Создание 2D-полупроводниковых структур методом прямого лазерного синтеза (Laser-writing of 2D semiconductors) тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Аверченко Александр Владимирович

  • Аверченко Александр Владимирович
  • кандидат науккандидат наук
  • 2025, АНОО ВО «Сколковский институт науки и технологий»
  • Специальность ВАК РФ00.00.00
  • Количество страниц 217
Аверченко Александр Владимирович. Создание 2D-полупроводниковых структур методом прямого лазерного синтеза (Laser-writing of 2D semiconductors): дис. кандидат наук: 00.00.00 - Другие cпециальности. АНОО ВО «Сколковский институт науки и технологий». 2025. 217 с.

Оглавление диссертации кандидат наук Аверченко Александр Владимирович

Table of Contents

Page

Chapter 1 Introduction

Chapter 2 Properties, Synthesis and Applications of 2D Semiconducting Materials (Transition Metal Dichalcogenides)

2.1 Introduction

2.2 Structure and Vibrational Modes of Transition Metal Dichalcogenides

2.3 Electronic Structure of Transition Metal Dichalcogenides

2.4 Materials Characterizations

2.4.1 Atomic Force Microscopy

2.4.2 Transmission Electron Microscopy (TEM)

2.4.2.1 Conventional Transmission Electron Microscopy and Scanning Transmission Electron Microscopy

2.4.3 Raman Spectroscopy

2.4.4 X-Ray Photoelectron Spectroscopy

2.4.5 Energy-Dispersive X-Ray Spectroscopy

2.5 Effect of Transition Metal Dichalcogenides Alloying on Structural and Electronic Properties

2.6 Conventional Synthesis methods for 2D Materials

2.6.1 Top-Down Approach

2.6.1.1 Mechanical Cleavage

2.6.1.2 Liquid Phase Exfoliation

2.6.1.3 Thinning and Etching

2.6.2 Bottom-Up Approach

2.6.2.1 Physical Vapour Deposition

2.6.2.1.1 Thermal Evaporation Deposition

2.6.2.1.2 Sputtering

2.6.2.1.3 Pulsed-Laser Deposition

2.6.2.2 Chemical Vapour Deposition

2.6.2.2.1 Sulphurization of Transition Metal Thin Film

2.6.2.2.2 Sulphurization of Transition Metal Oxide

2.6.2.3 Thermolysis of Thiosalts

2.7 Laser Processing of 2D Materials

2.7.1 Introduction

2.7.2 Light-Matter Interactions

2.7.3 The Effect of Laser System Parameters on Light-2D-Material Interactions

2.7.4 Optical Modifications of 2D Materials

2.7.4.1 Defect Introduction

2.7.4.2 Doping

2.7.4.3 Reduction and Oxidation

2.7.4.4 Crystalline Phase Engineering

2.7.4.5 Strain and Topological Modifications

2.7.5 Laser Assisted Synthesis of 2D Materials

2.7.5.1 Laser Assisted Liquid Phase Exfoliation

2.7.5.2 Laser Induced Thinning

2.7.5.3 Laser Assisted Chemical Vapour Deposition

2.7.5.4 Laser Induced Photochemical Synthesis

2.8 Electronic and Optoelectronic Applications of Layered Materials

2.8.1 Photodetectors

2.8.2 Field Effect Transistors

Chapter 3 Direct Laser Writing Method for Transition Metal Dichalcogenides synthesis

3.1 Direct Laser Writing Method

3.2. Experimental Validation of Direct Laser Writing Method

3.2.1 Spin-coating and thickness

3.2.2 Direct Laser-Writing of Heterostuctures

3.2.3 Direct Laser-Writing on optical fibre surfaces

3.3 Hybrid structures

3.3.1 Introduction

3.3.2 Direct Laser Writing of Single-Wall Carbon Nanotubes / MoS2 Hybrid Structures

3.3.3 Methods

3.3.3.1 Sample Preparation

3.3.3.2 Characterization

3.3.4 Synthesis of Single-Wall Carbon Nanotubes / MoS2 Hybrid Structures

3.3.5 Preliminary analysis of Carbon Nanotubes/MoS2 hybrid structure

3.4 Conclusions

Chapter 4 Direct Laser Writing of 2D Semiconducting Alloys of Transition Metal Dichalcogenides

4.1 Introduction

4.2 Methods

4.2.1 Samples Preparation

4.2.2 Laser Synthesis Conditions

4.2.3 Characterization

4.3 Synthesis of Mo1-xWxS2

4.4 Impact of Laser Parameters on Synthesized Alloys

4.5 Raman Analysis

4.6 Band Structure

4.7 Composition Analysis

4.8 Structural Analysis

4.9 Mo1-xWxS2-based Photodetector: Fabrication and Characterization

4.10 Conclusions

Chapter 5 Direct Laser Writing of Tin Sulphide compounds

5.1 Introduction

5.2 Methods

5.2.1 Single Source Precursor Solution Preparation

5.2.2 Samples Preparation

5.2.3 Characterization

5.2.4 Devices Fabrication and Characterization

5.3. Direct Laser Synthesis of Tin Sulfides

5.4 Surface Morphology

5.5 Raman Analysis of Laser-Synthesized Tin Sulfides

5.6 Annular Dark-Field Scanning Transmission Electron Microscopy and Energy-Dispersive X-Ray Spectroscopy

5.7 Tin Sulfide Photodetector

5.8 Tin Sulphide -based FET

5.9 Conclusions

Chapter 6 Laser-Induced Micro-Structuring of Transition Metal Dichalcogenides

6.1 Introduction

6.2 Laser Patterning of Transition Metal Dichalcogenides

6.2.1 Enhanced Patterning Dimensions Control

6.2.2 Laser Interference Patterning

6.2.2.1 Direct Laser Interference Patterning-assisted Fabrication of Transition Metal Dichalcogenides-gratings

6.2.3 Pre-patterning in MoS2/WS2 Heterostructures

6.3 Direct Laser Synthesis of Transition Metal Dichalcogenides-based Light Induced Periodic Surface Structures

6.4 Conclusions

Chapter 7 Conclusions and Outlook

7.1 Thesis Summary

7.2 Future work

Glossary

Author's Publications on the Dissertation Topic

References

List of Figures

List of Tables

Appendix 1 Building, Testing and Optimization of Direct Laser Writing System for Synthesis of 2D Semiconductors

A1.1 Introduction

A1.2 Designing and Assembling of Direct Laser Writing Setup

A1.2.1 Laser Power Control Module

A1.2.2 Focusing Element

A1.2.3 Imaging System

A1.2.4 List of Optical Components

A1.3 Control System and Operating Procedures

A1.4 Matlab Scripts

A1.4.1 Connecting Thorlabs Controllers to Personal Computer

A1.4.2 Main Code

A1.4.3 Power Calibration Code

A1.4.4 Acquiring Coordinates from Aerotech Stage

A1.4.5 Transition from Photolithography Code to Aerotech Code

A1.5 Synthesis parameters used for alloys according to the figures in Chapter

A1.6 Conclusions

Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Введение диссертации (часть автореферата) на тему «Создание 2D-полупроводниковых структур методом прямого лазерного синтеза (Laser-writing of 2D semiconductors)»

Chapter 1 Introduction

Work relevance.

The utilization of two-dimensional (2D) materials has gained significant traction in the field of semiconductors due to their exceptional electronic and optical properties. Among these materials, 2D semiconducting transition metal chalcogenides (TMC) and especially transition metal dichalcogenides (TMDC) have emerged as a promising class of materials in recent years. TMDC are composed of a transition metal atom that is sandwiched between two chalcogen atoms, forming a hexagonal lattice structure.

TMDCs possess a tunable bandgap, which is a key advantage that makes them an ideal candidate for use in electronic and optoelectronic devices. This property enables the realization of electronic devices [1-7] with high electron mobility, low power consumption, and high optical absorption[1-7]. In the research field, TMDCs are being explored for their potential in emerging technologies such as quantum computing [8] and spintronics [6,9-12]. TMC have been employed in the development of next-generation transistors and inverters, which could lead to faster and more efficient computing [13-16]. Additionally, TMC hold great potential in applications such as photovoltaics [6], catalysis [17], and energy storage [18].

Therefore, there has been a significant volume in publications related to these materials in recent years. However, one of the key challenges remaining is the identification of a suitable synthesis method for large-scale production that can be adapted to current semiconductor technology for commercialization. Two main approaches have been developed so far: top-down and bottom-up.

Top-down approaches rely on dimensional reduction of bulk TMDC crystals to few layers and monolayers, resulting in high-quality TMDC nanosheets and flakes for prototyping and fundamental research. However, this approach is not suitable for large-scale production. In contrast, the bottom-up approach aims to develop a synthesis method that meets industrial requirements. Many precursors and synthesis routes have been proposed to produce transition metal dichalcogenides ultra-thin films with high quality for semiconductor applications, but several issues related to production methods still persist. These issues include: limitations in the lateral dimensions of the 2D-TMDC films, controllability on the number of layers and quality of the produced films, cost-efficiency and complexity, compatibility with current technology, and patternability, of these films for standard device fabrications.

The aim of the work.

This PhD project aims to investigate Direct Laser Writing (DLW) as a reliable manufacturing-oriented technique for synthesis of various TMC materials.

To achieve the project's aim, the following tasks were accomplished:

1. Synthesis of Mo1-xWxS2 alloys, with ability to adjust the metal ratio, from solution-based precursors using DLW, thus expanding the library of synthesized complex materials.

2. Explore the applicability of DLW method for growing tin sulphide -based compounds from single-source solution-based precursors.

3. Demonstrate the utility of the synthesized films in electronic (FETs) and optoelectronic (photodetectors) devices.

Finally, this thesis contains results, which underline the potential for precise micro/nano structuring that is uniquely associated with the laser writing approach.

The scientific novelty of the dissertation includes the following:

1. Here, direct laser-synthesis of micro-patterned Mo1-xWxS2 alloys is demonstrated for the first time. By irradiating composite single source precursor films of molybdenum and tungsten sulfides with a laser beam, photo-thermal decomposition takes place, thus forming high-quality Mo1-xWxS2 alloys in ambient conditions without any need for high-vacuum based environment, with the ability to control the resultant alloy composition.

2. This work demonstrates that direct laser irradiation of single-source precursor tin (II)O-ethylxanthate, offers critical advantages to rapidly produce patternable crystalline films and vertical SnS2/SnS heterostructures at ambient conditions with high controllability.

3. Morphological, structural and compositional characteristics of the direct laser-synthesized films are thoroughly investigated.

4. Finally, the utility of the laser grown TMDC-alloys and sulfide compounds was tested by fabricating photodetectors which possess figure of merits comparable to those fabricated by other synthesis approaches.

The Practical significance of the work.

The research results obtained in this work can be used as a manual for building high-precision DLW system for electronic and optoelectronic device prototyping. Additionally, the results of these research provides optimal synthesis conditions as well as in-depth insight of semiconducting properties of Mo1-xWxS2 and SnS2/SnS thin films in the case of their use in electronic and optoelectronic devices.

Methodology and characterization methods.

The dissertation was carried out using traditional characterization methods, which have proven themselves in the study of various 2D materials.

The elemental composition and homogeneity of thin films were studied using scanning electron microscopy with energy-dispersive microanalysis and X-ray photoelectron spectroscopy.

Morphology and surface topography were analyzed using atomic force microscopy.

To characterize the direct laser-synthesized thin film structures, methods of Raman spectroscopy were used.

The optical properties were studied by spectrophotometry.

The utility of direct laser-synthesized semiconducting films was proven by fabricating photodetectors and field-effect transistors and by characterization their performance. Propositions for the defense.

1. Direct laser-writing approach is suitable for synthesis of micro-patterned Mo1-xWxS2 alloys. By irradiating composite single source precursor films of molybdenum and tungsten sulfides with a laser beam at visible wavelengths, photo-thermal decomposition takes place, thus forming high-quality Mo1-xWxS2 alloys in ambient. Analysis of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) revealed the formation of the long-range (~ 30 nm), few-layered crystals with randomly distributed molybdenum and tungsten metal atoms with no evidence of clustering.

2. The Mo1-xWxS2 alloys composition is regulated by adjusting the volume ratio of the partial single source precursor solutions, in the final mixture solution. Thus covering the compositional range from pure MoS2 to pure WS2.

3. Direct laser-synthesized Mo1-xWxS2 alloy films suitable for photodetection applications.

4. Direct laser-writing approach is suitable for rapid production of patterned crystalline Tin Sulfide -based films and vertical SnS2/SnS heterostructures at ambient conditions with high controllability from an original single-source precursor tin (II)O-ethylxanthate.

5. Modulation of laser irradiation conditions enables tuning of the dominant phase of tin sulfide as well as SnS2/SnS heterostructures formation.

6. Laser-synthesized tin sulfides photodetectors show broad spectral response with relatively high photoresponsivity up to 4 AW-1 and fast switching time (irise=1.8 ms and Tfall=16 ms).

The reliability of all the results obtained is ensured by the use of modern scientific equipment that meets global standards. The 2D material characterization procedure follows well-proven approaches.

The obtained results have been discussed at international conferences and scientific seminars. The publications in leading international peer-reviewed scientific journals also confirm the validity of the results.

Validation of the research results. The results obtained in this study were presented and discussed at the following seminars, symposia and conferences:

1. Averchenko A.V., Abbas O.A., Salimon I.A., Zharkova E.V., McNaughter P.D., Lewis D.J., Hallam T., Lagoudakis P.G., Mailis S., "Laser-synthesis of Tin Sulfides," European Materials Research Society (Congress & Exhibition Centre, Strasbourg, France May 29 - June 2, 2023).

2. Averchenko A.V., Salimon I.A., Abbas O.A., Zharkova E.V., McManus J., McNaughter P.D., McEvoy N., Lewis D.J., Duesberg G., Mailis S., Hallam T., "Novel synthesis routes for TMDC materials," Graphene Week (BMW Welt, Munich, Germany, September 5-9, 2022).

3. Averchenko A.V., Salimon I.A, Zharkova E.V., Abbas O.A., Lagoudakis P. G., Gladush Y., Mkrtchyan A. A., Nasibulin A. G., and Mailis S, "Laser synthesis of MoS2/SWCNT composites," European Materials Research Society (Online, May 30 - June 3, 2022).

4. Salimon I.A., Averchenko A.V., Zharkova E.V., Abbas O.A., Lagoudakis P.G., Mailis S., "Laser synthesised microstructured MoS2 nanolayers," European Materials Research Society (Online, May 30 - June 3, 2022).

5. Zharkova E.V., Averchenko A.V., Salimon I.A, Abbas O.A., Sazio P.J.A., Lagoudakis P.G., Mailis S., "Compositional tunability in laser synthesized WxMo(1- x)S2 alloys," European Materials Research Society (Online, May 30 - June 3, 2022).

6. Zharkova E.V., Averchenko A.V., Salimon I.A., Abbas O.A., Sazio P.J.A., Lagoudakis P.G., Mailis S., "Photoelectrical characteristics of laser-printed transition metal dichalcogenides alloy," Sixth Asian School-Conference on Physics and Technology of Nanostructured Materials (Far Eastern Federal University, Vladivostok, Russia, April 25 - 29, 2022).

7. Salimon I.A., Averchenko A.V., Lagoudakis P.G., Mailis S., "UV laser induced spatially selective deep oxidation of GaAs," Conference on Lasers and Electro-Optics (CLEO) (Online, May 9 - 14, 2021).

