Математические модели ранжирования объектов налогового контроля тема диссертации и автореферата по ВАК РФ 05.13.18, кандидат технических наук Полупанов, Дмитрий Васильевич

  • Полупанов, Дмитрий Васильевич
  • кандидат технических науккандидат технических наук
  • 2007, Уфа
  • Специальность ВАК РФ05.13.18
  • Количество страниц 187
Полупанов, Дмитрий Васильевич. Математические модели ранжирования объектов налогового контроля: дис. кандидат технических наук: 05.13.18 - Математическое моделирование, численные методы и комплексы программ. Уфа. 2007. 187 с.

Оглавление диссертации кандидат технических наук Полупанов, Дмитрий Васильевич

СПИСОК УСЛОВНЫХ СОКРАЩЕНИЙ.

СЛОВАРЬ ОБОЗНАЧЕНИЙ, ИСПОЛЬЗУЕМЫХ В ИНДЕКСАХ.

ВВЕДЕНИЕ.

ГЛАВА 1. ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ НЕЙРОСЕТЕВОЙ АППРОКСИМАЦИИ МНОГОМЕРНЫХ ФУНКЦИОНАЛЬНЫХ ЗАВИСИМОСТЕЙ В УСЛОВИЯХ ИСКАЖЕНИЯ ДАННЫХ И ДЕФИЦИТА НАБЛЮДЕНИЙ.

1.1. Анализ состояния вопроса по разработке математических моделей налогового контроля.

1.2. Обобщенная постановка и особенности задачи ранжирования экономических объектов с сильнозашумленными данными.

1.3. Анализ условий моделирования.

1.4. Проблемы, связанные с аппроксимацией функции многих переменных с помощью нейронных сетей в специфических условиях моделирования.

1.5. Проблемы, связанные с устойчивостью нейронных сетей по возмущению входных данных.

ВЫВОДЫ ПО ГЛАВЕ 1.

ГЛАВА 2. КОНЦЕПЦИЯ ПОСТРОЕНИЯ ГИБРИДНЫХ НЕЙРОСЕТЕВЫХ МОДЕЛЕЙ РАНЖИРОВАНИЯ ОБЪЕКТОВ НАЛОГОВОГО КОНТРОЛЯ.

2.1. Управление качеством нейросетевой модели с помощью метода предпро-цессорной обработки данных, реализующего многоуровневое иерархическое структурирование модели.

2.2. Повышение однородности НСМ на первом иерархическом уровне структурирования с помощью оптимизационной итерационной процедуры кластеризации базы данных.

2.3. Повышение обобщающих свойств нейросетевой модели и однородности данных на втором иерархическом уровне структурирования на основе фоновой общесистемной закономерности.

2.4. Алгоритм ранжирования налогоплательщиков на основе общесистемных закономерностей асимметрии и неполного подавления побочных дисфункций структурирования информационной системы.

2.5. Метод модифицированного обобщенного перекрестного подтверждения для оценки адекватности гибридных нейросетевых моделей.

ВЫВОДЫ ПО ГЛАВЕ 2.

ГЛАВА 3. РАБОЧИЙ АЛГОРИТМ РАНЖИРОВАНИЯ ЭКОНОМИЧЕСКИХ ОБЪЕКТОВ С СИЛЬНОЗАШУМЛЕННЫМИ ДАННЫМИ НА ОСНОВЕ ГИБРИДНОЙ НЕЙРОСЕТЕВОЙ МАТЕМАТИЧЕСКОЙ МОДЕЛИ.

3.1. Общее описание рабочего алгоритма.

3.2. Процедура построения НСМ задаваемого типа.

3.3. Итерационная оптимизационная процедура кластеризации базы данных.

3.4. Итерационная оптимизационная процедура очистки образованных кластеров от аномальных наблюдений по обобщенному (векторному) критерию точности, устойчивости и детерминированности.

3.5. Процедура построения рабочей НСМ и расчета доверительного интервала для отклонений 8(.

3.6. Процедура расчета отклонений по рабочей НСМ на базе данных образованного кластера.

3.7. Процедура обобщенного перекрестного подтверждения.

3.8. Процедура вычисления вероятностного у-критерия ранжирования.

3.9. Процедура ранжирования налогоплательщиков на основе 1[ькртерия.

3.10. Процедура модифицированного обобщенного перекрестного подтверждения.

3.11. Процедура окончательного ранжирования налогоплательщиков на основе \|/-критерия на исходной базе данных.

ВЫВОДЫ ПО ГЛАВЕ 3.

ГЛАВА 4. РЕШЕНИЯ ПРИКЛАДНЫХ ЗАДАЧ РАНЖИРОВАНИЯ ОБЪЕКТОВ НАЛОГОВОГО КОНТРОЛЯ НА ОСНОВЕ РАЗРАБОТАННОЙ ГИБ

РИДНОЙ НЕЙРОСЕТЕВОЙ МАТЕМАТИЧЕСКОЙ МОДЕЛИ.

4.1. Построение гибридных нейросетевых моделей ранжирования для выборки Z1.

4.2. Построение гибридных нейросетевых моделей ранжирования для выборки Z".

4.3. Верификация нейросетевых моделей на основе нгпурных.экспериментов.

ВЫВОДЫ ПО ГЛАВЕ 4.

Рекомендованный список диссертаций по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК

Введение диссертации (часть автореферата) на тему «Математические модели ранжирования объектов налогового контроля»

В современных условиях развития российской экономики актуальным является максимальное наполнение государственного бюджета доходами и обеспечение их сбалансированности с расходами. В рамках приоритетных направлений совершенствования налоговой системы Российской Федерации, определенных Президентом и Правительством, предусмотрено, что использование эффективных приемов и методов налогового контроля, дальнейшее совершенствование механизма осуществления налогового контроля должно способствовать значительному росту налоговых поступлений в бюджет. Под налоговым контролем в настоящем контексте понимаются предварительные (камеральные) и последующие выборочные выездные проверки, целью которых является выявление фактов нарушения налогового законодательства отдельными налогоплательщиками и, в конечном итоге, повышение уровня собираемости налогов.

В настоящее время, в силу несовершенства законодательства и нестабильной экономической обстановки, острой является проблема модернизации налоговой системы России и, более узко, системы налогового контроля и управления. Рост числа налогоплательщиков, увеличение разнообразия видов их деятельности в условиях быстро изменяющейся рыночной среды приводит к усложнению методик налогового контроля. При этом возрастают требования к организации контрольной работы, в том числе к повышению уровня её методического обеспечения. Особая роль отводится совершенствованию технологий налоговых проверок. Как было отмечено руководителем Департамента организации налогового контроля В.В. Сашечевым [9], «Министерство четко ставит перед налоговыми органами задачу: выходить на выездные проверки лишь тогда, когда по результатам анализа всего спектра полученной информации есть основания подозревать налогоплательщика в нарушении действующего законодательства. Нет смысла расходовать и без того ограниченные ресурсы налоговых органов на проведение проверок бесперспективных - то есть проверок тех фирм, где заведомо нет нарушений».

