управления / Ю. П. Петров. - Л.: Энергия, 1977. - 280 с.
62. Петров, Ю. П. Синтез устойчивых систем управления, оптимальных по среднеквадратичным критериям качества / Ю. П. Петров // АН СССР, Автоматика и телемеханика. - 1983. - № 7. - С. 5-24.
63. Петров, Ю. П. Синтез оптимальных систем управления при неполностью известных возмущающих силах: учебное пособие / Ю. П. Петров. - Л.: Изд-во Ленингр. ун-та, 1987. - 292 с.
64. Подвальный, С. Л. Стартовое управление параболической системой с распределенными параметрами на графе / С. Л. Подвальный, В. В. Провоторов // Вестник Санкт-Петербургского университета. Серия 10: Прикладная математика. Информатика. Процессы управления. - 2015. - № 3. - С. 126-142.
65. Поляк, Б. Т. Робастная устойчивость и управление / Б. Т. Поляк, П. С.
Щербаков. - М.: Наука, 2002. - 303 с.
66. Поляков, К. Ю. Основы теории цифровых систем управления: учебное пособие / К. Ю. Поляков. - СПб.: СПбГМТУ, 2006. - 161 с.
67. Прасолов, А. В. Аналитические и численные методы исследования динамических процессов / А. В. Прасолов. - СПб.: Изд-во СПбГУ, 1995. - 148 с.
68. Провоторов, В. В. Оптимальное управление параболической системой с распределенными параметрами на графе / В. В. Провоторов // Вестник Санкт-Петербургского университета. Серия 10: Прикладная математика. Информатика. Процессы управления. - 2014. - № 3. - С. 154-163.
69. Пугачев, В. С. Основы статистической теории автоматических систем / В. С. Пугачев, И. Е. Казаков, П. Г. Евланов. - М.: Наука, 1974. - 400 с.
70. Пугачев, В. С. Стохастические дифференциальные системы: Анализ и фильтрация / В. С. Пугачев, И. Н. Синицын. - М.: Наука, 1990. - 560 с.
71. Солодовников, В. В. Принцип сложности в теории управления / В. В. Солодовников, В. Ф. Бирюков, В. И. Тумаркин. - М.: Наука, 1977. - 344 с.
72. Солодовников, В. В. Статистическая динамика линейных систем управления / В. В. Солодовников. - М.: Физматгиз, 1960. - 656 с.
73. Сотникова, М. В. Алгоритмы формирования маршрутов движения судов с учетом прогноза погодных условий / М. В. Сотникова // Вестник Санкт-Петербургского университета. Серия 10: Прикладная математика. Информатика. Процессы управления. - 2009. - Вып. 2. - С. 181-196.
74. Сотникова, М. В. Идентификация линейной модели магнитной левитации в среде МЛТЬАВ / М. В. Сотникова // Труды IV международной научной конференции «Проектирование инженерных и научных приложений в среде МАТЪЛВ». - 2009. - С. 507-522.
75. Сунцев, В. Н. Аналитические частотные методы оптимизации линейных систем / В. Н. Сунцев. - Киев: Ин-т математики АН УССР, 1983. - 38 с.
76. Тихонов, В. И. Анализ и синтез нелинейных систем при случайных воздействиях / В. И. Тихонов // Современные методы проектирования систем авто-
матического управления; под ред. Б. Н. Петрова, В. В. Солодовникова, Ю. И. Топчеева. - М.: Наука, 1982. - С. 488-519.
77. Ульянов, М. В. Ресурсно-эффективные компьютерные алгоритмы. Разработка и анализ / М. В. Ульянов. - М.: Физматлит, 2008. - 304 с.
78. Фомин, В. Н. Методы управления линейными дискретными объектами / В. Н. Фомин. - Л.: Изд-во Ленингр. ун-та, 1985. - 336 с.
79. Химмельблау, Д. Прикладное нелинейное программирование / Д. Химмельблау; пер. с англ.: И. М. Быховская, Б. Т. Вавилов; ред.: М. Л. Быхов-ский. - М.: Мир, 1975. - 536 с.
80. Чанг, Ш. Синтез оптимальных систем автоматического управления / Ш. Чанг. - М.: Машиностроение, 1964. - 440 с.
81. Чернецкий, В. И. Математическое моделирование динамических систем / В. И. Чернецкий. - Петрозаводск: Изд-во Петрозаводск. гос. ун-та, 1996. - 432 с.
82. Akerblad, M. A Second Order Cone Programming Algorithm for Model Predictive Control / M. Akerblad. - Licentiate's thesis, Royal Institute of Technology. -Stockholm, 2002. - 73 p.
