Адаптивная обработка данных авиационной гравиметрии тема диссертации и автореферата по ВАК РФ 01.02.01, кандидат физико-математических наук Дорошин, Данила Рубенович
- Специальность ВАК РФ01.02.01
- Количество страниц 112
Оглавление диссертации кандидат физико-математических наук Дорошин, Данила Рубенович
Обозначения и сокращения
1 Введение
1.1 Цели работы.
1.2 Авиационная гравиметрия.
1.2.1 Модели гравитационного поля.
1.2.2 Задача построения карт аномального гравитационного поля по данным авиасъемки.
1.2.3 Основные уравнения авиационной гравиметрии.
1.2.4 Обзор методов оценивания в авиационной гравиметрии.
1.3 Обзор методов адаптивной фильтрации.
1.3.1 Модель линейной системы с марковскими скачками.
1.4 Возможности применения методов адаптивной фильтрация для решения задачи авиационной гравиметрии.
2 Адаптивное оценивание силы тяжести
2.1 Задача оценивания силы тяжести как задача оценивания вектора состояния линейной системы с марковскими скачками.
2.2 Идентификация.
2.2.1 Регуляризация данных.
2.2.2 Общий вид скрытой марковской модели смеси скользящих средних (СММ-СС).
2.2.3 Обучение СММ-СС.
2.2.4 Обучение на множестве независимых испытаний.
2.2.5 Обучение. Алгоритм прямого-обратного хода.
2.2.6 Обучение. Оптимизация целевой функции.
2.2.7 Распознавание СММ-СС.
2.3 Оценивание градиента аномалии.
2.4 Оценивание аномалии.
2.5 Определение точности оценивания аномалии на галсе.
2.6 Дополнения.
2.6.1 ЕМ-алгоритм и алгоритм прямого обратного хода в задаче обучения СММ-СС.
2.6.2 Вычислительная устойчивость алгоритма прямого-обратного хода
2.6.3 Аппроксимация смеси скользящих средних в задаче регуляризации данных.
Рекомендованный список диссертаций по специальности «Теоретическая механика», 01.02.01 шифр ВАК
Интегральные методы авиационной гравиметрии2003 год, кандидат физико-математических наук Попеленский, Михаил Юрьевич
Вырожденные задачи оптимального управления и оценивания в робототехнике, навигации и аэрогравиметрии2002 год, доктор физико-математических наук Болотин, Юрий Владимирович
Робастные методы в задачах гравиметрии и навигации1999 год, кандидат физико-математических наук Невидомский, Алексей Юрьевич
Задача авиационной гравиметрии с использованием градиентометрических измерений1999 год, кандидат физико-математических наук Папуша, Ирина Анатольевна
Локальное определение аномалии силы тяжести по данным аэрогравиметрии с использованием сферического вейвлет-разложения2014 год, кандидат наук Вязьмин, Вадим Сергеевич
Введение диссертации (часть автореферата) на тему «Адаптивная обработка данных авиационной гравиметрии»
Задачей прикладной гравиметрии является измерение-поля силы тяжести. Детальная информация о поле силы тяжести находит применение в задачах навигации, прогнозирования климата, геодинамики, поиска полезных ископаемых. В геофизических приложениях гравиразведка выделяется в отдельный метод разведочной геофизики.
Силу тяжести в гравиметрии принято представлять в виде суммы нормальной силы тяжести и аномалии силы тяжести (ACT) [77]. Нормальная сила тяжести представляет собой поле модельного референц-эллипсоида вращения, поверхность которого близка к поверхности Земли. Отметим, что под введенным понятием ACT пониматься аномалия в свободном воздухе [77, 76].
В прикладной гравиметрии прибор, измеряющий силу тяжести, называется гравиметром. Статические гравиметры предназначены для проведения измерений на неподвижном основании. Инерциальной гравиметрией называют измерение силы тяжести с борта подвижного носителя. При измерении с борта подвижного носителя используются инерциальные гравиметры. В инерциальной гравиметрии помимо гравиметров используются инерциальная навигационная система (ИНС) и спутниковая навигационная система (СНС), объединенные в систему, называемую аэрогравиметрическим комплексом (АГК). Инерциальная гравиметрия подразделяется на морскую и авиационную. В случае морской гравиметрии АГК устанавливается на борту плавательного средства, в случае авиационной — на борту летательного аппарата. Целью обработки данных авиационной гравиметрии является решение задачи авиационной гравиметрии (ЗАГ) — построение карты ACT района съемок по измерениям АГК. Как правило, аэрогравиметрические съемки состоят из нескольких вылетов летательного аппарата. Траектория каждого вылета летательного аппарата состоит из прямолинейных участков — галсов, и разворотов между галсами. В процессе съемок происходит облет исследуемого участка сетью пересекающихся галсов.