Правильная организация контрольной работы налоговых органов позволяет существенно увеличить поступления платежей в бюджет. Поэтому, как уже было отмечено, актуальной проблемой исследований представляется совершенствование технологии налогового контроля (предварительных проверок и связанных с ними операций отбора налогоплательщиков для выездных проверок) на основе новейших инструментариев математического моделирования, численных методов и информационных технологий в условиях существенного искажения данных налоговых деклараций, дефицита наблюдений и т.д.

Предметом исследования является технология математического моделирования ранжирования объектов налогового контроля (налогоплательщиков) на основе информационно-математической модели, с позиций дискриминации нарушителей налогового законодательства по степени искажения ими налоговых деклараций. Исследуемый объект относится к классу объектов с сильнозашумленными данными, что определяет направление исследований.

Объекты налогового контроля функционируют в условиях стохастической изменчивости, как внутренней структуры, так и внешней среды. Как уже было отмечено, они характеризуются специфическими особенностями, взаимно отягчающими построение адекватных моделей с заданными ассоциативными свойствами. В результате наблюдается увеличение неопределенности внешней и внутренней среды и, как следствие, увеличение разброса выходных параметров экономической деятельности налогоплательщика. Поэтому переход к математической формализации принятия решений о включении объекта налогового контроля в план выездных проверок связан с моделированием трудно формализуемых целей, ограничений и связей.

Преимущество традиционного аппарата математического моделирования (методов регрессионного анализа), применяющегося в первую очередь для аппроксимации производственной функции объектов налогового контроля, проявляется в строго определенных и ограниченных условиях, описываемых точными данными. К сожалению, классические методики оказываются малоэффективными во многих практических задачах. Это связано с тем, что невозможно достаточно полно описать реальность с помощью небольшого числа параметров модели, либо расчет модели требует слишком много времени и вычислительных ресурсов.

На практике экономические системы функционируют в условиях неопределенности, что делает результаты строгих математических расчетов малоэффективными для решения поставленных задач. В качестве основных тенденций математической формализации процессов в экономических системах, функционирующих в условиях неопределенности, можно указать использование современных информационных технологий, основанных на методах искусственного интеллекта, имитирующих природные процессы, такие как деятельность нейронов мозга или процесс естественного отбора (использование теории нечетких множеств и нечеткой логики, нейросетевых математических моделей и генетических алгоритмов), а также использование аналитических методов оценки риска.

Вопросам управления налогообложением в аспекте моделирования процессов сбора налогов и оценки добросовестности отдельных налогоплательщиков посвящены работы А.Б. Паскачева (в соавторстве) [71], А.Б. Соколова [84]. Однако разработанные в них многофакторные мультипликативные индексные регрессионные модели никак не отражают влияния внешней среды, динамики экономического процесса и неадекватны в силу своей предельной простоты. Т. Г. Скориком [82, 83] предложена методика отбора налогоплательщиков для проведения выездной налоговой проверки на основе сложных информационно-аналитических структур. Но указанная модель основана только на сравнении отчетных показателей с предыдущими и не учитывает систематического искажения данных. В наиболее продвинутой в этой области работе Д.Г. Черника (в соавторстве) [18] предложена модель сравнения декларированных и расчетных значений выходной величины для выборки налогоплательщиков. Она строится на комбинации уравнения регрессии с логит-пробит анализом и реализована на модельном примере с искусственно введенными зашумлениями. Т.е. строится имитационная модель, не совпадающая с реальными данными. В реальную практику указанная модель не внедрена в силу своей неадекватности, невыполнения постулатов регрессионного анализа.

Применяемые в настоящее время в ФНС информационные технологии по операциям предварительных (камеральных) проверок налогоплательщиков - юридических лиц, отбора налогоплательщиков для выездных проверок, оценки ожидаемых сумм доначислений сводятся к автоматизации мониторинга декларируемых отчетных данных, их анализу на логическую непротиворечивость для декларированного отдельного субъекта, проверку правильности арифметических действий по регламенту отчетности. Действующее программное обеспечение (программно-информационные комплексы RNALN, PRO, ЭОД, Аудитор, разработанные налоговыми органами РФ) носит преимущественно запросный режим отбора налогоплательщиков для выездных проверок, когда критерии отбора вводятся налоговыми инспекторами самостоятельно, что не исключает влияния на процесс отбора субъективного фактора. Для них также характерно отсутствие учета отраслевой специфики налогоплательщиков и ориентация на сопоставление уровней отдельных показателей, содержащихся в налоговой отчетности, с предельными значениями этих показателей для соответствующей отрасли.

Более того, существующая технология налоговых проверок носит субъективный характер; используемая в ныне применяющемся программном комплексе ЭОД математическая модель основана на детерминированных арифметических формулах. Она позволяет лишь выявить арифметические ошибки и логические противоречия в налоговых декларациях, не предусматривает статистической обработки данных, не выявляет отклонения в первичной документации по сравнению со средним уровнем декларируемых экономических показателей аналогичных предприятий-налогоплательщиков. Субъективный характер проверок, приводит в некоторых случаях к ошибкам и созданию почвы для коррупции. Так, в Решении Коллегии МНС от 14 ноября 2001 отмечалось отмечалось, что «не может быть признана нормальной ситуация, при которой 43% проводимых налоговыми органами выездных налоговых проверок являются нерезультативными».

Проблема нейросетевого математического моделирования экономических объектов и систем, в том числе объектов налогового контроля и налогообложения, привлекает внимание многих отечественных и зарубежных ученых. Методам и результатам решения практических задач финансового рынка с использованием нейронных сетей, в частности решения задачи ранжирования корпоративных заемщиков при предоставлении им кредитов, осуществленного по заказу Министерства юстиции Голландии, посвящена монография Д.-Э.Бэстенса, В.-М. ван ден Берга и Д. Вуда [14]. Приложениями нейрокомпьютинга в экономике и бизнесе, прогнозированием финансового рынка и оценкой платежеспособности предприятий занимались А.А. Ежов и С.А. Шумский [44]. Существенный вклад в область интеллектуального управления производственными системами на основе нейро-нечетких моделей внесен Б.Г. Ильясовым, В.И. Васильевым, С.Т. Кусимовым [15-17, 49, 50, 59]. Анализу процессов управления и поддержке принятия решений в условиях неопределенности на основе использования методов искусственного интеллекта, в частности классификации критических ситуаций с помощью нейронных сетей, посвящены работы JI.P. Черняховской [91, 96-98]. В работах J1.A. Исмагиловой [51-53] осуществляется оценка налогового потенциала и прогнозирование налоговых поступлений с использованием методов искусственного интеллекта. Применением нейросетевых технологий в сложных инженерных и экономических системах, в частности нейросетевыми непараметрическими методами анализа экспериментальных данных, занимался С.А. Терехов [29, 86]. Использованию нейронных сетей в финансовом инжиниринге посвящены работы И.С. Абу-Мустафы и др. [100]. Конструирование интеллектуальных автоматизированных систем управления эффективным процессом нефтегазодобычи на основе нейронных сетей изложено в работах

Ю.И. Зозули [45, 47]. В диссертационном исследовании И.В. Осиповой [69] разрабатываются модели и алгоритмы информационно-аналитической поддержки для повышения эффективности процесса планирования налоговых доходов регионального бюджета (на примере бюджета Республики Башкортостан (РБ)), в частности разработаны нейро-нечеткие модели прогнозирования налоговых доходов регионального бюджета. В диссертационном исследовании И.В. Орловой [68] разрабатывается информационная технология оценки налогового потенциала и прогнозирования налоговых поступлений в системе налогообложения, разработаны модели классификации субъектов налогообложения по структуре уплаченных доходов, прогнозирования налоговых поступлений в бюджет, гибкого формирования налоговой нагрузки и оптимизации налоговых ставок.

