Изучение экспрессии и взаимодействий белка Stellate в семенниках Drosophila melanogaster тема диссертации и автореферата по ВАК РФ 03.01.03, кандидат биологических наук Егорова, Ксения Сергеевна

  • Егорова, Ксения Сергеевна
  • кандидат биологических науккандидат биологических наук
  • 2010, Москва
  • Специальность ВАК РФ03.01.03
  • Количество страниц 102
Егорова, Ксения Сергеевна. Изучение экспрессии и взаимодействий белка Stellate в семенниках Drosophila melanogaster: дис. кандидат биологических наук: 03.01.03 - Молекулярная биология. Москва. 2010. 102 с.

Оглавление диссертации кандидат биологических наук Егорова, Ксения Сергеевна

Список сокращений.

1. Общая характеристика работы.

1.1 Актуальность проблемы.

1.2 Задачи исследования.

1.3 Научная новизна результатов исследования.

1.4 Практическая ценность.

1.5 Апробация работы.

2 Обзор литературы.

2.1 Экспрессия тандемных кластеров генов Stellate в семенниках Drosophila melanogaster.

2.1.1 Система crystal-Stellate.

2.1.2 Гены Stellate являются мишенью piPHK-сайленсинга.

2.1.3 Происхождение генетической системы crystal-Stellate.

2.1.4. Изучение особенностей белка Stellate.

2.2 Протеинкиназа СК2.

2.2.1 Роль СК2 в клетках различных организмов.

2.2.2 Структурно-функциональные характеристики СК2.

2.2.3 Мишени СК2.

2.2.4 CK2fi: внутривидовые особенности.

2.2.5 Мишени СК2 у D. melanogaster.

2.3 Метилирование негистоновых белков по остаткам лизина как способ регуляции их стабильности и функциональности.

2.3.1 Метилирование гистонов и концепция гистонового кода.

2.3.2 Метилирование транскрипционных факторов и других ядерных белков.

2.3.3 Метилирование белков трансляционного аппарата.

2.3.4 Белки, узнающие метилированные остатки лизинов («метиллизин-ридеры»).

2.3.5 Итоги и дальнейшие перспективы изучения метилированных белков.

3. Материалы и методы.

3.1 Линии Drosophila melanogaster, использованные в работе.

3.1.1 Схема скрещивания для получения мух с делецией локуса crystal, гетерозиготных по инсерции в ген гистонметилтрансферазы Su(Var)3-9.

3.2 Экспрессия и очистка рекомбинаптного белка Stellate.

3.3 Получение антител к белку Stellate.

3.4 Иммунофлуоресцентное окрашивание и конфокальная микроскопия.

3.5 Электрофорез в денатурирующих условиях в ДСН-ПААГ и Вестерн-блот-анализ.

3.5.1 Приготовление модифицированного полиакриламидного геля с измененной процентностью сшивки.

3.5.2 Окрашивание ПААГ «Кумасси».

3.5.3 Окрашивание ПААГ серебром.

3.6 Антитела.

3.7 Субклеточное фракционирование.

3.8 Фракционирование в градиенте сахарозы.

3.9 Субъядерное фракционирование.

3.10 Иммунопреципитация.

3.10.1 Ковалентная пришивка антител к протеин-С-сефарозе.

3.11 Аналитическая очистка белка Stellate и идентификация сайта метилирования.

3.12 Химическая сшивка белков in nucleo.

3.13 Фосфатазный анализ.

3.14 Иммуноферментный сорбционный анализ (ELISA).

4. Результаты.

4.1 Получение антител к белку Stellate.

4.2 Субклеточная локализация белка Stellate.

4.3 Поиск партнеров белка Stellate.

4.4 Stellate подвергается метилированию по остатку лизина.

4.5 Разделение белков Stellate на фракции, кодируемые эухроматиновыми и гетерохроматиновыми повторами Stellate.

5. Обсуяедение.

5.1 Субклеточная локализация белка Stellate.

5.2 Взаимодействие Stellate с СК2а.

5.3 Триметилирование Stellate.

5.4 Модель патогенеза при сверхэкспрессии Stellate.

6. Выводы.

7. Литература.

Благодарности

Список сокращений

АБТС — 2,2'-азино-бис(3-этилбензтиазолин-6-сульфоновая кислота)

ГЛМТ - гистонлизинметилтрансфераза

Да (кДа) - дальтон (кило дальтон)

ДМСО - диметилсульфоксид

ДСН - додецилсульфат натрия

ДСН-ПААГ — полиакриламидный гель, содержащий додецилсульфат натрия

ДТТ - дитиотреитол н. - нуклеотидов т.п.н. — тысяч пар нуклеотидов

ФМСФ - фенилметилсульфонилфторид

ФСБ - фосфатно-солевой буфер

ЭГТУ - этиленгликольтетрауксусная кислота (динатриевая соль)

ЭДТУ - этилендиаминтетрауксусная кислота (динатриевая соль)

