Интерферирующая и антипролиферативная активности препаратов дцРНК в культурах опухолевых клеток человека различного происхождения тема диссертации и автореферата по ВАК РФ 03.01.04, кандидат биологических наук Акимов, Иван Алексеевич
- Специальность ВАК РФ03.01.04
- Количество страниц 152
Оглавление диссертации кандидат биологических наук Акимов, Иван Алексеевич
Список сокращений.
Введение.
Глава 1. Коррекция нарушений клеточного цикла с помощью siPHK (обзор литературы).
1.1. Введение: Регуляция клеточного цикла и ее нарушения как мишени для действия интерферирующих РНК.
1.2. Регуляция клеточного цикла.
1.2.1. Циклины и циклин-зависимые киназы.
1.2.2. Регуляция активности циклинов и циклин-зависимых киназ.
1.2.3. "Точки проверки" клеточного цикла.
1.3. Нарушения клеточного цикла и их причины.
1.3.1. Her2 (c-erb-B2/Neu).
1.3.2. Циклин В1.
1.3.3. Протеинкиназа С (РКС).
1.4. Клеточная дифференцировка.
1.4.1. Процессы клеточной дифференцировки.
1.4.2. Индукторы клеточной дифференцировки.
1.5. Ингибирование экспрессии генов с помощью siPHK.
1.5.1. РНК — интерференция.
1.5.2. Активация системы врожденного иммунитета под действием дцРНК.
1.5.3. Клинические испытания препаратов на основе siPHK.
1.5.4. Индукция клеточной дифференцировки с помощью siPHK.
Рекомендованный список диссертаций по специальности «Биохимия», 03.01.04 шифр ВАК
Ингибирование экспрессии онкогенов семейства myc и пролиферации опухолевых клеток человека с помощью двуцепочечных интерферирующих РНК2007 год, кандидат биологических наук Кабилова, Татьяна Олеговна
Принципы конструирования малых интерферирующих РНК для подавления экспрессии терапевтически значимых генов2012 год, доктор биологических наук Черноловская, Елена Леонидовна
Противоопухолевая и антиметастатическая активность siРНК, РНКазы А и ДНКазы I - препаратов, способных специфически и неспецифически вызывать деградацию нуклеиновых кислот2009 год, кандидат биологических наук Шкляева, Ольга Александровна
Подавление экспрессии гена MDR1 с помощью малых интерферирующих РНК2006 год, кандидат биологических наук Логашенко, Евгения Борисовна
Подавление экспрессии лейкозных онкогенов с помощью РНК-интерференции2010 год, кандидат биологических наук Спирин, Павел Владимирович
Введение диссертации (часть автореферата) на тему «Интерферирующая и антипролиферативная активности препаратов дцРНК в культурах опухолевых клеток человека различного происхождения»
В настоящее время одной из первоочередных задач онкологии является повышение эффективности лечения опухолей, как путем разработки новых методов лечения, так и путем совершенствования традиционных терапевтических подходов. Хирургическое вмешательство, радиационное облучение и химиотерапия остаются классическими и наиболее распространенными методами лечения онкологических заболеваний. К сожалению, даже комплекс современных противоопухолевых мероприятий, часто не приводит к полной элиминации опухолевых клеток. Поэтому, несмотря на заметные достижения в области терапии онкологических заболеваний, увеличение эффективности лечения злокачественных опухолей и снижение токсичности химиотерапии путем создания лекарственных средств ген-направленного действия являются исключительно актуальными.
Важную роль в процессе злокачественной трансформации клеток играют гены, гиперэкспрессия которых приводит к неконтролируемой пролиферации (белки-регуляторы клеточного цикла) [ 1 ], блокированию апоптоза [ 2 ], нарушению процессов дифференцировки [3], повышению уровня генетической нестабильности [4], а также к усилению инвазивных свойств опухолевой клетки [5-9]. Наиболее часто, в опухолевых клетках наблюдается экспрессия мутантных форм или гиперэкспрессия нормальных клеточных генов, кодирующих рецепторы, транскрипционные факторы, тирозин-киназы и другие регуляторные белки.
Пути передачи сигналов в клетке включают множество дублирующих друг друга элементов, поэтому при подавлении экспрессии одного клеточного фактора, участвующего в передаче сигнала, возможна компенсация его функции путем активации альтернативного сигнального пути [9]. В связи с этим, поиск клеточных мишеней для направленного действия терапевтических агентов различной природы является актуальной задачей.
РНК-интерференция представляет собой процесс деградации мРНК-мишени, который индуцируется под действием двуцепочечных интерферирующих РНК длиной не менее 21-23 звеньев, гомологичных участку данной мРНК[10]. Этот процесс является эффективным способом регуляции экспрессии генов в эукариотических клетках, появившимся в процессе эволюции. Введение в клетку з1РНК определенной последовательности позволяет эффективно снизить уровень экспрессии генов, ассоциированных с заболеванием, до уровня, соответствующего уровню этой мРНК в нормальных клетках. На сегодняшний день интерферирующие РНК рассматриваются не только как перспективные лекарственные препараты, но и как эффективный инструмент для поиска молекулярных мишеней для действия лекарственных препаратов. Исследования показывают, что в каждом конкретном случае онкологического заболевания экспрессия большого числа генов, активирована или репрессирована по сравнению с нормальными родительскими клетками, и, исходя из этого, установление хронологии событий злокачественной трансформации является проблематичным [9]. Тем не менее, подавление экспрессии генов, которые кодируют белки, функционально расположенные на пересечении регуляторных каскадов или в начале этих каскадов, может привести к восстановлению контроля над делением клеток [11]. Взаимодействия различных генов, участвующих в процессах канцерогенеза интенсивно исследуются, но роль каждого гена в сложной системе с более чем одним генетическим нарушением требует углубленного изучения [12]. Нарушение регуляции генов, кодирующих компоненты передачи сигналов клеточного цикла рассматривается как ключевой фактор в развитии различных типов опухолей у человека[9, И, 12], тем не менее, терапевтическая значимость ингибирования таких генов в опухолях различного происхождения может существенно отличаться, поэтому для выбора наиболее эффективных мишеней требуется сравнение антипролиферативного действия игибиторов потенциальных мишеней на опухолевых клетках различного происхождения.
Цель и задачи исследования. Целью настоящей работы являлось создание специфических ингибиторов экспрессии генов, участвующих в регуляции клеточного цикла: Нег2 (с-егЬ-В2, пей), ССНВ1 (циклин В1) и РКС (протеинкиназа С), на основе дцРНК и исследование влияния этих ингибиторов на пролиферацию опухолевых клеток человека различного происхождения. В ходе исследования решались следующие задачи:
1. Исследовать эффективность и длительность ингибирующего действия малых интерферирующих РНК фРНК), направленных на мРНК генов Нег2, ССШ1 и РКС в опухолевых клетках человека различного происхождения.
2. Исследовать влияние длинных дцРНК, гомологичных мРНК генов с-Мус и ОРР на пролиферацию опухолевых клеток человека.
3. Исследовать изменение скорости пролиферации опухолевых клеток различного происхождения, подвергнутых действию з1РНК, направленных на мРНК генов Нег2, ССЫВ1 и РКС, после восстановления экспрессии генов-мишеней.
4. Исследовать влияние полученных з1РНК на изменение генной экспрессии в опухолевых клетках человека и их жизнеспособность.
Похожие диссертационные работы по специальности «Биохимия», 03.01.04 шифр ВАК
Особенности регуляции апоптоза при опухолевых, вирусных и аутоиммунных заболеваниях2004 год, доктор биологических наук Белушкина, Наталья Николаевна
Роль трасформирующего ростового фактора (TGF)b в прогрессии гепатокарцином2009 год, кандидат биологических наук Макарова, Мария Викторовна
Влияние структуры липофильных конъюгатов малых интерферирующих РНК на их накопление в клетках и биологическую активность in vitro и in vivo2019 год, кандидат наук Черников Иван Вячеславович
Особенности экспрессии рецепторов пролактина в опухолях печени разного клеточного происхождения2008 год, кандидат биологических наук Остроухова, Татьяна Юрьевна
Плейотропные эффекты мембранных везикул стволовых и опухолевых клеток человека2023 год, доктор наук Соловьева Валерия Владимировна
Заключение диссертации по теме «Биохимия», Акимов, Иван Алексеевич
выводы
1. Разработаны siPHK (siHer, siCyc, siPKC), направленные к мРНК генов Her2, CCNB1 и РКС. Показано, что данные siPHK специфично ингибируют экспрессию генов-мишеней в клетках КВ-3-1, SK-N-MC, MCF-7 и HL-60: наибольшее снижение уровня мРНК-мишеней (до 10 - 20% от контроля) достигается через 3 суток после трансфекции, а исходный уровень экспрессии восстанавливается через 7 суток.
2. Показано, что ингибирование экспрессии генов Her2, CCNB1 и РКС с разной эффективностью замедляет деление клеток КВ-3-1, SK-N-MC, MCF-7, однако не влияет на пролиферацию клеток HL-60. Обнаружено, что наиболее выраженный антипролиферативный эффект наблюдается в клетках нейробластомы SK-N-MC под действием siCyc, а рост клеток MCF-7 наиболее эффективно тормозится под действием siPKC. Сравнение антипролиферативного действия siPHK, направленных к мРНК генов Her2, CCNB1 и РКС, на опухолевые клетки различного происхождения выполнено впервые.
3. Получены дцРНК, гомологичные мРНК генов с-Мус (dsMyc) и GFP (dsEGFP) длиной 473 и 448 п.н., соответственно. Показано, что препарат dsMyc, действующий как по механизму РНК-интерференции, так и через индукцию интерферонового ответа, снижает уровень экспрессии интерферон-чувствительного гена с-Мус более эффективно, чем препарат dsEGFP, действующий только по пути индукции интерферонового ответа. При этом оба препарата дцРНК со сравнимой эффективностью замедляют деление клеток КВ-3-1 и SK-N-MC.
4. Впервые изучено изменение скорости пролиферации исследованных клеточных линий после восстановления экспрессии генов Her2, CCNB1 и РКС. Показано, что скорость деления клеток КВ-3-1 восстанавливается после достижения исходного уровня экспрессии генов-мишеней, в то время как скорость деления SK-N-MC остается в 3 - 10 раз сниженной до 12 суток после воздействия siHer, siCyc и siPKC, а также длинных дцРНК.
5. Показано, что введение в клетки siPHK, направленных к мРНК генов Her2, CCNB1 и РКС не вызывает гибели клеток, а подавляет их деление, что подтверждается данными морфологического анализа. Напротив, доля мертвых клеток в популяции, трансфецированной длинной дцРНК значительно увеличивается, что связано с индукцией интерферонового ответа и вызванной им гибелью клеток.
6. С помощью полногеномного анализа транскриптома клеток SK-N-MC, трансфецированных siCyc и siPKC, обнаружено, что после восстановления экспрессии генов-мишеней, экспрессия определенных генов (EN02, AK3L1, ALDOC, TXNIP, В NIP, DDIT4 и др.) остается измененной, что может обуславливать длительное антипролиферативное действие исследуемых siPHK в этой клеточной линии.