83. Nonlinear Model Predictive Control / ed. by F. Allgower, A. Zheng. - Basel: Birkhauser-Verlag. - 2000. - 472 p.
84. A robust algorithm for identification of the frequency of a sinusoidal signal / S. V. Aranovskii [et al.] // Journal of Computer and Systems Sciences International. -2007. - Vol. 46, № 3. - P. 371-376.
85. Aranovskiy, S. Output harmonic Disturbance Compensation for Nonlinear Plant / S. Aranovskiy, A. Bobtsov // 20th Mediterranean Conference on Control and Automation. - Barcelona, Spain, 2012 - P. 386-391.
86. Arnolds, M. B. Identification and control of the Rotary Inverted Pendulum / M. B. Arnolds. - Technical Traineeship Report, University of Eindhoven, 2003. - DCT report no: 2003.100. - 60 p.
87. Astrom, K. J. Identification of ship steering dynamics. / K. J. Astrom, C. G. Kallstrom // Automatica. - 1976. - Vol. 12, № 1. - P. 9-22.
88. Speeded up robust features (SURF) / H. Bay [et al.] // Computer Vision and Image Understanding. - 2008. - Vol. 110, № 3. - P. 346-359.
89. Blazic, S. A novel trajectory-tracking control law for wheeled mobile robots / S. Blazic // Robotics and Autonomous Systems. - 2011. - Vol. 59, Issue 11. - P. 10011007.
90. Belleter, D. J. W. Experimental verification of a global exponential stable nonlinear wave encounter frequency estimator / D. J. W. Belleter, R. Galeazzi, T. I. Fossen // Ocean Engineering. - 2015. - Vol. 97. - P. 48-56.
91. Bellman, R. Dynamic Programming / R. Bellman. - New York: Dover Publications, 2003. - 340 p.
92. Bijlsma, S. J. A Computational Method for the Solution of Optimal Control Problems in Ship Routing / S. J. Bijlsma // Navigation. Journal of The Institute of Navigation. - 2001. - Vol. 48. - P. 145-154.
93. Bogsra, O. H. Design methods for control systems / O. H. Bogsra, H. Kwakernaak, G. Meinsma. - Notes for a course of the Dutch Institute of Systems and Control, 2006. - 325 p.
94. Borrelli, F. Predictive Control for linear and hybrid systems / F. Borrelli, A. Bemporad, M. Morari. - Cambridge University Press, 2011. - 359 p.
95. Braunl, Th. Embedded Robotics: Mobile Robot Design and Applications with Embedded Systems / Th. Braunl. - 2nd ed. - Berlin: Springer-Verlag, 2006. - 458 p.
96. Camacho, E. F. Model Predictive Control / E. F. Camacho,
C. Bordons. - 2nd ed. - London: Springer-Verlag, 2004. - 405 p.
97. Caspi, P. From Control Loops to Real-Time Programs / P. Caspi, O. Maler // Handbook of Networked and Embedded Control Systems / ed. by
D. Hristu, W.S. Levine. - Boston: Birkhauser, 2005. - P. 395-418.
98. Chaumette, F. Visual Servo Control. Part I: Basic Approaches / F. Chaumette, S. Hutchinson // IEEE Robotics & Automation Magazine. - 2006. - Vol. 13, No. 4. - P. 82-90.
99. Chaumette, F. Visual Servo Control. Part II: Advanced Approaches /
F. Chaumette, S. Hutchinson // IEEE Robotics & Automation Magazine. - 2007. -Vol. 14, No. 1. - P. 109-118.
100. Chen, H. A dynamic program for minimum cost ship routing under uncertainty: PhD Thesis / H. Chen. - Massachusetts: Massachusetts Institute of Technology, 1978. - 163 p.
101. Cherubini, A. Visual servoing for path reaching with nonholonomic robots / A. Cherubini, F. Chaumette, G. Oriolo // Robotica. - 2011. - Vol. 29, Issue 7. -P. 1037-1048.
102. Chye, T. K. Rotary Inverted Pendulum / T. K. Chye, T. C. Sang. - Technical Report, School of Electrical and Electronic Engineering. - Nanyang Technological University, 1999. - 155 p.
103. Cutler, C. R. Dynamic Matrix Control - A Computer Control Algorithm / C. R. Cutler, B. C. Ramaker // Proc. Joint Automatic Control Conference.- San Francisco, 1980. - Paper No. WP5-B.