DAPI - 4',6-диамидино-2-фенилиндол

DMP - диметилпимелимидат

DSP - дитиобиссукцинимидилпропионат

ELISA - enzyme-linked immunosorbent assay (иммуноферментный сорбционный анализ)

НЗК4те2 - гистон НЗ, диметилированный по остатку лизина К4 НЗК9те2 - гистон НЗ, диметилированный по остатку лизина К9 НЗК9теЗ - гистон НЗ, триметилированный по остатку лизина К9 НЗК27шеЗ - гистон НЗ, триметилированный по остатку лизина К27 IPTG - изопропил-р-О-тиогалактозид piPHK - Piwi-ассоциированные короткие РНК PVDF - поливинилиденфторид Su(Ste) — Supressor ofStellate

1. Общая характеристика работы

Рекомендованный список диссертаций по специальности «Молекулярная биология», 03.01.03 шифр ВАК

Заключение диссертации по теме «Молекулярная биология», Егорова, Ксения Сергеевна

6. Выводы

1. Охарактеризована субклеточная локализация белка Stellate в сперматоцитах D. melanogaster при генетической дерепрессии кластеров генов Stellate; Stellate формирует кристаллы преимущественно в цитоплазме сперматоцитов, в то время как в нуклеоплазме сперматоцитов присутствует также в некристаллической растворимой форме.

2. При дерепрессии кластеров генов Stellate выявляются белковые продукты как эухроматинового, так и гетерохроматинового кластеров Stellate.

3. Эндогенный белок Stellate взаимодействует с каталитической а-субъединицей протеинкиназы СК2.

4. Белок Stellate, как растворимый, так и кристаллический, несет посттрансляционную модификацию — триметилирование по остатку лизина К92; в метилировании Stellate принимает участие гистонлизинметилтрансфераза dSETDB 1.

5. Триметилированный по остатку лизина К92 белок Stellate специфически узнается антителами к модифицированному гистону НЗК9теЗ, демонстрируя структурную мимикрию соответствующего эпитопа гистона.

Список литературы диссертационного исследования кандидат биологических наук Егорова, Ксения Сергеевна, 2010 год

1. Ambler, R.P. and Rees, M.W. (1959). Epsilon-N-methyl-lysine in bacterial flagellar protein. Nature, 184, 56-57.

2. Aravin, A.A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, В., Gaasterland, Т., Meyer, J., and Tuschl, T. (2003) The small RNA profile during Drosophila melanogaster development. Dev. Cell, 5(2), 337-350.

3. Avila, J., Ulloa, L., González, J., Moreno, F., and Diaz-Nido, J. (1994). Phosphorylation of microtubule-associated proteins by protein kinase CK2 in neuritogenesis. Cell Mol. Biol. Res., 40(5-6), 573-579.

4. Balakireva, M.D., Shevelyov, Y.Y., Nurminsky, D.I. , Livak, K.J. and Gvozdev, V.A. (1992). Structural organization and diversification of Y-linked sequences comprising Su(Ste) genes in Drosophila melanogaster. Nucleic Acid Res., 20(14), 3731-3736.

5. Bibby, A.C. and Litchfield, D.W. (2005). The multiple personalities of the regulatory subunit of protein kinase CK2: CK2 dependent and CK2 independent roles reveal a secret identity for CK2beta. Int. J. Biol. Sci., 1(2), 67-79.

6. Bidwai, A.P., Zhao, W., and Glover, C.V. (1999). A gene located at 56F1-2 in Drosophila melanogaster encodes a novel metazoan beta-like subunit of casein kinase II. Mol. Cell Biol. Res. Commun., 1(1), 21-28.

7. Bjorling-Poulsen, M., Siehler, S., Wiesmuller, L., Meek, D., and Issinger, O.G. (2005). The 'regulatory' beta-subunit of protein kinase CK2 negatively influences p53-mediated allosteric effects on Chk2 activation. Oncogene, 24(40), 6194-6200.

8. Blau, J. (2003). A new role for an old kinase: CK2 and the circadian clock. Nat. Neurosci., 6(3), 208-210.

9. Blond, O., Jensen, H.H., Buchou, T., Cochet, C., Issinger, O.G., and Boldyreff, B. (2005). Knocking out the regulatory beta subunit of protein kinase CK2 in mice: gene dosage effects in ES cells and embtyos. Mol. Cell Biochem., 274(1-2), 31-37.

10. Boa, S., Coert, C., and Patterson, H.G. (2003). Sacharomyces cerevisiae Setlp is a methyltransferase specific for lysine 4 of histone H3 and is required for efficient gene expression. Yeast, 20, 827-835.

11. Bojanowski, K., Filhol, O., Cochet, C., Chambaz, E.M., and Larsen, A.K. (1993). DNA topoisomerase II and casein kinase II associate in a molecular complex that is catalytically active. J. Biol. Chem., 268(30), 22920-22926.

12. Bonet, C., Fernandez, I., Aran, X., Bernues, J., Giralt, E. and Azorin, F. (2005). The GAGA protein of Drosophila is phosphorylated by CK2. J. Mol. Biol., 351, 562-572.

