Математические методы разработки и оценки стратегий торговли на межбанковском валютном рынке Forex тема диссертации и автореферата по ВАК РФ 08.00.13, кандидат экономических наук Муравьев, Дмитрий Георгиевич

  • Муравьев, Дмитрий Георгиевич
  • кандидат экономических науккандидат экономических наук
  • 2006, Самара
  • Специальность ВАК РФ08.00.13
  • Количество страниц 138
Муравьев, Дмитрий Георгиевич. Математические методы разработки и оценки стратегий торговли на межбанковском валютном рынке Forex: дис. кандидат экономических наук: 08.00.13 - Математические и инструментальные методы экономики. Самара. 2006. 138 с.

Оглавление диссертации кандидат экономических наук Муравьев, Дмитрий Георгиевич

ВВЕДЕНИЕ.

1. ОБЗОР МЕТОДОВ ПРОГНОЗА БИРЖЕВЫХ КОТИРОВОК И ОЦЕНКИ РИСКА ИНВЕСТОРА.

1.1. Методы фундаментального и технического анализа

1.2. Методы авторегрессионного анализа.

1.3. Метод оценки риска Value-at-Risk, теория оптимального портфеля и сценарные подходы к управлению риском.

2. ЗАДАЧИ КЛАССИФИКАЦИИ И ВОССТАНОВЛЕНИЯ РЕГРЕССИИ В УСЛОВИЯХ ВЫБОРКИ ОГРАНИЧЕННОГО ОБЪЕМА

2.1. Постановка задач

2.2. Минимизация среднего риска.

2.3. Минимизация эмпирического риска.

2.4. Метод структурной минимизации риска.

2.5. Алгоритмы задания структуры на параметрическом множестве функций

2.6. Общие замечания к задачам восстановления зависимостей.

3. МЕТОДЫ И АЛГОРИТМЫ ПОСТРОЕНИЯ ТОРГОВЫХ СТРАТЕГИЙ НА РЫНКЕ FOREX.

3.1. Искусственные нейронные сети

3.2. Методы повышения качества нейросетевого прогноза рынка валют.

3.3. Риск и доходность стратегии торговли.

3.4. Критерий оптимального роста капитала в условиях рынка Forex.

3.5. Многомерный регрессионный метод прогноза котировок валют.

3.6. Программные средства прогнозирования тенденций на рынке валют.

3.7. Построение торговой системы с известным риском и доходностью на примере валютной пары EUR/USD.

Рекомендованный список диссертаций по специальности «Математические и инструментальные методы экономики», 08.00.13 шифр ВАК

Введение диссертации (часть автореферата) на тему «Математические методы разработки и оценки стратегий торговли на межбанковском валютном рынке Forex»

Актуальность темы

В течение последних десятилетий теория и практика финансов во все большей степени опирается на математические методы. Это привело к более интенсивному использованию математического аппарата при изучении поведения финансовых рынков.

Едва ли не главнейшей задачей исследования различных процессов в финансовой сфере является прогнозирование. Разнообразные коммерческие данные поступают зачастую в форме временных рядов, значения которых подчиняются некоторым закономерностям. Целью выявления этих закономерностей служит построение моделей временных рядов, позволяющих предсказывать их будущие значения. Глубокое понимание явлений, протекающих в реальной экономике на финансовых рынках, а, значит, и умение предугадать пути развития имеющейся ситуации, невозможно без наличия простых и понятных инструментов описания и анализа финансовой информации.

Проблема анализа временных рядов, моделируемых случайными процессами, начала исследоваться давно. Фундаментальные основы строгой теории случайных процессов были заложены еще А. Н. Колмогоровым. Во многом благодаря работам известных русских ученых были детально изучены свойства стационарных процессов с дискретным и непрерывным временем и их прогноз. Систематическое изложение результатов, методов и приложений общей теории случайных процессов содержится в монографии И. И. Гихмана и А. В. Скорохода [1]. В дальнейшем углубленной проработке подвергались нестационарные процессы, как лучшим образом описывающие действительные явления. Была предложена модель временных рядов со стационарными разностями (модель ARIMA), подробно описанная Дж. Боксом и Г. Дженкинсом [2]. Нестабильность рынков в 70-е и 80-е годы потребовала моделей, адекватно отражающих резкие колебания экономических показателей.

Появился новый класс моделей временных рядов, учитывающих изменения дисперсии и, тем самым, предугадывающих возможные сильные изменения значений временного ряда. Введенный тип моделей впервые был описан Энглом [3] и получил название моделей авторегрессионной условной гетероскедастичности (ARCH). В последующих работах этого же и других авторов (см., например, [4], [5], [6]) семейство ARCH было тщательно изучено, при различных допущениях строились и рассматривались самые разнообразные модели.