104. Doyle, J. Feedback control theory / J. Doyle, B. Francis, A. Tannenbaum. -New York: Macmillan Publ. Co., 1992. - 227 p.
105. State-space solutions to standard H2 and H control problems / J. C. Doyle [et al.] // IEEE Transactions on Automatic Control. - 1989. - Vol. 34, no. 8. -P. 831-847.
106. Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences / ed. by R. Findeisen, L. Biegler, F. Allgower. - Berlin: Springer-Verlag, 2007. - 642 p.
107. Fletcher, R. Practical Methods of Optimization / R. Fletcher. - 2nd ed. -John Wiley & Sons Ltd., 2000. - 450 p.
108. Fossen, T. I. Guidance and Control of Ocean Vehicles / T. I. Fossen. - John Wiley & Sons Ltd., 1994. - 494 p.
109. Fossen, T. I. Handbook of Marine Craft Hydrodynamics and Motion Control / T. I. Fossen. - John Wiley & Sons, Ltd., 2011. - 596 p.
110. Fossen, T. I. Passive Nonlinear Observer Design for Ships Using Lyapunov
Methods: Experimental Results with a Supply Vessel / T. I. Fossen, J. P. Strand // Automatica. - 1999. - Vol. 35, No. 1. - P. 3-16.
111. Fossen, T. I. On uniform semiglobal exponential stability (USGES) of proportional line-of-sight guidance laws / T. I. Fossen, K. Y. Pettersen // Automatica. -2014. - Vol. 50, No. 11. - P. 2912-2917.
112. Francis, B. A. A course in H control theory / B. A. Francis. - Lecture Notes in Control and Information Sciences. - Vol. 88. - Berlin: Springer-Verlag, 1987. - 156 p.
113. Francis, B. A. Linear control theory with an H optimality criterion / B. A. Francis, J. C. Doyle // SIAM J. Control and Optimization. - 1987. - Vol. 25. -P. 815-844.
114. Fredriksen, E. Global K-exponential way-point maneuvering of ships: Theory and Experiments / E. Fredriksen, K. Y. Pettersen // Automatica. - 2006. - Vol. 42, No. 4. - P. 677-687.
115. Furuta, K. Swing-up time analysis of pendulum / K. Furuta, M. Iwase // Bulletin of the Polish Academy of Sciences: Technical Sciences. - 2004. - Vol. 52, № 3. - P. 153-163.
116. Glover, K. A state-space approach to Hx optimal control / K. Glover, J. Doyle // Three decades of mathematical systems theory: A collection of surveys at the occasion of the 50th birthday of Jan C. Willems. Lecture notes in control and information sciences. Vol. 135 / ed. By H. Nijmeijer, J. M. Schumacher. - Berlin: SpringerVerlag, 1989. - p. 179-218.
117. Grüne, L. Nonlinear Model Predictive Control / L. Grüne, J. Pannek. -London: Springer Verlag, 2011. - 360 p.
118. Hagiwara, H. Weather routing of (sail-assisted) motor vessels: PhD Thesis / H. Hagiwara. - Delft: Technical University of Delft, 1989. - 337 p.
119. Hartley, R. Multiple view geometry in computer vision / R. Hartley, A. Zisserman. - 2nd ed. - Cambridge University Press, 2004. - 672 p.
120. Hendricks, E. Linear Systems Control: Deterministic and Stochastic Me-
thods / E. Hendricks, O. Jannerup, P. H. Sorensen. - Berlin: Springer-Verlag, 2008. -555 p.
121. Herrero, E. R. Two-step identification of non-linear manoeuvring models of marine vessels / E. R. Herrero, F. J. V. Gonzalez // Ocean Engineering. - 2012. -Vol. 53. - P. 72-82.
122. Hung, Y. S. .Hro-optimal control. Part I. Model matching. Part II. Solution for controllers / Y. S. Hung // International Journal of Control. - 1989. - Vol. 49, No. 4. - P. 1291-1359.
123. Isidori, A. Nonlinear Control Systems / A. Isidori. - 3rd ed. - London: Springer Verlag, 1995. - 549 p.
124. James, R. W. Application of wave forecast to marine navigation / R. W. James. - Washington, D. C.: US Navy Hydrographic Office, 1957. - 78 p.
125. Kallstrom, C. G. Experiences of system identification applied to ship steering / C. G. Kallstrom, K. J. Astrom // Automatica. - 1981. - Vol. 17, No. 1. -P. 187-198.
126. Kalman, R. E. A new approach to linear filtering and prediction problems / R. E. Kalman // Journal of Basic Engineering. - Vol. 82. - P. 35-45.