13. Botuyan, M.V., Lee, J., Ward, I.M., Kim, J.E., Thompson, J.R., Chen, J., and Mer, G. (2006). Structural basis for the methylation site-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell, 127, 1361-1373.

14. Bouazoune, K. and Brehm, A. (2005). dMi-2 chromatin binding and remodeling activities are regulated by dCK2 phosphorylation. J. Biol. Chem., 280, 41912-41920.

15. Brady, J. and Kashanchi, F. (2005). Tat gets the "green" light on transcription initiation. Retrovirology, 2, 69.

16. Brennecke, J., Aravin, A.A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., and Hannon, G.J. (2007). Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell, 128(6), 1089-1103.

17. Brooks, C.L. and Gu, W. (2006). p53 ubiquitination: Mdm2 and beyond. Mol. Cell, 21, 307315.

18. Brown, R.H. and Boulter, D. (1973). The amino acid sequence of cytochrome c from Nigella damascena L. (love-in-a-mist). Biochem. J., 133, 251-254.

19. Brown, R.H., Richardson, M., Scogin, R., and Boulter, D. (1973). The amino acid sequence of cytochrome c from Spinacea oleracea L. (spinach). Biochem. J., 131, 253-256.

20. Burnett, G. and Kennedy, E.P. (1954). The enzymatic phosphorylation of proteins. J. Biol. Chem., 211(2), 969-980.

21. Carroll, A.J., Heazlewood, J.L., Ito, J., and Millar, A.H. (2008). Analysis of the Arabidopsis cytosolic ribosome proteome provides detailed insights into its components and their post-translational modification. Mol. Cell. Proteorrdcs, 7, 347-369.

22. Cavallius, J., Zoll, W., Chakraburtty, K., and Merrick, W.C. (1993). Characterization of yeast EF-1 alpha: non-conservation of post-translational modifications. Biochim. Biophys. Acta, 1163, 75-80.

23. Cenci, G., Bonaccorsi, S., Pisano, C., Verni, F., and Gatti, M. (1994). Chromatin and microtubule organization during premeiotic, meiotic and early postmeiotic stages of Drosophila melanogaster spermatogenesis. J. Cell. ScL, 107,3521-3534.

24. Chakraborty, S., Sinha, K.K., Senyuk, V., and Nucifora, G. (2003). SUV39H1 interacts with AML1 and abrogates AJML1 transactivity. AML1 is methylated in vivo. Oncogene, 22, 52295237.

25. Cheeseman, I.M., Anderson, S., Jwa, M., Green, E.M., Kang, J., Yates, 3rd J.R., Chan, C.S., Drubin, D.G., and Barnes, G. (2002). Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipllp. Cell, 111, 163-172.

26. Chen, R., Fearnley, I.M., Palmer, D.N., and Walker, J.E. (2004). Lysine 43 is trimethylated in subunit c bovine mitochondrial ATP synthase and in storage bodies associated with Batten disease. J. Biol. Chem., 279, 21883-21887.

27. Chen, T. and Li, E. (2006). Establishment and maintenance of DNA methylation patterns in mammals. Curr. Top. Microbiol. Immunol., 301, 179-201.

28. Chen, L.F., Mil, Y., and Greene, W.C. (2002). Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBOJ., 21, 6539-6548.

29. Chin, H.G., Esteve, P.O., Pradhan, M., Benner, J., Patnaik, D., Carey, M.F., and Pradhan, S. (2007). Automethylation of G9a and its implication in wider substrate specificity and HP1 binding. Nucleic Acids Res., 35, 7313-7323.

30. Chuikov, S., Kurash, J.K., Wilson, J.R., Xiao, B., Justin, N., Ivanov, G.S., McKinney, K., Tempst, P., Prives, C., Gamblin, S.J., Barlev, N.A., and Reinberg, D. (2004). Regulation of p53 activity through lysine methylation. Nature, 432, 353-360.

31. Chumakov, P.M. (2007). Versatile functions of p53 protein in multicellular organisms. Biochemistry (Mosc), 72, 1399-1421.

32. Cook, H.A., Koppetsch, B.S., Wu, J., and Theurkauf, W.E. (2004). The Drosophila SDE3 homolog armitage is required for oskar mRNA silencing and embiyonic axis specification. Cell, 116(6), 817-829.

33. Couture, J.F., Collazo, E., Hauk, G., and Trievel, R.C. (2006). Structural basis for the methylation site specificity of SET7/9. Nat. Struct. Mol. Biol., 13, 140-146.

34. DeLange, R.J., Glazer, A.N., and Smith, E.L. (1969). Identification and location of episilon-N-trimethyllysine in yeast cytochromes c. J. Biol. Chem., 244, 1385-1388.

35. DeLange, R.J., Glazer, A.N., and Smith, E.L. (1970). Presence and localization of an unusual amino acid, epsilon-N-trimethyllysine, in cytochrome c of wheat germ and Neurospora. J. Biol. Chem., 245,3325-3327.