В последнее время появилось несколько новых подходов идентификации моделей сложных систем: подход В.Н. Вапника основанный на методе структурной минимизации риска (В.Н. Вапник, 1979, 1984); методика идентификации на основе непараметрических коллективов решающих правил, предлагаемая в работах А.Г. Ивахненко (1971) и В.А. Лапко (2002); подход к оцениванию на основе рандомизированных алгоритмов (Б.Т. Поляк и О.Н. Граничин, 2003). Похожая методика на основе адаптивных алгоритмов случайного поиска использовалась в начале восьмидесятых в работах J1.A. Растригина (1981). Кроме того, весьма популярны методы, основанные на искусственных нейронных сетях. По этой теме имеется многочисленные работы, охватывающие различные области применения.

Тем не менее, задача построения алгоритмов идентификации моделей финансовых рынков в условиях значительной априорной неопределенности остается актуальной. В данном случае проблема заключается в том, что приходится выполнять оценивание параметров по малому числу наблюдений. При малом числе наблюдений основное условие предельных теорем теории вероятностей (существование большого числа случайных явлений) не выполняется. Поэтому основанная на них теория статистического оценивания и рассматриваемые в рамках этой теории методы построения оценок оказываются недостаточно обоснованными. При малом числе наблюдений, даже если вероятностные характеристики ошибок известны, построенные на их основе статистические выводы будут ненадежны.

Развиваемые в данной работе методы и алгоритмы опираются на идеи В.Н. Вапника поиска правила, близкого к наилучшему в классе для заданного объема выборки с оценкой качества правила на генеральной совокупности с заданной надежностью.

В настоящей работе рассматривается межбанковский валютный рынок Forex. Такой выбор обусловлен несколькими причинами. С развитием информационных технологий упрощается и ускоряется доступ к различным электронным торговым площадкам. Развивается рынок услуг для частных инвесторов. Так, на сегодняшний день только на территории России существуют десятки брокерских контор, предоставляющих доступ на валютный рынок Forex. Условия работы, предлагаемые этими брокерами приемлемы для широкого круга инвесторов. Они сочетают достаточно небольшой начальный капитал, низкие комиссионные издержки (узкий спрэд), возможность торговли неполными лотами и потенциально высокий уровень ожидаемого дохода. На серверах Internet-брокеров для начинающих трейдеров предлагается круг статей, посвященных техническому и фундаментальному анализу, а также стратегиям торговли. Однако применимость таких стратегий и анализа остается под вопросом.

Сегодня невозможно представить профессионального участника финансового рынка, который не использовал бы прогнозирование в том или ином виде. Однако качество прогноза существующих методов в прикладных задачах требует дальнейшего повышения. Недостаточное качество прогнозов связано в первую очередь с глобализацией финансовых рынков, увеличением волатильности валют, процентных ставок, курсов ценных бумаг и цен на сырье. В целом финансовые рынки стали более нестабильными, сложными в анализе и дерегулированными. Это особенно влияет на транснациональные корпорации, имеющие филиалы в разных странах, и, соответственно, активы и обязательства в различных валютах, что может привести к общим убыткам, несмотря на эффективность своей деятельности в конкретной валюте. Даже несмотря на наличие большого количества готовых нейросетевых пакетов для предсказания курса, их жесткие структурные ограничения не позволяют получить достоверные прогнозы в быстро меняющейся обстановке сегодняшнего рынка. С другой стороны, применяемые инвестиционные стратегии, а также популярные подходы риск - менеджмента не позволяет с точки зрения теории вероятностей дать приемлемую оценку риску и ожидаемой прибыли при т.н. "активной" стратегии торговли.

Таким образом, является актуальной разработка эффективных стратегий торговли, которые могут применяться, в частности, на межбанковском валютном рынке Forex, который считается одним из самых плохо прогнозируемым финансовым рынком.

Цель работы и задачи исследования

Целью настоящей диссертационной работы является разработка новых методов построения стратегий торговли на валютном рынке Forex и оценки ожидаемой прибыли и риска для найденных стратегий с заданным уровнем надежности, опирающихся на предсказание будущего состояния нестационарного временного ряда с помощью нелинейного регрессионного аппарата.

В рамках диссертационной работы решаются следующие задачи.

1. Разработка и исследование линейных и нелинейных моделей прогнозирования эконометрических рядов.

2. Разработка и исследование алгоритмов прогнозирования котировок валют на основе нелинейных регрессионных методов.

3. Разработка и исследование подходов к определению и оценки риска и доходности стратегий торговли.

4. Исследование методов и алгоритмов поиска решающего правила с оценкой качества найденного решения.

5. Разработка и исследование алгоритмов оптимизации реинвестируемой части рискового капитала, нахождения параметров защитных ордеров для максимизации прибыли на заданном периоде торговли.

6. Применение разработанных методов в торговле на рынке Forex.

Объект исследования

Объектом исследования является межбанковский рынок Forex.

Предмет исследования

Предметом исследования являются методы разработки и оценки стратегий торговли на валютном рынке Forex.

Методы исследования

Результаты проведенных и представленных в диссертации исследований получены с использованием теории вероятностей и математической статистики, теории нейронных сетей, методов восстановления функциональных зависимостей и методов мат. моделирования.

Научная новизна

Научную новизну работы составляют:

1. Предложенный алгоритм прогноза биржевых котировок на основе многомерного нелинейного регрессионного метода, для которого слоистые нейронные сети являются частным случаем.