Г.И. Букаевым и Н.Д. Бубликом предложена и обоснована новая технология оценки финансовых показателей налогоплательщиков на основе получения с помощью нейросетевых моделей (НСМ) «эталонного» значения производственной функции класса налогоплательщиков [12, 13]. На основе этих предложений С.А. Горбатковым разработаны принципы нейросетевого моделирования сложных экономических систем, предложено использовать для построения НСМ налогового контроля общесистемные законы и закономерности кибернетики [10-13, 31, 32, 42]. Однако разработка концепции построения таких моделей не была реализована в полном объеме. Построению НСМ камеральных проверок торговых предприятий и оптимизации их постналогового дохода посвящено диссертационное исследование Н.Т. Габдрах-мановой [21]. Вопросами планирования выездных проверок на основе модели непараметрического сглаживания занимался И.И. Голичев [10,12,26].

Существенное влияние на развитие общей теории нейрокомпьютеров, нейронных сетей и математического моделирования на их основе оказали работы российских ученых Э.Д. Аведьяна, С.И. Барцева, С.С. Валеева, В.И. Васильева, А.И. Галушкина, А.Н. Горбаня, B.JI. Дунина-Барковского, Б.Г. Ильясова, JI.A. Исмагиловой, Г.Г.Малинецкого, Е.М. Миркеса, В.А. Охонина,

Д.А. Россиева, Я.З. Цыпкина, JI.P. Черняховской, Н.И. Юсуповой и др. Следует отметить также вклад ученых дальнего и ближнего зарубежья, таких как И.С. Абу-Мустафа, Э. Баррон, П. Веброс, В. Видроу, В.А. Головко, А.Г. Ивахненко, Т. Кохонен, Э.М. Куссуль, В. Мак-Калох, М. Минский, Н. Ниль-сон, В. Пите, С. Пайперт, Ф. Розенблат, Д.Е. Румельхарт, Дж. Такер, К.Фунахаши, С. Хайкин, Р. Хент-Нильсен, Д. Хопфилд, К. Хорник, Г. Цы-бенко и др. Указанные работы оказали существенное влияние на автора в процессе выполнения диссертационной работы.

Несмотря на существующие многочисленные разработки в области нейросетевого моделирования, для стохастических объектов с сильнозашум-ленными данными, объектов налогового контроля в частности, методы и принципы построения эффективных, адекватных и качественных НСМ не разработаны в полном объеме. Как уже отмечалось, причиной этому служат специфические условия моделирования. Опыт автора показывает, что «лобовое», на основе применения стандартных нейропакетов, построение эффективных НСМ в данном классе задач невозможно без разработки основополагающей концепции и использования процедур предпроцессорной обработки данных. Это обусловливает актуальность диссертационной работы в аспекте нейросетевого моделирования.

Подводя итоги вышеизложенного, следует указать, что уровень автоматизации и объективности оценок на стадии предварительных проверок и отбора налогоплательщиков для выездных проверок в существующих информационных технологиях налогового контроля не соответствует запросам практики, с одной стороны, и потенциальным возможностям современного математического аппарата, в частности нейросетевых методов, с другой стороны. Поэтому актуальной научной задачей является разработка технологии построения модели аппроксимации производственной функции объектов налогового контроля и разработка на их основе информационно-математических моделей ранжирования налогоплательщиков для включения их в план проведения выездных налоговых проверок.

Основная концепция настоящей работы состоит в следующем. Прежде чем дать рекомендации по принятию решения о необходимости выездной проверки налогоплательщика, следует уменьшить неопределенность в оценке его состояния. В результате этого, вместо отсутствующей информации о нормативном объеме налогов, при принятии решения используется вероятностная расчетная оценка достоверности декларируемого уровня налогов. Предлагается предварительная аналитическая проверка, заключающаяся в следующем. На основе НСМ, аппроксимирующей производственную функцию достаточно однородного кластера налогоплательщиков, вычисляются относительные отклонения между декларированными значениями выходного показателя и «эталонными», полученными путем моделирования деятельности налогоплательщика в течение некоторого предшествующего периода, например за 2 года, включая последнее наблюдение в момент прогноза. Смысл термина «эталонное значение» отражает объективный характер получаемой оценки, поскольку она обусловлена статистической обработкой данных по достаточно большой и достаточно однородной выборке налогоплательщиков. Далее на основе вероятностного принципа построения дискриминационного правила строится вероятностная модель ранжирования налогоплательщиков (BMP). Во взаимодействии НСМ и BMP получается гибридная нейросетевая модель (ГНСМ) ранжирования объектов налогового контроля.

Целью диссертации является разработка научных основ технологии ранжирования объектов налогового контроля для синтеза плана отбора налогоплательщиков для проведения выездных проверок.

Для реализации поставленной цели в диссертационной работе были поставлены следующие задачи:

1. Исследование возможности нейросетевой аппроксимации многомерных функциональных зависимостей в условиях сильного зашумления данных (и даже частичного сознательного их искажения) и дефицита наблюдений.

2. Разработка концепции построения эффективных, адекватных ГНСМ на

14 основе общесистемных закономерностей кибернетики, разработка эффективных методов предпроцессорной обработки данных и оценки адекватности ГНСМ.

3. Разработка рабочего алгоритма ранжирования экономических объектов с сильнозашумленными данными на основе ГНСМ.

4. Построение прикладных ГНСМ ранжирования объектов налогового контроля, экспериментальная апробация и верификация ГНСМ.

На защиту выносятся следующие научные положения, полученные лично автором.

1. Метод синтеза плана отбора налогоплательщиков для проведения выездных проверок на основе ГНСМ. Новизна данного положения заключается в использовании «эталона» - производственной функции кластера налогоплательщиков, полученной с помощью ГНСМ. Это позволяет выявлять нарушения в налоговых декларациях и получать объективные оценки финансового состояния налогоплательщиков путем извлечения знаний об искаженных входных факторах и выходной величины через другие, неискаженные. Метод впервые изложен в приоритетных публикациях автора [11, 34, 39, 40, 73]. Новизна данного положения заключается также в том, что ранее методов отбора налогоплательщиков для проведения выездных проверок на основе расчета «эталона», полученного с помощью ГНСМ, не существовало. Известна модель непараметрического сглаживания [10, 26], разработанная И.И. Голичевым одновременно с исследованиями автора. Данная модель использовалась в главе 4 диссертационной работы для оценки адекватности ГНСМ. Взаимное подтверждение обоих моделей составило 83%.