Авиационная разведка активно используется в труднодоступных районах, таких как таежные и тропические леса, гористая местность, заполярные территории и других. Карты гравитационной аномалии позволяют предсказывать наличие залежей полезных ископаемых для дальнейшего применения существенно более дорогостоящих методов геологоразведки, таких как сейсморазведка и бурение.
Каждая прикладная область предъявляет свои требования к точности и масштабу карт гравитационных аномалий. В настоящее время в авиационной гравиметрии достигнута точность карт около 0.5 мГал (1 мГал= Ю-5 м/с2 ) при разрешении на местности 5 - 10 км [6], [39]. На данный момент целью исследований является доведение точности карт до 0.2 мГал и разрешения до 1 км, что соответствует требованиям геологоразведки для прогнозирования залежей полезных ископаемых [14].
Обработка данных авиационной гравиметрии включает несколько этапов, в число которых входят следующие.
1. Обработка данных ИНС и СНС.
2. Определение аномалии на траектории.
3. Построение карты аномалии района съемок на высоте полета.
4. Трансформация карт в соответствии с различными требованиями.
Авиационную гравиметрию принято разделять на скалярную и векторную. Задача скалярной гравиметрии заключается в определении ACT в проекции на вертикаль. В векторной гравиметрии определяются три компоненты ACT. Данная работа посвящена решению задачи скалярной авиационной гравиметрии. Основное внимание уделяется 2-му этапу — задаче авиационной гравиметрии на траектории (ЗАГТ).
ЗАГТ принадлежит классу обратных задач динамики — определение сил, действующих на механическую систему, по траектории системы. Задача относится к классу некорректных обратных задач, и требует регуляризации, основанной на введении дополнительных предположений о структуре ACT и погрешностей датчиков АГК. Одним из методов регуляризации является стохастическая регуляризация. Стандартным подходом здесь является предположение о том, что ACT и погрешности измерений являются стационарными случайными процессами на траектории. Данные предположения позволяют построить стохастическую модель данных авиационной гравиметрии в пространстве состояний, так что ЗАГТ сводится к задаче сглаживания [6], [77].
Предположение о стационарности ACT не всегда адекватно реальности. Для некоторых участков съемок характерна ярко выраженная пространственной неоднородности силы тяжести. Неоднородность силы тяжести в пространстве приводит к нестационарности силы тяжести на траектории летательного аппарата. Подобная структура поля силы тяжести характерна для районов с перемежающейся гористой и равнинной местностью, также неоднородности могут быть вызваны залежами плотных массовых слоев под поверхностью Земли [77]. Пространственная неоднородность притягивающих масс приводит к пространственной неоднородности силы тяжести на высоте полета летательного аппарата. Также для погрешностей датчиков АГК характерна временная неоднородность, выраженная в нестационарности погрешностей в процессе измерений на траектории. Для погрешностей измерений СНС характерно нестационарное поведение, вызванное помехами многолучевости и потерями из видимости спутников [10]. Применение неадаптивного оценивания в данных условиях может привести к существенному ухудшению точности оценивания. В зависимости от выбранных параметров алгоритма оценивания возможны пересглаженность или недосглажснность итоговых оценок ACT [8]. Указанные эффекты приводят к целесообразности применения методов адаптивного оценивания.
В диссертации разработана методика адаптивного оценивания ACT, учитывающая пространственно-временную неоднородность данных авиационной гравиметрии. Разработанная методика позволяет автоматически настраивать характеристики алгоритма оценивания в зависимости от характера измеряемой аномалии и погрешностей датчиков АГК. Далее кратко изложена структура разработанного в диссертации адаптивного алгоритма.
Для данных АГ строится модель в пространстве состояний. Для описания нестационарности используется марковская цепь (МЦ), позволяющая моделировать изменения во времени параметров формирующей линейной модели [7, 41]. Комбинация системы в пространстве состояний и МЦ сводится [16] к модели линейной системы с марковскими скачками (Markov Jump Linear System (MJLS) [48]). Задача оценивания ACT рассматривается как задача оценивания вектора состояния модели MJLS.