3.10. Заключение
Нарушения регуляции клеточного цикла, являющиеся причиной развития опухолевых заболеваний, могут быть вызваны гиперэкспрессией или экспрессией химерных или мутантных вариантов регуляторных факторов, которые относятся к различным классам белков. Поэтому универсальным подходом для подавления их экспрессии является использование интерферирующих РНК, вызывающих деградацию мРНК-мишени по механизму РНК-интерференции. Такие интерферирующие РНК могут не только рассматриваться, как протопиты лекарственных препаратов нового поколения, но и использоваться для поиска новых молекулярных мишеней для препаратов другого типа действия. Ряд препаратов на основе з1РНК уже проходит клинические испытания, которые позволят выявить как терапевтический потенциал, так и их возможные побочные эффекты. Поскольку цепь передачи регуляторных сигналов в клетке носит каскадный характер и состоит из множества дублирующих друг друга путей, то важной задачей является поиск таких молекулярных мишеней, подавление экспрессии которых приводило бы к необратимым и некомпенсируемым последствиям для опухолевой клетки, к остановке ее деления.
В настоящей работе нами была предложениа и опробирована схема исследования влияния интерферирующих РНК на пролиферацию опухолевых клеток на примере вгРНК, гомологичных мРНК генов Нег2, ССЫВ1 и РКС, а также длинных дцРНК гомологичных мРНК генов с-Мус и ОРР. Обнаружено, что данные интерферирующие РНК с разной эффективностью замедляют деление опухолевых клеток различного происхождения, что указывает на необходимость идентификации индивидуальных молекулярных мишеней для терапии каждого типа опухолевого заболевания. Традиционной мишенью для ген-направленных препаратов, предназначенных для лечения опухоли молочной железы является ген Нег2, однако нами обнаружено, что значительно более эффективной мишенью для блокирования пролиферации клеток опухоли молочной железы МСР-7 является ген РКС. Наиболее эффективными мишенями для подавления роста нейробластомы БК-М-МС являются гены ССМВ1 и РКС, ингибирование экспрессии этих генов вызывает длительное снижение скорости пролиферации, которое сохраняется даже после восстановления исходного уровня экспрессии генов-мишеней. Данные гены могут рассматриваться как перспективные мишени для терапии нейробластом и рака малочной железы.
Полученные нами ингибиторы экспрессии генов Нег2, ССЫВ1 и РКС могут рассматриваться как прототипы лекарственных средств, для сдерживания роста опухолевых клеток, переживших химиотерапию, и, таким образом, могут стать одним из компонентов комплексной терапии при опухолевых заболеваниях и нейробластомах, в частности. Идентифицированные молекулярные мишени могут быть использованы также для поиска низкомолекулярных ингибиторов функций этих белков, для получения лекарственных средств нового поколения. Опробированная нами технологическая платформа может использоваться при скрининге молекулярных мишеней для противоопухолевых препаратов и может быть использована для расширенных исследований различной целевой направленности.
Список литературы диссертационного исследования кандидат биологических наук Акимов, Иван Алексеевич, 2012 год
1. Bishop JM. Retroviruses and Cancer Genes. // Advances in Cancer Research. 1982. V. 37. P. 1-32.
2. Dive C. Avoidance of apoptosis as a mechanism of drug resistance. // Journal of Internal Medicine. 1997. V. 242. P. 139-45.
3. Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ. Increasing complexity of Ras signaling. // Oncogene. 1998. V. 17. P. 1395-413.
4. Albertson DG, Collins C, McCormick F, Gray JW. Chromosome aberrations in solid tumors. //Nature Genetics. 2003. V. 34. P. 369-76.
5. Bernhard EJ, Muschel RJ, Hughes EN. Mr 92,000 Gelatinase Release Correlates with the Metastatic Phenotype in Transformed Rat Embryo Cells. // Cancer Research. 1990. V. 50. P. 3872-7.
6. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular-Permeability Factor Vascular Endothelial Growth-Factor, Microvascular Hyperpermeability, and Angiogenesis. // American Journal of Pathology. 1995. V. 146. P. 1029-39.
7. Malumbres M, Barbacid M. To cycle or not to cycle: A critical decision in cancer. // Nature Reviews Cancer. 2001. V. 1. P. 222-31.
8. Malumbres M, Hunt SL, Sotillo R, Martin J, Odajima J, Martin A et al. Driving the cell cycle to cancer. // New Trends in Cancer for the 21 St Century. 2003. V. 532. P. 111.
9. Sulic S, Panic L, Dikic I, Volarevic S. Deregulation of cell growth and malignant transformation. // Croatian Medical Journal. 2005. V. 46. P. 622-38.
10. Mello CC, Conte D. Revealing the world of RNA interference. // Nature. 2004. V. 431. P. 338-42.
11. Sandhu C, Slingerland J. Deregulation of the cell cycle in cancer. // Cancer Detection and Prevention. 2000. V. 24. P. 107-18.
12. Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. // Cell Proliferation. 2003. V. 36. P. 131-49.
13. Park MT, Lee SJ. Cell cycle and cancer. // Journal of Biochemistry and Molecular Biology. 2003. V. 36. P. 60-5.
14. Malumbres M, Carnero A. Cell cycle deregulation: a common motif in cancer. // Prog Cell Cycle Res. 2003. V. 5. P. 5-18.
15. Cook CC, Higuchi M. The awakening of an advanced malignant cancer: An insult to the mitochondrial genome. // Biochim Biophys Acta. 2011.
16. Norbury C, Nurse P. Animal-Cell Cycles and Their Control. // Annual Review of Biochemistry. 1992. V. 61. P. 441-70.
17. Murray AW, Kirschner MW. Dominoes and Clocks the Union of 2 Views of the Cell-Cycle. // Science. 1989. V. 246. P. 614-21.
18. Edgar BA, Schubiger G. Parameters Controlling Transcriptional Activation During Early Drosophila Development. // Cell. 1986. V. 44. P. 871-7.
19. Kimelman D, Kirschner M, Scherson T. The Events of the Midblastula Transition in Xenopus Are Regulated by Changes in the Cell-Cycle. // Cell. 1987. V. 48. P. 399407.
20. Newport J, Kirschner M. A Major Developmental Transition in Early Xenopus-Embryos .2. Control of the Onset of Transcription. // Cell. 1982. V. 30. P. 687-96.
21. Hartwell LH, Weinert TA. Checkpoints Controls That Ensure the Order of Cell-Cycle Events. // Science. 1989. V. 246. P. 629-34.
22. Fisher RP, Morgan DO. A Novel Cyclin Associates with Mol5/Cdk7 to Form the Cdk-Activating Kinase. // Cell. 1994. V. 78. P. 713-24.
23. Morgan DO. Principles of Cdk Regulation. //Nature. 1995. V. 374. P. 131-4.
24. Pines J. Cyclins and Cyclin-Dependent Kinases Theme and Variations. // Advances in Cancer Research, Vol 66. 1995. V. 66. P. 181-212.
25. Rickert P, Seghezzi W, Shanahan F, Cho H, Lees E. Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. // Oncogene. 1996. V. 12. P. 2631-40.
26. Peng JM, Marshall NF, Price DH. Identification of a cyclin subunit required for the function of Drosophila P-TEFb. // Journal of Biological Chemistry. 1998. V. 273. P. 13855-60.
27. Okamoto K, Beach D. Cyclin-G Is A Transcriptional Target of the P53 Tumor-Suppressor Protein. // Embo Journal. 1994. V. 13. P. 4816-22.
28. Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T. Cyclin A Protein Specified by Maternal Messenger-Rna in Sea-Urchin Eggs That Is Destroyed at Each Cleavage Division. // Cell. 1983. V. 33. P. 389-96.
29. Pines J. Cyclins Wheels Within Wheels. // Cell Growth & Differentiation. 1991. V. 2. P. 305-10.
30. Sherr CJ. G1 Phase Progression Cycling on Cue. // Cell. 1994. V. 79. P. 551-5.
31. Assoian RK, Zhu XY. Cell anchorage and the cytoskeleton as partners in growth factor dependent cell cycle progression. // Current Opinion in Cell Biology. 1997. V. 9. P. 93-8.
32. Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M. Human Cyclin-E, A Nuclear-Protein Essential for the G(l)-To-S Phase-Transition. // Molecular and Cellular Biology. 1995. V. 15. P. 2612-24.
33. Girard F, Strausfeld U, Fernandez A, Lamb NJC. Cyclin-A Is Required for the Onset of Dna-Replication in Mammalian Fibroblasts. // Cell. 1991. V. 67. P. 1169-79.
34. Walker DH, Mailer JL. Role for Cyclin-A in the Dependence of Mitosis on Completion of Dna-Replication. //Nature. 1991. V. 354. P. 314-7.
35. King RW, Jackson PK, Kirschner MW. Mitosis in Transition. // Cell. 1994. V. 79. P. 563-71.
36. Arellano M, Moreno S. Regulation of CDK/cyclin complexes during the cell cycle. // International Journal of Biochemistry & Cell Biology. 1997. V. 29. P. 559-73.
37. Glotzer M, Murray AW, Kirschner MW. Cyclin Is Degraded by the Ubiquitin Pathway. //Nature. 1991. V. 349. P. 132-8.
38. Rechsteiner M, Rogers SW. PEST sequences and regulation by proteolysis. // Trends in Biochemical Sciences. 1996. V. 21. P. 267-71.
39. Carnero A, Hannon GJ. The INK4 family of CDK inhibitors. // Cyclin Dependent Kinase (Cdk) Inhibitors. 1998. V. 227. P. 43-55.
40. Harper JW, Elledge SJ, Keyomarsi K, Dynlacht B, Tsai LH, Zhang PM et al. Inhibition of Cyclin-Dependent Kinases by P21. // Molecular Biology of the Cell. 1995. V. 6. P. 387-400.
41. Hengst L, Reed SI. Inhibitors the Cip/Kip family. // Cyclin Dependent Kinase (Cdk) Inhibitors. 1998. V. 227. P. 25-41.
42. Reynisdottir I, Polyak K, Iavarone A, Massague J. Kip/Cip and Ink4 Cdk Inhibitors Cooperate to Induce Cell-Cycle Arrest in Response to Tgf-Beta. // Genes & Development. 1995. V. 9. P. 1831-45.
43. Waga S, Li R, Stillman B. p53-induced p21 controls DNA replication. // Leukemia. 1997. V. 11 Suppl 3. P. 321-3.
44. Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA. Regulation of Retinoblastoma Protein Functions by Ectopic Expression of Human Cyclins. // Cell. 1992. V. 70. P. 993-1006.
45. Montagnoli A, Fiore F, Eytan E, Carrano AC, Draetta GF, Hershko A, Pagano M. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. // Genes & Development. 1999. V. 13. P. 1181-9.
46. Voitenleitner C, Fanning E, Nasheuer HP. Phosphorylation of DNA polymerase alpha-primase by cyclin A-dependent kinases regulates initiation of DNA replication in vitro. // Oncogene. 1997. V. 14. P. 1611-5.
47. Zhao JY, Kennedy BK, Lawrence BD, Barbie DA, Matera AG, Fletcher JA, Harlow E. NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription. // Genes & Development. 2000. V. 14. P. 2283-97.
48. Lew DJ, Kornbluth S. Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. // Current Opinion in Cell Biology. 1996. V. 8. P. 795-804.