127. Kalman, R. E. Contributions to the theory of optimal control / R. E. Kalman // Boletin de la Sociedad Matematica Mexicana. - 1960. - Vol. 5. - P. 102-119.
128. Kargoneckar, P. P. Hx optimal control with state-feedback / P. P. Kargoneckar, I. R. Peterson, M. A. Rotea // IEEE Transactions on Automatic Control. -1988. - Vol. 33. - P. 786-788.
129. Khalil, H. K. Nonlinear systems / H. K. Khalil. - 3rd ed. - NJ: Prentice Hall, 2002. - 750 p.
130. Kouvaritakis, B. Model Predictive Control: Classical, Robust and Stochastic / B. Kouvaritakis, M. Cannon. - Springer International Publishing, 2016. - 384 p.
131. Krener, A. J. Nonlinear observers with linearizable error dynamics / A. J. Krener, W. Respondek // SIAM Journal on Control and Optimization. - 1985. - Vol. 23, № 2. - C. 197-216.
132. Landau, I. D. Digital Control Systems: Design, Identification and Implementation / I. D. Landau, G. Zito. - London: Springer-Verlag, 2006. - 484 p.
133. Ljung, L. System identification: theory for the user / L. Ljung. - 2nd ed. -NJ: Prentice Hall, 1999. - 672 p.
134. Loria, A. A Separation Principle for Dynamic Positioning of Ships: Theoretical and Experimental Results / A. Loria, T. I. Fossen, E. Panteley // IEEE Transactions of Control Systems Technology. - 2000. - Vol. 8, No. 2. - P. 332-343.
135. Lowe, D. G. Distinctive image features from scale-invariant keypoints / D. G. Lowe // International Journal of Computer Vision. - 2004. - Vol. 2, No. 60. - P. 91-110.
136. Maciejowski, J. M. Predictive Control with Constraints / J. M. Maciejowski. - London: Prentice Hall, 2002. - 331 p.
137. MAGLEV: Magnetic Levitation Plant. User Manual. - Quanser Inc. -Ontario, Canada, 2006. - 18 p.
138. Constrained model predictive control: Stability and optimality /
D.Q. Mayne [et al.] // Automatica. - 2000. - Vol. 36, Issue 6. - P. 789-814.
139. Nesterov, Y. Interior-point polynomial algorithms in convex programming / Y. Nesterov, A. Nemirovski. - Philadelphia: SIAM, 1994. - 405 p.
140. Nikulchev, E. Identification of Structural Model for Chaotic Systems /
E. Nikulchev, O. Kozlov // Journal of Modern Physics. - 2013. - Vol. 4, No. 10. -P.1381-1392.
141. Nikulchev, E. V. Reconstruction models for attractors in the technical and economic processes / E. V. Nikulchev // International Journal of Computer Trends and Technology. - 2013. - Vol. 6, № 3. - P. 171-175.
142. A visual servoing approach for autonomous corridor following and doorway passing in a wheelchair / F. Pasteau [et al.] // Assistance and Service Robotics in a Human Environment. - 2016. - Vol. 75, Part A. - P. 28-40.
143. Perez, T. Ship Motion Control: Course Keeping and Roll Stabilisation using Rudder and Fins / T. Perez. - London: Springer-Verlag, 2005. - 300 p.
144. Perez, T. Practical aspects of frequency-domain identification of dynamic models of marine structures from hydrodynamic data / T. Perez, T. I. Fossen // Ocean Engineering. - 2011. - Vol. 38, № 2-3. - P. 426-435.
145. The mathematical theory of optimal processes / L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkerelidze, E. F. Mischenko. - New York: John Wiley, 1962. - 360 p.
146. Prime, H. Modern concepts in control theory / H. Prime. - London: McGraw-Hill, 1969. - 202 p.
147. Qin, S. J. An overview of subspace identification / S. J. Qin // Computers and Chemical Engineering. - 2006. - Vol. 30, Issues 10-12. - P. 1502-1513.
148. Model Predictive Heuristic Control: Application to Industrial Processes / J. Richalet [et al.] // Automatica. - 1978. - Vol. 14, Issue 5. - P. 413-428.
149. Rosenwasser, E. N. Computer Controlled Systems. Analysis and Design with Process-orientated Models / E. N. Rosenwasser, B. P. Lampe. - London: SpringerVerlag, 2000. - 486 p.
150. Rosenwasser, E. N. Multivariable Computer-controlled Systems. A Transfer Function Approach / E. N. Rosenwasser, B. P. Lampe. - London: Springer-Verlag, 2006. - 478 p.