36. DePamphilis, M.L. (2005). Cell cycle dependent regulation of the origin recognition complex. Cell Cycle, 4, 70-79.

37. Duran, A., Diaz-Meco, M.T., and Moscat, J. (2003). Essential role of ReLA Ser311 phosphorylation by zetaPKC in NF-kappaB transcriptional activation. EMBO J., 22, 39103918.

38. Eissenberg, J.C., Ge, Y.W., and Hartnett, T. (1994). Increased phosphorylation of HP1, a heterochromatin-associated protein of Drosophila, is correlated with heterochromatin assembly. J. Biol. Chem., 269(33), 21315-21321.

39. Escargueil, A.E., Plisov, S.Y., Filhol, O., Cochet, C., and Larsen, A.K. (2000). Mitotic phosphorylation of DNA topoisomerase II alpha by protein kinase CK2 creates the MPM-2 phosphoepitope on Ser-1469. J. Biol. Chem., 275(44), 34710-34718.

40. Farooqui, J., DiMaria, P., Kim, S., and Paik, W.K. (1981). Effect of methylation on the stability of cytochrome c of Saccharomyces cerevisiae in vivo. J. Biol. Chem., 256, 5041-5045.

41. Faust, M., Schuster, N., and Montenarh, M. (1999). Specific binding of protein kinase CK2 catalytic subunitto tubulin. FEBS Lett., 462(1-2), 51-56.

42. Filhol, O. and Cochet, C. (2009). Protein kinase CK2 in health and disease: cellular functions of protein kinase CK2: a dynamic affair. Cell Mol. Life Sci., 66(11-12), 1830-1839.

43. Fischle, W., Tseng, B.S., Dormann, H.L., Ueberheide, B.M., Garcia, B.A., Shabanowitz, J., Hunt, D.F., Funabiki, H., and Allis, C.D. (2005). Regulation of HPl-chromatin binding by histone H3 methylation and phosphorylation. Nature, 438, 1116-1122.

44. Fischle, W., Wang, Y., Jacobs, S.A., Kim, Y., Allis, C.D., and Khorasanizadeh, S. (2003). Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomband HP1 chromodomains. Genes Dev., 17, 1870-1881.

45. Fraser, A.G., Kamath, R.S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M., and Ahringer, J. (2000). Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature, 408(6810), 325-330.

46. Ghavidel, A. and Schultz, M.C. (1997). Casein kinase II regulation of yeast TFIHB is mediated by the TATA-binding protein. Genes Dev. 11(21), 2780-2789.

47. Ghosh, S., May, M.J., and Kopp, E.B. (1998). NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol., 16,225-60.

48. Glover, C.V. (1998). On the physiological role of casein kinase II in Saccharomyces cerevisiae. Prog. Nucleic Acid Res. Mol. Biol., 59, 95-133.

49. Glover, C.V., Shelton, E.R., and Brutlag, D.L. (1983). Purification and characterization of a type II casein kinase from Drosophila melanogaster. J. Biol. Chem., 258(5), 3258-65.

50. Grankowski, N., Boldyreff, B., and Issinger, O.G. (1991). Isolation and characterization of recombinant human casein kinase II subunits alpha and beta from bacteria. Eur. J. Biochem., 198(1), 25-30.

51. Gregori, L., Marriott, D., West, C.M., and Chau, V. (1985). Specific recognition of calmodulin from Dictyostelium discoideum by the ATP, ubiquitin-dependent degradative pathway. J. Biol. Chem., 260, 5232-5235.

52. Gunawardane, L.S., Saito, K., Nishida, K.M., Miyoshi, K., Kawamura, Y., Nagami, T., Siomi, H., and Siomi, M.C. (2007). A slicer-mediated mechanism for repeat-associated siRNA 5' end formation in Drosophila. Science, 315(5818), 1567-1590.

53. Hanna, D.E., Rethinaswamy, A., and Glover, C.V. (1995). Casein kinase II is required for cell cycle progression during G1 and G2/M in Saccharomyces cerevisiae. J. Biol. Chem., 270(43), 25905-25914.

54. Hardy, R.W., Lindsley, D.L., Livak, K.J., Lewis, B., Siversten, A.V., Joslyn, G.L., Edwards, J., and Bonaccorsi, S. (1984). Cytogenetic analysis of a segment of the Y chromosome of Drosophila melanogaster. Genetics, 107, 591-610.

55. Hinton, R.H. and Mullock, B.M. (1997). 'Isolation of subcellular fractions' in Subcellular fractionation: A Practical Approach (Graham JM & Rickwood D, eds) pp.31-69. Oxford University Press, NY.

56. Ho, P.C., Gupta, P., Tsui, Y.C., Ha, S.G., Huq, M., and Wei, L.N. (2008). Modulation of lysine acetylation-stimulated repressive activity by Erk2-mediated phosphoiylation of RIP140 in adipocyte differentiation. Cell Signal, 20, 1911-1919.