Personal contribution. All the results of the dissertation were obtained personally by the applicant or with his direct involvement. The applicant developed, designed and build the experimental Direct Laser-Writing setup was used in all experimental achievements.

The applicant improves the procedure for MoS2 and WS2 single-source precursors preparation to TMDC -alloys precursor solution preparation and carried out it personally. The author firstly achieved the successful direct laser-synthesis of tin sulfide -based compound and was directly involved into recipe development.

The author carried out Raman scattering and absorption spectra measurements, optical microscopy as well as analysis of the results obtained personally. Atomic force microscopy, transmission electron microscopy, analysis of films stoichiometry were carried out under the guidance of the author. In addition, the author was directly involved in discussing problem statements, writing articles and reports, which formed the basis of the dissertation work.

The applicant is in the first position in all the main publications on the dissertation topic [A1 — A2] and is a coauthor in relevant publications [A3-A4].

Publications. The results of the dissertation are presented in 4 publications, which are indexed in Scopus and Web of Science.

Dissertation structure. The dissertation contains an introduction, 5 chapters, a conclusion and 1 appendix. It is written on 217 pages of typewritten text and includes 76 figures and 5 tables. The list of references includes 450 titles.

Acknowledgments.

I express deep gratitude to my scientific supervisor, Ph.D., Assistant Professor Sakellaris Mailis for his invaluable help, guidance and support at all stages of work on the dissertation.

I express deep gratitude to the individual committee Full Professor Albert Nasibulin and Full Professor Nikolai Gippius for their guidance at all stages of work on the dissertation.

I would like to express gratitude to my colleague Ph.D., junior research scientist Omar Adnan Abbas for his guidance and sharing experience through design experiments and structuring the results.

Special thanks are expressed to Ph.D., Full Professor, Director of the Center for Photonics Science and Engineering and Head of the Laboratory of Hybrid Photonics Pavlos Lagoudakis for unique opportunity to implement the current project on the resources of laboratory of Hybrid Photonics and guidance at early stages of the work.

I express gratitude to all members of the Laboratory of Hybrid Photonics for useful cooperation and numerous stimulating discussions and coffee breaks throughout the duration of the dissertation work.

Special thanks to the Head of the Laboratory of Nanomaterials, Full Professor Albert Nasibulin and to all members of the Laboratory of Nanomaterials for useful cooperation and opportunity to utilize CNTs in experimental work.

Special thanks to the Head of the Plasmonics Laboratory, Full Professor Vladimir Drachev for an opportunity to utilize their equipment for material characterization.

Special thanks to Ph.D. student of Laser-writing Group Ekaterina Zharkova for invaluable help with device production and materials electrical characterization.

It is also important to highlight here, that assembling a final version of the DLIP-extension for the DLW-setup (mentioned in Chapter 6.2.2) and achieving the experimental results shown in Chapter 6.2.2 were made by a master student of Laser-Writing Group - Arina Kalganova.

The discovering the LIPSS formations (mentioned in Chapter 6.3) during direct laser writing process became a starting point for thorough investigations of such behavior made by a PhD student of Laser-Writing Group - Igor Salimon. He demonstrated that such nano-structured synthesis of 2D TMDCs could introduce new effects/capabilities. Thus MoS2-based LIPSS-nanoribbon arrays were introduced into the production of photodetectors, which showed the performance surpasses their unmodulated counterparts by several orders of magnitude. This result was published by Salimon I. et al. "Laser-Synthesized 2D-MoS2 Nanostructured Photoconductors" in Micromachines journal.

I extend my heartfelt gratitude to my cherished relatives, dear friends, and all those souls I've encountered on this journey of life. Your unwavering support and boundless inspiration have been my guiding stars. To you, the artisans of your craft, who transform profession into an exquisite art, I draw strength from your brilliance, propelling me forward through every barriers pursuing my aims and dreams.

Ultimate is a way of life.

Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Заключение диссертации по теме «Другие cпециальности», Аверченко Александр Владимирович

7.1 Thesis Summary

In Chapter 3, a facile route to fabricate SWCNT/MoS2 hybrid films, utilizing thiosalt-based precursor solutions and a porous template consisting of a SWCNT-film. MoS2 layers were grown around SWCNT bundles by laser-induced thermal decomposition of the precursor. These results is a proof of principle, however, they are still at a preliminary stage. Further work could include the extension to other solution based precursors (like Mo1-xWxS2) and other porous templates (like porous Si).

In Chapter 4, the synthesis approach that have been published by Abbas et al., was applied to the growth of few layer Mo1-xWxS2 with controllable stoichiometries. The stoichiometry control is achieved by stoichiometrically mixing the corresponding precursors before laser-synthesis. As in the previous demonstration, the process occurs in ambient conditions and has the ability to cover large surface areas. Material characterization techniques indicated that it is possible to grow polycrystalline Mo1-xWxS2 films with relatively large crystallites. Finally, a photoconductive device was fabricated to underline the applicability of the laser grown photoconductive films.

In Chapter 5, there is a suggestion that the laser synthesis method can be further extended to other materials using different type of chemical precursors, hinting at a wider scope of this method. The materials that were grown and analyzed here are tin sulphide -compounds. The synthesis takes place in ambient conditions. A photodetector and an FET device have been produced and characterized showing that the laser-synthesized semiconductors can form efficient photoconductors. Moreover, the degree of control over the various tin sulphide phases has be shown as a function of laser irradiation conditions. Thus, the final composition of DLW tracks of SnSx could be switched from heterostructure of SnS/SnS2

to intermixed phases of SnS and SnS2.with respect to laser writing intensities. The morphological, structural and chemical analysis of the tin sulphide -based microstructures with respect to synthesis conditions was shown here.

Chapter 6, the DLW contains various approaches aiming at producing microstructured TMDC films. Depending on the laser intensity, which was used for irradiating various thiosalts, it was shown that the precursor film behaves as a photoresist even at laser intensities that are insufficient to synthesize the corresponding TMDC. Based on this observation a method for pre-patterning the precursor film was developed, which enabled the decoupling and individual optimization of the patterning and synthesis processes. Patterned 2D material structures were produced: gratings with periods as low as 277 nm and rulings size of 140 nm were produced. This work formed the basis for a new subject for research in our group and now is thoroughly developed by another post graduate student. Furthermore, it was shown that periodic structures of TMDCs can be produced by utilizing the effect of spontaneously formed periodic surface structures (LIPSS) which are commonly encountered in laser processing experiments.

This Ph.D. thesis has achieved the followng; i) demonstrate the direct laser synthesis of 2D-Mo1-xWxS2 films with adjustable stoinchiometry and indicate their utility by fabricating and asnalyzing a photoconductive detector, ii) expanding the range of synthesized materials by exploiting tin xanthate as a cost-efficient solution-based precursor for direct laser synthesis of tin sulphide -based semiconducting films and demonstrating their electronic functionally. Expanding the suitable material library hints at the possibility of wide applicability of laser based materials synthesis. Finally, direct laser writing has been shown to achieve patterning and synthesis of 2D materials, which could prove useful in various optoelectronic and chemical applications such as photodetection and photocatalysis.

7.2 Future work

1. Although synthesis of SWCNT/TMDC via solution-based single source precursor was demonstrated the confirmation of functionalities of produced films still required. Thus the device based on hybrid DLW film need to be created.

2. Synthesis of two dimensional transition metal disulphides (MoS2 and WS2) films using ammonium thiometallates {(NH4)2MoS4 and (NH4)2WS4} as single source precursors has been utilized for DLW of their alloys. However, this approach was not explored yet for two dimensional transition metal

diselenides (MoSe2 and WSe2) films and their alloys. Moreover, this expansion of the materials suitable for production through DLW, could lead to laser writing of quaternary alloys containing Mo, W, S, Se, followed by production of photosensitive devices with adjustable operating range. 3. The bulk amount of experimental work presented in the current thesis utilized SiO2/Si substrates. Nevertheless as it was mentioned in Chapter 3 the successful laser writing of TMDCs was complete on other substrates as well, like AhO3, LiNbO3 and Si. The properties of the substrate are one of the aspects affecting on the end product (aka device). Thus involving this degree of freedom there are an opportunity for laser-printing of photodiode devices (on Si substrate) or heat-imaging sensors (on pyroelectric LiNbO3) at ambient conditions.

Список литературы диссертационного исследования кандидат наук Аверченко Александр Владимирович, 2025 год

References

1. Kim S.J. et al. "Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials." In: Annual Review of Materials Research, (Jul. 2015), Vol. 45, pp. 63-84, DOI: 10.1146/annurev-matsci-070214-020901.

2. Gupta A. et al. "Recent development in 2D materials beyond graphene." In: Progress in Materials Science, (Aug. 2015), Vol. 73, pp. 44-126, DOI: 10.1016/j.pmatsci.2015.02.002.

3. Das S. et al. "Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids." In: Annual Review of Materials Research, (Jul. 2015), Vol. 45, pp. 1-27, DOI: 10.1146/annurev-matsci-070214-021034.

4. Ahmed S. and Yi J. "Two-dimensional transition metal dichalcogenides and their charge carrier mobilities in field-effect transistors." In: Nano-Micro Letters, (Oct. 2017), Vol. 9, № 4, pp. 1-23, DOI: 10.1007/s40820-017-0152-6.

5. Li X. and Zhu H. "Two-dimensional MoS2: Properties, preparation, and applications." In: Journal of Materiomics, (Mar. 2015), Vol. 1, № 1, pp. 33-44, DOI: 10.1016/j.jmat.2015.03.003.

6. Thakar K. and Lodha S. "Optoelectronic and photonic devices based on transition metal dichalcogenides." In: Materials Research Express, (2019), Vol. 7, № 1, DOI: 10.1088/2053-1591/ab5c9c.

7. Butler S.Z. et al. "Progress, challenges, and opportunities in two-dimensional materials beyond graphene." In: ACSNano, (Apr. 2013), Vol. 7, № 4, pp. 2898-2926, DOI: 10.1021/nn400280c.

8. Tsai J.Y. et al. "Antisite defect qubits in monolayer transition metal dichalcogenides." In: Nature Communications, (Dec. 2022), Vol. 13, № 1, DOI: 10.1038/s41467-022-28133-x.

9. Hsu W.T. et al. "Optically initialized robust valley-polarized holes in monolayer WSe 2." In: Nature Communications, (Nov. 2015), Vol. 6, DOI: 10.1038/ncomms9963.

10. Shinokita K. et al. "Continuous Control and Enhancement of Excitonic Valley Polarization in Monolayer WSe2 by Electrostatic Doping." In: Advanced Functional Materials, (Jun. 2019), Vol. 29, № 26, DOI: 10.1002/adfm.201900260.

11. Chakraborty C. et al. " Electrically tunable valley polarization and valley coherence in monolayer WSe 2 embedded in a van der Waals heterostructure ." In: Optical Materials Express, (Mar. 2019), Vol. 9, № 3, p. 1479, DOI: 10.1364/ome.9.001479.

12. Krol M. et al. "Valley polarization of exciton-polaritons in monolayer WSe2 in a tunable microcavity." In: Nanoscale, (May 2019), Vol. 11, № 19, pp. 9574-9579, DOI: 10.1039/c9nr02038a.

13. Jeon P.J. et al. "Low Power Consumption Complementary Inverters with n-MoS 2 and p-WSe 2 Dichalcogenide Nanosheets on Glass for Logic and Light-Emitting Diode Circuits." In: ACS

Applied Materials & Interfaces, (Oct. 2015), Vol. 7, № 40, pp. 22333-22340, DOI: 10.1021/acsami.5b06027.

14. Wu F. et al. "Vertical MoS2 transistors with sub-1-nm gate lengths." In: Nature, (Mar. 2022), Vol. 603, № 7900, pp. 259-264, DOI: 10.1038/s41586-021-04323-3.

15. Buscema M. et al. "Photocurrent generation with two-dimensional van der Waals semiconductors." In: Chemical Society Reviews, (2015), Vol. 44, № 11, pp. 3691-3718, DOI: 10.1039/C5CS00106D.

16. Liao W. et al. "Interface engineering of two-dimensional transition metal dichalcogenides towards next-generation electronic devices: recent advances and challenges." In: Nanoscale Horizons, (2020), Vol. 5, № 5, pp. 787-807, DOI: 10.1039/C9NH00743A.

17. Babu V.J. et al. "Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation." In: Physical Chemistry Chemical Physics, (Feb. 2015), Vol. 17, № 5, pp. 2960-2986, DOI: 10.1039/c4cp04245j.

18. Choudhary N. et al. "Synthesis of large scale MoS2 for electronics and energy applications." In: Journal of Materials Research, (Apr. 2016), Vol. 31, № 7, pp. 824-831, DOI: 10.1557/jmr.2016.100.

19. Omar Adnan Abbas. "Novel 2D Transition Metal Dichalcogenide Synthesis Methods for Electronic and Photonic Device Applications :" Thesis for the degree of Doctor of Philosophy , (Mar. 2020).

20. Shanmugam V. et al. "A Review of the Synthesis, Properties, and Applications of 2D Materials." In: Particle and Particle Systems Characterization, (Jun. 2022), Vol. 39, № 6, DOI: 10.1002/ppsc.202200031.

21. Abbas O.A. et al. "Laser printed two-dimensional transition metal dichalcogenides." In: Scientific Reports, (Dec. 2021), Vol. 11, № 1, DOI: 10.1038/s41598-021-81829-w.

22. Chhowalla M. et al. "The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets." In: Nature Chemistry, (Apr. 2013), Vol. 5, № 4, pp. 263-275, DOI: 10.1038/nchem.1589.

23. Toh R.J. et al. "3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution." In: Chemical Communications, (2017), Vol. 53, № 21, pp. 3054-3057, DOI: 10.1039/c6cc09952a.

24. Lv R. et al. "Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets." In: Accounts of Chemical Research, (Jan. 2015), Vol. 48, № 1, pp. 56-64, DOI: 10.1021/ar5002846.

25. Wang Q.H. et al. "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides." In: Nature Nanotechnology, (2012), Vol. 7, № 11, pp. 699-712, DOI: 10.1038/nnano.2012.193.

26. Liu G. Bin et al. "Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides." In: Chemical Society Reviews, (May 2015), Vol. 44, № 9, pp. 2643-2663, DOI: 10.1039/c4cs00301b.

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Ye M. et al. "Recent advancement on the optical properties of two-dimensional molybdenum disulfide (MoS2) thin films." In: Photonics, (Mar. 2015), Vol. 2, № 1, pp. 288-307, DOI: 10.3390/photonics2010288.

Gao L. "Flexible Device Applications of 2D Semiconductors." In: Small, (Sep. 2017), Vol. 13, № 35, DOI: 10.1002/smll.201603994.

Lv R. et al. "Two-dimensional transition metal dichalcogenides: Clusters, ribbons, sheets and more." In: Nano Today, (Oct. 2015), Vol. 10, № 5, pp. 559-592, DOI: 10.1016/j.nantod.2015.07.004.

Zeng H. and Cui X. "An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides." In: Chemical Society Reviews, (May 2015), Vol. 44, № 9, pp. 2629-2642, DOI: 10.1039/c4cs00265b.

Lee C. et al. "Anomalous Lattice Vibrations of Single- and Few-Layer MoS2." In: ACS Nano, (May 2010), Vol. 4, № 5, pp. 2695-2700, DOI: 10.1021/nn1003937.