2. Полученные эффективные методы прогнозирования рынка валют с помощью многослойных нейронных сетей, обеспечивающие решение задачи повышения доходности валютных операций.

3. Созданный подход к определению риска и доходности стратегий торговли, позволяющий наиболее верно отразить практические потребности инвестора при оценке своей деятельности.

4. Комплексный метод разработки стратегий торговли на межбанковском валютном, рынке Forex с оценкой доходности и риска, основанный на указанных выше подходах.

Практическая ценность работы

Практическая значимость работы состоит в разработке формальной методики, обеспечивающей возможность ее использования широким кругом организаций. Подход, предложенный в работе, может быть применен не только на рынке Forex, но, после некоторой адаптации, и к любому финансовому рынку, что делает материал ценным с точки зрения практического применения в качестве составной части комплекса поддержки принятия решений любого инвестиционного учреждения.

Созданные в рамках диссертационной работы программные средства могут быть использованы для автоматизации деятельности организаций, сталкивающихся с необходимостью учета неформализуемых зависимостей при прогнозировании нестационарных временных рядов.

Структура диссертации

Работа состоит из введения, трех глав, заключения, списка литературы и приложений. Дальнейшее изложение организовано следующим образом.

Во введении обоснована актуальность исследуемой проблемы, определены цели, задачи, объект и предмет исследования, показана научная новизна и практическая значимость работы.

В Главе 1 произведен обзор методов прогноза биржевых котировок и оценки риска. Рассмотрены основы технического и фундаментального анализа, классические методы авторегрессионного анализа - ARIMA и GARCH, методы оценки риска Value-at-Risk, теория оптимального портфеля и сценарные подходы к управлению риска. Произведен критический пересмотр указанных методов и выявлены недостатки, предполагающие дальнейшее совершенствование подходов.

Глава 2 посвящена теоретическому описанию задач классификации и восстановления регрессии в условиях выборок ограниченного объема. Здесь также приведены алгоритмы задания структуры на множестве функций, в которых происходит поиск решения.

В Главе 3 показаны вычислительные возможности искусственных нейронных сетей и алгоритмы их обучения, рассмотрены некоторые методы повышения качества нейросетевого прогноза рынка валют. Дано новое определение риска и доходности торговой стратегии, рассмотрен критерий Келли в условиях торговли, предоставляемых дилинговыми центрами и банками на рынке Forex. Приведен новый многомерный нелинейный регрессионный метод, частным случаем которого являются многослойные нейронные сети, произведена оценка дисперсии параметров модели и доверительных интервалов. Описаны программные средства, реализованные в рамках работы над диссертацией, и показан пример построения торговой системы, которая позволяет с заданной степенью надежности ответить на вопрос о степени риска и ожидаемой прибыли на известном периоде торговли, определяющая оптимальную часть рискового капитала, участвующую в игре, а также параметры защитных ордеров для максимизации ожидаемой прибыли и снижения уровня риска.

В Заключении сформулированы основные результаты работы и намечены пути дальнейших исследований по теме диссертации.

Похожие диссертационные работы по специальности «Математические и инструментальные методы экономики», 08.00.13 шифр ВАК

Заключение диссертации по теме «Математические и инструментальные методы экономики», Муравьев, Дмитрий Георгиевич

ЗАКЛЮЧЕНИЕ

Анализ подходов риск-менеджмента и классических подходов к прогнозированию и оценки эффективности торговых стратегий, проведенный в рамках настоящей работы, показывает, что ни одна из общепринятых на сегодняшний день методологий управления рыночным риском и оценки доходности не может считаться оптимальной. Для построения адекватной системы мониторинга рисков во все возрастающей волатильности финансовых рынков необходимо применять комплексный подход. От финансовых моделей требуются скорее количественная оценка эффективности применяемой стратегии управления активами. Именно на этот результат была нацелена настоящая работа.

В настоящей работе предложен подход к прогнозированию валютных рынков, основанный на предсказании будущего состояния нестационарного временного ряда с помощью нелинейного регрессионного аппарата, позволяющего решать выделенный класс задач прогнозирования.

Цель диссертации - разработка методов построения стратегий торговли на валютном рынке Forex и оценки ожидаемой прибыли и риска для найденных стратегий можно считать достигнутой. Эти методы позволяют с заданной надежностью ответить на вопрос о степени риска и ожидаемой прибыли при заданном периоде и осуществлении "активной" стратегии торговли, определяют оптимальную часть капитала, подлежащую инвестированию, а также параметры защитных ордеров для максимизации ожидаемой прибыли при снижении уровня риска.

Предложенный алгоритм прогноза биржевых котировок на основе нелинейного регрессионного метода, в результате экспериментальных исследований показал лучшие результаты по сравнению с известными методами прогноза рынка валют.

Полученные методы прогнозирования рынка валют с помощью нейронных сетей позволяют дополнительно повысить качество нейросетевого прогноза.

Созданный подход к определению риска и доходности активных стратегий торговли, позволяет наиболее верно, с точки зрения автора, отразить степени рисков и доходности торговой деятельности.