57. Hu, E. and Rubin, C.S. (1990a). Casein kinase II from Caenorhabditis elegans. Properties and developmental regulation of the enzyme; cloning and sequence analyses of cDNA and the gene for the catalytic subunit. J. Biol. Chem., 265(9), 5072-5080.

58. Hu, E. and Rubin, C.S. (1990b). Expression of wild-type and mutated forms of the catalytic (alpha) subunit of Caenorhabditis elegans casein kinase II in Escherichia coli. J. Biol. Chem., 265(33), 10609-10615.

59. Huang, J. and Berger, S.L. (2008). The emerging field of dynamic lysine methylation of nonhistone proteins. Cm/7*. Opin. Genet. Dev., 18, 152-158.

60. Huang, J., Perez-Burgos, L., Placek, B.J., Sengupta, R., Richter, M., Dorsey, J.A., Kubicek, S., Opravil, S., Jenuwein, T., and Berger, S.L. (2006). Repression of p53 activity by Smyd2-mediated methylation. Nature, 444, 629-632.

61. Huang, J., Sengupta, R., Espejo, A.B., Lee, M.G., Dorsey, J.A., Richter, M., Opravil, S., Shiekhattar, R., Bedford, M.T., Jenuwein, T., and Berger, S.L. (2007). p53 is regulated by the lysine demethylase LSD1. Nature, 449, 105-108.

62. Huq, M.D., Gupta, P., Tsai, N.P., White, R., Parker, M.G., and Wei, L.N. (2006). Suppression of receptor interacting protein 140 repressive activity by protein arginine methylation. EMBOJ., 25, 5094-5104.

63. Huq, M.D., Ha, S.G., Barcelona, H., and Wei, L.N. (2009). Lysine methylation of nuclear compressor receptor interacting protein 140. J. Proteome Res., 8, 1156-1167.

64. Huq, M.D., Ha, S.G., and Wei, L.N. (2008). Modulation of retinoic acid receptor alpha activity by lysine methylation in the DNA binding domain. J. Proteome Res., 7,4538-4545.

65. Jauch, E., Melzig, J., Brkulj, M., and Raabe, T. (2002). In vivo functional analysis of Drosophila protein kinase casein kinase 2 (CK2) beta-subunit. Gene, 298(1), 29-39.

66. Jauch, E., Wecklein, H., Stark, F., Jauch, M., and Raabe, T. (2006). The Drosophila melanogaster DmCK2beta transcription unit encodes for functionally non-redundant protein isoforms. Gene, 374, 142-152.

67. Jenuwein, T. and Allis, C.D. (2001). Translating the histone code. Science, 293, 1074-1080.

68. Kachirskaia, I., Shi, X., Yamaguchi, H., Tanoue, K., Wen, H., Wang, E.W., Appella, E., and Gozani, O. (2008). Role for 53BP1 Tudor domain recognition of p53 dimethylated at lysine 382 in DNA damage signaling. J. Biol. Chem., 283,34660-34666.

69. Kahali, B., Trott, R., Paroush, Z., Aliada, R., Bishop, C.P., and Bidwai, A.P. (2008). Drosophila CK2 phosphoiylates Haixy and regulates its activity in vivo. Biochem. Biophys. Res. Commun., 373, 637-642.

70. Kalmykova, A.I., Dobritsa, A.A., and Gvozdev, V.A. (1997). The Su(Ste) repeat in the Y chromosome and betaCK2tes gene encode predicted isoforms of regulatory beta-subunit of protein CK2 in Drosophila melanogaster. FEBSLett., 416(2), 164-166.

71. Kalmykova, A.I., Shevelyov, Y.Y., Dobritsa, A.A., and Gvozdev, V.A. (1997). Acquisition and amplification of a testis-expressed autosomal gene, SSL, by the Drosophila Y chromosome. Proc. Natl. Acad. Sci. USA, 94(12), 6297-3602.

72. Katz, M.L., Siakotos, A.N., Gao, Q., Freiha, В., and Chin, D.T. (1997). Late-infantile ceroid-lipofuscinosis: Lysine methylation of mitochondrial ATP synthase subunit с from lysosomal storage bodies. Biochim Biophys Acta, 1361,66-74.

73. Keller, D.M., Zeng, X., Wang, Y., Zhang, Q.H., Kapoor, M., Shu, H., Goodman, R., Lozano, G., Zhao, Y., and Lu, H. (2001). A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSptl6, and SSRP1. Mol. Cell, 7(2), 283-292.

74. Kellum, R. and Alberts, B.M. (1995). Heterochromatin protein 1 is required for correct chromosome segregation in Drosophila embryos. J. Cell. Sci., 108, 1419-1431.

75. Kikkawa, U., Mann, S.K., Firtel, R.A., and Hunter, T. (1992). Molecular cloning of casein kinase II alpha subunit from Dictyostelium discoideum and its expression in the life cycle. Mol. Cell Biol., 12(12), 5711-5723.