49. Jeffrey PD, Ruso AA, Polyak K, Gibbs E, Hurwitz J, Massague J, Pavletich NP. Mechanism of Cdk Activation Revealed by the Structure of A Cyclina-Cdlc2 Complex. //Nature. 1995. V. 376. P. 313-20.
50. Paulovich AG, Hartwell LH. A Checkpoint Regulates the Rate of Progression Through S-Phase in Saccharomyces-Cerevisiae in Response to Dna-Damage. // Cell. 1995. V. 82. P. 841-7.
51. Bradbury EM, Inglis RJ, Matthews HR. Control of cell division by very lysine rich histone (Fl) phosphorylation. //Nature. 1974. V. 247. P. 257-61.
52. Sherr CJ, Roberts JM. Inhibitors of Mammalian G(l) Cyclin-Dependent Kinases. // Genes & Development. 1995. V. 9. P. 1149-63.
53. Polyak K, Lee MH, Erdjumentbromage H, Koff A, Roberts JM, Tempst P, Massague J. Cloning of P27(Kipl), A Cyclin-Dependent Kinase Inhibitor and A Potential Mediator of Extracellular Antimitogenic Signals. // Cell. 1994. V. 78. P. 59-66.
54. Lee MH, Reynisdottir I, Massague J. Cloning Or P57(Kip2), A Cyclin-Dependent Kinase Inhibitor with Unique Domain-Structure and Tissue Distribution. // Genes & Development. 1995. V. 9. P. 639-49.
55. Pan ZQ, Reardon JT, Li L, Floresrozas H, Legerski R, Sancar A, Hurwitz J. Inhibition of Nucleotide Excision-Repair by the Cyclin-Dependent Kinase Inhibitor P21. // Journal of Biological Chemistry. 1995. V. 270. P. 22008-16.
56. Waga S, Li R, Stillman B. p53-induced p21 controls DNA replication. // Leukemia. 1997. V. 11 Suppl3.P. 321-3.
57. Eldeiry WS, Tokino T, Velculescu YE, Levy DB, Parsons R, Trent JM et al. Wafl, A Potential Mediator of P53 Tumor Suppression. // Cell. 1993. V. 75. P. 817-25.
58. Hannon GJ, Beach D. P15(Ink4B) Is A Potential Effector of Tgf-Beta-Induced Cell-Cycle Arrest. //Nature. 1994. V. 371. P. 257-61.
59. Peng CY, Graves PR, Thoma RS, Wu ZQ, Shaw AS, PiwnicaWorms H. Mitotic and G(2) checkpoint control: Regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. // Science. 1997. V. 277. P. 1501-5.
60. Yang J, Winkler K, Yoshida M, Kornbluth S. Maintenance of G(2) arrest in the Xenopus oocyte: a role for 14-3-3-mediated inhibition of Cdc25 nuclear import. // Embo Journal. 1999. V. 18. P. 2174-83.
61. Heald R, Mcloughlin M, Mckeon F. Human Wee-1 Maintains Mitotic Timing by Protecting the Nucleus from Cytoplasmically Activated Cdc2 Kinase. // Cell. 1993. V. 74. P. 463-74.
62. Liu F, Stanton JJ, Wu ZQ, PiwnicaWorms H. The human Mytl kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex. // Molecular and Cellular Biology. 1997. V. 17. P. 571-83.
63. Buchkovich K, Duffy LA, Harlow E. The Retinoblastoma Protein Is Phosphorylated During Specific Phases of the Cell-Cycle. // Cell. 1989. V. 58. P. 1097-105.
64. Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ. Direct Binding of Cyclin-D to the Retinoblastoma Gene-Product (Prb) and Prb Phosphorylation by the Cyclin D-Dependent Kinase Cdk4. // Genes & Development. 1993. V. 7. P. 331-42.
65. Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription. // Nature.1998. V. 391. P. 597-601.
66. Bradbury E.M., Inglis R.J., Matthews H.R. Control of cell division by very lysine rich histone (Fl) phosphorylation//Nature. 1974. V. 247. P. 257-261.
67. Blangy A, Lane HA, d'Herin P, Harper M, Kress M, Nigg EA. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. // Cell. 1995. V. 83. P. 1159-69.
68. Courvalin JC, Segil N, Blobel G, Worman HJ. The Lamin-B Receptor of the Inner Nuclear-Membrane Undergoes Mitosis-Specific Phosphorylation and Is A Substrate for P34Cdc2-Type Protein-Kinase. // Journal of Biological Chemistry. 1992. V. 267. P. 19035-8.
69. Heald R, Mckeon F. Mutations of Phosphorylation Sites in Lamin-A That Prevent Nuclear Lamina Disassembly in Mitosis. // Cell. 1990. V. 61. P. 579-89.
70. Hoffmann I, Clarke PR, Marcote MJ, Karsenti E, Draetta G. Phosphorylation and Activation of Human Cdc25-C by Cdc2 Cyclin-B and Its Involvement in the Self-Amplification of Mpf at Mitosis. // Embo Journal. 1993. V. 12. P. 53-63.
71. Poehlmann A, Roessner A. Importance of DNA damage checkpoints in the pathogenesis of human cancers. // Pathology Research and Practice. 2010. V. 206. P. 591-601.
72. Pardee A.B. A restriction point for control of normal animal cell proliferation // Proc. Natl Acad. Sci. USA. 1974. V. 71. P. 1286-1290.
73. Fang GW, Yu HT, Kirschner MW. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. // Genes & Development. 1998. V. 12. P. 1871-83.
74. Amon A. The spindle checkpoint. // Current Opinion in Genetics & Development.1999. V. 9. P. 69-75.
75. Perry JJP, Cotner-Gohara E, Ellenberger T, Tainer JA. Structural dynamics in DNA damage signaling and repair. // Current Opinion in Structural Biology. 2010. V. 20. P. 283-94.
76. Huen MSY, Chen J J. Assembly of checkpoint and repair machineries at DNA damage sites. // Trends in Biochemical Sciences. 2010. V. 35. P. 101-8.
77. Levine AJ. p53, the cellular gatekeeper for growth and division. // Cell. 1997. V. 88. P. 323-31.
78. Agarwal ML, Taylor WR, Chernov MV, Chernova OB, Stark GR. The p53 network. // Journal of Biological Chemistry. 1998. V. 273. P. 1-4.
79. Ko LJ, Prives C. p53: Puzzle and paradigm. // Genes & Development. 1996. V. 10. P. 1054-72.
80. Oren M. Regulation of the p53 tumor suppressor protein. // Journal of Biological Chemistry. 1999. V. 274. P. 36031-4.
81. Zhang YP, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. // Cell. 1998. V. 92. P. 725-34.
82. Owenschaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T et al. Wild-Type Human P53 and A Temperature-Sensitive Mutant Induce Fas/Apo-1 Expression. // Molecular and Cellular Biology. 1995. V. 15. P. 3032-40.
83. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. //Nature. 1997. V. 389. P. 300-5.
84. Gottlieb E, Oren M. p53 facilitates pRb cleavage in IL-3-deprived cells: novel pro-apoptotic activity of p53. //Embo Journal. 1998. V. 17. P. 3587-96.
85. Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E, Kastan MB. DNA damage induces phosphorylation of the amino terminus of p53. // Genes & Development. 1997. V. 11. P. 3471-81.
86. Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S et al. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. // Molecular Cell. 1997. V. 1. P. 3-11.
87. Pardee AB. A Growth-Control Event Defective in Tumors A Citation-Classic Commentary on A Restriction Point for Control of Normal Animal-Cell Proliferation by Pardee,A.B. // Current Contents/Life Sciences. 1992. P. 11.
88. Sanchez Y, Wong C, Thoma RS, Richman R, Wu RQ, PiwnicaWorms H, Elledge SJ. Conservation of the Chkl checkpoint pathway in mammals: Linkage of DNA damage to Cdk regulation through Cdc25. // Science. 1997. V. 277. P. 1497-501.
89. Taylor WR, Stark GR. Regulation of the G2/M transition by p53. // Oncogene. 2001. V. 20. P. 1803-15.
90. Zeng Y, Forbes KC, Wu ZQ, Moreno S, Piwnica-Worms H, Enoch T. Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cdsl or Chkl. // Nature. 1998. V. 395. P. 507-10.
91. Ho A, Dowdy SF. Regulation of G(l) cell-cycle progression by oncogenes and tumor suppressor genes. // Curr Opin Genet Dev. 2002. V. 12. P. 47-52.
92. MacLeod K. Tumor suppressor genes. // Curr Opin Genet Dev. 2000. V. 10. P. 81-93.
93. Motoyama N, Naka K. DNA damage tumor suppressor genes and genomic instability. // Curr Opin Genet Dev. 2004. V. 14. P. 11-6.
94. Jansen-Durr P. How viral oncogenes make the cell cycle. // Trends Genet. 1996. V. 12. P. 270-5.
95. Jansen-Durr P. Viral oncogenesis and cell cycle control. // Virus Res. 1996. V. 42. P. 187-91.
96. Ho A, Dowdy SF. Regulation of G(l) cell-cycle progression by oncogenes and tumor suppressor genes. // Curr Opin Genet Dev. 2002. V. 12. P. 47-52.
97. Zachos G, Spandidos DA. Expression of ras proto-oncogenes: regulation and implications in the development of human tumors. // Crit Rev Oncol Hematol. 1997. V. 26. P. 65-75.
98. Auerkari EI. Methylation of tumor suppressor genes pl6(INK4a), p27(Kipl) and E-cadherin in carcinogenesis. // Oral Oncol. 2006. V. 42. P. 5-13.
99. Hwang-Verslues WW, Chang KJ, Lee EY, Lee WH. Breast cancer stem cells and tumor suppressor genes. // J Formos Med Assoc. 2008. V. 107. P. 751-66.
100. Vurusaner B, Poli G, Basaga H. Tumor suppressor genes and ROS: complex networks of interactions. 11 Free Radic Biol Med. 2012. V. 52. P. 7-18.
101. Buzard GS. Studies of oncogene activation and tumor suppressor gene inactivation in normal and neoplastic rodent tissue. // Mutat Res. 1996. V. 365. P. 43-58.
102. Rubin P, Williams JP, Devesa SS, Travis LB, Constine LS. Cancer genesis across the age spectrum: associations with tissue development, maintenance, and senescence. // Semin Radiat Oncol. 2010. V. 20. P. 3-11.
103. Irigaray P, Newby JA, Lacomme S, Belpomme D. Overweight/obesity and cancer genesis: more than a biological link. // Biomed Pharmacother. 2007. V. 61. P. 665-78.
104. Копнин Б. П. Мишени действия онкогенов и опухолевых супрессоров: ключ к пониманию базовых механизмов канцерогенеза // Биохиия. 2000. - Т. 65, № 1. -С. 5-33.
105. Sherr CJ. Cancer cell cycles. // Science. 1996. V. 274. P. 1672-7.
106. McDonald ER, El-Deiry WS. Cell cycle control as a basis for cancer drug development (review). // International Journal of Oncology. 2000. V. 16. P. 871-86.
107. Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmannhieb E et al. A P16(Ink4A)-Insensitive Cdk4 Mutant Targeted by Cytolytic T-Lymphocytes in A Human-Melanoma. // Science. 1995. V. 269. P. 1281-4.
108. Easton J, Wei T, Lahti JM, Kidd VJ. Disruption of the cyclin D cyclin-dependent kinase INK4 retinoblastoma protein regulatory pathway in human neuroblastoma. // Cancer Research. 1998. V. 58. P. 2624-32.
109. Yamamoto H, Monden T, Miyoshi H, Izawa H, Ikeda K, Tsujie M et al. Cdk2/cdc2 expression in colon carcinogenesis and effects of cdk2/cdc2 inhibitor in colon cancer cells. // International Journal of Oncology. 1998. V. 13. P. 233-9.
110. Kim JH, Kang MJ, Park CU, Kwak HJ, Hwang Y, Koh GY. Amplified CDK2 and cdc2 activities in primary colorectal carcinoma. // Cancer. 1999. V. 85. P. 546-53.
111. McKenzie SJ. Diagnostic utility of oncogenes and their products in human cancer. // Biochim Biophys Acta. 1991. V. 1072. P. 193-214.
112. Konopka JB, Witte ON. Detection of c-abl tyrosine kinase activity in vitro permits direct comparison of normal and altered abl gene products. // Mol Cell Biol. 1985. V. 5. P. 3116-23.
113. Konopka JB, Witte ON. Activation of the abl oncogene in murine and human leukemias. // Biochim Biophys Acta. 1985. V. 823. P. 1-17.
114. Davis RL, Konopka JB, Witte ON. Activation of the c-abl oncogene by viral transduction or chromosomal translocation generates altered c-abl proteins with similar in vitro kinase properties. // Mol Cell Biol. 1985. V. 5. P. 204-13.
115. Lukas J, Lukas C, Bartek J. Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. // DNA Repair (Amst). 2004. V. 3. P. 9971007.116. van den Heuvel S. Cell-cycle regulation. // WormBook. 2005. P. 1-16.
116. Berchuck A, Kamel A, Whitaker R, Kerns B, Olt G, Kinney R et al. Overexpression of Her-2/Neu Is Associated with Poor Survival in Advanced Epithelial Ovarian-Cancer. // Cancer Research. 1990. V. 50. P. 4087-91.
117. Berchuck A, Rodriguez G, Kinney RB, Soper JT, Dodge RK, Clarkepearson DL, Bast RC. Overexpression of Her-2 Neu in Endometrial Cancer Is Associated with Advanced Stage Disease. // American Journal of Obstetrics and Gynecology. 1991. V. 164. P. 15-21.
118. Hynes NE, Stern DF. The Biology of Erbb-2 Neu Her-2 and Its Role in Cancer. // Biochimica et Biophysica Acta-Reviews on Cancer. 1994. V. 1198. P. 165-84.
119. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, Mcguire WL. Human-Breast Cancer Correlation of Relapse and Survival with Amplification of the Her-2 Neu Oncogene. // Science. 1987. V. 235. P. 177-82.
120. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. Studies of the Her-2/Neu Proto-Oncogene in Human-Breast and Ovarian-Cancer. // Science. 1989. V. 244. P. 707-12.
121. Tandon AK, Clark GM, Chamness GC, Ullrich A, Mcguire WL. Her-2 Neu Oncogene Protein and Prognosis in Breast-Cancer. // Journal of Clinical Oncology. 1989. V. 7. P. 1120-8.
122. Yarden Y. Biology of HER2 and its importance in breast cancer. // Oncology. 2001. V. 61.P. 1-13.
123. Klein G. Specific chromosomal translocations and the genesis of B-cell-derived tumors in mice and men. // Cell. 1983. V. 32. P. 311-5.
124. Gerbitz A, Mautner J, Geltinger C, Hortnagel K, Christoph B, Asenbauer H et al. Deregulation of the proto-oncogene c-myc through t(8;22) translocation in Burkitt's lymphoma. // Oncogene. 1999. V. 18. P. 1745-53.
125. Depinho RA, Sehr eiber-Agus N, Alt FW. mye family oncogenes in the development of normal and neoplastic cells. // Adv Cancer Res. 1991. V. 57. P. 1-46.
126. Schwab M. MYCN in neuronal tumours. // Cancer Lett. 2004. V. 204. P. 179-87.
127. Thomas WD, Raif A, Hansford L, Marshall G. N-myc transcription molecule and oncoprotein. // Int J Biochem Cell Biol. 2004. V. 36. P. 771-5.
128. Wu R, Lin L, Beer DG, Ellenson LH, Lamb BJ, Rouillard JM et al. Amplification and overexpression of the L-MYC proto-oncogene in ovarian carcinomas. // Am J Pathol. 2003. V. 162. P. 1603-10.
129. Nau MM, Brooks BJ, Battey J, Sausville E, Gazdar AF, Kirsch IR et al. L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. // Nature. 1985. Y. 318. P. 69-73.
130. Nesbit CE, Tersak JM, Prochownik EV. MYC oncogenes and human neoplastic disease. // Oncogene. 1999. V. 18. P. 3004-16.
131. Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM et al. Mechanism of activation of a human oncogene. //Nature. 1982. V. 300. P. 143-9.
132. Reddy EP, Reynolds RK, Santos E, Barbacid M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. // Nature. 1982. V. 300. P. 149-52.
133. Yuasa Y, Srivastava SK, Dunn CY, Rhim JS, Reddy EP, Aaronson SA. Acquisition of transforming properties by alternative point mutations within c-bas/has human proto-oncogene. //Nature. 1983. V. 303. P. 775-9.
134. Bos JL, Toksoz D, Marshall CJ, Verlaan-de VM, Veeneman GH, van der Eb AJ et al. Amino-acid substitutions at codon 13 of the N-ras oncogene in human acute myeloid leukaemia. //Nature. 1985. V. 315. P. 726-30.
135. Bos JL, Verlaan-de VM, van der Eb AJ, Janssen JW, Deiwel R, Lowenberg B, Colly LP. Mutations in N-ras predominate in acute myeloid leukemia. // Blood. 1987. V. 69. P. 1237-41.
136. Needleman SW, Kraus MH, Srivastava SK, Levine PH, Aaronson SA. High frequency of N-ras activation in acute myelogenous leukemia. // Blood. 1986. V. 67. P. 753-7.
137. Machado-Silva A, Perrier S, Bourdon JC. p53 family members in cancer diagnosis and treatment. // Semin Cancer Biol. 2010. V. 20. P. 57-62.
138. Chen F, Wang W, El-Deiry WS. Current strategies to target p53 in cancer. // Biochem Pharmacol. 2010. V. 80. P. 724-30.
139. Benjamin CL, Melnikova VO, Ananthaswamy HN. P53 protein and pathogenesis of melanoma and nonmelanoma skin cancer. // Adv Exp Med Biol. 2008. V. 624. P. 26582.
140. Benjamin CL, Ananthaswamy HN. p53 and the pathogenesis of skin cancer. // Toxicol Appl Pharmacol. 2007. V. 224. P. 241-8.
141. Korenaga D, Takesue F, Yasuda M, Honda M, Nozoe T, Inutsuka S. The relationship between cyclin B1 overexpression and lymph node metastasis in human colorectal cancer. // Surgery. 2002. V. 131. P. S114-S120.
142. Soria JC, Jang SJ, Khuri FR, Hassan K, Lin D, Hong WK, Mao L. Overexpression of cyclin B1 in early-stage non-small cell lung cancer and its clinical implication. // Cancer Research. 2000. V. 60. P. 4000-4.
143. Chae SW, Sohn JH, Kim DH, Choi YJ, Park YL, Kim K et al. Overexpressions of Cyclin Bl, cdc2, pi6 and p53 in human breast cancer: the clinicopathologic correlations and prognostic implications. // Yonsei Med J. 2011. V. 52. P. 445-53.
144. Aaltonen K, Amini RM, Heikkila P, Aittomaki K, Tamminen A, Nevanlinna H, Blomqvist C. High cyclin Bl expression is associated with poor survival in breast cancer. // Br J Cancer. 2009. V. 100. P. 1055-60.
145. Alvaro V, Touraine P, Vozari RR, Baigrenier F, Birman P, Joubert D. Protein-Kinase-C Activity and Expression in Normal and Adenomatous Human Pituitaries. // International Journal of Cancer. 1992. V. 50. P. 724-30.
146. Kopp R, Noelke B, Sauter G, Schildberg FW, Paumgartner G, Pfeiffer A. Altered Protein-Kinase-C Activity in Biopsies of Human Colonic Adenomas and Carcinomas. // Cancer Research. 1991. V. 51. P. 205-10.
147. Obrian CA, Vogel VG, Singletary SE, Ward NE. Elevated Protein Kinase-C Expression in Human-Breast Tumor-Biopsies Relative to Normal Breast-Tissue. // Cancer Research. 1989. V. 49. P. 3215-7.
148. Weichert W, Gekeler V, Denkert C, Dietel M, Hauptmann S. Protein kinase C isoform expression in ovarian carcinoma correlates with indicators of poor prognosis. // International Journal of Oncology. 2003. Y. 23. P. 633-9.
149. Llambi F, Green DR. Apoptosis and oncogenesis: give and take in the BCL-2 family. // Curr Opin Genet Dev. 2011. V. 21. P. 12-20.
150. Lindsay J, Esposti MD, Gilmore AP. Bcl-2 proteins and mitochondria-specificity in membrane targeting for death. // Biochim Biophys Acta. 2011. V. 1813. P. 532-9.
151. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. The BCL-2 family reunion. // Mol Cell. 2010. V. 37. P. 299-310.
152. Buggins AG, Pepper CJ. The role of Bcl-2 family proteins in chronic lymphocytic leukaemia. // Leuk Res. 2010. V. 34. P. 837-42.
153. Aaltonen K, Amini RM, Heikkila P, Aittomaki K, Tamminen A, Nevanlinna H, Blomqvist C. High cyclin B1 expression is associated with poor survival in breast cancer. // British Journal of Cancer. 2009. V. 100. P. 1055-60.
154. Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW et al. Human Epidermal Growth-Factor Receptor Cdna Sequence and Aberrant Expression of the Amplified Gene in A431 Epidermoid Carcinoma-Cells. // Nature. 1984. V. 309. P. 418-25.
155. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. // Nature Reviews Molecular Cell Biology. 2001. V. 2. P. 127-37.
156. Seshadri R, Matthews C, Dobrovic A, Horsfall DJ. The Significance of Oncogene Amplification in Primary Breast-Cancer. // International Journal of Cancer. 1989. V. 43. P. 270-2.
157. Benz CC, Scott GK, Sarap JC, Johnson RM, Tripathy D, Coronado E et al. Estrogen-Dependent, Tamoxifen-Resistant Tumorigenic Growth of Mcf-7 Cells Transfected with Her2/Neu. // Breast Cancer Research and Treatment. 1992. V. 24. P. 85-95.
158. Kern JA, Robinson RA, Gazdar A, Torney L, Weiner DB. Mechanisms of P185(Her2) Expression in Human Non-Small-Cell Lung-Cancer Cell-Lines. // American Journal of Respiratory Cell and Molecular Biology. 1992. Y. 6. P. 359-63.