2. Метод предпроцессорной обработки данных на основе системного подхода, который позволяет обеспечить приемлемый уровень достоверности получаемых оценок при сильном искажении базы данных (БД) (до 50.60% по выбранной мере интенсивности искажений и порядка 80%) по объему искаженных вектор-столбцов и строк в БД). Сущность упомянутого подхода состоит в использовании общесистемных закономерностей кибернетики для

15 разработки способов предпроцессорной обработки данных. Данный метод основывается на предложении управления качеством НСМ на ранних стадиях ее построения и включает в себя:

• Оригинальную процедуру оптимальной кластеризации исходной БД. Установлено и численно обосновано, что существует оптимальное число однородных кластеров, на которые разбивается БД в условиях дефицита наблюдений.

• Оригинальную процедуру повышения однородности данных на втором иерархическом уровне структурирования: очистки образованных кластеров по векторному критерию точности, устойчивости и детерминированности вспомогательных НСМ. Установлено и численно обосновано, что существует оптимальная итерация процесса очистки кластера от аномальных наблюдений в условиях дефицита наблюдений.

Новизна указанного метода состоит в том, что он предложен впервые и изложен в приоритетных публикациях автора [34-40, 74-75]. Достоверность положения 2 подтверждена практическим построением эффективных ГНСМ, их верификацией и экспериментальной апробацией на реальных данных с погрешностью порядка 8-10%.

3. Вероятностный критерий ранжирования объектов налогового контроля по числовой мере искажения ими отчетной документации с внесением в него эвристической априорной информации, полученной на основе использования доверительных интервалов для отклонений между расчетными (полученными с помощью НСМ), и декларированными значениями моделируемого показателя, что позволяет повысить достоверность процедуры ранжирования. Эта идея базируется на общесистемном законе асимметрии, а также на общесистемной закономерности неполного подавления дисфункций структурируемой информационной системы.

Ранжирование налогоплательщиков по критерию, содержащему произведение трех величин: отклонения между декларированным и расчетным значением выходной величины, смещенного на полуширину доверительного

16 интервала, вероятности события, что ожидаемое значение отклонения моделируемой случайной величины будет не меньше выборочного среднего и коэффициента масштаба налогоплательщика на основе ретроспективного анализа предложено впервые. Теоретическая ценность положения состоит в том, что оно создает научную основу построения эффективных ГНСМ ранжирования объектов налогового контроля.

4. Метод модифицированного обобщенного перекрестного подтверждения (МОПП) ГНСМ по финишному критерию совпадения множества проранжированных налогоплательщиков для нескольких независимых НСМ с заданной доверительной вероятностью. МОПП базируется на общесистемной закономерности неполного подавления дисфункций структурируемой информационной системы и служит основным инструментом анализа и подтверждения адекватности ГНСМ.

Данное положение предложено впервые и изложено в приоритетных публикациях автора [34, 39-40, 73].

Достоверность положения подтверждается результатами МОПП, описанными в главе 4, по совпадению множеств проранжированных налогоплательщиков, полученных на основе различных типов НСМ (отличающихся числом скрытых слоев, числом искусственных нейронов и видом активаци-онных функций в скрытых слоях). Достоверность совпадения независимых моделей составила 80-90% в различных кластерах.

5. Рабочий алгоритм ранжирования стохастических объектов с сильно-зашумленными данными на базе ГНСМ. Применительно к ранжированию объектов налогового контроля по мере искажения ими отчетной документации данный алгоритм служит инструментарием принятия решений о включении налогоплательщика в план проведения выездных проверок.

Новизна алгоритма состоит в том, что в него введены дополнительные процедуры итерационного взаимодействия традиционных операций обучения и тестирования нейросети (НС) с операциями предобработки данных и обеспечения адекватности.

Новизна положения подтверждена свидетельством о регистрации алгоритма в Отраслевом фонде алгоритмов и программ [34], а достоверность -вычислительными экспериментами в главе 4.

Научная новизна диссертационного исследования заключается в следующем:

Разработан оригинальный метод предпроцессорной обработки данных для построения ГНСМ ранжирования объектов налогового контроля на основе системного подхода, который позволяет получить эффективные модели для сложных условий моделирования (сильное зашумление БД вплоть до ее сознательного искажения, отягченное дефицитом наблюдений, неконтролируемой внутренней структурой объекта и др.). Указанный метод в работе реализуется в многоуровневом иерархическом структурировании модели, основанном на законе энтропийного равновесия открытой информационной системы. На иерархических уровнях структурирования модели реализуются специальные способы предпроцессорной обработки данных, повышающие однородность БД. На первом иерархическом уровне предложена оптимизационная итерационная процедура кластеризации исходной БД по критерию точности НСМ. В отличие от традиционных методов кластеризации процедура увязана с качеством обучения НСМ, что позволяет структурировать БД, повышая ее однородность в аспекте обучения НС. На втором иерархическом уровне предложена оптимизационная итерационная процедура очистки кластера исходных данных от аномальных наблюдений по векторному критерию точности, устойчивости и детерминированности вспомогательных НСМ (субмоделей) каждого кластера, основанная на общесистемной фоновой закономерности. В отличие от традиционных методов устранения аномальных наблюдений, процедура увязана с обучением модели, что позволяет увеличить однородность данных внутри кластера.

Разработан вероятностный критерий ранжирования налогоплательщиков, основанный на общесистемных закономерностях асимметрии и неполного подавления побочных дисфункций структурирования информационной

18 системы, который позволяет получить оптимальный план выездных проверок в аспекте ожидаемых доначислений

Разработан метод модифицированного обобщенного перекрестного подтверждения оценки адекватности ГНСМ, основанный на общесистемной закономерности неполного подавления побочных дисфункций.

Практическая значимость работы заключается в следующем: Полученные в диссертационной работе результаты могут быть использованы для решения практических задач ранжирования сложных стохастических объектов с сильнозашумленными данными. В частности, результаты ранжирования объектов налогового контроля могут служить основой для создания производственного плана выездных проверок.

Результаты диссертационного исследования, в том числе технология математического моделирования по созданию НСМ аппроксимации производственной функции и вероятностной модели ранжирования (BMP) объекта налогового контроля в специфических условиях, могут быть также использованы и для более широкого класса задач, не рассматриваемых в диссертации (прогнозирование экономических показателей налогоплательщика и оптимизация его финансового состояния, оценка ожидаемой суммы доначислений, ранжирование корпоративных заемщиков при предоставлении им кредитов, оптимальное бюджетирование муниципальных образований при ограничении бюджетных средств региона и др.).

Апробация работы состоит в многочисленных цифровых экспериментах, а также проведении натурного поверочного расчета для 6 натурных объектов, описанного в главе 4. Отдельные результаты диссертационного исследования докладывались на следующих научных конференциях:

• Международная научная конференция «Математические модели и методы их исследования (задачи механики сплошной среды, экологии, технологических процессов, экономики)». Красноярск, Россия, 18-24 августа 1999 г.

• Международная научная конференция «Моделирования, вычисления, проектирование в условиях неопределенности». Уфа, Россия 2-5 февраля

19

2000 г.

• Шестая Международная научно-техническая конференция студентов и аспирантов «Радиоэлектроника, электротехника и энергетика». Москва, 1-2 марта 2000 г.

• Республиканская конференция студентов и аспирантов по математике. Уфа, 17 мая 2000 г.