151. Rossiter, J. A. Model-Based Predictive Control: A Practical Approach / J. A. Rossiter. - Boca Raton: CRC Press, 2003. - 318 p.
152. Ruscio, D. Model Predictive Control and optimization / D. Ruscio. -Lecture Notes for a course of the Telemark University College, 2001. - 176 p.
153. Sami Fadali, M. Digital Control Engineering: Analysis and Design / M. Sami Fadali, A. Visioli. - Burlington: Academic Press, 2009. - 552 p.
154. Handbook of Robotics / ed. by B. Siciliano, O. Khatib. - Berlin: SpringerVerlag, 2008. - 1628 p.
155. Robotics: modelling, planning and control / B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo. - London: Springer-Verlag, 2009. - 644 p.
156. Slotine, J. J. E. Applied Nonlinear Control / J. J. E. Slotine, W. Li. - NJ:
Prentice-Hall, 1991. - 461 p.
157. S0rensen, A. J. A survey of dynamic positioning control systems / A. J. S0rensen // Annual Reviews in Control. - 2011. - Vol. 35, No. 1. - P. 123-136.
158. Sotnikova, M. V. Dynamic Positioning Based on Nonlinear MPC / M. V. Sotnikova, E. I. Veremey // IFAC Proceedings Volumes (IFAC-PapersOnline). - 2013.
- Vol. 9, PART 1. - P. 37-42.
159. Spong, M. W. Robot Modeling and Control / M. W. Spong, S. Hutchinson, M. Vidyasagar. - John Wiley & Sons, Inc., 2005. - 496 p.
160. Szeliski, R. Computer Vision: Algorithms and Applications / R. Szeliski. -London: Springer-Verlag, 2011. - 812 p.
161. Tomasi, C. Detection and tracking of point features / C. Tomasi, T. Kanade.
- Tech. report (CMU-CS-91-132). - Carnegie Mellon University, 1991. - 22 p.
162. Van der Schaft, A. J. L2-Gain and passivity techniques in nonlinear control / A. J. Van der Schaft. - 2nd ed. - London: Springer-Verlag, 2000. - 248 p.
163. Veremey, E. I. H^-Approach to Wave Disturbance Filtering or Marine Autopilots / E. I. Veremey // IFAC Proceedings Volumes (IFAC-PapersOnline). - 2012. -Vol. 9, PART 1. - P. 410-415.
164. Veremey, E. I. Dynamical Correction of Positioning Control Laws / E. I. Veremey // IFAC Proceedings Volumes (IFAC-PapersOnline). - 2013. - Vol. 9, PART 1. - P. 31-36.
165. Veremey, E. Spectral Approach to H^-Optimal SISO Synthesis Problem / E. Veremey, M. Sotnikova // WSEAS Transactions on Systems and Control. - 2014. -Vol. 9, Art. #42. - P. 405-414.
166. Modal Parametric Optimization of Control Laws with Special Structure / E. I. Veremey [et al.] // Proceedings of 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014). - KINTEX, Korea, 2014. - P. 1278-1283.
167. Veremey, E. I. Ships' Steering in Accurate Regime Using Autopilots with Special Structure of Control Law / E. I. Veremey, M. V. Korovkin, M. V. Sotnikova // IFAC Proceedings Volumes (IFAC-PapersOnline). - 2015. - Vol.
48, № 16. - P. 7-12.
168. Veremey, E. I. Visual Image Based Dynamical Positioning Using Control Laws with Multipurpose Structure / E. I. Veremey, M. V. Sotnikova // IFAC Proceedings Volumes (IFAC-PapersOnline). - 2015. - Vol. 48, № 16. - P. 184-189.
169. Vidyasagar, M. Control system synthesis: A factorization approach / M. Vidyasagar. - Cambridge (Mass.): MIT Press, 1985. - 436 p.
170. Wiener, N. Extrapolation, interpolation and smoothing of stationary time series / N. Wiener. - Cambridge: MIT Press, 1949. - 163 p.
171. Zadeh, L. A. Linear Systems Theory / L. A. Zadeh, C. A. Desoer. - New York: McGraw Hill book Co., 1963. - 628 p.
172. Zames, G. Feedback and complexity / G. Zames // Special plenary lecture addendum. - IEEE Conference on Decision and Control. - 1976.
173. On real-time robust model predictive control / M. N. Zeilinger [et al.] // Automatica. - 2014. - Vol. 50, № 3. - P. 683-694.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.