76. Kim, J., Daniel, J., Espejo, A., Lake, A., Krishna, M., Xia, L., Zhang, Y., and Bedford, M.T. (2006)., МВТ and chromo domains gauge the degree of lysine methylation. EMBO Rep., 7, 397-403.

77. Kurash, J.K., Lei, H., Shen, Q., Marston, W.L., Granda, B.W., Fan, H., Wall, D., Li, E., and Gaudet, F. (2008). Methylation of p53 by Set7/9 mediates p53 acetylation and activity in vivo. Mol. Cell, 29,392-400.

78. Mangelsdorf, D.J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P., and Evans R.M. (1995). The nuclear receptor superfamily: the second decade. Cell, 83, 835-839.

79. Martin, C. and Zhang, Y. (2005). The diverse function of histone lysine methylation. Nat Rev Mol Cell Biol., 6, 838-849.

80. Masatsugu, T. and Yamamoto, K. (2009). Multiple lysine methylation of PCAF by Set9 methyltransferase. Biochem. Biophys. Res. Commun., 381, 22-26.

81. Mendez, J. and Stillman, B. (2000). Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol. Cell. Biol., 20, 8602-8612.

82. Metzger, E., Wissmann, M., Yin, N., Mueller, J.M., Schneider, R., Peters, A.H., Guenther, T., Buettner, R., and Schuele, R. (2005). LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature, 437, 436-439.

83. Morino, H., Kawamoto, T., Miyake, M., and Kakimoto, Y. (1987). Purification and properties of calmodulin-lysine N-methyltransferase from rat brain cytosol. J. Neurochem., 48, 1201-1208.

84. Murray, K. (1964). The occurrence of s-N-methyl lysine in histones Biochemistry, 3, 10-15.

85. Nagy, Z. and Tora, L. (2007). Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene, 26, 5341-5357.

86. Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D., and Grewal, S.I. (2001). Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science, 292, 110113.

87. Nasmyth, K. (1996). Viewpoint: putting the cell cycle in order. Science 274(5293), 1643-5.

88. Nishida, K.M., Saito, K., Mori, T., Kawamura, Y., Nagami-Okada, T., Inagaki, S., Siomi, H., and Siomi, M.C. (2007) Gene silencing mechanisms mediated by Aubergine-piRNA complexes in Drosophila male gonads. UNA, 13, 1911-1922.

89. Noma, K., Allis, C.D., and Shiv, I.S. (2001). Grewal transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science, 293, 1150-1155.

90. Palumbo, G., Bonaccorsi, S., Robbins, L., and Pimpinelli, S. (1994). Genetic analysis of Stellate elements of Drosophila melanogaster. Genetics, 138, 1181-1197.

91. Park, K.S., Frost, B., Tuck, M., Ho, L.L., Kim, S., and Paik, W.K. (1987). Enzymatic methylation of in vitro synthesized apocytochrome c enhances its transport into mitochondria. J. Biol. Chem.,262, 14702-14708.

92. Patnaik, D., Chin, H.G., Esteve, P.O., Benner, J., Jacobsen, S.E., and Pradhan, S. (2004). Substrate specificity and kinetic mechanism of mammalian G9a histone H3 methyltransferase. J. Biol. Chem., 279, 53248-53258.

93. Pepperkok, R., Lorenz, P., Ansorge, W., and Pyerin, W. (1994). Casein kinase II is required for transition of G0/G1, early Gl, and Gl/S phases of the cell cycle. J. Biol. Chem., 269(9), 6986-6991.

94. Pidoux, A.L. and Allshire, R.C. (2005). The role of heterochromatin in centromere function. Philos. Trans. R Soc. Lond. B. Biol. Sci., 360(1455), 569-579.

95. Pinna, L.A. (2002). Protein kinase CK2: a challenge to canons. J. Cell ScL, 115, 3873-3878.

96. Polevoda, B., Martzen, M.R., Das, B., Phizicky, E.M., and Sherman, F. (2000). Cytochrome c methyltransferase, Ctmlp, of yeast. J. Biol. Chem., 275, 20508-20513.

97. Polevoda, B. and Sherman, F. (2007). Methylation of proteins involved in translation. Molecular Microbiology, 65, 590-606.

98. Porras-Yakushi, T.R., Whitelegge, J.P., and Clarke, S. (2006). A novel SET domain methyltransferase in yeast: Rkm2-dependent trimethylation of ribosomal protein L12ab at the N terminus. J. Biol. Chem., 281, 35835-35845.

99. Porras-Yakushi, T.R., Whitelegge, J.P., and Clarke, S. (2007). Yeast ribosomal/cytochrome c SET domain methyltransferase subfamily: identification of Rpl23ab methylation sites and recognition motifs. J. Biol. Chem., 282, 12368-12376.

100. Rathert, P., Dhayalan, A., Murakami, M., Zhang, X., Tamas, R., Jurkowska, R., Komatsu, Y., Shinkai, Y., Cheng, X., and Jeltsch, A. (2008). Protein lysine methyltransferase G9a acts on non-histone targets. Nat. Chem. Biol., 4, 344-346.