• Международная научная конференция «Континуальные логико-алгебраические и нейросетевые методы».-2000. Ульяновск, Россия, 14-15 мая

2000 г.

• Международная научная конференция «Континуальные логико-алгебраические и нейросетевые методы».-2001. Ульяновск, Россия, 15-17 мая

2001 г.

• Региональная школа-конференция для студентов, аспирантов и молодых ученых по математике и физике. Уфа, 1-2 июня 2001 г.

• Второй Всероссийский симпозиум по прикладной и промышленной математике (летняя сессия). Самара, 1-6 июля 2001 г.

• Второй Всероссийский симпозиум по прикладной и промышленной математике (зимняя сессия). Йошкар-Ола, 1-6 декабря 2001г.

• VIII Всероссийская конференция «Нейрокомпьютеры и их применение» НКП-2002 с международным участием. Москва, 21-22 марта 2002г.

• Третий Всероссийский симпозиум по прикладной и промышленной математике (весенняя сессия). Ростов-на-Дону, 14-20 мая 2002г.

• Третий Всероссийский симпозиум по прикладной и промышленной математике (осенняя сессия). Сочи, 1-6 октября 2002г.

• Пятый Всероссийский симпозиум по прикладной и промышленной математике (осенняя сессия). Сочи, 26 сентября - 3 октября 2004г.

• Шестой Всероссийский симпозиум по прикладной и промышленной математике (осенняя сессия). Сочи, 1-7 октября 2005г.

• VIII Всероссийская научно-техническая конференция «Нейроинформатика-2006». Москва, 24-27 января 2006 г.

• V Всероссийская научно-практическая конференция «Проблемы и перспективы российской экономики». Пенза, 15-16 марта 2006 г.

• Международная научно-практическая конференция «Современные направления теоретических и прикладных исследований». Одесса, 15-25 апреля 2006 г.

• Седьмой Всероссийский симпозиум по прикладной и промышленной математике (весенняя сессия). Кисловодск, 2-7 мая 2006г.

• XI Всероссийская научно-техническая конференция «Нейроинформатика-2007». Москва, 23-26 января 2007 г.

В диссертационной работе были использованы следующие методы исследований: функционального анализа, положения общей теории систем, методы теории нейросетевого моделирования, классические методы теории вероятности и математической статистики.

Основное содержание диссертации отражено в 22 опубликованных работах общим объемом 16,56 п.л. в том числе автора 8,12 п.л.

Структура работы. Диссертация состоит из введения, четырех глав, заключения, списка использованной литературы из 124 наименований, 2 приложений и содержит 171 страницу основного печатного текста, 29 рисунков, 22 таблицы.

Похожие диссертационные работы по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК

Заключение диссертации по теме «Математическое моделирование, численные методы и комплексы программ», Полупанов, Дмитрий Васильевич

ВЫВОДЫ ПО ГЛАВЕ 4

1. На основе построенных по предлагаемому в главе 3 рабочему алгоритму ранжирования объектов налогового контроля ГНСМ решены задачи ранжирования налогоплательщиков. Задачи решены на реальных данных предприятий.

2. При решении задачи использованы процедуры пред- и постпроцессорной обработки данных, такие как процедура оптимальной кластеризации, процедура оптимальной очистки кластера от аномальных наблюдений, процедуры ОПП и МОПП. Выполнение этих процедур позволяет получить адекватные ГНСМ, подтверждающие друг друга по методу МОПП с вероятностью не менее 70%, что является высоким результатом адекватности моделей.

3. Проведена верификация модели на натурных данных. Положительные результаты верификации являются доказательством пригодности использования разработанной ГНСМ при решении задачи отбора предприятий налогоплательщиков для проведения выездных проверок.

4. Проведено сравнение ГНСМ с независимой моделью непараметрического сглаживания, которое показало их взаимное подтверждение на 83%. Это служит инструментом оценки адекватности предлагаемой ГНСМ внешним по отношению к модели способом.

ЗАКЛЮЧЕНИЕ

В ходе выполнения диссертационной работы были получены следующие результаты:

1. Решена задача построения «эталонных» моделей, аппроксимирующих производственную функцию объектов налогового контроля (предприятий-налогоплательщиков). Исследованы специфические условия моделирования и их влияние на построение НСМ: существенное зашумление вплоть до сознательного искажения налогоплательщиком деклараций; сложная структура объектов налогового контроля; необходимость учета влияния на объект изменчивости внешней среды; стохастический и динамический характер процессов в объекте; существенная нелинейная взаимосвязь (мультикол-линеарность в частном случае) вектора входных факторов; дефицит наблюдений. Выявленные особенности объектов налогового контроля в условиях неопределенности позволяют выбрать методы искусственного интеллекта на базе НС в качестве основных методов решения.

2. Исследованы возможности аппроксимации функциональных зависимостей с помощью НС в специфических условиях моделирования. Исследованы вопросы устойчивости НСМ в условиях искажения обучающего множества.

3. Разработан метод синтеза плана отбора налогоплательщиков для проведения выездных проверок на основе ГНСМ. Новизна метода заключается в использовании полученного с помощью ГНСМ «эталона» - оценки производственной функции кластера налогоплательщиков. Это позволяет выявлять нарушения в налоговых декларациях и получать объективные оценки финансового состояния налогоплательщиков путем извлечения знаний об искаженных входных факторах и выходной величины через другие, неискаженные.

4. Разработан метод предобработки данных на основе системного подхода и использования общесистемных закономерностей кибернетики. Данный метод включает в себя следующие предложения:

• Управление качеством НСМ на ранних стадиях ее построения путем многоуровневого иерархического структурирования модели, основанное на общесистемном законе роста и убывания энтропии в открытой системе.

• Использование общесистемной фоновой закономерности для дальнейшего повышения однородности данных в образованных кластерах.

На основе этих предложений разработаны специальные процедуры предпроцессорной обработки данных, без использования которых построение эффективных, точных, адекватных, качественных моделей не представляется возможным. Осуществлено повышение однородности БД путем иерархического структурирования модели на основе процедур оптимальной кластеризации и оптимальной очистки кластера от аномальных наблюдений на первом и втором иерархических уровнях структурирования.

4. Разработан вероятностный критерий ранжирования объектов налогового контроля по числовой мере искажения ими отчетной документации с внесением в него эвристической априорной информации, полученной на основе использования доверительных интервалов для отклонений между расчетными (полученными с помощью НСМ), и декларированными значениями моделируемого показателя. Это позволяет повысить достоверность процедуры ранжирования. Данный \|/-критерий базируется на общесистемном законе асимметрии и общесистемной закономерности неполного подавления побочных дисфункций структурируемой информационной системы.

5. Разработан метод модифицированного обобщенного перекрестного подтверждения (МОПП) ГНСМ по финишному критерию совпадения множества проранжированных налогоплательщиков для нескольких независимых НСМ с заданной доверительной вероятностью. Данный метод базируется на общесистемной закономерности неполного подавления дисфункций структурируемой информационной системы и служит основным инструментом анализа и подтверждения адекватности ГНСМ.