159. Williams TM, Weiner DB, Greene MI, Maguire HC. Expression of C-Erbb-2 in Human Pancreatic Adenocarcinomas. // Pathobiology. 1991. V. 59. P. 46-52.
160. Hagting A, Karlsson C, Clute P, Jackman M, Pines J. MPF localization is controlled by nuclear export. // Embo Journal. 1998. V. 17. P. 4127-38.
161. Li J, Meyer AN, Donoghue DJ. Nuclear localization of cyclin B1 mediates its biological activity and is regulated by phosphorylation. // Proceedings of the National Academy of Sciences of the United States of America. 1997. V. 94. P. 502-7.
162. Toyoshima F, Moriguchi T, Wada A, Fukuda M, Nishida E. Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G(2) checkpoint. // Embo Journal. 1998. V. 17. P. 2728-35.
163. Yang J, Bardes ESG, Moore JD, Brennan J, Powers MA, Kornbluth S. Control of Cyclin B1 localization through regulated binding of the nuclear export factor CRM1. // Genes & Development. 1998. V. 12. P. 2131-43.
164. Yang J, Song HB, Walsh S, Bardes ESG, Kornbluth S. Combinatorial control of cyclin B1 nuclear trafficking through phosphorylation at multiple sites. // Journal of Biological Chemistry. 2001. V. 276. P. 3604-9.
165. Lehner CF, Ofarrell PH. The Roles of Drosophila Cyclin-A and Cyclin-B in Mitotic Control. // Cell. 1990. V. 61. P. 535-47.
166. Viallard JF, Lacombe F, Dupouy M, Ferry H, Belloc F, Reiffers J. Flow cytometry study of human cyclin B1 and cyclin E expression in leukemic cell lines: Cell cycle kinetics and cell localization. // Experimental Cell Research. 1999. V. 247. P. 208-19.
167. Shen ML, Feng YD, Gao C, Tao DD, Hu JB, Reed E et al. Detection of cyclin B1 expression in G(l)-phase cancer cell lines and cancer tissues by postsorting western blot analysis. // Cancer Research. 2004. V. 64. P. 1607-10.
168. Hassan KA, El-Naggar AK, Soria JC, Liu D, Hong WK, Mao L. Clinical significance of cyclin B1 protein expression in squamous cell carcinoma of the tongue. // Clinical Cancer Research. 2001. V. 7. P. 2458-62.
169. Hassan KA, Ang KK, El-Naggar AK, Story MD, Lee JI, Liu D et al. Cyclin B1 overexpression and resistance to radiotherapy in head and neck squamous cell carcinoma. // Cancer Research. 2002. V. 62. P. 6414-7.
170. Takeno S, Noguchi T, Kikuchi R, Uchida Y, Yokoyama S, Muller W. Prognostic value of cyclin B1 in patients with esophageal squamous cell carcinoma. // Cancer. 2002. V. 94. P. 2874-81.
171. Yoshida T, Tanaka S, Mogi A, Shitara Y, Kuwano H. The clinical significance of Cyclin B1 and Weel expression in non-small-cell lung cancer. // Annals of Oncology. 2004. V. 15. P. 252-6.
172. Jin P, Hardy S, Morgan DO. Nuclear localization of cyclin B1 controls mitotic entry after DNA damage. // Journal of Cell Biology. 1998. V. 141. P. 875-85.
173. Park M, Chae HD, Yun J, Jung M, Kim YS, Kim SH et al. Constitutive activation of cyclin Bl-associated cdc2 kinase overrides p53-mediated G(2)-M arrest. // Cancer Research. 2000. V. 60. P. 542-5.
174. Yin XY, Grove L, Datta NS, Katula K, Long MW, Prochownik EV. Inverse regulation of cyclin B1 by c-Myc and p53 and induction of tetraploidy by cyclin B1 overexpression. // Cancer Research. 2001. V. 61. P. 6487-93.
175. Santana C, Ortega E, Garcia-Carranca A. Oncogenic H-ras induces cyclin B1 expression in a p53-independent manner. // Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis. 2002. V. 508. P. 49-58.
176. Sarafan-Vasseur N, Lamy A, Bourguignon J, Le Pessot F, Hieter P, Sesboue R et al. Overexpression of B-type cyclins alters chromosomal segregation. // Oncogene. 2002. V. 21. P. 2051-7.
177. Gollin SM. Mechanisms leading to chromosomal instability. // Seminars in Cancer Biology. 2005. V. 15. P. 33-42.
178. Thompson SL, Bakhoum SF, Compton DA. Mechanisms of Chromosomal Instability. // Current Biology. 2010. V. 20. P. R285-R295.
179. Michor F, Iwasa Y, Vogelstein B, Lengauer C, Nowak MA. Can chromosomal instability initiate tumorigenesis? // Seminars in Cancer Biology. 2005. V. 15. P. 43-9.
180. Dong YY, Sui L, Watanabe Y, Sugimoto K, Tokuda M. Clinical relevance of cyclin B1 overexpression in laryngeal squamous cell carcinoma. // Cancer Letters. 2002. V. 177. P. 13-9.
181. Li JQ, Kubo A, Wu F, Usuki H, Fujita J, Bandoh S et al. Cyclin Bl, unlike cyclin Gl, increases significantly during colorectal carcinogenesis and during later metastasis to lymph nodes. // International Journal of Oncology. 2003. V. 22. P. 1101-10.
182. Nishizuka Y. Protein Kinases .5. Protein-Kinase-C and Lipid Signaling for Sustained Cellular-Responses. // Faseb Journal. 1995. V. 9. P. 484-96.
183. Newton AC, Johnson JJ. Protein kinase C: a paradigm for regulation of protein function by two membrane-targeting modules. // Biochimica et Biophysica Acta-Reviews on Biomembranes. 1998. V. 1376. P. 155-72.
184. Newton AC. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. // Biochemical Journal. 2003. V. 370. P. 361-71.
185. Jaken S. Protein kinase C isozymes and substrates. // Current Opinion in Cell Biology. 1996. V. 8. P. 168-73.
186. Nishikawa K, Toker A, Johannes FJ, Zhou SY, Cantley LC. Determination of the specific substrate sequence motifs of protein kinase C isozymes. // Journal of Biological Chemistry. 1997. V. 272. P. 952-60.
187. Zugaza JL, SinnettSmith J, VanLint J, Rozengurt E. Protein kinase D (PKD) activation in intact cells through a protein kinase C-dependent signal transduction pathway. // Embo Journal. 1996. V. 15. P. 6220-30.
188. Paolucci L, Rozengurt E. Protein kinase D in small cell lung cancer cells: Rapid activation through protein kinase C. // Cancer Research. 1999. V. 59. P. 572-7.
189. Nishizuka Y. Intracellular Signaling by Hydrolysis of Phospholipids and Activation of Protein-Kinase-C. // Science. 1992. V. 258. P. 607-14.
190. Wetsel WC, Khan WA, Merchenthaler I, Rivera H, Halpem AE, Phung HM et al. Tissue and Cellular-Distribution of the Extended Family of Protein-Kinase-C Isoenzymes. // Journal of Cell Biology. 1992. V. 117. P. 121-33.
191. Way KJ, Chou E, King GL. Identification of PKC-isoform-specific biological actions using pharmacological approaches. // Trends in Pharmacological Sciences. 2000. V. 21. P. 181-7.
192. Parekh DB, Ziegler W, Parker PJ. Multiple pathways control protein kinase C phosphorylation. // Embo Journal. 2000. V. 19. P. 496-503.
193. Shirakawa F, Mizel SB. Invitro Activation and Nuclear Translocation of Nf-Kappa-B Catalyzed by Cyclic Amp-Dependent Protein-Kinase and Protein Kinase-C. // Molecular and Cellular Biology. 1989. V. 9. P. 2424-30.
194. Goode N, Hughes K, Woodgett JR, Parker PJ. Differential Regulation of Glycogen-Synthase Kinase-3-Beta by Protein-Kinase-C Isotypes. // Journal of Biological Chemistry. 1992. V. 267. P. 16878-82.
195. Reyland ME, Anderson SM, Matassa AA, Barzen KA, Quissell DO. Protein kinase C delta is essential for etoposide-induced apoptosis in salivary gland acinar cells. // Journal of Biological Chemistry. 1999. V. 274. P. 19115-23.
196. Majumder PK, Pandey P, Sun XG, Cheng KD, Datta R, Saxena S et al. Mitochondrial translocation of protein kinase C delta in phorbol ester-induced cytochrome C release and apoptosis. // Journal of Biological Chemistry. 2000. V. 275. P. 21793-6.
197. Pongracz J, Tuffley W, Johnson GD, Deacon EM, Burnett D, Stockley RA, Lord JM. Changes in Protein-Kinase-C Isoenzyme Expression Associated with Apoptosis in U937 Myelomonocytic Cells. //Experimental Cell Research. 1995. V. 218. P. 430-8.
198. Berra E, Municio MM, Sanz L, Frutos S, DiazMeco MT, Moscat J. Positioning atypical protein kinase C isoforms in the UV-induced apoptotic signaling cascade. // Molecular and Cellular Biology. 1997. V. 17. P. 4346-54.
199. Sharif TR, Sharif M. Overexpression of protein kinase C epsilon in astroglial brain tumor derived cell lines and primary tumor samples. // International Journal of Oncology. 1999. V. 15. P. 237-43.
200. Tsai CL, Wang LH, Wen ZH. Alteration of norepinephrine and serotonin contents in the discrete brain of male and female tilapia, Oreochromis Mossambicus, during the lower temperature acclimation. // Biogenic Amines. 2000. V. 15. P. 655-67.
201. Mandil R, Ashkenazi E, Blass M, Kronfeld I, Kazimirsky G, Rosenthal G et al. Protein kinase C alpha and protein kinase C delta play opposite roles in the proliferation and apoptosis of glioma cells. // Cancer Research. 2001. V. 61. P. 46129.
202. Lin SB, Wu LC, Huang SL, Hsu HL, Hsieh SH, Chi CW, Au LC. In vitro and in vivo suppression of growth of rat liver epithelial tumor cells by antisense oligonucleotide against protein kinase C-alpha. // Journal of Hepatology. 2000. V. 33. P. 601-8.
203. Gourdeau H, Fournier REK. Genetic-Analysis of Mammalian-Cell Differentiation. // Annual Review of Cell Biology. 1990. V. 6. P. 69-94.
204. Mohn F, Schubeier D. Genetics and epigenetics: stability and plasticity during cellular differentiation. // Trends in Genetics. 2009. V. 25. P. 129-36.
205. Wang L, Walker BL, Iannaccone S, Bhatt D, Kennedy PJ, Tse WT. Bistable switches control memory and plasticity in cellular differentiation. // Proceedings of the National Academy of Sciences of the United States of America. 2009. V. 106. P. 6638-43.
206. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. // Nature. 2007. V. 447. P. 425-32.
207. Pesce M, Scholer HR. Oct-4: Control of totipotency and germline determination. // Molecular Reproduction and Development. 2000. V. 55. P. 452-7.
208. Pesce M, Anastassiadis K, Scholer HR. Oct-4: Lessons of totipotency from embryonic stem cells. // Cells Tissues Organs. 1999. V. 165. P. 144-52.