В рамках предложенного комплексного метода разработки и оценки стратегий на рынке Forex, можно подобрать индивидуальную тактику управления рисковым капиталом для различных категорий инвесторов.

Разработанный программный комплекс, реализующий предложенные в работе методы, подтвердил справедливость основных результатов диссертации на исторических данных.

Предложенный период прогноза обусловлен тем, что прогноз пересматривается достаточно часто и в кризисных ситуациях не позволяет получить возможные значительные убытки, в тоже время однодневный период является достаточным для элиминации внутридневных шумов, препятствующих получению качественного прогноза.

Практическая значимость работы состоит в разработке формальной методики, обеспечивающей возможность ее использования широким кругом организаций. Созданные в рамках диссертационной работы программные средства могут быть использованы для обеспечения системы поддержки принятия решений качественными прогнозами. Подход, предложенный в работе, может быть применен не только на рынке Forex, но, после некоторой адаптации, и на любом финансовом рынке, что делает материал ценным с точки зрения практического применения для любого инвестиционного учреждения.

Разработанный подход к определению риска и доходности инвестиционной деятельности при заданном рисковом капитале и периоде торговли позволяет в каждом конкретном практическом случае производить оценку стратегии с различных точек зрения. Для каждой категории инвесторов согласно разработанным методам можно подобрать свою тактику управления рисковым капиталом с учетом индивидуального отношения к риску.

Использование методов, предложенных в работе, позволит осуществлять более эффективную инвестиционную деятельность организаций, осуществляющих операции на финансовых рынках, т.к. в настоящее время применение отечественными финансовыми структурами эффективных методов прогнозирования, основанных на теории вероятностей и математической статистике, находится на стадии интенсивного развития.

В настоящей работе не рассмотрены инвестиционные стратегии с применением опционов на некоторый актив. Использование опционов становится все более популярным и исследование опционных стратегий весьма актуально и интересно с точки зрения оценки финансового результата. Исследованию таких стратегий будут посвящены последующие работы автора.

Список литературы диссертационного исследования кандидат экономических наук Муравьев, Дмитрий Георгиевич, 2006 год

1. Гихман И.И., Скороход А.В. Теория случайных процессов. М.: Наука, 1971.

2. Бокс Дж., Дженкинс Г. Анализ временных рядов: в 2-х вып., вып.2. Прогноз и управление. М.: Мир, 1974.

3. Engle R.F. Autoregressive conditional heteroscedasticity with estimates of the variance of the United Kingdom inflation. Econometrica, 1982, v.50, p. 9871007.

4. Bollerslev T. A conditional heteroscedastic time series model for speculative prices and rates of returns. Rev. Economics and Statistics, 1987, v.69, p. 542547.

5. Panorska A.K., Mittnik S., Rachev S.T. Stable GARCH models for financial time series. Appl. Math. Lett., 1995, v.8, No. 5, p. 33-37.

6. Baillie R.T., Bollerslev Т., Mikkelsen H.O. Fractionally integrated generalized autoregressive conditional heteroscedasticity. J. Econometrics, 1996, v.74, p. 330.

7. Мэрфи Д.Д. Технический анализ фьючерсных рынков. М.: Диаграмма, 1998.

8. Мэрфи Д.Д. Межрыночный технический анализ. М.: Диаграмма, 2002.

9. Вильяме JI. Долгосрочные секреты краткосрочной торговли. М.: ИК Аналитика, 2001.

10. Ю.Швагер Д. Технический анализ. Полный курс. М.: Альпина Паблишер, 2001.11 .Вильяме Б. Торговый Хаос М.: ИК Аналитика, 2000.

11. Вильямс Б. Новые измерения в биржевой торговле. М.: ИК Аналитика, 2002.

12. Ширяев А.Н. Вероятность. М.: Наука, 1989

13. Уотшем Т.Дж., Паррамоу К. Количественные методы в финансах. М.: Финансы, ЮНИТИ, 1999.

14. Mansfield P. GARCH in question . and as a benchmark. Int. Rev. of Financial Analysis, 1999, v.8,No. l,p.l-20.

15. Bollerslev Т., Engle R., Wooldridge J.M. A capital asset pricing model with time-varying covariances. J. Political Economy, 1998, v.96, Iss. 1, p. 116-131.

16. Andersen T.G., Bollerslev T. Answering the sceptics: yes, standard volatility models do provide accurate forecasts. Int. Economic Rev., 1998, v.39, Iss. 4, p. 885-905.

17. Fang Y., Zhang J. Performance of control charts for ARCH processes. J. Applied Statistics, 1999, v.26, No 6, p.701-714.

18. Bollerslev T. Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 1986, v. 51, p. 307-327.

19. Bollerslev T. Modeling the coherence in short-run nominal exchange rates: multivariative generalized ARCH approach. Rev. Economics and Statistics, 1990, v.72, p. 498-505.

20. Шепард H. Статистические аспекты моделей типа ARCH и стохастическая волатильиость. // Обозрение прикладной и промышленной математики, том 3, вып. 6,1996.