Venkata Subbaiah Y.P. et al. " Atomically Thin MoS 2 : A Versatile Nongraphene 2D Material ." In: Advanced Functional Materials, (Apr. 2016), Vol. 26, № 13, pp. 2046-2069, DOI: 10.1002/adfm.201504202.

Saito R. et al. "Raman spectroscopy of transition metal dichalcogenides." In: Journal of Physics: Condensed Matter, (Sep. 2016), Vol. 28, № 35, p. 353002, DOI: 10.1088/09538984/28/35/353002.

Li H. et al. "From bulk to monolayer MoS 2: Evolution of Raman scattering." In: Advanced Functional Materials, (Apr. 2012), Vol. 22, № 7, pp. 1385-1390, DOI: 10.1002/adfm.201102111.

Berkdemir A. et al. "Identification of individual and few layers of WS2 using Raman Spectroscopy." In: Scientific Reports, (2013), Vol. 3, DOI: 10.1038/srep01755.

Stark M.S. et al. "Intercalation of Layered Materials from Bulk to 2D." In: Advanced Materials, (Jul. 2019), Vol. 31, № 27, DOI: 10.1002/adma.201808213.

Bonaccorso F. et al. "Graphene photonics and optoelectronics." In: Nature Photonics, (Sep. 2010), Vol. 4, № 9, pp. 611-622, DOI: 10.1038/nphoton.2010.186.

Chang H. and Wu H. "Graphene-based nanomaterials: Synthesis, properties, and optical and optoelectronic applications." In: Advanced Functional Materials, (Apr. 2013), Vol. 23, № 16, pp. 1984-1997, DOI: 10.1002/adfm.201202460.

Galindo B. et al. "Effect of the number of layers of graphene on the electrical properties of TPU polymers." In: IOP Conference Series: Materials Science and Engineering, (2014), Vol. 64, № 1, DOI: 10.1088/1757-899X/64/1/012008.

Levy F. "Crystallography and Crystal Chemistry of Materials with Layered Structures." 1st ed. / ed. Levy F., (Apr. 1976), DOI: 10.1007/978-94-010-1433-5.

Kam K.K. and Parkinson B.A. "Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides." In: The Journal of Physical Chemistry, (Feb. 1982), Vol. 86, № 4, pp. 463-467, DOI: 10.1021/j100393a010.

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Kuc A. et al. "Influence of quantum confinement on the electronic structure of the transition metal sulfide TmS2." In: Physical Review B, (Jun. 2011), Vol. 83, № 24, p. 245213, DOI: 10.1103/PhysRevB.83.245213.

Xiao J. et al. "Excitons in atomically thin 2D semiconductors and their applications." In: Nanophotonics, (2017), Vol. 6, № 6, pp. 1309-1328, DOI: 10.1515/nanoph-2016-0160.

Splendiani A. et al. "Emerging photoluminescence in monolayer MoS2." In: Nano Letters, (Apr. 2010), Vol. 10, № 4, pp. 1271-1275, DOI: 10.1021/nl903868w.

Mak K.F. et al. "Atomically Thin MoS2 : A New Direct-Gap Semiconductor." In: Physical Review Letters, (Sep. 2010), Vol. 105, № 13, p. 136805, DOI: 10.1103/PhysRevLett.105.136805.

Zeng H. et al. "Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides." In: Scientific Reports, (Apr. 2013), Vol. 3, DOI: 10.1038/srep01608.

Zhao W. et al. "Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2." In: ACS Nano, (Jan. 2013), Vol. 7, № 1, pp. 791-797, DOI: 10.1021/nn305275h.

Radisavljevic B. et al. "Single-layer MoS2 transistors." In: Nature Nanotechnology, (2011), Vol. 6, № 3, pp. 147-150, DOI: 10.1038/nnano.2010.279.

Ovchinnikov D. et al. "Electrical transport properties of single-layer WS2." In: ACS Nano, (Aug. 2014), Vol. 8, № 8, pp. 8174-8181, DOI: 10.1021/nn502362b.

Sik Hwang W. et al. "Transistors with chemically synthesized layered semiconductor WS2 exhibiting 10A5 room temperature modulation and ambipolar behavior." In: Applied Physics Letters, (Jul. 2012), Vol. 101, № 1, DOI: 10.1063/1.4732522.

Wu X. et al. "Recent Advances on Tuning the Interlayer Coupling and Properties in van der Waals Heterostructures." In: Small, (Apr. 2022), Vol. 18, № 15, DOI: 10.1002/smll.202105877.

Binnig G. et al. "Atomic Force Microscope." In: Physical Review Letters, (Mar. 1986), Vol. 56, № 9, pp. 930-933, DOI: 10.1103/PhysRevLett.56.930.

Schmit J. et al. "Surface Profilers, Multiple Wavelength, and White Light Intereferometry." In: Optical Shop Testing. Third / ed. Malacara D., (Jun. 2007), pp. 667-755, DOI: 10.1002/9780470135976.ch15.

Giessibl F.J. "Advances in atomic force microscopy." In: Reviews of Modern Physics, (Jul. 2003), Vol. 75, № 3, pp. 949-983, DOI: 10.1103/RevModPhys.75.949.

Karlsson L. "Transmission Electron Microscopy of 2D Materials: Structure and Surface Properties," (May 2016), DOI: 10.3384/diss.diva-127526.

Margherita S. "VISUAL ACUITY MEASUREMENT STANDARD," (May 1984).

Williams D.B. and Carter C.B. "Transmission Electron Microscopy." 2nd ed., (Aug. 2009), DOI: 10.1007/978-0-387-76501-3.

Kawasaki T. et al. "Fine crystal lattice fringes observed using a transmission electron microscope with 1 MeV coherent electron waves." In: Applied Physics Letters, (Mar. 2000), Vol. 76, № 10, pp. 1342-1344, DOI: 10.1063/1.126028.

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Bachmatiuk A. et al. "Low voltage transmission electron microscopy of Graphene." In: Small, (Feb. 2015), Vol. 11, № 5, pp. 515-542, DOI: 10.1002/smll.201401804.

Larkin P. "Infrared and Raman Spectroscopy." Second / ed. Larkin P., (2011), 7-26 p., DOI: 10.1016/C2010-0-68479-3.

Wartewig S. "IR and Raman Spectroscopy," (Sep. 2003), DOI: 10.1002/3527601635.

Schrader Bernhard. and Bougeard D. "Infrared and Raman Spectroscopy." / ed. Schrader B., (Feb. 1995), 787 p., DOI: 10.1002/9783527615438.

Bluhm H. "X-ray photoelectron spectroscopy (XPS) for in situ characterization of thin film growth." In: In Situ Characterization of Thin Film Growth, (Jan. 2011), pp. 75-98, DOI: 10.1533/9780857094957.2.75.

Pirozzi N.M. et al. "Sample preparation for energy dispersive X-ray imaging of biological tissues." In: Methods in Cell Biology, (Jan. 2021), Vol. 162, pp. 89-114, DOI: 10.1016/bs.mcb.2020.10.023.

Tahir T. et al. "Wet chemical synthesis of Gd+3 doped vanadium Oxide/MXene based mesoporous hierarchical architectures as advanced supercapacitor material." In: Ceramics International, (Sep. 2022), Vol. 48, № 17, pp. 24840-24849, DOI: 10.1016/j.ceramint.2022.05.135.

Peng C. et al. "A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): Enhanced exfoliation and improved adsorption performance." In: Ceramics International, (Oct. 2018), Vol. 44, № 15, pp. 18886-18893, DOI: 10.1016/j.ceramint.2018.07.124.

Seok S.H. et al. "Synthesis of high quality 2D carbide MXene flakes using a highly purified MAX precursor for ink applications." In: Nanoscale Advances, (Jan. 2021), Vol. 3, № 2, pp. 517-527, DOI: 10.1039/d0na00398k.

Luo X. et al. "A Flexible Multifunctional Triboelectric Nanogenerator Based on MXene/PVA Hydrogel." In: Advanced Functional Materials, (Sep. 2021), Vol. 31, № 38, DOI: 10.1002/adfm.202104928.

Yan P. et al. "2D amorphous-MoO3-x@Ti3C2-MXene non-van der Waals heterostructures as anode materials for lithium-ion batteries." In: Nano Energy, (Aug. 2021), Vol. 86, DOI: 10.1016/j.nanoen.2021.106139.

Shen J. et al. "2D MXene Nanofilms with Tunable Gas Transport Channels." In: Advanced Functional Materials, (Aug. 2018), Vol. 28, № 31, DOI: 10.1002/adfm.201801511.

Zatko V. et al. "Band-Gap Landscape Engineering in Large-Scale 2D Semiconductor van der Waals Heterostructures." In: ACS Nano, (Apr. 2021), Vol. 15, № 4, pp. 7279-7289, DOI: 10.1021/acsnano.1c00544.

Cavin J. et al. "2D High-Entropy Transition Metal Dichalcogenides for Carbon Dioxide Electrocatalysis." In: Advanced Materials, (Aug. 2021), Vol. 33, № 31, DOI: 10.1002/adma.202100347.

Dong J. et al. "The effect of alloying on the band engineering of two-dimensional transition metal dichalcogenides." In: Physica E: Low-dimensional Systems andNanostructures, (Jan. 2019), Vol. 105, pp. 90-96, DOI: 10.1016/j.physe.2018.08.025.

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

Xie X. et al. "Band engineering in epitaxial monolayer transition metal dichalcogenides alloy Mo x W1- x Se2 thin films." In: Applied Physics Letters, (May 2020), Vol. 116, № 19, DOI: 10.1063/1.5144694.

Wang S. et al. "Phase-Dependent Band Gap Engineering in Alloys of Metal-Semiconductor Transition Metal Dichalcogenides." In: Advanced Functional Materials, (Dec. 2020), Vol. 30, № 51, DOI: 10.1002/adfm.202004912.

Wang Z. et al. "Pore structure of reactively synthesized nanolaminate Ti3SiC2 alloyed with Al." In: Ceramics International, (Jan. 2020), Vol. 46, № 1, pp. 576-583, DOI: 10.1016/j.ceramint.2019.09.005.

Deng Q. et al. "Strong Band Bowing Effects and Distinctive Optoelectronic Properties of 2H and 1T' Phase-Tunable Mo x Re 1- x S 2 Alloys." In: Advanced Functional Materials, (Aug. 2020), Vol. 30, № 34, DOI: 10.1002/adfm.202003264.

Apte A. et al. "Telluride-Based Atomically Thin Layers of Ternary Two-Dimensional Transition Metal Dichalcogenide Alloys." In: Chemistry of Materials, (Oct. 2018), Vol. 30, № 20, pp. 72627268, DOI: 10.1021/acs.chemmater.8b03444.

Kanoun M.B. and Goumri-Said S. "Tailoring optoelectronic properties of monolayer transition metal dichalcogenide through alloying." In: Materialia, (Aug. 2020), Vol. 12, p. 100708, DOI: 10.1016/j .mtla.2020.100708.

Ko K.Y. et al. "High-Performance Gas Sensor Using a Large-Area WS2xSe2-2x Alloy for Low-Power Operation Wearable Applications." In: ACS Applied Materials & Interfaces, (Oct. 2018), Vol. 10, № 40, pp. 34163-34171, DOI: 10.1021/acsami.8b10455.

Avdizhiyan A.Y. et al. "Tunable Spectral Properties of Photodetectors Based on Quaternary Transition Metal Dichalcogenide Alloys MoxW(1-x)Se2yS2(1-y)." In: IEEE Sensors Journal, (Jan. 2021), Vol. 21, № 1, pp. 325-330, DOI: 10.1109/JSEN.2020.3012876.

Susarla S. et al. "Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap." In: Advanced Materials, (Sep. 2017), Vol. 29, № 35, DOI: 10.1002/adma.201702457.

Susarla S. et al. "Thermally Induced 2D Alloy-Heterostructure Transformation in Quaternary Alloys." In: Advanced Materials, (Nov. 2018), Vol. 30, № 45, DOI: 10.1002/adma.201804218.

Zhao S. et al. "Large-area synthesis of monolayer MoTe x Se2- x alloys by chemical vapor deposition." In: Applied Physics Letters, (Aug. 2019), Vol. 115, № 6, DOI: 10.1063/1.5102085.

Yu P. et al. "Metal-Semiconductor Phase-Transition in WSe2(1-x)Te2x Monolayer." In: Advanced Materials, (Jan. 2017), Vol. 29, № 4, DOI: 10.1002/adma.201603991.

Fu Q. et al. "Synthesis and Enhanced Electrochemical Catalytic Performance of Monolayer WS2(1- x)Se2x with a Tunable Band Gap." In: Advanced Materials, (Aug. 2015), Vol. 27, № 32, pp. 4732-4738, DOI: 10.1002/adma.201500368.

Wu X. et al. "Spatially composition-modulated two-dimensional WS 2x Se 2(1-x) nanosheets." In: Nanoscale, (2017), Vol. 9, № 14, pp. 4707-4712, DOI: 10.1039/C7NR00272F.

Lin J. et al. "Novel Pd2Se3 Two-Dimensional Phase Driven by Interlayer Fusion in Layered PdSe2." In: Physical Review Letters, (Jul. 2017), Vol. 119, № 1, p. 016101, DOI: 10.1103/PhysRevLett.119.016101.

89. Mann J. et al. "2-Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS 2(i-x) Se 2xMonolayers." In: Advanced Materials, (Mar. 2014), Vol. 26, № 9, pp. 1399-1404, DOI: 10.1002/adma.201304389.

90. Singh A.K. et al. "Review of strategies toward the development of alloy two-dimensional (2D) transition metal dichalcogenides." In: iScience, (Dec. 2021), Vol. 24, № 12, p. 103532, DOI: 10.1016/j .isci.2021.103532.

91. Susarla S. et al. "Strain-Induced Structural Deformation Study of 2D Mo x W (1- x ) S 2." In: Advanced Materials Interfaces, (Mar. 2019), Vol. 6, № 5, DOI: 10.1002/admi.201801262.

92. Novoselov K.S. et al. "Electric Field Effect in Atomically Thin Carbon Films." In: Science, (Oct. 2004), Vol. 306, № 5696, pp. 666-669, DOI: 10.1126/science.1102896.

93. Huang Y. et al. "Universal mechanical exfoliation of large-area 2D crystals." In: Nature Communications, (May 2020), Vol. 11, № 1, p. 2453, DOI: 10.1038/s41467-020-16266-w.

94. Tang D.M. et al. "Nanomechanical cleavage of molybdenum disulphide atomic layers." In: Nature Communications, (Apr. 2014), Vol. 5, DOI: 10.1038/ncomms4631.

95. Samadi M. et al. "Group 6 transition metal dichalcogenide nanomaterials: Synthesis, applications and future perspectives." In: Nanoscale Horizons, (Mar. 2018), Vol. 3, № 2, pp. 90-204, DOI: 10.1039/c7nh00137a.

96. Coleman J.N. et al. "Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials." In: Science, (Feb. 2011), Vol. 331, № 6017, pp. 568-571, DOI: 10.1126/science.1194975.

97. Zhou K. et al. "A Mixed-Solvent Strategy for Efficient Exfoliation of Inorganic Graphene Analogues." In: Angewandte Chemie International Edition, (Nov. 2011), Vol. 50, № 46, pp. 10839-10842, DOI: 10.1002/anie.201105364.

98. Nicolosi V. et al. "Liquid Exfoliation of Layered Materials." In: Science, (Jun. 2013), Vol. 340, № 6139, DOI: 10.1126/science.1226419.