209. Meier K, Lehr CM, Daum N. Differentiation potential of human pancreatic stem cells for epithelial- and endothelial-like cell types. // Annals of Anatomy-Anatomischer Anzeiger. 2009. V. 191. P. 70-82.
210. Zola H, Swart B, Nicholson I, Aasted B, Bensussan A, Boumsell L et al. CD molecules 2005: human cell differentiation molecules. // Blood. 2005. V. 106. P. 3123-6.
211. Zola H, Swart B, Banham A, Barry S, Beare A, Bensussan A et al. CD molecules 2006 Human cell differentiation molecules. // Journal of Immunological Methods. 2007. V. 319. P. 1-5.
212. Stelling J, Sauer U, Szallasi Z, Doyle FJ, Doyle J. Robustness of cellular functions. // Cell. 2004. V. 118. P. 675-85.
213. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. // Cell. 2006. V. 126. P. 663-76.
214. Quesenberry PJ, Dooner G, Colvin G, Abedi M. Stem cell biology and the plasticity polemic. // Experimental Hematology. 2005. V. 33. P. 389-94.
215. Durston AJ, Timmermans JPM, Hage WJ, Hendriks HF J, Devries NJ, Heideveld M, Nieuwkoop PD. Retinoic Acid Causes An Anteroposterior Transformation in the Developing Central Nervous-System. //Nature. 1989. V. 340. P. 140-4.
216. Dosch R, Gawantka V, Delius H, Blumenstock C, Niehrs C. Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. // Development. 1997. V. 124. P. 2325-34.
217. McDowell N, Zorn AM, Crease DJ, Gurdon JB. Activin has direct long-range signalling activity and can form a concentration gradient by diffusion. // Current Biology. 1997. V. 7. P. 671-81.
218. Schuldiner M, Benvenisty N. Factors controlling human embryonic stem cell differentiation. //Methods Enzymol. 2003. V. 365. P. 446-61.
219. Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. // ProcNatl Acad Sci USA. 2000. V. 97. P. 11307-12.
220. Zimmerman CM, Mathews LS. Activin receptors: cellular signalling by receptor serine kinases. //Biochem Soc Symp. 1996. V. 62. P. 25-38.
221. Schuldiner M, Eiges R, Eden A, Yanuka O, Itskovitz-Eldor J, Goldstein RS, Benvenisty N. Induced neuronal differentiation of human embryonic stem cells. // Brain Res. 2001. V. 913. P. 201-5.
222. Samarut E, Rochette-Egly C. Nuclear retinoic acid receptors: Conductors of the retinoic acid symphony during development. // Mol Cell Endocrinol. 2011.
223. Soprano DR, Teets BW, Soprano KJ. Role of retinoic acid in the differentiation of embryonal carcinoma and embryonic stem cells. // Vitam Horm. 2007. V. 75. P. 6995.
224. Duester G. Retinoic acid synthesis and signaling during early organogenesis. // Cell. 2008. V. 134. P. 921-31.
225. Carpenter G, Zendegui JG. Epidermal growth factor, its receptor, and related proteins. // Exp Cell Res. 1986. V. 164. P. 1-10.
226. Carpenter G. Epidermal growth factor: biology and mechanism of action. // Birth Defects Orig Artie Ser. 1980. V. 16. P. 61-72.
227. Carpenter G. The biochemistry and physiology of the receptor-kinase for epidermal growth factor. // Mol Cell Endocrinol. 1983. V. 31. P. 1-19.
228. Aloe L. Rita Levi-Montalcini: the discovery of nerve growth factor and modern neurobiology. // Trends Cell Biol. 2004. V. 14. P. 395-9.
229. Aloe L. Rita Levi-Montalcini and the discovery of NGF, the first nerve cell growth factor. // Arch Ital Biol. 2011. V. 149. P. 175-81.
230. Gospodarowicz D. Fibroblast growth factor and its involvement in developmental processes. // Curr Top Dev Biol. 1990. V. 24. P. 57-93.
231. Gospodarowicz D, Neufeld G, Schweigerer L. Fibroblast growth factor: structural and biological properties. // J Cell Physiol Suppl. 1987. V. Suppl 5. P. 15-26.
232. Marie PJ. Fibroblast growth factor signaling controlling osteoblast differentiation. // Gene. 2003. V. 316. P. 23-32.
233. Jiang WG, Martin TA, Parr C, Davies G, Matsumoto K, Nakamura T. Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. // Crit Rev Oncol Hematol. 2005. V. 53. P. 35-69.
234. Funakoshi H, Nakamura T. Hepatocyte growth factor: from diagnosis to clinical applications. // Clin Chim Acta. 2003. V. 327. P. 1-23.
235. Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-beta signaling in cardiac remodeling. // J Mol Cell Cardiol. 2011. V. 51. P. 600-6.
236. Azhar M, Schultz JJ, Grupp I, Dorn GW, Meneton P, Molin DG et al. Transforming growth factor beta in cardiovascular development and function. // Cytokine Growth Factor Rev. 2003. V. 14. P. 391-407.
237. Rizzino A. Transforming growth factor-beta: multiple effects on cell differentiation and extracellular matrices. // Dev Biol. 1988. V. 130. P. 411-22.
238. Barnard JA, Lyons RM, Moses HL. The cell biology of transforming growth factor beta. //Biochim Biophys Acta. 1990. Y. 1032. P. 79-87.
239. Yingling JM, Wang XF, Bassing CH. Signaling by the transforming growth factor-beta receptors. // Biochim Biophys Acta. 1995. V. 1242. P. 115-36.
240. Zimmerman CM, Padgett RW. Transforming growth factor beta signaling mediators and modulators. // Gene. 2000. V. 249. P. 17-30.
241. Chin D, Boyle GM, Parsons PG, Coman WB. What is transforming growth factor-beta (TGF-beta)? // Br J Plast Surg. 2004. V. 57. P. 215-21.
242. Chao MV. Neurotrophin receptors: a window into neuronal differentiation. // Neuron. 1992. V. 9. P. 583-93.
243. Chao MV, Rajagopal R, Lee FS. Neurotrophin signalling in health and disease. // Clin Sci (Lond). 2006. V. 110. P. 167-73.
244. Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. //Nat RevNeurosci. 2003. V. 4. P. 299-309.
245. Friedman WJ, Greene LA. Neurotrophin signaling via Trks and p75. // Exp Cell Res. 1999. V. 253. P. 131-42.
246. Gentry JJ, Barker PA, Carter BD. The p75 neurotrophin receptor: multiple interactors and numerous functions. // Prog Brain Res. 2004. V. 146. P. 25-39.
247. Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. // Curr OpinNeurobiol. 2000. V. 10. P. 381-91.
248. Bondy CA, Cheng CM. Insulin-like growth factor-1 promotes neuronal glucose utilization during brain development and repair processes. // Int Rev Neurobiol. 2002. V. 51. P. 189-217.
249. Ricort JM. Insulin-like growth factor binding protein (IGFBP) signalling. // Growth Horm IGF Res. 2004. V. 14. P. 277-86.
250. Randhawa R, Cohen P. The role of the insulin-like growth factor system in prenatal growth. // Mol Genet Metab. 2005. V. 86. P. 84-90.
251. Fernandez S, Fernandez AM, Lopez-Lopez C, Torres-Aleman I. Emerging roles of insulin-like growth factor-I in the adult brain. // Growth Horm IGF Res. 2007. V. 17. P. 89-95.
252. Noguchi T, Miyachi H, Katayama R, Naito M, Hashimoto Y. Cell differentiation inducers derived from thalidomide. // Bioorganic & Medicinal Chemistry Letters. 2005. V. 15. P. 3212-5.
253. Chiu FC, Feng L, Chan SO, Padin C, Federoff HJ. Expression of Neurofilament Proteins During Retinoic Acid-Induced Differentiation of P19 Embryonal Carcinoma-Cells. // Molecular Brain Research. 1995. V. 30. P. 77-86.
254. Paterno GD, Gillespie LL, Julien JP, Skup D. Regulation of neurofilament L, M and H gene expression during retinoic acid-induced neural differentiation of PI9 embryonal carcinoma cells. // Molecular Brain Research. 1997. V. 49. P. 247-54.
255. Schimmelpfeng J, Weibezahn KF, Dertinger H. Quantification of NGF-dependent neuronal differentiation of PC-12 cells by means of neurofilament-L mRNA expression and neuronal outgrowth. // Journal of Neuroscience Methods. 2004. V. 139. P. 299-306.
256. Condello S, Caccamo D, Curro M, Ferlazzo N, Parisi G, Ientile R. Transglutaminase 2 and NF-kappa B interplay during NGF-induced differentiation of neuroblastoma cells. // Brain Research. 2008. V. 1207. P. 1-8.
257. Burdge GC, Rodway H, Kohler JA, Lillycrop KA. Effect of fatty acid supplementation on growth and differentiation of human IMR-32 neuroblastoma cells in vitro. // Journal of Cellular Biochemistry. 2000. V. 80. P. 266-73.
258. Chamras H, Ardashian A, Heber D, Glaspy JA. Fatty acid modulation of MCF-7 human breast cancer cell proliferation, apoptosis and differentiation. // Journal of Nutritional Biochemistry. 2002. V. 13. P. 711-6.
259. Zagon IS, McLaughlin PJ. Opioids and differentiation in human cancer cells. // Neuropeptides. 2005. V. 39. P. 495-505.
260. Martirosyan AR, Rahim-Bata R, Freeman AB, Clarke CD, Howard RL, Strobl JS. Differentiation-inducing quinolines as experimental breast cancer agents in the MCF-7 human breast cancer cell model. // Biochemical Pharmacology. 2004. V. 68. P. 172938.
261. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. //Nature. 2001. V. 414. P. 105-11.
262. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. //NatureReviews Cancer. 2003. V. 3. P. 895-902.
263. Dontu G, Al-Hajj M, Abdallah WA, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. // Cell Proliferation. 2003. V. 36. P. 59-72.
264. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of a cancer stem cell in human brain tumors. // Cancer Research. 2003. V. 63. P. 5821-8.
265. Jiang HP, Lin J, Su ZZ, Collart FR, Huberman E, Fisher PB. Induction of Differentiation in Human Promyelocytic Hl-60 Leukemia-Cells Activates P21, Wafl/Cipl, Expression in the Absence of P53. // Oncogene. 1994. V. 9. P. 3397-406.
266. Ferrero D, Tarella C, Gallo E, Ruscetti FW, Breitman TR. Terminal Differentiation of the Human Promyelocytic Leukemia-Cell Line, Hl-60, in the Absence of Cell-Proliferation. // Cancer Research. 1982. V. 42. P. 4421-6.
267. Fischkoff SA, Pollak A, Gleich GJ, Testa JR, Misawa S, Reber TJ. Eosinophilic Differentiation of the Human Promyelocytic Leukemia-Cell Line, Hl-60. // Journal of Experimental Medicine. 1984. V. 160. P. 179-96.
268. Oshima RG, Abrams L, Kulesh D. Activation of An Intron Enhancer Within the Keratin 18-Gene by Expression of C-Fos and C-Jun in Undifferentiated F9-Embryonal Carcinoma-Cells. // Genes & Development. 1990. V. 4. P. 835-48.