21. Risk Management A Practical Guide // J.P. Morgan-Reuters RiskMetrics, LLC, -1998

22. Amendment to the Capital Accord to incorporate market risks // Basel Committee on Banking Supervision, Bank for international settlements, January, 1996 http://www.bis.org

23. The New Basel Capital Accord // Basel Committee on Banking Supervision at the Bank for International Settlements, April, 2003 http://www.bis.org

24. Crouhy M., Galai D., Mark R. Risk Management. McGrow Hill, N.Y., 2001

25. RiskMetrics™ Technical Document Fourth Edition. Part II: Statistics of Financial Market Returns, pp.43-100, Morgan Guaranty Trust Company of New York, Reuters Ltd, New York, 1996

26. Вапник В. H. Алгоритмы и программы восстановления зависимостей.- М.: Наука, 1984.

27. Вапник В. Н. Восстановление зависимостей по эмпирическим данным.- М.: Наука, 1979.

28. К. Хартман, Э. Лецкий, В. Шефер. Планирование эксперимента в исследовании технологических процессов.- М.: Мир, 1977.

29. Vapnik V.N. Estimation of dependencies based on empirical data. Springer, New York, 1982.

30. Pitts W. McCulloch W. W. How we know universals. Bulletin of Mathematical Biophysics, 1947 9:127-47.

31. Rosenblatt R. Principles of neurodynamics. New York: Spartan Books, 1959.

32. Sankar K. Pal, Sushmita Mitra, Multilayer Perceptron, Fuzzy Sets, and

33. Classification //IEEE Transactions on Neural Networks, Vol.3, N5,1992, pp.683696.

34. Rumelhart D. E., Hinton G. E., Williams R. J. 1986. Learning internal reprentations by error propagation. In Parallel distributed processing, vol. 1, pp. 318-62. Cambridge, MA: MIT Press.

35. Колмогоров A.H. О представлении непрерывных функций нескольких переменных суперпозициями непрерывных функций меньшего числа переменных.Докл. АН СССР, 1956. Т. 108, №. 2 С. 179-182.

36. Арнольд В.И. О функциях трех переменных. Докл. АН СССР, 1957. Т. 114, №4. С. 679-681.

37. Колмогоров А.Н. О представлении непрерывных функций нескольких переменных в виде суперпозиции непрерывных функций одного переменного. Докл. АН СССР, 1957. Т. 114, № 5. С. 953-956.

38. Витушкин А.Г. О многомерных вариациях. М.: Физматгиз, 1955.

39. Stone M.N. The generalized Weierstrass approximation theorem. Math. Mag., 1948. V.21. PP. 167-183,237-254.

40. Шефер X. Топологические векторные пространства. М.: Мир, 1971.

41. Горбань А.Н.Обобщенная аппроксимационная теорема и вычислительные возможности нейронных сетей. Сибирский журнал вычислительной математики, 1998. Т.1, № 1. С. 12-24.

42. Cybenko G. Approximation by superposition of a sigmoidal function. Mathematics of Control, Signals, and Systems, 1989. Vol. 2. PP. 303 314.

43. Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks. 1989. Vol. 2. PP. 359 366.

44. Kochenov D.A., Rossiev D.A. Approximations of functions of CA,B. class by neuralnet predictors (architectures and results). AMSE Transaction, Scientific Siberian, A. 1993, Vol. 6. Neurocomputing. PP. 189-203. Tassin, France.

45. Gilev S.E., Gorban A.N. On completness of the class of functions computable by neural networks. Proc. of the World Congress on Neural Networks (WCNN'96). Sept. 15-18, 1996, San Diego, CA, Lawrens Erlbaum Accociates, 1996. pp. 984991.

46. Горбань A.H., Россиев Д.А. Нейронные сети на персональных компьютерах. Новосибирск: Наука, 1996.

47. Жданов А.И., Муравьев Д.Г. Об одном регрессионном методе прогноза котировок валют. // Вестник Самарского государственного аэрокосмического университета имени академика С. П. Королева.- Вып.7. -Самара: СГАУ, 2005. С. 68-71.

48. Markowitz Н. Portfolio Selection // Journal of Finance, 7, no.l, March 1952.

49. Feller, W., An Introduction to Probability Theory and Its Applications, Vol. 1, John Wiley, New York,-1966.

50. Kelly, J.L. Jr. A new interpretation of information rate // Bell System Technical Journal, 35, -1956.

51. Breiman, L. Optimal Gambling systems for favourable games. Fourth Berkeley Symposium on Mathematical Statistics and Probability -Univ. Calif. Press, Berkeley, CA., 1961, pp. 65-78.

52. Муравьев Д.Г. Модификация метода окон для нейросетевого прогноза курсов валют. // О научных проблемах, которые предстоит решать молодым // Сборник статей молодых ученых и студентов. Самара: СИУ, 2004. - С. 115-119.

53. Муравьев Д.Г. Предобработка финансовых данных. // О научных проблемах, которые предстоит решать молодым. // Сборник статей молодых ученых и студентов.- Самара: СИУ, 2004. С. 119-124.