6. На основе предложенных методов разработан рабочий алгоритм ранжирования экономических объектов с сильнозашумленными данными на

157 базе ГНСМ. Применительно к ранжированию объектов налогового контроля алгоритм служит инструментарием принятия решении о включении налогоплательщиков план проведения выездных проверок

7. На конкретных реальных числовых данных построены ГНСМ ранжирования объектов налогового контроля. Осуществлена проверка адекватности полученных НСМ с помощью процедуры ОПП и ГНСМ с помощью процедуры МОПП.

8. Проведена верификация и экспертная апробация моделей. Положительные результаты верификации на натурных объектах, показавшие правильное распознавание, как «нарушителей», так и законопослушных налогоплательщиков, являются доказательством пригодности разработанной ГНСМ для ее использования при составлении производственного плана проведения выездных проверок. Сравнение ГНСМ с независимой моделью непараметрического сглаживания, давшее совпадение 83%, является подтверждением их взаимной адекватности.

Список литературы диссертационного исследования кандидат технических наук Полупанов, Дмитрий Васильевич, 2007 год

1. Аведьян Э.Д. Алгоритмы обучения нейронных сетей. Дисс. .д.т.н.:05.13.01. М.: Ин-т проблем управления РАН, 1997.-213 с.

2. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Основы моделирования и первичная обработка данных. М.: Финансы и статистика, 1983.

3. Айвазян С.А., Мхитарян B.C. Прикладная статистика и основы эконометрики: Учебник для вузов. М.: ЮНИТИ, 1998.

4. Арнольд В.И. О функциях трех переменных // Доклады АН СССР, 1957, Т. 114,№4.-С. 679-681.

5. Бадамшин Р.А., Горбатков С.А., Клестов Е.А. Оптимальное терминальное управление систем с распределенными параметрами при неполном измерении их состояния. Уфа: Уфим. гос. авиац. техн. ун-т, 1997.

6. Барцев С.И., Охонин В.А. Адаптивные сети обработки информации // Препринт ИФ СО АН СССР. Красноярск, 1986, № 59Б. 20 с.

7. Басканова Т.Ф., Ланкин Ю.П. Нейросетевые алгоритмы самостоятельной адаптации // Всероссийская научно-техническая конференция «Ней-роинформатика-99». Сборник научных трудов. В 3 частях. Ч. 1. М.:МИФИ, 1999.-С. 17-24

8. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. -М.: Наука, 1987.-600 с.

9. Баязитова А. К кому придет налоговый инспектор. Интервью Саши-чева В.В. журналу «Главбух». // Главбух, 2004, № 10.

10. Бублик Н.Д., Голичев И.И., Горбатков С.А., Смирнов А.В. Теоретические основы разработки технологии налогового контроля и управления. -Уфа: Изд-во Башгосуниверситета, 2004.

11. Букаев Г.И., Бублик Н.Д., Горбатков С.А., Саттаров Р.Ф Модернизация системы налогового контроля на основе нейросетевых информационных технологий. М.: Наука, 2001.

12. Бэстенс Д.-Э., ван ден Берг В.-М., Вуд Д. Нейронные сети и финансовые рынки: принятие решений в торговых операциях. М.: ТВП, 1998. -240 с.

13. Васильев В.И., Валеев С.С. Оценка сложности нейросетевых моделей на основе энтропийного подхода // Нейрокомпьютеры: разработка, применение. 2004, № 9. С. 10-16.

14. Васильев В.И., Ильясов Б.Г., Валеев С.С. и др. Интеллектуальные системы управления с использованием нейронных сетей: Учеб. пособие. -Уфа: Уфим. гос. авиац. техн. ун-т, 1997.

15. Васильев В.И., Жернаков С.В. Экспертные системы: Управление эксплуатацией сложных технических объектов: Учеб. псобие. Уфа, Уфим. гос. авиац. техн. ун-т, 2003. - 106 с.

16. Введение в экономико-математические модели налогообложения: Учебное пособие / Под. ред. Д.Г. Черника М.: Финансы и статистика, 2000.

17. Вентцель Е.С. Теория вероятностей: Учебное пособие. М.: Наука,1969.

18. Волков Ю.К. Налоговая отчетность примет электронный вид. // Российский налоговый курьер. 2000. № 6.

19. Габдрахманова Н.Т. Нейросетевое моделирование камеральных налоговых проверок торговых предприятий и оптимизация их постналогового дохода. Дисс. . к.т.н.:05.13.18. Уфа, Уфим. гос. авиац. техн. ун-т, 2003 201 с.

20. Галушкин А.И. Нейрокомпьютеры. Кн. 3.: Учеб. пособие для вузов / Общая ред. А.И. Галушкина. М.: ИПРЖР, 2000. - 528 с.

21. Галушкин А.И. Синтез многослойных систем распознавания образов. М.: Энергия, 1974.

22. Галушкин А.И. Теория нейронных сетей. Кн.1.: Учеб. Пособие для вузов / Общая ред. А.ИГалушкина. М.:ИПРЖР,2000.

23. Галушкин А.И., Судариков В.А., Шабанов Е.В. Нейроматематика: методы решения задач на нейрокомпьютерах // Математическое моделирование- 1991.-Т. 3.-№ 8. -С. 93-111.

24. Голичев И.И. Вариков А.А. Свид. № 2006616133 об офиц. per. прогр. для ЭВМ. Аппроксимация регрессионной зависимости. М.: РосПатент, 2006.

25. Головко В.А. Нейронные сети: обучение, организация и применение. Кн. 4: Учеб. Пособие для вузов / Общая ред. A.JI. Галушкина. М.: ИПРЖР, 2001.

26. Горбань А.Н. Обобщенная аппроксимационная теорема и вычислительные возможности нейронных сетей // Сиб. журн. вычисл. математики / РАН. Сиб. отд-ние-Новосибирск, 1998 Т. 1. № 1.-С. 11-24.

27. Горбань А.Н., Дунин-Барковский B.JI. Кидрин А.Н. и др. Нейроин-форматика. Новосибирск: Наука, Сибирское предпр-ие РАН, 1998.

28. Горбань А.Н., Россиев Д.А. Нейронные сети на персональном компьютере. Новосибирск: Наука. Сиб. Изд. фирма РАН, 1996.

29. Горбатков С.А., Габдрахманова Н.Т. Способы улучшения ассоциативных свойств нейросетевых математических моделей в системе налогового контроля и управления // Информационные технологии,- 2001.-№ 4.-С.7-14.

30. Горбатков С.А., Полупанов Д.В. Совершенствование нейросетевой математической модели налогового контроля на основе общесистемных закономерностей кибернетики // Нейрокомпьютеры: разработка, применение" -2005.- №3,- С. 43-52.

31. Горбатков С.А. Полупанов Д.В. Устойчивость нейросетевого отображения по возмущению исходных данных на обучающем множестве в смысле ошибки обобщения// Нейрокомпьютеры: разработка, применение" -2005. № 12. С. 25-34.

32. Горбатков С. А., Сашечев В. В., Мехова Т. Н. и др. Апробация новой технологии налоговых камеральных проверок на базе нейросетевых математических моделей. // Нейрокомпьютеры: разработка, применение. 2004. - № 9. - С. 57-71.

33. Гуревич И.М. Законы информатики основа исследований и проектирования сложных систем. // Информационные технологии. - 2003. - № 11, Приложение. - 24 с.