99. Lu X. et al. "Layer-by-layer thinning of MoS 2 by thermal annealing." In: Nanoscale, (Jul. 2013), Vol. 5, № 19, pp. 8904-8908, DOI: 10.1039/C3NR03101B.

100. Wu J. et al. "Layer Thinning and Etching of Mechanically Exfoliated MoS 2 Nanosheets by Thermal Annealing in Air." In: Small, (Oct. 2013), Vol. 9, № 19, pp. 3314-3319, DOI: 10.1002/smll.201301542.

101. Liu Y. et al. "Layer-by-Layer Thinning of MoS 2 by Plasma." In: ACSNano, (May 2013), Vol. 7, № 5, pp. 4202-4209, DOI: 10.1021/nn400644t.

102. Zhu H. et al. "Remote Plasma Oxidation and Atomic Layer Etching of MoS 2." In: ACS Applied Materials & Interfaces, (Jul. 2016), Vol. 8, № 29, pp. 19119-19126, DOI: 10.1021/acsami.6b04719.

103. Amara K.K. et al. "Wet chemical thinning of molybdenum disulfide down to its monolayer." In: APL Materials, (Sep. 2014), Vol. 2, № 9, DOI: 10.1063/1.4893962.

104. Wu S. et al. "Vapor-Solid Growth of High Optical Quality MoS 2 Monolayers with Near-Unity Valley Polarization." In: ACS Nano, (Mar. 2013), Vol. 7, № 3, pp. 2768-2772, DOI: 10.1021/nn4002038.

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

Gong C. et al. "Metal Contacts on Physical Vapor Deposited Monolayer MoS 2." In: ACSNano, (Dec. 2013), Vol. 7, № 12, pp. 11350-11357, DOI: 10.1021/nn4052138.

Luo S. et al. "Photoresponse properties of large-area MoS2 atomic layer synthesized by vapor phase deposition." In: Journal of Applied Physics, (Oct. 2014), Vol. 116, № 16, DOI: 10.1063/1.4898861.

Fan Y. et al. "Synthesis, characterization and electrostatic properties of WS2 nanostructures." In: AIP Advances, (May 2014), Vol. 4, № 5, DOI: 10.1063/1.4875915.

Fan Y. et al. "Synthesis, characterization of WS2 nanostructures by vapor phase deposition." In: Journal of Applied Physics, (Feb. 2015), Vol. 117, № 6, DOI: 10.1063/1.4907688.

Hong J. et al. "Exploring atomic defects in molybdenum disulphide monolayers." In: Nature Communications, (Feb. 2015), Vol. 6, № 1, p. 6293, DOI: 10.1038/ncomms7293.

Modtland B.J. et al. "Monolayer Tungsten Disulfide (WS 2 ) via Chlorine-Driven Chemical Vapor Transport." In: Small, (Sep. 2017), Vol. 13, № 33, DOI: 10.1002/smll.201701232.

Lin Z. et al. "Facile synthesis of MoS2 and MoxW1-xS2 triangular monolayers." In: APL Materials, (Sep. 2014), Vol. 2, № 9, DOI: 10.1063/1.4895469.

Zhang Z. et al. "Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices." In: Science, (Aug. 2017), Vol. 357, № 6353, pp. 788792, DOI: 10.1126/science.aan6814.

Duan X. et al. "Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions." In: Nature Nanotechnology, (Dec. 2014), Vol. 9, № 12, pp. 1024-1030, DOI: 10.1038/nnano.2014.222.

Ai R. et al. "Growth of Single-Crystalline Cadmium Iodide Nanoplates, CdI 2 /MoS 2 (WS 2 , WSe 2 ) van der Waals Heterostructures, and Patterned Arrays." In: ACS Nano, (Mar. 2017), Vol. 11, № 3, pp. 3413-3419, DOI: 10.1021/acsnano.7b01507.

Swain M. "Multilayer Film Deposition , Characterization by Reflectometry Techniques and Their Structure Property Correlation," (May 2015).

Kelly P.J. and Arnell R.D. "Magnetron sputtering: a review of recent developments and applications." In: Vacuum, (Mar. 2000), Vol. 56, № 3, pp. 159-172, DOI: 10.1016/S0042-207X(99)00189-X.

Ellmer K. "Preparation routes based on magnetron sputtering for tungsten disulfide (WS 2 ) films for thin-film solar cells." In: physica status solidi (b), (Sep. 2008), Vol. 245, № 9, pp. 1745-1760, DOI: 10.1002/pssb.200879545.

Muratore C. et al. "Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition." In: Applied Physics Letters, (Jun. 2014), Vol. 104, № 26, DOI: 10.1063/1.4885391.

Tao J. et al. "Growth of wafer-scale MoS 2 monolayer by magnetron sputtering." In: Nanoscale, (2015), Vol. 7, № 6, pp. 2497-2503, DOI: 10.1039/C4NR06411A.

Kim H.-S. et al. "Growth of Wafer-Scale Standing Layers of WS 2 for Self-Biased High-Speed UV-Visible-NIR Optoelectronic Devices." In: ACS Applied Materials & Interfaces, (Jan. 2018), Vol. 10, № 4, pp. 3964-3974, DOI: 10.1021/acsami.7b16397.

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

Kim B.H. et al. "Large-area and low-temperature synthesis of few-layered WS 2 films for photodetectors." In: 2D Materials, (Sep. 2018), Vol. 5, № 4, p. 045030, DOI: 10.1088/2053-1583/aadef8.

Wong W.C. et al. "Effect of post-annealing on sputtered MoS 2 films." In: Solid-State Electronics, (Dec. 2017), Vol. 138, pp. 62-65, DOI: 10.1016/j.sse.2017.07.009.

Sirota B. et al. "Room temperature magnetron sputtering and laser annealing of ultrathin MoS2 for flexible transistors." In: Vacuum, (Feb. 2019), Vol. 160, pp. 133-138, DOI: 10.1016/j.vacuum.2018.10.077.

Vila R.A. et al. "In situ crystallization kinetics of two-dimensional MoS 2." In: 2D Materials, (Nov. 2017), Vol. 5, № 1, p. 011009, DOI: 10.1088/2053-1583/aa9674.

McConney M.E. et al. "Direct synthesis of ultra-thin large area transition metal dichalcogenides and their heterostructures on stretchable polymer surfaces." In: Journal of Materials Research, (Apr. 2016), Vol. 31, № 7, pp. 967-974, DOI: 10.1557/jmr.2016.36.

Lowndes D.H. et al. "Synthesis of Novel Thin-Film Materials by Pulsed Laser Deposition." In: Science, (Aug. 1996), Vol. 273, № 5277, pp. 898-903, DOI: 10.1126/science.273.5277.898.

Yang Z. and Hao J. "Progress in pulsed laser deposited two-dimensional layered materials for device applications." In: Journal of Materials Chemistry C, (2016), Vol. 4, № 38, pp. 8859-8878, DOI: 10.1039/C6TC01602B.

Tian K. et al. "Growth of two-dimensional WS2 thin films by pulsed laser deposition technique." In: Thin Solid Films, (Dec. 2018), Vol. 668, pp. 69-73, DOI: 10.1016/j.tsf.2018.10.015.

Siegel G. et al. "Growth of centimeter-scale atomically thin MoS 2 films by pulsed laser deposition." In: APLMaterials, (May 2015), Vol. 3, № 5, p. 056103, DOI: 10.1063/1.4921580.

Loh T.A.J. et al. "One-step Synthesis of Few-layer WS2 by Pulsed Laser Deposition." In: Scientific Reports, (Dec. 2015), Vol. 5, № 1, p. 18116, DOI: 10.1038/srep18116.

Serna M.I. et al. "Large-Area Deposition of MoS 2 by Pulsed Laser Deposition with In Situ Thickness Control." In: ACS Nano, (Jun. 2016), Vol. 10, № 6, pp. 6054-6061, DOI: 10.1021/acsnano.6b01636.

Wang H. et al. "Effect of post-annealing on laser-ablation deposited WS 2 thin films." In: Vacuum, (Jun. 2018), Vol. 152, pp. 239-242, DOI: 10.1016/j.vacuum.2018.03.024.

Ho Y.-T. et al. "Post sulfurization effect on the MoS2 grown by pulsed laser deposition." In: 2016 China Semiconductor Technology International Conference (CSTIC), (Mar. 2016), pp. 1-3, DOI: 10.1109/CSTIC.2016.7464088.

Zhan Y. et al. "Large-Area Vapor-Phase Growth and Characterization of MoS 2 Atomic Layers on a SiO 2 Substrate." In: Small, (Apr. 2012), Vol. 8, № 7, pp. 966-971, DOI: 10.1002/smll.201102654.

Laskar M.R. et al. "Large area single crystal (0001) oriented MoS2." In: Applied Physics Letters, (Jun. 2013), Vol. 102, № 25, DOI: 10.1063/1.4811410.

Lee Y. et al. "Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor." In: Nanoscale, (2014), Vol. 6, № 5, p. 2821, DOI: 10.1039/c3nr05993f.

137. Orofeo C.M. et al. "Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films." In: Applied Physics Letters, (Aug. 2014), Vol. 105, № 8, DOI: 10.1063/1.4893978.

138. Gatensby R. et al. "Controlled synthesis of transition metal dichalcogenide thin films for electronic applications." In: Applied Surface Science, (Apr. 2014), Vol. 297, pp. 139-146, DOI: 10.1016/j.apsusc.2014.01.103.

139. Yim C. et al. "Investigation of the optical properties of MoS 2 thin films using spectroscopic ellipsometry." In: Applied Physics Letters, (Mar. 2014), Vol. 104, № 10, p. 103114, DOI: 10.1063/1.4868108.

140. Ahn C. et al. "Low-Temperature Synthesis of Large-Scale Molybdenum Disulfide Thin Films Directly on a Plastic Substrate Using Plasma-Enhanced Chemical Vapor Deposition." In: Advanced Materials, (Sep. 2015), Vol. 27, № 35, pp. 5223-5229, DOI: 10.1002/adma.201501678.

141. Kim J.H. et al. "Work function variation of MoS2 atomic layers grown with chemical vapor deposition: The effects of thickness and the adsorption of water/oxygen molecules." In: Applied Physics Letters, (Jun. 2015), Vol. 106, № 25, DOI: 10.1063/1.4923202.

142. Zhang S. et al. "Direct Observation of Degenerate Two-Photon Absorption and Its Saturation in WS 2 and MoS 2 Monolayer and Few-Layer Films." In: ACSNano, (Jul. 2015), Vol. 9, № 7, pp. 7142-7150, DOI: 10.1021/acsnano.5b03480.

143. Zheng W. et al. "Patterned Growth of P-Type MoS 2 Atomic Layers Using Sol-Gel as Precursor." In: Advanced Functional Materials, (Sep. 2016), Vol. 26, № 35, pp. 6371-6379, DOI: 10.1002/adfm.201602494.

144. Li D.-H. et al. "Dielectric functions and critical points of crystalline WS 2 ultrathin films with tunable thickness." In: Physical Chemistry Chemical Physics, (2017), Vol. 19, № 19, pp. 1202212031, DOI: 10.1039/C7CP00660H.

145. Chen F. et al. "A feasible approach to fabricate two-dimensional WS2 flakes: From monolayer to multilayer." In: Ceramics International, (Dec. 2018), Vol. 44, № 18, pp. 22108-22112, DOI: 10.1016/j.ceramint.2018.08.322.

146. Shi Y. et al. "Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques." In: Chemical Society Reviews, (2015), Vol. 44, № 9, pp. 2744-2756, DOI: 10.1039/C4CS00256C.

147. Ji Q. et al. "Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline." In: Chemical Society Reviews, (2015), Vol. 44, № 9, pp. 2587-2602, DOI: 10.1039/C4CS00258J.

148. Gavrilyuk A. et al. "Photo-stimulated proton-coupled electron transfer in quasi-amorphous WO 3 and MoO 3 thin films." In: Philosophical Magazine, (Oct. 2007), Vol. 87, № 29, pp. 4519-4553, DOI: 10.1080/14786430701561516.

149. Lin Y.-C. et al. "Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization." In: Nanoscale, (2012), Vol. 4, № 20, p. 6637, DOI: 10.1039/c2nr31833d.

150

151

152

153

154

155

156

157

158

159

160

161

162

163

Gutiérrez H.R. et al. "Extraordinary Room-Temperature Photoluminescence in Triangular WS 2 Monolayers." In: Nano Letters, (Aug. 2013), Vol. 13, № 8, pp. 3447-3454, DOI: 10.1021/nl3026357.

Balendhran S. et al. "Atomically thin layers of MoS 2 via a two step thermal evaporation-exfoliation method." In: Nanoscale, (2012), Vol. 4, № 2, pp. 461-466, DOI: 10.1039/C1NR10803D.

Lee Y. et al. "Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition." In: Advanced Materials, (May 2012), Vol. 24, № 17, pp. 2320-2325, DOI: 10.1002/adma.201104798.

Wang H. et al. "Large-scale 2D electronics based on single-layer MoS<inf>2</inf> grown by chemical vapor deposition." In: 2012 International Electron Devices Meeting, (Dec. 2012), pp. 4.6.1-4.6.4, DOI: 10.1109/IEDM.2012.6478980.

Zhang Y. et al. "Controlled Growth of High-Quality Monolayer WS 2 Layers on Sapphire and Imaging Its Grain Boundary." In: ACS Nano, (Oct. 2013), Vol. 7, № 10, pp. 8963-8971, DOI: 10.1021/nn403454e.

Cong C. et al. "Synthesis and Optical Properties of Large-Area Single-Crystalline 2D Semiconductor WS 2 Monolayer from Chemical Vapor Deposition." In: Advanced Optical Materials, (Feb. 2014), Vol. 2, № 2, pp. 131-136, DOI: 10.1002/adom.201300428.

Brito J.L. et al. "Thermal and reductive decomposition of ammonium thiomolybdates." In: Thermochimica Acta, (Jun. 1995), Vol. 256, № 2, pp. 325-338, DOI: 10.1016/0040-6031(94)02178-Q.

Hunyadi D. et al. "Thermal decomposition of ammonium tetrathiotungstate." In: Journal of Thermal Analysis and Calorimetry, (Apr. 2015), Vol. 120, № 1, pp. 209-215, DOI: 10.1007/s10973-015-4513-4.

Nath M. et al. "Simple Synthesis of MoS2 and WS2 Nanotubes." In: Advanced Materials, (Feb. 2001), Vol. 13, № 4, pp. 283-286, DOI: 10.1002/1521-4095(200102)13:4<283::AID-ADMA283>3.0.CO;2-H.

Chen J. et al. "Synthesis and Characterization of WS 2 Nanotubes." In: Chemistry of Materials, (Feb. 2003), Vol. 15, № 4, pp. 1012-1019, DOI: 10.1021/cm020471f.

Liu K.-K. et al. "Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates." In: Nano Letters, (Mar. 2012), Vol. 12, № 3, pp. 1538-1544, DOI: 10.1021/nl2043612.

George A.S. et al. "Wafer Scale Synthesis and High Resolution Structural Characterization of Atomically Thin MoS 2 Layers." In: Advanced Functional Materials, (Dec. 2014), Vol. 24, № 47, pp. 7461-7466, DOI: 10.1002/adfm.201402519.

Yang J. et al. "Wafer-scale synthesis of thickness-controllable MoS 2 films via solution-processing using a dimethylformamide/n-butylamine/2-aminoethanol solvent system." In: Nanoscale, (2015), Vol. 7, № 20, pp. 9311-9319, DOI: 10.1039/C5NR01486G.