54. Муравьев Д.Г. О некоторых методах повышении эффективности нейросетевого прогноза валют. // О научных проблемах, которые предстоит решать молодым. // Сборник статей молодых ученых и студентов. Самара: СИУ, 2004.-С. 124-129.

55. Ф. Уоссермен "Нейрокомпьютерная техника: Теория и практика" М.:Мир, 1992

56. Демиденко Е.З., Линейная и нелинейная регрессия,.- М.: Наука, 1981.

57. Ширяев, А.Н. Основы стохастической финансовой математики. Том I:

58. Факты.Модели, М., ФАЗИС, 1998

59. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1968.

60. Гнеденко Б.В. Курс теории вероятностей. М.: Наука, 1988

61. Baillie R.T., Bollerslev Т. Intra-day and interday market volatility in foreign exchange rates. The review of Economic Studies, 1991, v.58, Iss. 3, p. 565-585.

62. Bollerslev Т., Engle R.F. Common persistence in conditional variances. -Econometrica, 1993, v.61,p. 167-186.

63. Davidian M., Carrol R.J. Variance function estimation. J. Amer. Statist. Assoc., 1987, v.82, p. 1079-1091.

64. Bollerslev Т., Chou R.Y., Kroner K.F. ARCH modeling in finance: a review of the theory and emirical evidence. J. Econometrics, 1992, v.52, p. 5-59.

65. Lachenbruch P.A., Mickey M.R., Estimation of error rates in discriminant analysis, Technometrics, 10, № 1 (1968).

66. Хемминг Р.В. Численные методы. М.: Наука, 1972

67. Коварцев А.Н. Численные методы. Самара: Самарский муниципальный комплекс непрерывного образования, 1997

68. Artificial Neural Networks: Concepts and Theory, IEEE Computer Society Press, 1992.

69. Richard P. Lippmann, An Introduction to Computing withNeural Nets, IEEE Acoustics, Speech, and Signal ProcessingMagazine, April 1987.

70. Иванченко А.Г. Персептрон системы распознавания образов.// К.: Наукова думка, 1972.

71. Минский М., Пейперт С. Персептроны. М.: МИР, 1971. С. 261.

72. Fogelman Soulie F. Neural networks, state of the art,neural computing.// London: IBC Technical Services, 1991.

73. Jeffery W., Rosner R. Neural network processing as a tool for friction optimization.//Neuronet Comput. Conf., Snowbird, Utah, Apr. 13-16, 1986. New York,N.Y., 1986-p. 241-246.

74. Lippmonn Richard P. Gold Ben Neuronet classifiers useful for speech recognition.// IEEE 1st. Conf. Neural Networks, San Diego, (Calif), 1987 p. 417-425.

75. Картавцев B.B. Нейронная сеть предсказывает курс доллара?//Компьютеры+ программы 1993 - N 6(7) - с. 10-13.

76. Масалович А.И. От нейрона к нейрокомпьютеру.// Журнал доктора Добба -1992 N 1 - с. 20-23.

77. Цуприков С. Нейронные вычисления берутся на вооружение финансистами. // Computerworld Moscow - 1985 - N 7 - с. 57-58.

78. Artificial Intelligence. // Amsterdam: Time Life - Books, 1986.

79. Hecht-Nielsen R. Neurocomputing: picking the human brain.// IEEE SPECTRUM 1988 V. 25. N 3 - p. 36-41.

80. Neural Computing.// London: IBE Technical Services, 1991.

81. Treliven P. Neurocomputers.// London: University college, 1989.

82. Барцев С.И. Некоторые свойства адаптивных сетей (программная реализация).-Красноярск: Институт физики СО АН СССР, 1987.

83. Барцев С.И., Охонин В.А. Адаптивные сети обработки информации. -Красноярск: Институт физики СО АН СССР, 1986.

84. Суворов С.В., Матихина Н.Ю. Программное моделирование нейроподобных структура/Распределенная обработка информации.-Улан-Уде, 1989,-с. 28.

85. Fox G.C., Koller J.G. Code generation by a generalized neural networks: general principles and elementary examples.//J. Parallel Distributed Computing. 1989. V. 6. N2. P. 388-410.

86. Cross Michael. Brain ware hits Japanese computers.// NewSci. 1988 - 120, 640 -p. 33.

87. Burr D. J. 1987. Experiments with a connecnionlist text reader. In Proceedings of the IEEE First International Conferense on Neural Networks, eds. M. Caudill and C.Butler, vol. 4, pp. 717-24. San Diego, CA: SOS Printing.

88. Cottrell G. W., Munro P., Zipser D. 1987. Image compression by backpropagation: An example of extensional programming. ICS Report 8702, University of California, San Diego.

89. Wasserman P. D. Combined backpropagation/Cauchy machine. Proceedings of the International Newral Network Society. New York: Pergamon Press, 1988.

90. Geman S., Geman D. 1984. Stohastic relaxation, Gibbs distribution and Baysian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6:721-41.

91. Шульц P., Печальная история фонда LTCM почему риск-менеджмент не похож на точные науки? // Financial Times, 27 июня 2000 г.