Отсутствие априорной информации об аномалии района съемок приводит к необходимости идентификации параметров модели В данной работе, для случая авиационной гравиметрии, задача идентификации MJLS сводится к эквивалентной задаче идентификации для скрытой марковской модели смеси скользящих средних (СММ-СС) [7, 41]. Модель смеси СС описывает измерения градиента аномалии. В свою очередь, задача идентификации СММ-СС редуцируется на задачи обучения и распознавания. Каждая задача является оптимизацией по отдельной группе параметров. Задача обучения - оценивание параметров формирующей системы и параметров МЦ. Задача обучения решается методом максимума правдоподобия (ММП). Оптимизация проводится [41] с помощью ЕМ-алгоритма. Задача распознавания - оценивание траектории МЦ. Распознавание проводится путем максимизации апостериорной вероятности (МАВ). Задача сводится [7, 41] к алгоритму динамического программирования
Важной особенностью данных авиационной гравиметрии является низкое отношение сигнал-шум (ОСШ), что является проблемой для решения задачи идентификации В работе предложена методика регуляризации данных, позволяющая повысить ОСШ за счет сведения задачи в область низких частот [41]. Рассматриваемая методика позволяет сохранить структуру модели измерений градиента аномалии в виде смеси СС. Методика регуляризации данных АГ является частью решения задачи идентификации.
Идентификация позволяет оценить изменение параметров системы во времени, что дает возможность на этапе фильтрации получить оценку ACT с помощью алгоритма нестационарного сглаживания. Отдельно рассмотрена задача оценивания градиента аномалии, как задача оценивания компоненты СММ-СС [7].
Применение предложенной методики рассмотрено на примере обработки полетных данных АГК GT1A [16]. Местность в районе съемок представляла из себя равнинные участки, перемежающиеся горными хребтами и холмистой местностью. На примере полетных данных показана работа алгоритмов регуляризации, обучения, распознавания, нестационарного оценивания. Также приведены сглаженные результаты распознавания, учитывающие результаты распознавания на соседних галсах. Методика сглаживания основана на применении эмпирического алгоритма типа нелокальных средних (NL-means) [44]. Приводится полученная карта аномалии района съемок.
В диссертации разработана методика определения достижимой точности оценивания ACT в случае отсутствия априорной информации об истинной ACT. Используя данную методику, адаптивные оценки аномалии сравниваются с результатами работы неадаптивных линейных алгоритмов, принадлежащих заданному классу.
Порядок изложения материала следующий: первая глава носит обзорный характер, и содержит информацию, необходимую для постановки ЗАГТ.
• Приводятся модели поля силы тяжести Земли. Рассматривается влияние пространственной неоднородности на точность решения ЗАГ.
• Описана стандартная методика решения ЗАГ, в частности, показано место ЗАГТ в задаче ЗАГ.
• Вводятся уравнения движения и уравнения измерений АГК, использующиеся в данной работе.
• Приводится обзор стандартных методов, позволяющих свести ЗАГТ к задаче оптимального оценивания.
Далее в первой главе представлен обзор методов адаптивной фильтрации. Рассматривается вопрос о возможности применения различных адаптивных фильтров для решения ЗАГТ с учетом пространственно-временной неоднородности данных АГК. Подробно рассмотрена использующаяся в данной работе модель MJLS.
Вторая глава диссертации посвящена постановке и решению ЗАГТ с учетом пространственно-временной неоднородности данных АГК.
• ЗАГТ ставится как задача оценивания вектора состояния модели MJLS. Представлена редукция задачи оценивания на задачи идентификации и фильтрации.
• Вводится модель СММ-СС. Для СММ-СС рассматриваются задачи обучения и распознавания.
• Приводится методика регуляризации данных АГ, являющаяся частью задачи идентификации.
• Задача фильтрации представлена для адаптивного оценивания ACT и для адаптивного оценивания градиента аномалии.
• Представлена методика оценки точности решения ЗАГТ.
В дополнениях ко второй главе содержатся доказательства некоторых утверждений, приведенных в главе, приводятся подробные пояснения материала, описываются технические вопросы реализации рассмотренных алгоритмов.
Применение разработанной методики к полетным данным представлено в третьей главе диссертации.