Lim Y.R. et al. "Wafer-Scale, Homogeneous MoS 2 Layers on Plastic Substrates for Flexible Visible-Light Photodetectors." In: Advanced Materials, (Jul. 2016), Vol. 28, № 25, pp. 50255030, DOI: 10.1002/adma.201600606.

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

Yang H. et al. "Highly Scalable Synthesis of MoS 2 Thin Films with Precise Thickness Control via Polymer-Assisted Deposition." In: Chemistry of Materials, (Jul. 2017), Vol. 29, № 14, pp. 5772-5776, DOI: 10.1021/acs.chemmater.7b01605.

Ionescu R. et al. "Chelant Enhanced Solution Processing for Wafer Scale Synthesis of Transition Metal Dichalcogenide Thin Films." In: Scientific Reports, (Jul. 2017), Vol. 7, № 1, p. 6419, DOI: 10.1038/s41598-017-06699-7.

Hung Y.-H. et al. "Scalable Patterning of MoS 2 Nanoribbons by Micromolding in Capillaries." In: ACS Applied Materials & Interfaces, (Aug. 2016), Vol. 8, № 32, pp. 20993-21001, DOI: 10.1021/acsami.6b05827.

Cai Z. et al. "Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures." In: Chemical Reviews, (Jul. 2018), Vol. 118, № 13, pp. 6091-6133, DOI: 10.1021/acs.chemrev.7b00536.

Qian Q. et al. "2D materials as semiconducting gate for field-effect transistors with inherent overvoltage protection and boosted ON-current." In: npj 2D Materials and Applications, (Jun. 2019), Vol. 3, № 1, p. 24, DOI: 10.1038/s41699-019-0106-6.

Johansson A. et al. "Optical Forging of Graphene into Three-Dimensional Shapes." In: Nano Letters, (Oct. 2017), Vol. 17, № 10, pp. 6469-6474, DOI: 10.1021/acs.nanolett.7b03530.

Xiong W. et al. "Direct writing of graphene patterns on insulating substrates under ambient conditions." In: Scientific Reports, (May 2014), Vol. 4, № 1, p. 4892, DOI: 10.1038/srep04892.

Kollipara P.S. et al. "Optical Patterning of Two-Dimensional Materials." In: Research, (Jan. 2020), Vol. 2020, DOI: 10.34133/2020/6581250.

Kim E. et al. "Site Selective Doping of Ultrathin Metal Dichalcogenides by Laser-Assisted Reaction." In: Advanced Materials, (Jan. 2016), Vol. 28, № 2, pp. 341-346, DOI: 10.1002/adma.201503945.

Choi I. et al. "Laser-Induced Solid-Phase Doped Graphene." In: ACS Nano, (Aug. 2014), Vol. 8, № 8, pp. 7671-7677, DOI: 10.1021/nn5032214.

Savva K. et al. "In situ photo-induced chemical doping of solution-processed graphene oxide for electronic applications." In: J. Mater. Chem. C, (2014), Vol. 2, № 29, pp. 5931-5937, DOI: 10.1039/C4TC00404C.

Guo L. et al. "Laser-Mediated Programmable N Doping and Simultaneous Reduction of Graphene Oxides." In: Advanced Optical Materials, (Feb. 2014), Vol. 2, № 2, pp. 120-125, DOI: 10.1002/adom.201300401.

Hu L. et al. "Laser Thinning and Patterning of MoS2 with Layer-by-Layer Precision." In: Scientific Reports, (Nov. 2017), Vol. 7, № 1, p. 15538, DOI: 10.1038/s41598-017-15350-4.

Han G.H. et al. "Laser Thinning for Monolayer Graphene Formation: Heat Sink and Interference Effect." In: ACS Nano, (Jan. 2011), Vol. 5, № 1, pp. 263-268, DOI: 10.1021/nn1026438.

Castellanos-Gomez A. et al. "Laser-Thinning of MoS 2: On Demand Generation of a Single-Layer Semiconductor." In: Nano Letters, (Jun. 2012), Vol. 12, № 6, pp. 3187-3192, DOI: 10.1021/nl301164v.

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

Nagareddy V.K. et al. "Humidity-Controlled Ultralow Power Layer-by-Layer Thinning, Nanopatterning and Bandgap Engineering of MoTe2." In: Advanced Functional Materials, (Dec. 2018), Vol. 28, № 52, DOI: 10.1002/adfm.201804434.

Aumanen J. et al. "Patterning and tuning of electrical and optical properties of graphene by laser induced two-photon oxidation." In: Nanoscale, (2015), Vol. 7, № 7, pp. 2851-2855, DOI: 10.1039/C4NR05207B.

Koivistoinen J. et al. "From Seeds to Islands: Growth of Oxidized Graphene by Two-Photon Oxidation." In: The Journal of Physical Chemistry C, (Oct. 2016), Vol. 120, № 39, pp. 2233022341, DOI: 10.1021/acs.jpcc.6b06099.

Wang B. et al. "Direct laser patterning of two-dimensional lateral transition metal disulfide-oxide-disulfide heterostructures for ultrasensitive sensors." In: Nano Research, (Aug. 2020), Vol. 13, № 8, pp. 2035-2043, DOI: 10.1007/s12274-020-2872-z.

Tan Y. et al. "Controllable 2H-to-1T' phase transition in few-layer MoTe2." In: Nanoscale, (2018), Vol. 10, № 42, pp. 19964-19971, DOI: 10.1039/C8NR06115G.

Thakur D. et al. "Phase selective CVD growth and photoinduced 1T ^ 1H phase transition in a WS 2 monolayer." In: Journal of Materials Chemistry C, (2020), Vol. 8, № 30, pp. 10438-10447, DOI: 10.1039/D0TC02037K.

Cho S. et al. "Phase patterning for ohmic homojunction contact in MoTe2." In: Science, (Aug. 2015), Vol. 349, № 6248, pp. 625-628, DOI: 10.1126/science.aab3175.

Zuo P. et al. "Maskless Micro/Nanopatterning and Bipolar Electrical Rectification of MoS 2 Flakes Through Femtosecond Laser Direct Writing." In: ACS Applied Materials & Interfaces, (Oct. 2019), Vol. 11, № 42, pp. 39334-39341, DOI: 10.1021/acsami.9b13059.

Johansson A. et al. "Chemical composition of two-photon oxidized graphene." In: Carbon, (May 2017), Vol. 115, pp. 77-82, DOI: 10.1016/j.carbon.2016.12.091.

Koskinen P. et al. "Optically Forged Diffraction-Unlimited Ripples in Graphene." In: The Journal of Physical Chemistry Letters, (Nov. 2018), Vol. 9, № 21, pp. 6179-6184, DOI: 10.1021/acs.jpclett.8b02461.

Hiltunen V.-M. et al. "Making Graphene Luminescent by Direct Laser Writing." In: The Journal of Physical Chemistry C, (Apr. 2020), Vol. 124, № 15, pp. 8371-8377, DOI: 10.1021/acs.jpcc.0c00194.

Mentel K.K. et al. "Shaping graphene with optical forging: from a single blister to complex 3D structures." In: Nanoscale Advances, (2021), Vol. 3, № 5, pp. 1431-1442, DOI: 10.1039/D0NA00832J.

Li Y.-C. et al. "Graphene oxide-based micropatterns via high-throughput multiphoton-induced reduction and ablation." In: Optics Express, (Aug. 2014), Vol. 22, № 16, p. 19726, DOI: 10.1364/OE.22.019726.

Qin F. et al. "n-phase modulated monolayer supercritical lens." In: Nature Communications, (Jan. 2021), Vol. 12, № 1, p. 32, DOI: 10.1038/s41467-020-20278-x.

Yuan Y. et al. "Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication." In: Nature Communications, (Dec. 2020), Vol. 11, № 1, p. 6185, DOI: 10.1038/s41467-020-19985-2.

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

Jiang N. et al. "Additive Manufactured Graphene Coating with Synergistic Photothermal and Superhydrophobic Effects for Bactericidal Applications." In: Global Challenges, (Jan. 2020), Vol. 4, № 1, DOI: 10.1002/gch2.201900054.

Yu Z.-P. et al. "Self-Healing Structured Graphene Surface with Reversible Wettability for Oil-Water Separation." In: ACS Applied Nano Materials, (Mar. 2019), Vol. 2, № 3, pp. 1505-1515, DOI: 10.1021/acsanm.8b02346.

Currie M. et al. "Quantifying pulsed laser induced damage to graphene." In: Applied Physics Letters, (Nov. 2011), Vol. 99, № 21, DOI: 10.1063/1.3663875.

Afaneh T. et al. "Laser-Assisted Chemical Modification of Monolayer Transition Metal Dichalcogenides." In: Advanced Functional Materials, (Sep. 2018), Vol. 28, № 37, DOI: 10.1002/adfm.201802949.

Cadiz F. et al. "Ultra-low power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides." In: 2D Materials, (Oct. 2016), Vol. 3, № 4, p. 045008, DOI: 10.1088/2053-1583/3/4/045008.

Venanzi T. et al. "Terahertz-Induced Energy Transfer from Hot Carriers to Trions in a MoSe 2 Monolayer." In: ACS Photonics, (Oct. 2021), Vol. 8, № 10, pp. 2931-2939, DOI: 10.1021/acsphotonics.1c00394.

Liu X. et al. "Laser ablation and micromachining with ultrashort laser pulses." In: IEEE Journal of Quantum Electronics, (1997), Vol. 33, № 10, pp. 1706-1716, DOI: 10.1109/3.631270.

Kim E. et al. "Site Selective Doping of Ultrathin Metal Dichalcogenides by Laser-Assisted Reaction." In: Advanced Materials, (Jan. 2016), Vol. 28, № 2, pp. 341-346, DOI: 10.1002/adma.201503945.

Gao X. et al. "Femtosecond Laser Writing of Spin Defects in Hexagonal Boron Nitride." In: ACS Photonics, (Apr. 2021), Vol. 8, № 4, pp. 994-1000, DOI: 10.1021/acsphotonics.0c01847.

Tu R. et al. "Fast synthesis of high-quality large-area graphene by laser CVD." In: Applied Surface Science, (Jul. 2018), Vol. 445, pp. 204-210, DOI: 10.1016/j.apsusc.2018.03.184.

Bonse J. et al. "Laser-Induced Periodic Surface Structures— A Scientific Evergreen." In: IEEE Journal of Selected Topics in Quantum Electronics, (May 2017), Vol. 23, № 3, DOI: 10.1109/JSTQE.2016.2614183.

Paradisanos I. et al. "Intense femtosecond photoexcitation of bulk and monolayer MoS2." In: Applied Physics Letters, (Jul. 2014), Vol. 105, № 4, DOI: 10.1063/1.4891679.

Kähärä T. and Koskinen P. "Rippling of two-dimensional materials by line defects." In: Physical Review B, (Aug. 2020), Vol. 102, № 7, p. 075433, DOI: 10.1103/PhysRevB.102.075433.

Hou S. et al. "Localized emission from laser-irradiated defects in 2D hexagonal boron nitride." In: 2D Materials, (Oct. 2017), Vol. 5, № 1, p. 015010, DOI: 10.1088/2053-1583/aa8e61.

Yang S. et al. "An in-plane WSe 2 p-n homojunction two-dimensional diode by laser-induced doping." In: Journal of Materials Chemistry C, (2020), Vol. 8, № 25, pp. 8393-8398, DOI: 10.1039/D0TC01790F.

Tiberj A. et al. "Reversible optical doping of graphene." In: Scientific Reports, (Aug. 2013), Vol. 3, № 1, p. 2355, DOI: 10.1038/srep02355.

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

Oh H.M. et al. "Photochemical Reaction in Monolayer MoS 2 via Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy." In: ACSNano, (May 2016), Vol. 10, № 5, pp. 5230-5236, DOI: 10.1021/acsnano.6b00895.

Ardekani H. et al. "Reversible Photoluminescence Tuning by Defect Passivation via Laser Irradiation on Aged Monolayer MoS 2." In: ACS Applied Materials & Interfaces, (Oct. 2019), Vol. 11, № 41, pp. 38240-38246, DOI: 10.1021/acsami.9b10688.

Qin C.-B. et al. "Giant enhancement of photoluminescence emission in monolayer WS2 by femtosecond laser irradiation." In: Frontiers of Physics, (Feb. 2021), Vol. 16, № 1, p. 12501, DOI: 10.1007/s11467-020-0995-z.

Lu J. et al. "Atomic Healing of Defects in Transition Metal Dichalcogenides." In: Nano Letters, (May 2015), Vol. 15, № 5, pp. 3524-3532, DOI: 10.1021/acs.nanolett.5b00952.

Rao R. et al. "Dynamics of cleaning, passivating and doping monolayer MoS 2 by controlled laser irradiation." In: 2D Materials, (Aug. 2019), Vol. 6, № 4, p. 045031, DOI: 10.1088/2053-1583/ab33ab.

Wan Z. et al. "Tuning the sub-processes in laser reduction of graphene oxide by adjusting the power and scanning speed of laser." In: Carbon, (Jan. 2019), Vol. 141, pp. 83-91, DOI: 10.1016/j.carbon.2018.09.030.

Mitoma N. et al. "Photo-oxidation of Graphene in the Presence of Water." In: The Journal of Physical Chemistry C, (Jan. 2013), Vol. 117, № 3, pp. 1453-1456, DOI: 10.1021/jp305823u.

He W. et al. "Two fluorescence lifetime components reveal the photoreduction dynamics of monolayer graphene oxide." In: Carbon, (Nov. 2016), Vol. 109, pp. 264-268, DOI: 10.1016/j.carbon.2016.08.016.

Herziger F. et al. "In-situ Raman study of laser-induced graphene oxidation." In: physica status solidi (b), (Nov. 2015), Vol. 252, № 11, pp. 2451-2455, DOI: 10.1002/pssb.201552411.

Zhou Y. et al. "Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing." In: Advanced Materials, (Jan. 2010), Vol. 22, № 1, pp. 67-71, DOI: 10.1002/adma.200901942.

Papadopoulos N. et al. "Investigating Laser-Induced Phase Engineering in MoS 2 Transistors." In: IEEE Transactions on Electron Devices, (Oct. 2018), Vol. 65, № 10, pp. 4053-4058, DOI: 10.1109/TED.2018.2855215.

Peng B. et al. "Sub-picosecond photo-induced displacive phase transition in two-dimensional MoTe2." In: npj 2D Materials and Applications, (Jun. 2020), Vol. 4, № 1, p. 14, DOI: 10.1038/s41699-020-0147-x.

Shautsova V. et al. "Direct Laser Patterning and Phase Transformation of 2D PdSe 2 Films for On-Demand Device Fabrication." In: ACS Nano, (Dec. 2019), Vol. 13, № 12, pp. 14162-14171, DOI: 10.1021/acsnano.9b06892.

Kang Y. et al. "Plasmonic Hot Electron Induced Structural Phase Transition in a MoS 2 Monolayer." In: Advanced Materials, (Oct. 2014), Vol. 26, № 37, pp. 6467-6471, DOI: 10.1002/adma.201401802.

Byrley P. et al. "Photochemically Induced Phase Change in Monolayer Molybdenum Disulfide." In: Frontiers in Chemistry, (Jun. 2019), Vol. 7, DOI: 10.3389/fchem.2019.00442.