92. Банковская энциклопедия/Под ред. С.И. Лукаш, Л.А. Малютиной. — Днепропетровск: Баланс-Аудит, 1994.

93. Мелкумов Я.С. Экономическая оценка эффективности инвестиций. — М.: ИКЦ "ДИС", 1997.

94. Муравьев Д.Г. Оценка активных инвестиционных стратегий на валютном рынке Forex // Корпоративное управление в России: состояние, проблемы, развитие // Сб. науч. тр. Вып.2 Самара: МАКУ, 2005. - С. 155-161.

95. Дубров А. М., Мхитарян В. С, Трошин Л. И. Многомерные статистические методы, М., Финансы и статистика, 1998.

96. Муравьев Д.Г. Применение искусственных нейронных сетей для анализа финансовых рынков. // Тез. докл. VII межвузовской научно-практической конференции студентов и аспирантов. Самара: СИУ, 2001. - С. 20-24.

97. Муравьев Д.Г. Общие подходы к прогнозированию курсов валют на основе стохастических методах в нейронных сетях. // Сборник материалов VIII межвузовской научно-практической конференции студентов и аспирантов. -Самара: СИУ, 2002. С. 80-86.

98. Основные фигуры технического анализа

99. Рис. 1. Линии поддержки и сопротивления1. Рис. 2. Линия тренда1. Рис. 3. "Канал'1. Фигуры смены тенденции1. Щ . иЖШШШЖШ!1. GBP AO-FX LAST-120 min1.6150•1.6100 •1.6050 ■1.6000 •1.5950 •1 59001. JPY AO-FX LAST-Daily113.00109.00107.00105.00103 00

100. TiadeStatmn Chart (JPY AO-FX} Jap. H1. Рис. 4. "Голова плечи"

101. Рис. 5. Двойная вершина (дно)1. JPY АО-FX LAST-430 min

102. Рис. 6. Тройная вершина (дно)1. Фигуры продолжения тренда1. Рис. 7. "Флаг"Ш

103. CHF ^O-FX LAST-15 rnin •1.5250•1.5150 ■1.5050н 1.4850 ■1 4750н 1. То/22. ШЙ5 10/26 10/271. Рис. 8." Вымпел".

104. Здесь Н ценовая база. Считается, что цена "пробивает" линии на ценовую базу Н.