269. Parmar S, Tallman MS. Acute promyelocytic leukaemia: a review. // Expert Opinion on Pharmacotherapy. 2003. V. 4. P. 1379-92.284,285,286,287,288,289,290,291.292,293.294.295,296,297,
270. Fuchs E, Green H. Regulation of Terminal Differentiation of Cultured Human Keratinocytes by Vitamin-A. // Cell. 1981. V. 25. P. 617-25.
271. De Luca LM. Retinoids and Their Receptors in Differentiation, Embryogenesis, and Neoplasia. // Faseb Journal. 1991. V. 5. P. 2924-33.
272. Hong WK, Lippman SM, Itri LM, Karp DD, Lee JS, Byers RM et al. Prevention of 2Nd Primary Tumors with Isotretinoin in Squamous-Cell Carcinoma of the Head and Neck. //NewEngland Journal ofMedicine. 1990. V. 323. P. 795-801.
273. Chen TC, Holick MF. Vitamin D and prostate cancer prevention and treatment. // Trends in Endocrinology and Metabolism. 2003. V. 14. P. 423-30.
274. Galsky M, Kelly WK. The development of differentiation agents for the treatment of prostate cancer. // Seminars in Oncology. 2003. V. 30. P. 689-97.
275. Reynolds CP, Matthay KK, Villablanca JG, Maurer B J. Retinoid therapy of high-risk neuroblastoma. // Cancer Letters. 2003. V. 197. P. 185-92.
276. Asiedu C, Biggs J, Lilly M, Kraft AS. Inhibition of Leukemic-Cell Growth by the Protein-Kinase-C Activator Bryostatin-1 Correlates with the Dephosphorylation of Cyclin-Dependent Kinase-2. // Cancer Research. 1995. V. 55. P. 3716-20.
277. Kraft AS, William F, Pettit GR, Lilly MB. Varied Differentiation Responses of Human Leukemias to Bryostatin 1. // Cancer Research. 1989. V. 49. P. 1287-93.
278. Vrana JA, Saunders AM, Chellappan SP, Grant S. Divergent effects of bryostatin 1 and phorbol myristate acetate on cell cycle arrest and maturation in human myelomonocytic leukemia cells (U937). // Differentiation. 1998. V. 63. P. 33-42.
279. Hoffman DR, Huberman E. The Control of Phospholipid Methylation by Phorbol Diesters in Differentiating Human Myeloid Hl-60 Leukemia-Cells. // Carcinogenesis. 1982. V. 3. P. 875-80.
280. Avvisati G, Tallman MS. All-trans retinoic acid in acute promyelocyte leukaemia. // Best Pract Res Clin Haematol. 2003. V. 16. P. 419-32.
281. Lin TL, Vala MS, Barber JP, Karp JE, Smith BD, Matsui W, Jones RJ. Induction of acute lymphocytic leukemia differentiation by maintenance therapy. // Leukemia. 2007. V. 21. P. 1915-20.
282. Tallman MS, Andersen JW, Schiffer CA, Appelbaum FR, Feusner JH, Ogden A et al. All-trans-retinoic acid in acute promyelocytic leukemia. // N Engl J Med. 1997. V. 337. P. 1021-8.
283. Fisher PB, Prignoli DR, Hermo H, Jr., Weinstein IB, Pestka S. Effects of combined treatment with interferon and mezerein on melanogenesis and growth in human melanoma cells. // J Interferon Res. 1985. V. 5. P. 11-22.
284. Fisher PB, Grant S. Effects of interferon on differentiation of normal and tumor cells. //Pharmacol Ther. 1985. V. 27. P. 143-66.
285. Llinares ME, Bermudez M, Fuster JL, Diaz MS, Gonzalez CM. Toxicity to topical dimethyl sulfoxide in a pediatric patient with anthracycline extravasation. // Pediatric Hematology and Oncology. 2005. V. 22. P. 49-52.
286. Yu HN, Lee YR, Noh EM, Lee KS, Song EK, Han MK et al. Tumor necrosis factor-alpha enhances DMSO-induced differentiation of HL-60 cells through the activation of ERK/MAPK pathway. // International Journal of Hematology. 2008. V. 87. P. 18994.
287. Lennard L, Lilleyman JS. Variable mercaptopurine metabolism and treatment outcome in childhood lymphoblastic leukemia. // J Clin Oncol. 1989. V. 7. P. 1816-23.
288. Pearson AD, Amineddine HA, Yule M, Mills S, Long DR, Craft AW, Chessells JM. The influence of serum methotrexate concentrations and drug dosage on outcome in childhood acute lymphoblastic leukaemia. // Br J Cancer. 1991. V. 64. P. 169-73.
289. Kitamura R, Ogata T, Tanaka Y, Motoyoshi K, Seno M, Takei I et al. Conophylline and betacellulin-delta4: an effective combination of differentiation factors for pancreatic beta cells. // Endocr J. 2007. V. 54. P. 255-64.
290. Kojima I, Umezawa K. Conophylline: A novel differentiation inducer for pancreatic beta cells. // International Journal of Biochemistry & Cell Biology. 2006. V. 38. P. 923-30.
291. Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. // Nature. 1998. V. 391. P. 806-11.
292. Downward J. Science, medicine, and the future RNA interference. // British Medical Journal. 2004. V. 328. P. 1245-8.
293. Lingel A, Izaurralde E. RNAi: Finding the elusive endonuclease. // Rna-A Publication of the Rna Society. 2004. V. 10. P. 1675-9.
294. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. // Nature. 2004. V. 431. P. 343-9.
295. Schauer SE, Jacobsen SE, Meinke DW, Ray A. DICER-LIKE 1: blind men and elephants in Arabidopsis development. // Trends in Plant Science. 2002. V. 7. P. 48791.
296. Lee YS, Nakahara K, Pham JW, Kim K, He ZY, Sontheimer EJ, Carthew RW. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. // Cell. 2004. V. 117. P. 69-81.
297. Sashital DG, Doudna JA. Structural insights into RNA interference. // Current Opinion in Structural Biology. 2010. V. 20. P. 90-7.
298. Shan G. RNA interference as a gene knockdown technique. // International Journal of Biochemistry & Cell Biology. 2010. V. 42. P. 1243-51.
299. Sijen T., Fleenor J., Simmer F., Thijssen K. L., Parrish S., Timmons L., Fire A. On the role of RNA amplification in dsRNA-triggered gene silencing. // Cell. 2001. V. 107. P. 465-476.
300. Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. //Nature. 2009. V. 457. P. 426-33.
301. Fuchs U, mm-Welk C, Borkhardt A. Silencing of disease-related genes by small interfering RNAs. // Current Molecular Medicine. 2004. V. 4. P. 507-17.
302. Tebes SJ, Krulc PA. The genesis of RNA interference, its potential clinical applications, and implications in gynecologic cancer. // Gynecol Oncol. 2005. V. 99. P. 736-41.
303. Hohjoh H. Enhancement of RNAi activity by improved siRNA duplexes. // Febs Letters. 2004. V. 557. P. 193-8.
304. Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. // Nucleic Acids Research. 2004. V. 32. P. 936-48.
305. Sioud M. Therapeutic siRNAs. // Trends in Pharmacological Sciences. 2004. V. 25. P. 22-8.
306. Goodbourn S, Didcock L, Randall RE. Interferons: cell signalling, immune modulation, antiviral responses and virus countermeasures. // Journal of General Virology. 2000. V. 81. P. 2341-64.
307. Heim MH. Intracellular signalling and antiviral effects of interferons. // Digestive and Liver Disease. 2000. V. 32. P. 257-63.
308. Samuel CE. Antiviral actions of interferons. // Clinical Microbiology Reviews. 2001. V. 14. P. 778-809.
309. Sen GC. Viruses and interferons. // Annual Review of Microbiology. 2001. V. 55. P. 255-81.
310. Stark GR, Kerr IM, Williams BRG, Silverman RH, Schreiber RD. How cells respond to interferons. // Annual Review of Biochemistry. 1998. V. 67. P. 227-64.
311. Castelli JC, Hassel BA, Wood KA, Li XL, Amemiya K, Dalakas MC et al. A study of the interferon antiviral mechanism: Apoptosis activation by the 2-5A system. // Journal of Experimental Medicine. 1997. V. 186. P. 967-72.
312. Clemens MJ. PKR A protein kinase regulated by double-stranded RNA. // International Journal of Biochemistry & Cell Biology. 1997. V. 29. P. 945-9.
313. Matsumoto M, Funami K, Oshiumi H, Seya T. Toll-like receptor 3: A link between toll-like receptor, interferon and viruses. // Microbiology and Immunology. 2004. V. 48. P. 147-54.
314. Underhill DM, Ozinsky A. Toll-like receptors: key mediators of microbe detection. // Current Opinion in Immunology. 2002. V. 14. P. 103-10.
315. Sen GC, Sarkar SN. Transcriptional signaling by double-stranded RNA: role of TLR3. // Cytokine & Growth Factor Reviews. 2005. V. 16. P. 1-14.
316. Meurs E, Chong K, Galabru J, Thomas NSB, Kerr IM, Williams BRG, Hovanessian AG. Molecular-Cloning and Characterization of the Human Double-Stranded-Rna Activated Protein-Kinase Induced by Interferon. // Cell. 1990. V. 62. P. 379-90.
317. Xu Z, Williams BRG. The B56 alpha regulatory subunit of protein phosphatase 2A is a target for regulation by double-stranded RNA-dependent protein kinase PKR. // Molecular and Cellular Biology. 2000. V. 20. P. 5285-99.
318. Patel RC, Vestal DJ, Xu Z, Bandyopadhyay S, Guo WD, Erme SM et al. DRBP76, a double-stranded RNA-binding nuclear protein, is phosphorylated by the interferon-induced protein kinase, PKR. // Journal of Biological Chemistry. 1999. V. 274. P. 20432-7.
319. Silverman RH, Williams BRG. Stress responses: Translational control perks up. // Nature. 1999. V. 397. P. 208-+.
320. Samuel CE. The Eif-2-Alpha Protein-Kinases, Regulators of Translation in Eukaryotes from Yeasts to Humans. // Journal of Biological Chemistry. 1993. V. 268. P. 7603-6.
321. Zandi E, Karin M. Bridging the gap: Composition, regulation, and physiological function of the I kappa B kinase complex. // Molecular and Cellular Biology. 1999. V. 19. P. 4547-51.
322. Gil J, Esteban M. Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): Mechanism of action. //Apoptosis. 2000. V. 5. P. 107-14.
323. Hartmann R, Justesen J, Sarkar SN, Sen GC, Yee VC. Crystal structure of the 2 'specific and double-stranded RNA-activated interferon-induced antiviral protein 2 '-5 '-oligoadenylate synthetase. // Molecular Cell. 2003. V. 12. P. 1173-85.
324. Dong BH, Silverman RH. 2-5A-Dependent Rnase Molecules Dimerize During Activation by 2-5A. // Journal of Biological Chemistry. 1995. V. 270. P. 4133-7.
325. XL, Blackford JA, Hassel BA. RNase L mediates the antiviral effect of interferon through a selective reduction in viral RNA during encephalomyocarditis virus infection. // Journal of Virology. 1998. V. 72. P. 2752-9.
326. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappa B by Toll-like receptor 3. //Nature. 2001. V. 413. P. 732-8.
327. Takeda K, Kaisho T, Akira S. Toll-like receptors. // Annual Review of Immunology. 2003. V. 21. P. 335-76.
328. Takeda K, Akira S. Toll receptors and pathogen resistance. // Cellular Microbiology. 2003. V. 5. P. 143-53.
329. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. //NatureBiotechnology. 2005. V. 23. P. 457-62.
330. Sioud M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. //Journal of Molecular Biology. 2005. V. 348. P. 1079-90.
331. Poeck H, Besch R, Maihoefer C, Renn M, Tormo D, Morskaya SS et al. 5 '-triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. // Nature Medicine. 2008. V. 14. P. 1256-63.
332. Kortylewski M, Swiderski P, Herrmann A, Wang L, Kowolik C, Kujawski M et al. In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. //Nature Biotechnology. 2009. V. 27. P. 925-U88.
333. Lares MR, Rossi JJ, Ouellet DL. RNAi and small interfering RNAs in human disease therapeutic applications. // Trends in Biotechnology. 2010. V. 28. P. 570-9.
334. Kaufmann J, Ahrens K, Santel A. RNA interference for therapy in the vascular endothelium. // Microvascular Research. 2010. V. 80. P. 286-93.
335. Shen J, Samul R, Silva RL, Akiyama H, Liu H, Saishin Y et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. // Gene Therapy. 2006. V. 13. P. 225-34.
336. Dejneka NS, Wan SH, Bond OS, Kornbrust DJ, Reich SJ. Ocular biodistribution of bevasiranib following a single intravitreal injection to rabbit eyes. // Molecular Vision.2008. V. 14. P. 997-1005.
337. Kaiser PK, Symons RCA, Shah SM, Quinlan EJ, Tabandeh H, Do DV et al. RNAi-Based Treatment for Neovascular Age-Related Macular Degeneration by Sirna-027. // American Journal of Ophthalmology. 2010. V. 150. P. 33-9.
338. Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. //Nature. 2010. V. 464. P. 1067-U140.
339. Aleku M, Schulz P, Keil O, Santel A, Schaeper U, Dieckhoff B et al. Atu027, a Liposomal Small Interfering RNA Formulation Targeting Protein Kinase N3, Inhibits Cancer Progression. // Cancer Research. 2008. V. 68. P. 9788-98.
340. Toudjarska I, Judge A, Brodsky J, McClintock K, de Jong SD, Ambegia E et al. Development of Aln-Vsp: An Rnai Therapeutic for Liver Malignancies. // Hepatology.2009. V. 50. P. 1149A.
341. Keller M. Nanomedicinal delivery approaches for therapeutic siRNA. // International Journal of Pharmaceutics. 2009. V. 379. P. 210-1.
342. Lam JK, Liang W, Chan HK. Pulmonary delivery of therapeutic siRNA. // Adv Drug Deliv Rev. 2011.
343. Oh YK, Park TG. siRNA delivery systems for cancer treatment. // Advanced Drug Delivery Reviews. 2009. V. 61. P. 850-62.
344. Leachman SA, Hickerson RP, Schwartz ME, Bullough EE, Hutcherson SL, Boucher KM et al. First-in-human Mutation-targeted siRNA Phase lb Trial of an Inherited Skin Disorder. // Molecular Therapy. 2010. V. 18. P. 442-6.
345. Hickerson RP, Smith FJD, Reeves RE, Contag CH, Leake D, Leachman SA et al. Single-nucleotide-specific siRNA targeting in a dominant-negative skin model. // Journal of Investigative Dermatology. 2008. Y. 128. P. 594-605.
346. Dannull J, Lesher DT, Holzknecht R, Qi W, Hanna G, Seigler H et al. Immunoproteasome down-modulation enhances the ability of dendritic cells to stimulate antitumor immunity. // Blood. 2007. V. 110. P. 4341-50.
347. Bollard CM, Gottschalk S, Leen AM, Weiss H, Straathof KC, Carrum G et al. Complete responses of relapsed lymphoma following genetic modification of tumorantigen presenting cells and T-lymphocyte transfer. // Blood. 2007. V. 110. P. 283845.
348. Kang JH, Rychahou PG, Ishola TA, Qiao JB, Evers BM, Chung DH. MYCN silencing induces differentiation and apoptosis in human neuroblastoma cells. // Biochemical and Biophysical Research Communications. 2006. V. 351. P. 192-7.
349. Wurdak H, Zhu ST, Romero A, Lorger M, Watson J, Chiang CY et al. An RNAi Screen Identifies TRRAP as a Regulator of Brain Tumor-Initiating Cell Differentiation. // Cell Stem Cell. 2010. V. 6. P. 37-47.
350. Li GH, Wei H, Lv SQ, Ji H, Wang DL. Knockdown of STAT3 expression by RNAi suppresses growth and induces apoptosis and differentiation in glioblastoma stem cells. // International Journal of Oncology. 2010. V. 37. P. 103-10.
351. Hay DC, Sutherland L, Clark J, Burdon T. Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. // Stem Cells. 2004. Y. 22. P. 225-35.
352. Schulte JH, Kirfel J, Lim S, Schramm A, Friedrichs N, Deubzer HE et al. Transcription factor AP2alpha (TFAP2a) regulates differentiation and proliferation of neuroblastoma cells. // Cancer Letters. 2008. V. 271. P. 56-63.
353. Volkov AA, Kruglova NS, Meschaninova MI, Venyaminova AG, Zenkova MA, Vlassov VV, Chernolovskaya EL. Selective protection of nuclease-sensitive sites in siRNA prolongs silencing effect. // Oligonucleotides. 2009. V. 19. P. 191-202.
354. Matveeva O, Nechipurenko Y, Rossi L, Moore B, Saetrom P, Ogurtsov AY et al. Comparison of approaches for rational siRNA design leading to a new efficient and transparent method. //Nucleic Acids Research. 2007. V. 35.
355. Damha MJ, Ganeshan K, Hudson RHE, Zabarylo SV. Solid-Phase Synthesis of Branched Oligoribonucleotides Related to Messenger-Rna Splicing Intermediates. // Nucleic Acids Research. 1992. V. 20. P. 6565-73.
356. Carmichael J, Degraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of A Tetrazolium-Based Semiautomated Colorimetric Assay Assessment of Chemosensitivity Testing. // Cancer Research. 1987. V. 47. P. 936-42.
357. Пирс Э. // Гистохимия. M. изд-во Иностранная Литература. 962 с. 1962.
358. Chattopadhyay N, Kher R, Godbole M. Inexpensive Sds Phenol Method for Rna Extraction from Tissues. // Biotechniques. 1993. V. 15. P. 24-&.
359. Tabara H, Grishok A, Mello CC. RNAi in C-elegans: Soaking in the genome sequence. // Science. 1998. V. 282. P. 430-1.
360. Tuschl T. RNA interference and small interfering RNAs. // Chembiochem. 2001. V. 2. P. 239-45.
361. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. // Nature. 2001. V. 411. P. 494-8.
362. Dykxhoorn DM, Lieberman J. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. // Annual Review of Medicine. 2005. V. 56. P. 401-23.
363. Yuan JP, Yan RL, Kramer A, Eckerdt F, Roller M, Kaufmann M, Strebhardt K. Cyclin B1 depletion inhibits proliferation and induces apoptosis in human tumor cells. // Oncogene. 2004. V. 23. P. 5843-52.
364. Kabilova TO, Chernolovskaya EL, Vladimirova AV, Vlassov VV. Inhibition of human carcinoma and neuroblastoma cell proliferation by anti-c-myc siRNA. // Oligonucleotides. 2006. V. 16. P. 15-25.
365. Nishizuka Y. The Role of Protein Kinase-C in Cell-Surface Signal Transduction and Tumor Promotion. //Nature. 1984. V. 308. P. 693-8.
366. Oates AC, Bruce AE, Ho RK. Too much interference: injection of double-stranded RNA has nonspecific effects in the zebrafish embryo. // Dev Biol. 2000. V. 224. P. 208.
367. Kimchi A. Cytokine Triggered Molecular Pathways That Control Cell-Cycle Arrest. // Journal of Cellular Biochemistry. 1992. V. 50. P. 1-9.
368. Roh H, Pippin J, Drebin JA. Down-regulation of HER2/neu expression induces apoptosis in human cancer cells that overexpress HER2/neu. // Cancer Research. 2000. V. 60. P. 560-5.
369. Roh H, Pippin JA, Green DW, Boswell CB, Hirose CT, Mokadam N, Drebin JA. HER2/neu antisense targeting of human breast carcinoma. // Oncogene. 2000. V. 19. P. 6138-43.
370. Ross JS, Fletcher JA. The HER-2/neu oncogene in breast cancer: Prognostic factor, predictive factor, and target for therapy. // Stem Cells. 1998. V. 16. P. 413-28.
371. Ross JS, Fletcher JA. The HER-2/neu oncogene: prognostic factor, predictive factor and target for therapy. // Seminars in Cancer Biology. 1999. V. 9. P. 125-38.
372. Faltus T, Yuan JP, Zimmer B, Kramer A, Loibl S, Kaufmann M, Strebhardt K. Silencing of the HER2/neu gene by siRNA inhibits proliferation and induces apoptosis in HER2/neu-overexpressing breast cancer cells. //Neoplasia. 2004. V. 6. P. 786-95.
373. Wu TT, Hsieh YH, Hsieh YS, Liu JY. Reduction of PKC alpha decreases cell proliferation, migration, and invasion of human malignant hepatocellular carcinoma. // Journal of Cellular Biochemistry. 2008. V. 103. P. 9-20.
374. Pines J, Hunter T. Cyclin-A and Cyclin-Bl in the Human Cell-Cycle. // Ciba Foundation Symposia. 1992. V. 170. P. 187-204.
375. Yuan J, Kramer A, Matthess Y, Yan R, Spankuch B, Gatje R et al. Stable gene silencing of cyclin B1 in tumor cells increases susceptibility to taxol and leads to growth arrest in vivo. // Oncogene. 2006. V. 25. P. 1753-62.
376. Matassa A, Kalkofen RL, Carpenter L, Biden TJ, Reyland ME. Inhibition of PKC alpha induces a PKC delta-dependent apoptotic program in salivary epithelial cells. // Cell Death and Differentiation. 2003. V. 10. P. 269-77.
377. Blankinship MJ, Gregorevic P, Chamberlain JS. Gene therapy strategies for Duchenne muscular dystrophy utilizing recombinant adeno-associated virus vectors. // Molecular Therapy. 2006. V. 13. P. 241-9.
378. Gao GP, Wilson JM, Wivel NA. Production of recombinant adeno-associated virus. // Advances in Virus Research, Vol 55. 2000. V. 55. P. 529-43.
379. Snyder RO, Flotte TR. Production of clinical-grade recombinant adeno-associated virus vectors. // Current Opinion in Biotechnology. 2002. V. 13. P. 418-23.
380. Choi MS, Yuk DY, Oh JH, Jung HY, Han SB, Moon DC, Hong JT. Berberine Inhibits Human Neuroblastoma Cell Growth through Induction of p53-dependent Apoptosis. // Anticancer Research. 2008. V. 28. P. 3777-84.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.