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

Liu H. and Chi D. "Dispersive growth and laser-induced rippling of large-area singlelayer MoS2 nanosheets by CVD on c-plane sapphire substrate." In: Scientific Reports, (Jun. 2015), Vol. 5, № 1, p. 11756, DOI: 10.1038/srep11756.

Pan Y. et al. "Threshold Dependence of Deep- and Near-subwavelength Ripples Formation on Natural MoS2 Induced by Femtosecond Laser." In: Scientific Reports, (Jan. 2016), Vol. 6, № 1, p. 19571, DOI: 10.1038/srep19571.

Krauss B. et al. "Laser-induced disassembly of a graphene single crystal into a nanocrystalline network." In: Physical Review B, (Apr. 2009), Vol. 79, № 16, p. 165428, DOI: 10.1103/PhysRevB.79.165428.

Roberts A. et al. "Response of graphene to femtosecond high-intensity laser irradiation." In: Applied Physics Letters, (Aug. 2011), Vol. 99, № 5, DOI: 10.1063/1.3623760.

Li J. et al. "General synthesis of two-dimensional van der Waals heterostructure arrays." In: Nature, (Mar. 2020), Vol. 579, № 7799, pp. 368-374, DOI: 10.1038/s41586-020-2098-y.

Islam A.E. et al. "Photo-thermal oxidation of single layer graphene." In: RSC Advances, (2016), Vol. 6, № 48, pp. 42545-42553, DOI: 10.1039/C6RA05399H.

Zhang N. et al. "Impact of photodoping on inter- and intralayer exciton emission in a MoS2/MoSe2/MoS2 heterostructure." In: Applied Physics Letters, (Aug. 2018), Vol. 113, № 6, DOI: 10.1063/1.5043098.

Ju L. et al. "Photoinduced doping in heterostructures of graphene and boron nitride." In: Nature Nanotechnology, (May 2014), Vol. 9, № 5, pp. 348-352, DOI: 10.1038/nnano.2014.60.

Akkanen S.M. et al. "Optical Modification of 2D Materials: Methods and Applications." In: Advanced Materials, (May 2022), Vol. 34, № 19, DOI: 10.1002/adma.202110152.

Zhang Y. et al. "Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction." In: Nano Today, (Feb. 2010), Vol. 5, № 1, pp. 15-20, DOI: 10.1016/j.nantod.2009.12.009.

Qiao Z. et al. "Versatile and scalable micropatterns on graphene oxide films based on laser induced fluorescence quenching effect." In: Optics Express, (Dec. 2017), Vol. 25, № 25, p. 31025, DOI: 10.1364/OE.25.031025.

Lu J. et al. "Bandgap Engineering of Phosphorene by Laser Oxidation toward Functional 2D Materials." In: ACS Nano, (Oct. 2015), Vol. 9, № 10, pp. 10411-10421, DOI: 10.1021/acsnano.5b04623.

Mukherjee S. et al. "Scalable Integration of Coplanar Heterojunction Monolithic Devices on Two-Dimensional In 2 Se 3." In: ACS Nano, (Dec. 2020), Vol. 14, № 12, pp. 17543-17553, DOI: 10.1021/acsnano.0c08146.

Peng Y. et al. "Laser solid-phase synthesis of single-atom catalysts." In: Light: Science & Applications, (Aug. 2021), Vol. 10, № 1, p. 168, DOI: 10.1038/s41377-021-00603-9.

Guo L. et al. "Bandgap Tailoring and Synchronous Microdevices Patterning of Graphene Oxides." In: The Journal of Physical Chemistry C, (Feb. 2012), Vol. 116, № 5, pp. 3594-3599, DOI: 10.1021/jp209843m.

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

Orabona E. et al. "Holographic patterning of graphene-oxide films by light-driven reduction." In: Optics Letters, (Jul. 2014), Vol. 39, № 14, p. 4263, DOI: 10.1364/OL.39.004263.

Li X. et al. "Athermally photoreduced graphene oxides for three-dimensional holographic images." In: Nature Communications, (Apr. 2015), Vol. 6, № 1, p. 6984, DOI: 10.1038/ncomms7984.

Guo L. et al. "Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device." In: Carbon, (Apr. 2012), Vol. 50, № 4, pp. 1667-1673, DOI: 10.1016/j.carbon.2011.12.011.

Jiang H.-B. et al. "Moisture-Responsive Graphene Actuators Prepared by Two-Beam Laser Interference of Graphene Oxide Paper." In: Frontiers in Chemistry, (Jun. 2019), Vol. 7, DOI: 10.3389/fchem.2019.00464.

Lai N.D. et al. "Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique." In: Optics Express, (2005), Vol. 13, № 23, p. 9605, DOI: 10.1364/OPEX.13.009605.

Salimon I.A. et al. "Laser-Synthesized 2D-MoS2 Nanostructured Photoconductors." In: Micromachines, (May 2023), Vol. 14, № 5, p. 1036, DOI: 10.3390/mi14051036.

Salimon I.A. et al. "UV laser-induced nanostructured porous oxide in GaAs crystals." In: Solid State Sciences, (Jun. 2022), Vol. 128, p. 106887, DOI: 10.1016/j.solidstatesciences.2022.106887.

Wang M. et al. "Nonlinear Optical Imaging, Precise Layer Thinning, and Phase Engineering in MoTe2 with Femtosecond Laser." In: ACS Nano, (Sep. 2020), Vol. 14, № 9, pp. 11169-11177, DOI: 10.1021/acsnano.0c02649.

Voiry D. et al. "Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution." In: Nature Materials, (Sep. 2013), Vol. 12, № 9, pp. 850-855, DOI: 10.1038/nmat3700.

Iff O. et al. "Strain-Tunable Single Photon Sources in WSe 2 Monolayers." In: Nano Letters, (Oct. 2019), Vol. 19, № 10, pp. 6931-6936, DOI: 10.1021/acs.nanolett.9b02221.

Turunen M.T. et al. "Deterministic Modification of CVD Grown Monolayer MoS 2 with Optical Pulses." In: Advanced Materials Interfaces, (May 2021), Vol. 8, № 10, DOI: 10.1002/admi.202002119.

Park J.B. et al. "Fast growth of graphene patterns by laser direct writing." In: Applied Physics Letters, (Mar. 2011), Vol. 98, № 12, DOI: 10.1063/1.3569720.

Medina H. et al. "Ultrafast Graphene Growth on Insulators via Metal-Catalyzed Crystallization by a Laser Irradiation Process: From Laser Selection, Thickness Control to Direct Patterned Graphene Utilizing Controlled Layer Segregation Process." In: Small, (Jul. 2015), Vol. 11, № 25, pp. 3017-3027, DOI: 10.1002/smll.201403463.

Zhang C. et al. "Laser-assisted chemical vapor deposition setup for fast synthesis of graphene patterns." In: Review of Scientific Instruments, (May 2017), Vol. 88, № 5, DOI: 10.1063/1.4984004.

Ye X. et al. "Direct laser fabrication of large-area and patterned graphene at room temperature." In: Carbon, (Mar. 2014), Vol. 68, pp. 784-790, DOI: 10.1016/j.carbon.2013.11.069.

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

Jiang J. et al. "Graphene synthesis by laser-assisted chemical vapor deposition on Ni plate and the effect of process parameters on uniform graphene growth." In: Thin Solid Films, (Apr. 2014), Vol. 556, pp. 206-210, DOI: 10.1016/j.tsf.2014.01.078.

Wei D. and Xu X. "Laser direct growth of graphene on silicon substrate." In: Applied Physics Letters, (Jan. 2012), Vol. 100, № 2, DOI: 10.1063/1.3675636.

An S.-J. et al. "Exfoliation of Transition Metal Dichalcogenides by a High-Power Femtosecond Laser." In: Scientific Reports, (Aug. 2018), Vol. 8, № 1, p. 12957, DOI: 10.1038/s41598-018-31374-w.

Jalili M. et al. "High-quality liquid phase-pulsed laser ablation graphene synthesis by flexible graphite exfoliation." In: Journal of Materials Science & Technology, (Mar. 2019), Vol. 35, № 3, pp. 292-299, DOI: 10.1016/j.jmst.2018.09.048.

Ye R. et al. "Laser-Induced Graphene." In: Accounts of Chemical Research, (Jul. 2018), Vol. 51, № 7, pp. 1609-1620, DOI: 10.1021/acs.accounts.8b00084.

Chyan Y. et al. "Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food." In: ACS Nano, (Mar. 2018), Vol. 12, № 3, pp. 2176-2183, DOI: 10.1021/acsnano.7b08539.

Qian M. et al. "Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite." In: Applied Physics Letters, (Apr. 2011), Vol. 98, № 17, DOI: 10.1063/1.3584021.

Schuffenhauer C. et al. "Synthesis of Fullerene-Like Tantalum Disulfide Nanoparticles by a GasPhase Reaction and Laser Ablation." In: Small, (Nov. 2005), Vol. 1, № 11, pp. 1100-1109, DOI: 10.1002/smll.200500133.

Hu J.J. et al. "Pulsed Laser Syntheses of Layer-Structured WS 2 Nanomaterials in Water." In: The Journal of Physical Chemistry B, (May 2006), Vol. 110, № 18, pp. 8914-8916, DOI: 10.1021/jp0611471.

Gao Z. et al. "Surface Engineering of MoS 2 via Laser-Induced Exfoliation in Protic Solvents." In: Small, (Oct. 2019), Vol. 15, № 44, DOI: 10.1002/smll.201903791.

Zhai X. et al. "Direct Observation of the Light-Induced Exfoliation of Molybdenum Disulfide Sheets in Water Medium." In: ACS Nano, (Mar. 2021), Vol. 15, № 3, pp. 5661-5670, DOI: 10.1021/acsnano.1c00838.

Kimiagar S. and Abrinaei F. "Laser-assisted hydrothermal synthesis of MoS2 nanosheets under different laser energies and potential application in nonlinear optics." In: Optik, (Feb. 2023), Vol. 272, p. 170305, DOI: 10.1016/j.ijleo.2022.170305.

Zuo P. et al. "Phase-Reversed MoS 2 Nanosheets Prepared through Femtosecond Laser Exfoliation and Chemical Doping." In: The Journal of Physical Chemistry C, (Apr. 2021), Vol. 125, № 15, pp. 8304-8313, DOI: 10.1021/acs.jpcc.1c00235.

Lin Z. et al. "Thinning of large-area graphene film from multilayer to bilayer with a low-power CO 2 laser." In: Nanotechnology, (Jul. 2013), Vol. 24, № 27, p. 275302, DOI: 10.1088/09574484/24/27/275302.

Lin Z. et al. "Precise Control of the Number of Layers of Graphene by Picosecond Laser Thinning." In: Scientific Reports, (Jun. 2015), Vol. 5, № 1, p. 11662, DOI: 10.1038/srep11662.

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

Stohr R.J. et al. "All-Optical High-Resolution Nanopatterning and 3D Suspending of Graphene." In: ACSNano, (Jun. 2011), Vol. 5, № 6, pp. 5141-5150, DOI: 10.1021/nn201226f.

Li D.W. et al. "In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene." In: International Congress on Applications of Lasers & Electro-Optics, (2015), pp. 995-1004, DOI: 10.2351/1.5063249.

Tran-Khac B.-C. et al. "Layer-by-layer thinning of MoS 2 via laser irradiation." In: Nanotechnology, (Jul. 2019), Vol. 30, № 27, p. 275302, DOI: 10.1088/1361-6528/ab11ad.

Kang S. et al. "Phase-controllable laser thinning in MoTe2." In: Applied Surface Science, (Oct. 2021), Vol. 563, p. 150282, DOI: 10.1016/j.apsusc.2021.150282.

Lu J. et al. "Improved Photoelectrical Properties of MoS2 Films after Laser Micromachining." In: ACS Nano, (Jun. 2014), Vol. 8, № 6, pp. 6334-6343, DOI: 10.1021/nn501821z.

Sunamura K. et al. "Laser-induced electrochemical thinning of MoS 2." In: Journal of Materials Chemistry C, (2016), Vol. 4, № 15, pp. 3268-3273, DOI: 10.1039/C5TC04409J.

Kim S. et al. "Post-patterning of an electronic homojunction in atomically thin monoclinic MoTe2." In: 2D Materials, (Feb. 2017), Vol. 4, № 2, p. 024004, DOI: 10.1088/2053-1583/aa5b0e.

Park J. et al. "Synthesis of uniform single layer WS2 for tunable photoluminescence." In: Scientific Reports, (Nov. 2017), Vol. 7, № 1, p. 16121, DOI: 10.1038/s41598-017-16251-2.

Gong L. et al. "Emergence of photoluminescence on bulk MoS2 by laser thinning and gold particle decoration." In: Nano Research, (Sep. 2018), Vol. 11, № 9, pp. 4574-4586, DOI: 10.1007/s 12274-018-2037-5.

Rho Y. et al. "Site-Selective Atomic Layer Precision Thinning of MoS 2 via Laser-Assisted Anisotropic Chemical Etching." In: ACS Applied Materials & Interfaces, (Oct. 2019), Vol. 11, № 42, pp. 39385-39393, DOI: 10.1021/acsami.9b14306.

Wetzel B. et al. "Femtosecond laser fabrication of micro and nano-disks in single layer graphene using vortex Bessel beams." In: Applied Physics Letters, (Dec. 2013), Vol. 103, № 24, DOI: 10.1063/1.4846415.

Chang T.-L. et al. "Patterning of multilayer graphene on glass substrate by using ultraviolet picosecond laser pulses." In: Microelectronic Engineering, (Jun. 2016), Vol. 158, pp. 1-5, DOI: 10.1016/j.mee.2016.01.012.

Zhang W. et al. "Ti:sapphire femtosecond laser direct micro-cutting and profiling of graphene." In: Applied Physics A, (Nov. 2012), Vol. 109, № 2, pp. 291-297, DOI: 10.1007/s00339-012-7044-x.

Park J.B. et al. "Multi-scale graphene patterns on arbitrary substrates via laser-assisted transfer-printing process." In: Applied Physics Letters, (Jul. 2012), Vol. 101, № 4, p. 043110, DOI: 10.1063/1.4738883.

Yoo J. et al. "Laser-Induced Direct Graphene Patterning and Simultaneous Transferring Method for Graphene Sensor Platform." In: Small, (Dec. 2013), Vol. 9, № 24, pp. 4269-4275, DOI: 10.1002/smll.201300990.

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

Yan Z.-X. et al. "Superhydrophobic SERS Substrates Based on Silver-Coated Reduced Graphene Oxide Gratings Prepared by Two-Beam Laser Interference." In: ACS Applied Materials & Interfaces, (Dec. 2015), Vol. 7, № 49, pp. 27059-27065, DOI: 10.1021/acsami.5b09128.

Pandey S.K. et al. "Layer-Dependent Electronic Structure Changes in Transition Metal Dichalcogenides: The Microscopic Origin." In: ACS Omega, (Jun. 2020), Vol. 5, № 25, pp. 15169-15176, DOI: 10.1021/acsomega.0c01138.

Park J.B. et al. "Transparent interconnections formed by rapid single-step fabrication of graphene patterns." In: Applied Physics Letters, (Aug. 2011), Vol. 99, № 5, DOI: 10.1063/1.3622660.

Jean D.L. et al. "Precision Carbon Deposition Using Pyrolytic Laser Chemical Vapor Deposition (LCVD)," (2000), DOI: doi.org/10.26153/tsw/3021.

Braichotte D. and Bergh H. "Temperature effects in the photolytic LCVD of platinum." In: Applied Physics A Solids and Surfaces, (Aug. 1989), Vol. 49, № 2, pp. 189-197, DOI: 10.1007/BF00616298.