101. Rice, J.C., Briggs, S.D., Ueberheide, B., Barber, C.M., Shabanowitz, J., Hunt, D.F., Shinkai, Y., and Allis, C.D. (2003). Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol. Cell, 12, 1591-1598.

102. Roberts, D.M., Rowe, P.M., Siegel, F.L., Lukas, T.J., and Watterson, D.M. (1986). Trimethyllysine and protein function. Effect of methylation and mutagenesis of lysine 115 of calmodulin on NAD kinase activation. J. Biol. Chem., 261, 1491-1494.

103. Romero-Oliva, F. and Allende, J.E. (2001). Protein p21 (WAF1/CIP1) is phosphoiylated by protein kinase CK2 in vitro and interacts with the amino terminal end of the CK2 beta subunit. J. Cell Biochem., 81(3), 445-452.

104. Roussou, I. and Draetta, G. (1994). The Schizosaccharomyces pombe casein kinase II alpha and beta subunits: evolutionary conservation and positive role of the beta subunit. Mol. Cell Biol, 14(1), 576-586.

105. Sadaie, M., Shinmyozu, K., and Nakayama, J. (2008). A conserved SET domain methyltransferase, Setll, modifies ribosomal protein Rpll2 in fission yeast. J. Biol. Chem., 283,7185-7195.

106. Santos-Rosa, H., Schneider, R., Bannister, A.J., Sherriff, J., Berstein, B.E., Emre, N.C.T., Schreiben S.L., Mellor, J., and Kouzarides, T. (2002). Active genes are tri-methylated at K4 of histone H3. Nature, 419,407-411.

107. Sasagawa, T., Ericsson, L.H., Walsh, K.A., Schreiber, W.E., Fischer, E.H., and Titani, K. (1982). Complete amino acid sequence of human brain calmodulin. Biochemistry, 21, 25652569.

108. Schotta G., Ebert A., Krauss V., Fischer A., Hoffmann J., Rea S., Jenuwein T., Dorn R., and Reuter G. (2002). Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatin gene silencing. EMBOJ., 21, 1121-1131.

109. Seum, C., Reo, E., Peng, H., Rauscher, F.J. 3rd, Spierer, P., and Bontron, S. (2007). Drosophila SETDB1 is required for chromosome 4 silencing. PLoS Genet., 3(5), e76.

110. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.Y., and Mann, M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc., 1, 2856-2860.

111. Shevelyov, Y.Y. (1992). Copies of a Stellate gene variant are located in the X heterochromatin of Drosophila melanogaster and are probably expressed. Genetics, 132, 10331037.

112. Shi, X., Kachirskaia, I., Yamaguchi, H., West, L.E., Wen, H., Wang, E.W., Dutta, S., Appella, E., and Gozani, O. (2007). Modulation of p53 function by SET8-mediated methylation at lysine 382. Molecular Cell, 27, 636-646.

113. Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J.R., Cole, P.A., Casero, RA., and Shi, Y. (2004). Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 119, 941-953.

114. Shimada, A., Dohke, K., Sadaie, M., Shinmyozu, K., Nakayama, J., Urano, T., and Murakami, Y. (2009). Phosphorylation of Swi6/HPl regulates transcriptional gene silencing at heterochromatin. Genes Dev., 23(1), 18-23.

115. Siomi, M.C. and Kuramochi-Miyagawa, S. (2009). RNA silencing in germlines — exquisite collaboration of Argonaute proteins with small RNAs for germline survival. Curr. Opin. Cell Biol., 21(3), 426-434.

116. St-Denis, N.A. and Litchfield, D.W. (2009). Protein kinase CK2 in health and disease: from birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell Mol. Life Sci., 66(11-12), 1817-1829.

117. Strahl, B.D. and Allis, C.D. (2000). The language of covalent histone modifications. Nature, 403, 41-45.

118. Subramanian, K., Jia, D., Kapoor-Vazirani, P., Powell, D.R., Collins, R.E., Sharma, D., Peng, J., Cheng, X., and Vertino, P.M. (2008). Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Mol. Cell, 30,336-347.

119. Takemori, N., Komori, N., Thompson, J.N.Jr., Yamamoto, M.T., and Matsumoto, H. (2007). Novel eye-specific calmodulin methylation characterized by protein mapping in Drosophila melanogaster. Proteomics, 7, 2651-2658.

120. Takemoto, A., Kimura, K., Yanagisawa, J., Yokoyama, S. and Hanaoka, F. (2006). Negative regulation of condensin I by CK2-mediated phosphoiylation. EMBOJ., 25, 5339-5348.

121. Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D., and Patel, D.J. (2007). How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol., 14, 1025-1040.

122. Theis-Febvre, N., Filhol, O., Froment, C., Cazales, M., Cochet, C., Monsarrat, B., Ducommun, B., and Baldin, V. (2003). Protein kinase CK2 regulates CDC25B phosphatase activity. Oncogene, 22(2), 22032.