1.1 Цели работы
Целью работы является постановка и решение задачи скалярной авиационной гравиметрии на траектории с учетом пространственной неоднородности силы тяжести. Разработка данного подхода в первую очередь обусловлена необходимостью повышения точности оценивания для участков с сильно выраженной пространственной неоднородностью силы тяжести. Рассматривается подход к данной задаче, основанный на адаптации параметров аномалии силы тяжести и погрешностей измерений к локальным характеристикам поля силы тяжести и данных АГК.
Похожие диссертационные работы по специальности «Теоретическая механика», 01.02.01 шифр ВАК
Механика, управление и алгоритмы обработки в инерциально-гравиметрическом аэрокомплексе2002 год, кандидат физико-математических наук Смоллер, Юрий Лазаревич
Сбор и обобщение комплексной гравиметрической информации в арктических областях Мирового океана2009 год, кандидат технических наук Рожков, Юрий Евгеньевич
Гарантированное оценивание сигналов с ограниченными дисперсиями производных: исследования во временной и частотной областях2005 год, кандидат технических наук Кулакова, Вероника Игоревна
Методы анализа и оценивания в скрытых марковских системах при обработке разнородной информации2008 год, доктор физико-математических наук Борисов, Андрей Владимирович
Компьютерные технологии интерпретации гравитационного и магнитного полей в условиях горной местности2002 год, доктор физико-математических наук Долгаль, Александр Сергеевич
Заключение диссертации по теме «Теоретическая механика», Дорошин, Данила Рубенович
Основные результаты диссертации
• Поставлена и решена задача адаптивного оценивания аномалии силы тяжести на траектории с учетом пространственно-временной неоднородности данных аэрогра-виметричсского комплекса. Для данных авиационной гравиметрии построена модель в виде линейной системы с марковскими скачками. Задача поставлена как задача оценивания вектора состояния системы.
• Задача оценивания аномалии разделена на задачи идентификации и фильтрации. Удалось свести задачу идентификации к эквивалентной задаче идентификации параметров скрытой марковской модели смеси скользящих средних (СММ-СС). В диссертации решена задача идентификации для СММ-СС общего вида.
• Разработана методика регуляризации, позволяющая нормализовать отношение сигнал-шум данных авиационной гравиметрии. Данная методика включает алгоритм аппроксимации, позволяющий сохранить структуру СММ-СС для регуляри-зованных данных.
• Для идентификации СММ-СС использован стандартный для классических скрытых марковских моделей подход, основанный на проведении обучения и распознавания. СММ-СС обладает конечным радиусом корреляции, что позволило реализовать алгоритмы обучения и распознавания в оптимальной постановке (обучение - метод максимума правдоподобия, распознавание — максимум апостериорной вероятности). Важнейшей частью алгоритма обучения является алгоритм прямого-обратного хода. Задача распознавания сведена к частному случаю алгоритма динамического программирования.
• Решение задачи идентификации позволило свести задачу адаптивного оценивания к задаче оптимального нестационарного сглаживания.
• Разработанная методика адаптивного оценивания опробована на реальных данных, обладающих выраженной пространственной неоднородностью. Данные описывались моделью из двух состояний, соответствующих разной интенсивности аномалии. Алгоритм обучения позволил оценить возможные значения формирующих шумов системы, переходные вероятности и начальные вероятности для каждого галса. Проведено сглаживание результатов распознавания, основанное на применении алгоритма нелокальных средних, позволившее выделить пространственные области, соответствующие участкам с различной интенсивностью аномалии. Построены траекторные оценки аномалии и карта аномалии силы силы тяжести района съемок, точность которой от 0 6 до 1.4 мГал.
• Разработана методика оценки точности оценивания силы тяжести на траектории. Приведены результаты сравнения точности работы алгоритма адаптивного оценивания и класса неадаптивных линейных алгоритмов. Показано, что алгоритм обучения дает значения параметров системы, близкие к оптимальным, обеспечивающим наилучшую среднеквадратичную точность оценивания аномалии Показано, что неверный выбор параметров алгоритма оценивания может привести к существенному ухудшению точности — порядка 20% В частности показано, что для исследованных полетных данных не существует нсадаптивного фильтра из заданного класса, который обеспечивал бы оптимальную точность для всех пространственно-неоднородных участков аномалии силы тяжести района съемок.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.