Duty C. et al. "Laser chemical vapour deposition: materials, modelling, and process control." In: International Materials Reviews, (Jun. 2001), Vol. 46, № 6, pp. 271-287, DOI: 10.1179/095066001771048727.

Allen S.D. "Laser Chemical Vapor Deposition (LCVD)." In: Emergent Process Methods for High-Technology Ceramics, (1984), pp. 397-413, DOI: 10.1007/978-1-4684-8205-8_30.

Stanford M.G. et al. "High-Resolution Laser-Induced Graphene. Flexible Electronics beyond the Visible Limit." In: ACS Applied Materials & Interfaces, (Mar. 2020), Vol. 12, № 9, pp. 1090210907, DOI: 10.1021/acsami.0c01377.

Yang H.R. and Liu X.M. "Nonlinear optical response and applications of tin disulfide in the near-and mid-infrared." In: Applied Physics Letters, (Apr. 2017), Vol. 110, № 17, DOI: 10.1063/1.4982624.

Dong N. et al. "Saturation of Two-Photon Absorption in Layered Transition Metal Dichalcogenides: Experiment and Theory." In: ACS Photonics, (Apr. 2018), Vol. 5, № 4, pp. 1558-1565, DOI: 10.1021/acsphotonics.8b00010.

Zhang H. et al. "Molybdenum disulfide (MoS_2) as a broadband saturable absorber for ultra-fast photonics." In: Optics Express, (Mar. 2014), Vol. 22, № 6, p. 7249, DOI: 10.1364/OE.22.007249.

Wang K. et al. "Ultrafast Saturable Absorption of Two-Dimensional MoS 2 Nanosheets." In: ACS Nano, (Oct. 2013), Vol. 7, № 10, pp. 9260-9267, DOI: 10.1021/nn403886t.

Zhang M. et al. "Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser." In: Nano Research, (May 2015), Vol. 8, № 5, pp. 15221534, DOI: 10.1007/s12274-014-0637-2.

Zhang X. et al. "Facile fabrication of wafer-scale MoS 2 neat films with enhanced third-order nonlinear optical performance." In: Nanoscale, (2015), Vol. 7, № 7, pp. 2978-2986, DOI: 10.1039/C4NR07164F.

Luo Z. et al. "Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers." In: Nanoscale, (2016), Vol. 8, № 2, pp. 1066-1072, DOI: 10.1039/C5NR06981E.

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

Zhang Y. et al. "All-fiber Yb-doped fiber laser passively mode-locking by monolayer MoS2 saturable absorber." In: Optics Communications, (Apr. 2018), Vol. 413, pp. 236-241, DOI: 10.1016/j.optcom.2017.12.053.

Wang S. et al. "Digital-wavelength ytterbium fiber laser mode-locked with MoS 2." In: Laser Physics Letters, (May 2016), Vol. 13, № 5, p. 055102, DOI: 10.1088/1612-2011/13/5/055102.

Wei R. et al. "Ultra-broadband nonlinear saturable absorption of high-yield MoS 2 nanosheets." In: Nanotechnology, (Jul. 2016), Vol. 27, № 30, p. 305203, DOI: 10.1088/09574484/27/30/305203.

Cao L. et al. "Tm-doped fiber laser mode-locking with MoS 2 -polyvinyl alcohol saturable absorber." In: Optical Fiber Technology, (Mar. 2018), Vol. 41, pp. 187-192, DOI: 10.1016/j.yofte.2018.01.023.

Zhang S. et al. "Passively Q-Switched Ho,Pr:LLF Bulk Slab Laser at 2.95 um Based on MoS2 Saturable Absorber." In: IEEE Photonics Technology Letters, (Dec. 2017), Vol. 29, № 24, pp. 2258-2261, DOI: 10.1109/LPT.2017.2772271.

Khazaeizhad R. et al. "Mode-locking of Er-doped fiber laser using a multilayer MoS_2 thin film as a saturable absorber in both anomalous and normal dispersion regimes." In: Optics Express, (Sep. 2014), Vol. 22, № 19, p. 23732, DOI: 10.1364/OE.22.023732.

Liu H. et al. "Femtosecond pulse erbium-doped fiber laser by a few-layer MoS_2 saturable absorber." In: Optics Letters, (Aug. 2014), Vol. 39, № 15, p. 4591, DOI: 10.1364/OL.39.004591.

Liu M. et al. "Microfiber-based few-layer MoS_2 saturable absorber for 25 GHz passively harmonic mode-locked fiber laser." In: Optics Express, (Sep. 2014), Vol. 22, № 19, p. 22841, DOI: 10.1364/OE.22.022841.

Wu K. et al. "463-MHz fundamental mode-locked fiber laser based on few-layer MoS_2 saturable absorber." In: Optics Letters, (Apr. 2015), Vol. 40, № 7, p. 1374, DOI: 10.1364/OL.40.001374.

Iijima S. "Helical microtubules of graphitic carbon." In: Nature, (Nov. 1991), Vol. 354, № 6348, pp. 56-58, DOI: 10.1038/354056a0.

Saito R. et al. "Physical Properties of Carbon Nanotubes," (Jul. 1998), DOI: 10.1142/p080.

Wei B.Q. et al. "Reliability and current carrying capacity of carbon nanotubes." In: Applied Physics Letters, (Aug. 2001), Vol. 79, № 8, pp. 1172-1174, DOI: 10.1063/1.1396632.

Lu W. et al. "State of the Art of Carbon Nanotube Fibers: Opportunities and Challenges." In: Advanced Materials, (Apr. 2012), Vol. 24, № 14, pp. 1805-1833, DOI: 10.1002/adma.201104672.

Jain N. et al. "Plethora of Carbon Nanotubes Applications in Various Fields - A State-of-the-Art-Review." In: Smart Science, (Jan. 2022), Vol. 10, № 1, pp. 1-24, DOI: 10.1080/23080477.2021.1940752.

Feng Y. et al. "One-Dimensional van der Waals Heterojunction Diode." In: ACS Nano, (Mar. 2021), Vol. 15, № 3, pp. 5600-5609, DOI: 10.1021/acsnano.1c00657.

Liu M. et al. "Photoluminescence from Single-Walled MoS 2 Nanotubes Coaxially Grown on Boron Nitride Nanotubes." In: ACS Nano, (May 2021), Vol. 15, № 5, pp. 8418-8426, DOI: 10.1021/acsnano.0c10586.

316

317

318

319

320

321

322

323

324

325

326

327

328

329

Ma L. et al. "Carbon nanotubes coated with tubular MoS2 layers prepared by hydrothermal reaction." In: Nanotechnology, (Jan. 2006), Vol. 17, № 2, pp. 571-574, DOI: 10.1088/09574484/17/2/038.

Song X.C. et al. "Hydrothermal synthesis and characterization of CNT@MoS2 nanotubes." In: Materials Letters, (Aug. 2006), Vol. 60, № 19, pp. 2346-2348, DOI: 10.1016/j.matlet.2006.01.002.

Wang Q. and Li J. "Facilitated Lithium Storage in MoS 2 Overlayers Supported on Coaxial Carbon Nanotubes." In: The Journal of Physical Chemistry C, (Feb. 2007), Vol. 111, № 4, pp. 1675-1682, DOI: 10.1021/jp066655p.

Katayama M. et al. "Synthesis of Nanostructured Hybrid between Carbon Nanotube and Inorganic Material towards Nanodevice Application." In: e-Journal of Surface Science and Nanotechnology, (2004), Vol. 2, № 0, pp. 244-255, DOI: 10.1380/ejssnt.2004.244.

Kaskela A. et al. "Aerosol-Synthesized SWCNT Networks with Tunable Conductivity and Transparency by a Dry Transfer Technique." In: Nano Letters, (Nov. 2010), Vol. 10, № 11, pp. 4349-4355, DOI: 10.1021/nl101680s.

Maultzsch J. et al. "Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment." In: Physical Review B, (Nov. 2005), Vol. 72, № 20, p. 205438, DOI: 10.1103/PhysRevB.72.205438.

Zuo Y. et al. "Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity." In: Nature Nanotechnology, (Dec. 2020), Vol. 15, № 12, pp. 987-991, DOI: 10.1038/s41565-020-0770-x.

Sazio P.J. et al. "Composite material hollow core fibers: functionalization with silicon and 2D materials." In: Integrated Optics: Devices, Materials, and Technologies XXII / ed. García-Blanco S.M., Cheben P., (Feb. 2018), p. 21, DOI: 10.1117/12.2289785.

Tan C. et al. "Recent Advances in Ultrathin Two-Dimensional Nanomaterials." In: Chemical Reviews, (May 2017), Vol. 117, № 9, pp. 6225-6331, DOI: 10.1021/acs.chemrev.6b00558.

Wang H. et al. "Physical and chemical tuning of two-dimensional transition metal dichalcogenides." In: Chemical Society Reviews, (2015), Vol. 44, № 9, pp. 2664-2680, DOI: 10.1039/C4CS00287C.

Chaves A. et al. "Bandgap engineering of two-dimensional semiconductor materials." In: npj 2D Materials and Applications, (Aug. 2020), Vol. 4, № 1, p. 29, DOI: 10.1038/s41699-020-00162-4.

Huang B. et al. "Alloy Engineering of Defect Properties in Semiconductors: Suppression of Deep Levels in Transition-Metal Dichalcogenides." In: Physical Review Letters, (Sep. 2015), Vol. 115, № 12, p. 126806, DOI: 10.1103/PhysRevLett.115.126806.

Yao J. et al. "Promoting the Performance of Layered-Material Photodetectors by Alloy Engineering." In: ACS Applied Materials & Interfaces, (May 2016), Vol. 8, № 20, pp. 1291512924, DOI: 10.1021/acsami.6b03691.

Zheng Z. et al. "Centimeter-Scale Deposition of Mo 0.5 W 0.5 Se 2 Alloy Film for HighPerformance Photodetectors on Versatile Substrates." In: ACS Applied Materials & Interfaces, (May 2017), Vol. 9, № 17, pp. 14920-14928, DOI: 10.1021/acsami.7b02166.

330. Hou K. et al. "A hydrothermally synthesized MoS 2(1-x) Se 2x alloy with deep-shallow level conversion for enhanced performance of photodetectors." In: Nanoscale Advances, (2020), Vol. 2, № 5, pp. 2185-2191, DOI: 10.1039/D0NA00202J.

331. Yao J. and Yang G. "2D Layered Material Alloys: Synthesis and Application in Electronic and Optoelectronic Devices." In: Advanced Science, (Jan. 2022), Vol. 9, № 1, DOI: 10.1002/advs.202103036.

332. Liu X. et al. "Monolayer W x Mo 1- x S 2 Grown by Atmospheric Pressure Chemical Vapor Deposition: Bandgap Engineering and Field Effect Transistors." In: Advanced Functional Materials, (Apr. 2017), Vol. 27, № 13, DOI: 10.1002/adfm.201606469.

333. Chen F. et al. "The synthesis and tunable optical properties of two-dimensional alloyed Mo1-W S2 monolayer with in-plane composition modulations (0<x<1)." In: Journal of Alloys and Compounds, (May 2019), Vol. 784, pp. 213-219, DOI: 10.1016/j.jallcom.2019.01.049.

334. Chen F. et al. "The fabrication and tunable optical properties of 2D transition metal dichalcogenides heterostructures by adjusting the thickness of Mo/W films." In: Applied Surface Science, (Mar. 2020), Vol. 505, p. 144192, DOI: 10.1016/j.apsusc.2019.144192.

335. Schulpen J.J.P.M. et al. "Controlling transition metal atomic ordering in two-dimensional Mo1-xWxS2 alloys." In: 2D Materials, (Apr. 2022), Vol. 9, № 2, p. 025016, DOI: 10.1088/2053-1583/ac54ef.

336. Lei Y. et al. "Low-temperature Synthesis of Heterostructures of Transition Metal Dichalcogenide Alloys (W x Mo 1- x S 2 ) and Graphene with Superior Catalytic Performance for Hydrogen Evolution." In: ACS Nano, (May 2017), Vol. 11, № 5, pp. 5103-5112, DOI: 10.1021/acsnano.7b02060.

337. Nguyen D.A. et al. "Synthesis of MoWS2 on Flexible Carbon-Based Electrodes for HighPerformance Hydrogen Evolution Reaction." In: ACS Applied Materials & Interfaces, (Oct. 2019), Vol. 11, № 41, pp. 37550-37558, DOI: 10.1021/acsami.9b10383.

338. Kwon K.C. et al. "Synthesis of atomically thin alloyed molybdenum-tungsten disulfides thin films as hole transport layers in organic light-emitting diodes." In: Applied Surface Science, (Mar. 2021), Vol. 541, p. 148529, DOI: 10.1016/j.apsusc.2020.148529.

339. Park J. et al. "Composition-Tunable Synthesis of Large-Scale Mo1- xWxS2 Alloys with Enhanced Photoluminescence." In: ACS Nano, (Jun. 2018), Vol. 12, № 6, pp. 6301-6309, DOI: 10.1021/acsnano.8b03408.

340. Windom B.C. et al. "A Raman Spectroscopic Study of MoS2 and MoO3: Applications to Tribological Systems." In: Tribology Letters, (Jun. 2011), Vol. 42, № 3, pp. 301-310, DOI: 10.1007/s 11249-011 -9774-x.

341. Wang T. et al. "Synthesis of MoS2 and MoO3 hierarchical nanostructures using a single-source molecular precursor." In: Powder Technology, (Feb. 2014), Vol. 253, pp. 347-351, DOI: 10.1016/j.powtec.2013.12.005.

342. Chen T.-Y. et al. "Comparative study on MoS2 and WS2 for electrocatalytic water splitting." In: International Journal of Hydrogen Energy, (Sep. 2013), Vol. 38, № 28, pp. 12302-12309, DOI: 10.1016/j.ijhydene.2013.07.021.

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

Chen Y. et al. "Composition-dependent Raman modes of Mo1-xWxS2 monolayer alloys." In: Nanoscale, (2014), Vol. 6, № 5, pp. 2833-2839, DOI: 10.1039/C3NR05630A.

Liu H. et al. "Vapor-phase growth and characterization of Mo1-xWxS2 (0 < x < 1) atomic layers on 2-inch sapphire substrates." In: Nanoscale, (2014), Vol. 6, № 1, pp. 624-629, DOI: 10.1039/C3NR04515C.

Tedstone A.A. et al. "Single-Source Precursor for Tungsten Dichalcogenide Thin Films: Mo1-xWxS2 (0 < x < 1) Alloys by Aerosol-Assisted Chemical Vapor Deposition." In: Chemistry of Materials, (May 2017), Vol. 29, № 9, pp. 3858-3862, DOI: 10.1021/acs.chemmater.6b05271.

Shu Y. et al. "Efficient electrochemical biosensing of hydrogen peroxide on bimetallic Mo1-xWxS2 nanoflowers." In: Journal of Colloid and Interface Science, (Apr. 2020), Vol. 566, pp. 248-256, DOI: 10.1016/j.jcis.2020.01.083.

Kotsakidis J.C. et al. "Oxidation of Monolayer WS2 in Ambient Is a Photoinduced Process." In: Nano Letters, (Aug. 2019), Vol. 19, № 8, pp. 5205-5215, DOI: 10.1021/acs.nanolett.9b01599.