105. Список реальных сделок на рынке Forex

106. Currency Ope ration Volum e Open Rate Close Rate Commis sions Interes t Total P/L Open Date Close Date Reason

107. EUR/USD BUY 100 000 1.0872 1.0609 -10 -60 -2630 13.03.2003 17.03.2003 Asking

108. EUR/GBP SELL -200 000 0.681 0.6862 -20 -480 -1673.36 24.02.2003 12.03.2003 Limit

109. EUR/USD SELL -200 000 1.0488 1.0569 -20 -90 -1620 10.01.2003 13.01.2003 Asking

110. EUR/USD SELL -200 000 1.0754 1.0819 -20 -30 -1300 20.02.2003 21.02.2003 GTC

111. EUR/GBP SELL -200 000 0.6689 0.6717 -20 -150 -894.1 14.02.2003 19.02.2003 GTC

112. EUR/USD BUY 100 000 1.0824 1.0745 -10 -60 -790 07.02.2003 11.02.2003 GTC

113. EUR/USD BUY 100 000 1.0824 1.075 -10 -75 -740 07.02.2003 12.02.2003 GTC

114. EUR/GBP SELL -100 000 0.6598 0.6642 -10 -30 -712.62 11.02.2003 13.02.2003 Asking

115. EUR /USD SELL -100 000 1.0979 1.1049 -10 -90 -700 05.03.2003 11.03.2003 GTC

116. EUR/USD SELL -100 000 1.0981 1.1049 -10 -90 -680 05.03.2003 11.03.2003 GTC

117. EUR/USD BUY 100 000 1.0623 1.0585 -10 -30 -380 17.03.2003 19.03.2003 Asking

118. EUR/GBP BUY 200 000 0.6767 0.6756 -20 -60 -344.48 18.03.2003 20.03.2003 GTC

119. EUR/GBP SELL -100 000 0.6756 0.6766 -10 -60 -157.31 20.03.2003 24.03.2003 Asking

120. EUR/GBP SELL -100 000 0.6633 0.6642 -10 -45 -145.76 10.02.2003 13.02.2003 Asking

121. GBP /JPY SELL -100 000 188.7 188.83 -10 0 -110.23 13.03.2003 13.03.2003 Asking

122. EUR/GBP SELL -100 000 0.6756 0.6759 -10 -75 -47.29 20.03.2003 25.03.2003 GTC

123. EUR /USD BUY 200 000 1.1049 1.1048 -20 -30 -20 11.03.2003 12.03.2003 Limit

124. EUR/USD BUY 200 000 1.0488 1.0488 -20 -30 0 09.01.2003 10.01.2003 GTC

125. EUR/USD SELL -200 000 1.0785 1.0782 -20 -30 60 26.02.2003 27.02.2003 GTC

126. EUR/USD BUY 100 000 1.0743 1.075 -10 -15 70 11.02.2003 12.02.2003 GTC

127. EUR/USD BUY 100 000 1.0012 1.0023 -10 -15 110 21.11.2002 22.11.2002 Asking

128. EUR/USD BUY 100 000 1.0089 1.0113 -10 -15 240 12.11.2002 13.11.2002 Asking

129. EUR/USD BUY 200 000 1.0737 1.075 -20 -30 260 11.02.2003 12.02.2003 GTC

130. Currency Ope ration Volum e Open Rate Close Rate Commis sions Interes t Total P/L Open Date Close Date Reason

131. EUR/GBP BUY 100 000 0.6717 0.6734 -10 -15 271.66 19.02.2003 20.02.2003 Asking

132. EUR/GBP BUY 100 000 0.6717 0.6734 -10 -15 271.66 19.02.2003 20.02.2003 Asking

133. EUR/USD SELL -100 000 1.0085 1.0044 -10 -15 410 14.11.2002 15.11.2002 Asking

134. EUR/GBP BUY 200 000 0.6792 0.681 -20 -90 568.66 21.02.2003 24.02.2003 GTC

135. EUR/USD BUY 100 000 0.9939 1.0016 -10 -120 770 27.11.2002 05.12.2002 Limit

136. EUR/USD SELL -100 000 1.0091 1.0012 ' -10 -45 790 18.11.2002 21.11.2002 Asking

137. EUR/USD SELL -100 000 1.0028 0.9947 -10 -45 810 22.11.2002 25.11.2002 Asking

138. EUR/USD BUY 100 000 1.0014 1.0113 -10 -60 990 06.12.2002 10.12.2002 Limit

139. EUR/USD BUY 100 000 1.0737 1.084 -10 -45 1030 11.02.2003 14.02.2003 GTC

140. EUR/USD SELL -100 000 1.084 1.0727 -10 -75 1130 14.02.2003 19.02.2003 Asking

141. EUR/USD BUY 200 000 1.0827 1.0887 -20 -180 1200 30.01.2003 05.02.2003 Asking

142. EUR/GBP BUY 200 000 0.6742 0.678 -20 0 1209.84 14.03.2003 14.03.2003 Limit

143. EUR/USD BUY 100 000 1.0782 1.0907 -10 -75 1250 27.02.2003 04.03.2003 Asking

144. EUR/USD BUY 100 000 1.0573 1.0725 -10 -90 1520 16.01.2003 22.01.2003 Asking

145. EUR/GBP BUY 200 000 0.6642 0.6689 -20 -30 1524.3 13.02.2003 14.02.2003 GTC

146. EUR/USD BUY 100 000 1.0564 1.0726 -10 -90 1620 16.01.2003 22.01.2003 Asking

147. GBP /JPY SELL -100 000 189.25 186.71 -10 -285 2151.45 13.03.2003 01.04.2003 Asking

148. GBP /JPY SELL -100 000 189.9 186.7 -10 -285 2710.95 13.03.2003 01.04.2003 Asking

149. EUR/USD BUY 200 000 1.0698 1.0843 -20 -150 2900 22.01.2003 27.01.2003 Asking

150. EUR/GBP BUY 200 000 0.6759 0.6897 -20 -180 4351.14 25.03.2003 31.03.2003 Asking

151. Описание пакета NeuroPro 0.25

152. Подключение к нейропроекту файла (базы) данных в формате dfb (dBase, FoxBASE, FoxPro, Clipper) или db (Paradox);

153. Редактирование файла данных изменение существующих значений и добавление новых записей в базу данных; сохранение файла данных в другом формате;

154. Добавление в проект нейронной сети слоистой архитектуры с числом слоев нейронов от 1 до 10, числом нейронов в слое до 100 (что достаточно для большинства задач);

155. Тестирование нейронной сети на файле данных, получение статистической информации о точности решения задачи;

156. Вычисление показателей значимости входных сигналов сети, . сохранение значений показателей значимости в текстовом файле на диске;8. Упрощение нейронной сети;

157. Генерация и визуализация вербального описания нейронной сети, сохранение вербального описания в текстовом файле на диске;

158. Выбор алгоритма обучения, назначение требуемой точности прогноза, настройка нейронной сети.

159. При упрощении нейронной сети возможно выполнение следующих операций:

160. Сокращение числа входных сигналов нейронной сети путем удаления входных сигналов, наименее значимых для принятия сетью решения.

161. Сокращение числа нейронов сети путем удаления нейронов, наименее значимых для принятия сетью решения.

162. Комплексное равномерное упрощение нейронной сети. Для каждого нейрона сети выполняется сокращение числа приходящих на него сигналов до максимально возможного числа, задаваемого пользователем.

163. Сокращение числа связей в нейронной сети путем удаления связей, наименее значимых для принятия сетью решения.

164. Бинаризация связей в нейронной сети приведение весов синапсов к значениям -1 и 1 или значениям из более широкого набора выделенных значений.1. Е ЛСЫ20 npp1. Нейронные сети:

165. Network28 Network29 Network30 Network31 Network32 Network33

166. Входы и выходы j структур» сети |1

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.