34. Ежов А.А., Шумский С.А. Нейрокомпьютинг и его применение в экономике и бизнесе (Серия Учебники экономико-аналитического института МИФИ, под ред. проф. В.В. Харитонова). М.: МИФИ, 1998. - 224 с.

35. Зозуля Ю.И. Оперативный анализ согласованности и эффективности процессов нефтегазодобычи на основе нейросетевых моделей // Нейрокомпьютеры: разработка, применение. -2001. № 4-5. С. 26-30.

36. Зозуля Ю.И., Губайдуллин Г.Г., Арутюнян Э.С. Использование теоремы Колмогорова при преобразовании структур в задачах нейросетевого управления // Нейрокомпьютеры: разработка, применение. 2000. № 1. - С. 36-39.

37. Зозуля Ю.И., Палагушкин В.А. Нейросетевые алгоритмы контроля и управления объектами нефтегазодобычи // Нейрокомпьютер. 1996. № 3-4. -С. 12-21.

38. Ивахненко А.Г. Персептроны. К.: Наук, думка, 1974.

39. Ильясов Б.Г., Исмагилова Л.А., Валеева Р.Г. Моделирование производственно-рыночных систем. Уфа: Уфим. гос. авиац. техн. ун-т, 1995. 321 с.

40. Ильясов Б.Г., Исмагилова Л.А., Валеева Р.Г., Сергеева И.Г. Применение нейро-нечетких моделей в управлении производством. // Нейрокомпьютеры: разработка, применение. 2001. № 4-5. - С. 36-41.

41. Исмагилова Л.А., Орлова Е.В. Нейросетевые технологии в экономике: сравнение с классическими методами. // Нейрокомпьютеры: разработка, применение. 2004. № 9. - С. 49-56.

42. Исмагилова Л.А., Орлова Е.В., Афанасьев В.Ю. Информацинная технология оценки и прогнозирования налогового потенциала // Экономика и управление. 2001. - № 1. С. 50-53.

43. Колмогоров А.Н. О представлении непрерывных функций нескольких переменных суперпозициями непрерывных функций меньшего числа переменных // Доклады АН СССР, 1956, Т. 108, № 2. С. 179-182.

44. Колмогоров А.Н. О представлении непрерывных функций нескольких переменных в виде суперпозиций непрерывных функций одного переменного // Доклады АН СССР, 1957, Т. 114, № 5. С. 953-956.

45. Коченов Д.А., Россиев Д.А. Аппроксимация функций класса Са,Ь. нейросетевыми предикторами // Тезисы докладов рабочего семинара «Ней-роинформатика и нейрокомпьютеры», Красноярск, 8-11 октября 1993 года. -Красноярск, 1993.-С. 13.

46. Коченов Д.А. Методы использования нейронных сетей, построения нейросетевых экспертных систем и их применение. Автореферат дисс. . к.ф.-м.н.: 05.13.16. Красноярск: Красноярский гос. тех. ун-т., 1995. - 13 с.

47. Кремер Н.Ш., Путко Б.А. Эконометрика: Учебник для ВУЗов / Под ред. проф. Н.Ш. Кремера. М.: ЮНИТИ - ДАНА, 2002.

48. Кусимов С. Т., Ильясов Б. Г. и др. Интеллектуальное управление производственными системами. -М.: Машиностроение, 2001.

49. Куссуль Э.М., Байдык Т.Н. Разработка архитектуры нейроподобной сети для распознования формы объектов на изображении // Автоматика. -1900. № 5.

50. Малинецкий Г.Г., Курдюмов С.П. Нелинейная динамика и проблемы прогноза // Вестник Российской академии наук. 2001. Т. 71- № 3. - С. 210-232.

51. Математический энциклопедический словарь / Ред. Ю.В. Прохоров. -М.: Большая Российская энциклопедия, 1995. 605 с.

52. Моисеев Н.Н. Математические задачи системного анализа. М.: Наука. Физматлит, 1981.

53. Налоговая система России: Учебное пособие / Под ред. Черника Д.Г. и Дадашева А.З. М.: АКДИ Экономика и жизнь, 1999.

54. Налоговый кодекс Российской Федерации. Часть первая. М.: Проспект, 1998.

55. Нейроматематика. Кн. 6.: Учеб. пособие для ВУЗов / Агеев А.Д, Ба-лухто А.Н., Бычков А.В. и др.; Общая ред. А.И. Галушкина. М.: ИПРЖР, 2002.-448 с.

56. Орлов А.Н. Эконометрика: Учебник для вузов. М.: изд. «ЭКЗАМЕН», 2003.

57. Орлова Е.В. Модели и технологии управления в системе налогообложения. Автореф. дисс. . к.т.н.:05.13.10. Уфа, Уфим. гос. авиац. техн. ун-т, 2004-16 с.

58. Осипова И.В. Интеллектуальная информационно-аналитическая система поддержки планирования налоговых доходов регионального бюджета. Автореф. дисс. . к.т.н.:05.13.10. Уфа, Уфим. гос. авиац. техн. ун-т, 2005 -16 с.

59. Охонин В.А. Вариационный принцип в теории адаптивных сетей // Препринт ИФ СО АН СССР. Красноярск, 1987, № 61Б. 18 с.

60. Перегудов Ф.И., Тарасенко Ф.П. Введение в системный анализ: Учеб. пособие для ВУЗов. М.: Высшая школа, 1989.

61. Паскачев А.Б., Садыгов Ф.И., Мишин В.И. и др. Анализ и планирование налоговых поступлений: теория и практика / Под ред. Садыгова Ф.И. -М.: Изд-во экономико-правовой лит-ры, 2004. 232 с.

62. Полупанов Д.В. К вопросу обеспечения адекватности гибридной нейросетевой модели налогового контроля. // Информационные технологии моделирования и управления. 2005. - № 6 (24). С. 812-820.

63. Полупанов Д.В. Об одном методе предобработке сильнозашумлен-ных данных при построении нейросетевой модели налогового контроля //

64. Информационные технологии моделирования и управления. 2005. - № 6 (24).-С. 821-827.

65. Полупанов Д.В. Теорема существования элемента наилучшего приближения в задаче обучения нейронных сетей // Аспирант и соискатель. -2001.-№5(6). С. 177-179.

66. Прангишвилли И.В. Системный подход и общесистемные закономерности. М.: СИГНЕТ, 2000.

67. Романов А.Н., Бублик Н.Д., Голичев И.И., Горбатков С.А. Пути повышения эффективности налогового контроля // Налоговая политика и практика. 2004. -№ 2. - С. 15-17.-336 с.

68. Сенашова М.Ю. Погрешности в нейронных сетях. Автореф. дисс. . к.ф.-м.н. 05.13.16. Красноярск, КГТУ, - 1997. - 24 с.

69. Сенашова М.Ю. Погрешности нейронных сетей. Вычисление погрешностей весов синапсов. // Методы нейроинформатики: Сб. науч. трудов / Под ред. А.Н. Горбаня. Красноярск, КГТУ, 1998. - С. 48-64.

70. Скорик Т.Г. Высокая эффективность выездной налоговой проверки -результат правильности выбранного объекта. Часть 1.// Налоговый вестник, 2001, № 1.-С. 35-39.