123. Tulin, A.V., Kogan, G.L., Filipp, D., Balakireva, M.D., and Gvozdev, V.A. (1997). Heterochromatic Stellate gene cluster in Drosophila melanogaster. structure and molecular evolution. Genetics, 146(1), 253-262.

124. Usakin, L.A., Kogan, L.V., Kalmykova, A.I., and Gvozdev, V.A. (2005). An alien promoter capture as a primary step of the evolution of testes-expressed repeats in the Drosophila melanogaster genome. Mol. Biol. Evol., 22(7), 1555-1560.

125. Vagin, V.V., Sigova, A., Li, C., Seitz, H., Gvozdev, V., and Zamore, P.D. (2006). A distinct small RNA pathway silences selfish genetic elements in the germline. Science, 313, 320-324.

126. Van Duyne, R„ Easley, R., Wu, W., Berro, R., Pedati, C., Klase, Z., Kehn-Hall, K., Flynn, E.K., Symer, D.E., and Kashanch,i F. (2008). Lysine methylation of HIV-1 Tat regulates transcriptional activity of the viral LTR. Retrovirology, 5, 40.

127. Van Hemert, F.J., Amons, R., Pluijms, W.J., Van Ormondt, H., and Moeller, W. (1984). The primary structure of elongation factor EF-1 alpha from the brine shrimp Artemia. EMBO J., 3, 1109-1113.

128. Van Noort, J.M., Kraal, B., Sinjorgo, K.M.C., Persoon, N.L.M., Johanns, E.S.D., and Bosch, L. (1986). Methylation in vivo of elongation factor EF-Tu at lysine-56 decreases the rate of tRNA-dependent GTP hydrolysis. Eur. J. Biochem., 160, 557-561.

129. Vanet, A., Plumbridge, J.A., Guerin, M.F., and Alix, J.H. (1994). Ribosomal protein methylation in Escherichia coliL the gene prmA, encoding the ribosomal protein Lll methyltransferase, is dispensable. Mol. Microbiol., 14, 947-958.

130. Vann, L.R., Wooding, F.B., Irvine, R.F., and Divecha, N. (1997). Metabolism and possible compartmentalization of inositol lipids in isolated rat-liver nuclei. Biochem. J., 327, 569-576.

131. Vazquez, J., Belmont, A.S., and Sedat, J.W. (2002). The dynamics of homologous chromosome pairing during male Drosophila meiosis. Curr. Biol., 12, 1473-1483.

132. Waggener, J.M. and DiMario, P.J. (2002). Two splice variants of Noppl40 in Drosophila melanogaster. Mol. Biol. Cell, 13, 362-381.

133. Walter, T.S., Meier, C., Assenberg,, R. Au, K.F., Ren, J., Verma, A., Nettleship, J.E., Owens, R.J., Stuart, D.I., and Grimes, J.M. (2006). Lysine methylation as a routine rescue strategy for protein crystallization. Structure, 14(11), 1617-1622.

134. Webb, K.J., Laganowsky, A., Whitelegge, J.P., and Clarke, S.G. (2008). Identification of two SET domain proteins required for methylation of lysine residues in yeast ribosomal protein Rpl42ab. Biol. Chem., 283,35561-35568.

135. Wessel, D. and Fluegge, U.I. (1984). A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem., 138, 141-143.

136. Wright, L.S., Berries, P.J., and Siegel, F.L. (1996). Calmodulin N-methyltransferase. Kinetics, mechanism, and inhibitors. J. Biol Chem., 271, 12737-12743.

137. Yang, X.D., Huang, B., Li, M., Lamb, A., Kelleher, N.L., and Chen, L.F. (2009). Negative regulation of NF-kappaB action by Set9-mediated lysine methylation of the RelA subunit. EMBOJ., 28, 1055-1066.

138. Yang, X.D., Tajkhorshid, E., and Chen, L.F. (2010). Functional interplay between acetylation and methylation of the RelA subunit of NF-kappaB. Mol. Cell Biol., 30(9), 21702180.

139. Yoon, J., Lee, K.S., Park, J.S., Yu, K., Paik, S.G., and Kang, Y.K. (2008).dSETDBl and SU(VAR)3-9 sequentially function during germline-stem cell differentiation in Drosophila melanogaster. PLoS One, 3(5), e2234.

140. Zelada, A., De Souza, F.S., Walz, K., Giasson, L., and Passeron, S. (2003). cDNA cloning, biochemical and phylogenetic characterization of beta- and beta'-subunits of Candida albicans protein kinase CK2. Yeast, 20(6), 471-478.

141. Zhao, T. and Eissenberg, J.C. (1999). Phosphorylation of heterochromatin protein 1 by casein kinase II is required for efficient heterochromatin binding in Drosophila. J. Biol. Chem., 274(21), 15095-15100.

142. Zhao, T., Heyduk, T., and Eissenberg, J.C. (2001). Phosphorylation site mutations in heterochromatin protein 1 (HP1) reduce or eliminate silencing activity. J. Biol. Chem., 276(12), 9512-9518.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.