71. Скорик Т.Г. Высокая эффективность выездной налоговой проверки результат правильности выбранного объекта. Часть 2.// Налоговый вестник, 2001,№2.-С. 33-38.

72. Соколов А.Б. Моделирование экономико-информационной среды государственной территориальной налоговой инспекции (на примере ГТНИ г. Москвы): Автореф. дис. канд. экон. наук. М., 1994.

73. СтатЭксперт. Программные продукты серии ОЛИМП. М.: 1996.

74. Терехов В.А., Ефимов Д.В., Тюкин И.Ю. Нейросетевые системы управления. Кн. 8.: Учеб. Пособие для ВУЗов / Общая ред. А.И. Галушкина -М.-.ИПЖР, 2002.-480 с.

75. Терехов С.А. Технологические аспекты обучения нейросетевых машин // Научная сессия МИФИ-2006. VII Всероссийская научно-техническая конференция «Нейроинформатика-2006»: Лекции по нейроинформатике. М.: МИФИ, 2006. С. 13-73.

76. Тихонов А.Н., Кальнер В.Д., Гласко В.Б. Математическое моделирование технологических процессов и метод обратных задач в машиностроение. М.: Машиностроени, 1990. - 264 с.

77. Тихонов А.Н. Леонов А.С., Ягола А.Г. Нелинейные некорректные задачи. М.: Наука, Физматлит, 1995. - 312 с.

78. Треногин В.А. Функциональный анализ. -М.: Наука, 1980.

79. Фаттахов Р.В., Черняховская Л.Р., Низамутдинов М.М. Информационная поддержка процессов анализа и оценки инвестиционных проектов. -Уфа: Уфимск. гос. авиац. техн. ун-т., 2001. 120 с.

80. Хайкин С. Нейронные сети: полный курс. М.: Издательский дом «Вильяме», 206. - 1104 с.

81. Цыпкин Я.З. Основы теории обучающихся систем. М.: Наука,1970.

82. Чернецкий В.И. Математическое моделирование стохастических систем. Петрозаводск, Петрозаводский гос. ун-т, 1994.

83. Черник Д.Г., Починок А.П., Морозов В.П. Основы налоговой системы: Учебное пособие для вузов. / Под ред. Д.Г. Черника. М.: Финансы: ЮНИТИ, 1998.

84. Черняховская JI.P., Низамутдинов М.М. и др. Подход к реализации интеллектуальной информационной системы на основе INTRANET-технологий//Матиериалы Всероссийско объединенной конференции. -СПб., 2000.-С. 141.

85. Черняховская J1.P., Низамутдинов М.М. Анализ процессов управления в критических ситуациях на основе классификации с использованием нейронных сетей // Нейрокомпьютеры: разработка, применение. 2001. № 45. - С. 97-101.

86. Черняховская JI.P. Поддержка принятия решений при управлении сложными объектами в критических ситуациях на основе инженерии знаний. Автореф. дисс. . д.т.н.: 05.13.10. Уфа, Уфим. гос. авиац. техн. ун-т, 2004 -32 с.

87. Abu-Mostafa Y.S. Neural networks for computing // Conf. On Neural Networks Computing, Snowbird, Utah, 13-16 April 1986 (p. 1-6).

88. Abu-Mostafa Y.S., Atiga A.F., Magdon-Ismail M., White H. Spesial Issue on Neural Networks in financial engineering // IEEE Transactions of neural networks. 2001. V. 21. - № 4. - P. 633-656.

89. Artificial neural networks: Concepts and theory Wash. (D.C.) IEEE Computer Soc. press, 1992.

90. Barron A.R. Universal approximation bounds for superpositions of a sigmoidal function // IEEE Trans. Info. Theory. 1993.V.39.P.930-945.

91. Couvrer C., Couvrer P. Neural networks and statistics: a naive comparison // Belgian Journal of operation research, statistics and computer sciences. 1997.-№4.

92. Cybenko G. Approximation by superprositions of a sigmoidal function // Mathematics of control, signals and systems. 1989 - Vol. 2. - P. 303-314.

93. Funahashi К. Of the approhimate realisation of continious mappings by Neural Networks // Neural networks. 1989 - Vol. 2. - P. 375-383.

94. Hent-Nilsen R. Theory of the backpropagation neural network // Neural networks for human and machine perseptrons. H. Wecheler (Ed.) V. 2. Boston, MA: Academic Press, 1992. P. 65-93.

95. Hornik K. Approximation capabilities of multiplayer feetforward networks // Neural networks. 1991 - Vol. 4. - P. 251-257.

96. Hornik K., Stinchcombe M., White H. Multiplayer feetforward networks are universal approximators // Neural networks. 1989 - Vol. 2. - P. 359366.

97. Kohonen. Т., Sell organized formation of topologically correct feature maps // Biological Cybernetics, 1982. - № 43. - Pp. 59-69.

98. BrainMaker Professional. Neural network Simulation Software. User's Guide and Reference Manual. Newada City: California Scientific Software, 1995.

99. Li L.K. Approximation theory and feetforward networks // Neural networks. 1991 - Vol. 4. - Pp. 511 -515.

100. McCulloh W., Pits W. A logical calculus of ideal immanent in nevos activity // Bulletin of mathematical Biophisics. 1943. № 5. - Pp. 115-133.

101. Minsky M., Papert S., Perceptrones: An introduction to Computation geometry. The MIT Press, 1969.

102. Nilson NJ. Learning machines. McCraw-Nill Book Company, 1965. Русский перевод: Нильсон H. Обучающиеся машины. М.: Мир, 1967.

103. Osamu F. A method for designing the internal representation of neural networks and its application to network synthesis // Neural networks. 1991 -Vol. 4.-P. 827-837.

104. Rineda F.J. Recurrent backpropagation and the dynamical approach to additive neural computation //Neural Comput., 1989.-V. l.-P. 161-172.

105. Rumelhart D.E., Hilton G.E., Williams RJ. Learning internal representation by error propagation // Parallel Distributed Prossing. Cambridge. MA. MIT Press. 1986, V. l.Ch. 8.-P. 318-362.

106. Rumelhart D.E., McCleland J.L., Eds. Parallel Distributed Prossing. V. 1, 2.Cambridge. MA. MIT Press. 1986.

107. Specht D. A general regression neural network, 1991.

108. Stone N.N. The generalized Weierstrass approximation theorem // Math. Mag. 1948 - Vol. 21. -P. 167-183, 237-256.

109. Takens F. Detecting strange attractors in turbulence // Dynamical systems and turbulence / Lect/ Notes in Math. 898, P. 336-381/ Springer, Berlin 1981.

110. Tucker J. Neural network versus logistic regression in finansial modeling a metodological comparison // Сайт в сети Internet: http://www.bioele.nuee.nagoua-u.ac.jp/wscl/papers/po31 .html.

111. Werbos P J. Beyond regression new tools for prediction and analysis in the behavioral sciences. Thesis in applied mathematics. Harvard University, 1974.

112. Yoshifusa I. Approximation of functions on a compact set by finite sums of a sigmoidal function without scaling // Neural networks. 1991 - Vol. 4. -P. 817-826.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.