Chen C.-J. et al. "Molybdenum Tungsten Disulfide with a Large Number of Sulfur Vacancies and Electronic Unoccupied States on Silicon Micropillars for Solar Hydrogen Evolution." In: ACS Applied Materials & Interfaces, (Dec. 2020), Vol. 12, № 49, pp. 54671-54682, DOI: 10.1021/acsami.0c15905.

Yin M. et al. "Facile wet-chemical synthesis and efficient photocatalytic hydrogen production of amorphous MoS3 sensitized by Erythrosin B." In: Materials Characterization, (Jun. 2017), Vol. 128, pp. 148-155, DOI: 10.1016/j.matchar.2017.03.033.

Quan T. et al. "Hollow MoS 3 Nanospheres as Electrode Material for 'Water-in-Salt' Li-Ion Batteries." In: Batteries & Supercaps, (Aug. 2020), Vol. 3, № 8, pp. 747-756, DOI: 10.1002/batt.202000042.

Li S.-L. et al. "Thickness Scaling Effect on Interfacial Barrier and Electrical Contact to Two-Dimensional MoS 2 Layers." In: ACS Nano, (Dec. 2014), Vol. 8, № 12, pp. 12836-12842, DOI: 10.1021/nn506138y.

Su J. et al. "Role of vacancies in tuning the electronic properties of Au-MoS2 contact." In: AIP Advances, (Jul. 2015), Vol. 5, № 7, DOI: 10.1063/1.4927853.

Moun M. et al. "Study of the photoresponse behavior of a high barrier Pd/MoS2 /Pd photodetector." In: Journal of Physics D: Applied Physics, (Aug. 2019), Vol. 52, № 32, p. 325102, DOI: 10.1088/1361-6463/ab1f59.

Lim Y.R. et al. "Atomic-Level Customization of 4 in. Transition Metal Dichalcogenide Multilayer Alloys for Industrial Applications." In: Advanced Materials, (Jul. 2019), Vol. 31, № 29, DOI: 10.1002/adma.201901405.

Zhao Q. et al. "The role of traps in the photocurrent generation mechanism in thin InSe photodetectors." In: Materials Horizons, (2020), Vol. 7, № 1, pp. 252-262, DOI: 10.1039/C9MH01020C.

Lee Y. et al. "Trap-induced photoresponse of solution-synthesized MoS 2." In: Nanoscale, (2016), Vol. 8, № 17, pp. 9193-9200, DOI: 10.1039/C6NR00654J.

Das S. et al. "Transistors based on two-dimensional materials for future integrated circuits." In: Nature Electronics, (2021), Vol. 4, № 11, pp. 786-799, DOI: 10.1038/s41928-021-00670-1.

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

Montblanch A.R.-P. et al. "Layered materials as a platform for quantum technologies." In: Nature Nanotechnology, (Jun. 2023), Vol. 18, № 6, pp. 555-571, DOI: 10.1038/s41565-023-01354-x.

Manzeli S. et al. "2D transition metal dichalcogenides" In: Nature Reviews Materials, (2017), Vol. 2, № 8, p. 17033, DOI: 10.1038/natrevmats.2017.33.

Sarkar A.S. and Stratakis E. "Recent Advances in 2D Metal Monochalcogenides." In: Advanced Science, (2020), Vol. 7, № 21, p. 2001655, DOI: 10.1002/advs.202001655.

Shinde P. and Rout C.S. "Advances in synthesis, properties and emerging applications of tin sulfides and its heterostructures." In: Materials Chemistry Frontiers, (2021), Vol. 5, № 2, pp. 516-556, DOI: 10.1039/D0QM00470G.

Gedi S. et al. "Fundamental aspects and comprehensive review on physical properties of chemically grown tin-based binary sulfides." In: Nanomaterials, (2021), Vol. 11, № 8, DOI: 10.3390/nano11081955.

Xu L. et al. "Large-Scale Growth and Field-Effect Transistors Electrical Engineering of Atomic-Layer SnS2." In: Small, (2019), Vol. 15, № 46, p. 1904116, DOI: 10.1002/smll.201904116.

Seo J. et al. "Two-Dimensional SnS2 Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries." In: Advanced Materials, (2008), Vol. 20, № 22, pp. 4269-4273, DOI: 10.1002/adma.200703122.

Xia J. et al. "Large-Scale Growth of Two-Dimensional SnS2 Crystals Driven by Screw Dislocations and Application to Photodetectors." In: Advanced Functional Materials, (2015), Vol. 25, № 27, pp. 4255-4261, DOI: 10.1002/adfm.201501495.

Koteeswara Reddy N. et al. "Review on Tin (II) Sulfide (SnS) Material: Synthesis, Properties, and Applications." In: Critical Reviews in Solid State and Materials Sciences, (Nov. 2015), Vol. 40, № 6, pp. 359-398, DOI: 10.1080/10408436.2015.1053601.

Zi Y. et al. "Nanoengineering of Tin Monosulfide (SnS)-Based Structures for Emerging Applications." In: Small Science, (2022), Vol. 2, № 3, p. 2100098, DOI: 10.1002/smsc.202100098.

Gomes L.C. and Carvalho A. "Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure." In: Physical Review B, (Aug. 2015), Vol. 92, № 8, p. 85406, DOI: 10.1103/PhysRevB.92.085406.

Burton L.A. et al. "Synthesis, Characterization, and Electronic Structure of Single-Crystal SnS, Sn2S3, and SnS2." In: Chemistry of Materials, (Dec. 2013), Vol. 25, № 24, pp. 4908-4916, DOI: 10.1021/cm403046m.

Ahn J.-H. et al. "Deterministic Two-Dimensional Polymorphism Growth of Hexagonal n-Type SnS2 and Orthorhombic p-Type SnS Crystals." In: Nano Letters, (Jun. 2015), Vol. 15, № 6, pp. 3703-3708, DOI: 10.1021/acs.nanolett.5b00079.

Lin D.Y. et al. "Enhanced Optical Response of SnS/SnS2 Layered Heterostructure." In: Sensors, (2023), Vol. 23, № 10, DOI: 10.3390/s23104976.

Shan Y. et al. "Applications of Tin Sulfide-Based Materials in Lithium-Ion Batteries and Sodium-Ion Batteries." In: Advanced Functional Materials, (2020), Vol. 30, № 23, p. 2001298, DOI: 10.1002/adfm.202001298.

373. Gao J. et al. "Out-of-Plane Homojunction Enabled High Performance SnS2 Lateral Phototransistor." In: Advanced Optical Materials, (2020), Vol. 8, № 9, p. 1901971, DOI: 10.1002/adom.201901971.

374. Cui Y. et al. "Wavelength-selectivity polarization dependence of optical absorption and photoresponse in SnS nanosheets." In: Nano Research, (2021), Vol. 14, № 7, pp. 2224-2230, DOI: 10.1007/s12274-020-3197-7.

375. Sarkar A.S. et al. "Liquid Phase Isolation of SnS Monolayers with Enhanced Optoelectronic Properties." In: Advanced Science, (2023), Vol. 10, № 6, p. 2201842, DOI: 10.1002/advs.202201842.

376. Brent J.R. et al. "Tin(II) Sulfide (SnS) Nanosheets by Liquid-Phase Exfoliation of Herzenbergite: IV-VI Main Group Two-Dimensional Atomic Crystals." In: Journal of the American Chemical Society, (Oct. 2015), Vol. 137, № 39, pp. 12689-12696, DOI: 10.1021/jacs.5b08236.

377. Sarkar A.S. et al. "Liquid exfoliation of electronic grade ultrathin tin(II) sulfide (SnS) with intriguing optical response." In: npj 2D Materials and Applications, (2020), Vol. 4, № 1, p. 1, DOI: 10.1038/s41699-019-0135-1.

378. Feng T. et al. "SnS2 Nanosheets for Er-Doped Fiber Lasers." In: ACS Applied Nano Materials, (Jan. 2020), Vol. 3, № 1, pp. 674-681, DOI: 10.1021/acsanm.9b02194.

379. Hayashi K. et al. "Vacancy-Assisted Selective Detection of Low-ppb Formaldehyde in Two-Dimensional Layered SnS2." In: ACS Applied Materials and Interfaces, (Mar. 2020), Vol. 12, № 10, pp. 12207-12214, DOI: 10.1021/acsami.9b16552.

380. Isik M. et al. "Investigation of band gap energy versus temperature for SnS2 thin films grown by RF-magnetron sputtering." In: Physica B: Condensed Matter, (2020), Vol. 591, p. 412264, DOI: 10.1016/j.physb.2020.412264.

381. Patel M. et al. "Wafer-scale production of vertical SnS multilayers for high-performing photoelectric devices." In: Nanoscale, (2017), Vol. 9, № 41, pp. 15804-15812, DOI: 10.1039/C7NR03370B.

382. Sousa M.G. et al. "Annealing of RF-magnetron sputtered SnS2 precursors as a new route for single phase SnS thin films." In: Journal of Alloys and Compounds, (2014), Vol. 592, pp. 80-85, DOI: 10.1016/j.jallcom.2013.12.200.

383. Patel M. et al. "Growth of Large-Area SnS Films with Oriented 2D SnS Layers for Energy-Efficient Broadband Optoelectronics." In: Advanced Functional Materials, (2018), Vol. 28, № 40, p. 1804737, DOI: 10.1002/adfm.201804737.

384. Kim J. et al. "Single Phase Formation of SnS Competing with SnS2 and Sn2S3 for Photovoltaic Applications: Optoelectronic Characteristics of Thin-Film Surfaces and Interfaces." In: Journal of Physical Chemistry C, (Feb. 2018), Vol. 122, № 6, pp. 3523-3532, DOI: 10.1021/acs.jpcc.8b00179.

385. Shi C. et al. "Influence of annealing on characteristics of tin disulfide thin films by vacuum thermal evaporation." In: Thin Solid Films, (2012), Vol. 520, № 15, pp. 4898-4901, DOI: 10.1016/j.tsf.2012.03.050.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Tian Z. et al. "Two-Dimensional SnS: A Phosphorene Analogue with Strong In-Plane Electronic Anisotropy." In: ACS Nano, (Feb. 2017), Vol. 11, № 2, pp. 2219-2226, DOI: 10.1021/acsnano.6b08704.

Xia J. et al. "Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses." In: Nanoscale, (2016), Vol. 8, № 4, pp. 2063-2070, DOI: 10.1039/C5NR07675G.

Li M. et al. "Revealing anisotropy and thickness dependence of Raman spectra for SnS flakes." In: RSC Advances, (2017), Vol. 7, № 77, pp. 48759-48765, DOI: 10.1039/C7RA09430B.

Haghighi M. et al. "A modeling study on utilizing SnS2 as the buffer layer of CZT(S, Se) solar cells." In: Solar Energy, (2018), Vol. 167, pp. 165-171, DOI: 10.1016/j.solener.2018.04.010.

Wang W. et al. "Layer-Dependent Optoelectronic Properties of 2D van der Waals SnS Grown by Pulsed Laser Deposition." In: Advanced Electronic Materials, (2020), Vol. 6, № 3, p. 1901020, DOI: 10.1002/aelm.201901020.

Price L.S. et al. "Atmospheric pressure chemical vapor deposition of tin sulfides (SnS, Sn2S3, and SnS2) on glass." In: Chemistry of Materials, (Jul. 1999), Vol. 11, № 7, pp. 1792-1799, DOI: 10.1021/cm990005z.

Zhang H. et al. "Formation mechanism of 2D SnS2 and SnS by chemical vapor deposition using SnCl4 and H2S." In: Journal of Materials Chemistry C, (2018), Vol. 6, № 23, pp. 6172-6178, DOI: 10.1039/C8TC01821A.

Avellaneda D. et al. "Thin films of tin sulfides: structure, composition and optoelectronic properties." In: Materials Research Express, (2019), Vol. 6, № 1, p. 16409, DOI: 10.1088/2053-1591/aae3a9.

Mahdi M.S. et al. "Control of Phase, Structural and Optical Properties of Tin Sulfide Nanostructured Thin Films Grown via Chemical Bath Deposition." In: Journal of Electronic Materials, (2017), Vol. 46, № 7, pp. 4227-4235, DOI: 10.1007/s11664-017-5373-4.

Tian H. et al. "Ultrafast broadband photodetector based on SnS synthesized by hydrothermal method." In: Applied Surface Science, (2019), Vol. 487, pp. 1043-1048, DOI: 10.1016/j.apsusc.2019.05.175.

Zhang Y.C. et al. "One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI)." In: Applied CatalysisB: Environmental, (2014), Vol. 144, pp. 730-738, DOI: 10.1016/j.apcatb.2013.08.006.

Bhorde A. et al. "Solvothermal synthesis of tin sulfide (SnS) nanorods and investigation of its field emission properties." In: Applied Physics A, (2018), Vol. 124, № 2, p. 133, DOI: 10.1007/s00339-017-1529-6.

Sinsermsuksakul P. et al. "Atomic Layer Deposition of Tin Monosulfide Thin Films." In: Advanced Energy Materials, (2011), Vol. 1, № 6, pp. 1116-1125, DOI: 10.1002/aenm.201100330.

Choi Y. et al. "Deposition of the tin sulfide thin films using ALD and a vacuum annealing process for tuning the phase transition." In: Journal of Alloys and Compounds, (2022), Vol. 896, p. 162806, DOI: 10.1016/j.jallcom.2021.162806.

400

401

402

403

404

405

406

407

408

409

410

411

412

413

Zhu M. et al. "Efficient and Anisotropic Second Harmonic Generation in Few-Layer SnS Film." In: Advanced Optical Materials, (2021), Vol. 9, № 22, p. 2101200, DOI: 10.1002/adom.202101200.

Mathews N.R. et al. "Tin Sulfide Thin Films by Pulse Electrodeposition: Structural, Morphological, and Optical Properties." In: Journal of The Electrochemical Society, (2010), Vol. 157, № 3, p. H337, DOI: 10.1149/1.3289318.

Mathews N.R. et al. "Effect of annealing on structural, optical and electrical properties of pulse electrodeposited tin sulfide films." In: Materials Science in Semiconductor Processing, (2013), Vol. 16, № 1, pp. 29-37, DOI: 10.1016/j.mssp.2012.07.003.

Polivtseva S. et al. "Tin sulfide films by spray pyrolysis technique using L-cysteine as a novel sulfur source." In: physica status solidi c, (2016), Vol. 13, № 1, pp. 18-23, DOI: 10.1002/pssc.201510098.

Parkin I.P. et al. "The first single source deposition of tin sulfide coatings on glass: aerosol-assisted chemical vapour deposition using [Sn(SCHCHS)]." In: Journal of Materials Chemistry, (2001), Vol. 11, № 5, pp. 1486-1490, DOI: 10.1039/B009923F.

Al-Shakban M. et al. "A facile method for the production of SnS thin films from melt reactions." In: Journal of Materials Science, (2016), Vol. 51, № 13, pp. 6166-6172, DOI: 10.1007/s10853-016-9906-7.

Kim J.H. et al. "Plasma-Induced Phase Transformation of SnS2 to SnS." In: Scientific Reports, (2018), Vol. 8, № 1, p. 10284, DOI: 10.1038/s41598-018-28323-y.

Voznyi A. et al. "Laser-induced SnS2-SnS phase transition and surface modification in SnS2thin films." In: Journal of Alloys and Compounds, (2016), Vol. 688, pp. 130-139, DOI: 10.1016/j.jallcom.2016.07.103.

Patel M. et al. "Facile Formation of Nanodisk-Shaped Orthorhombic SnS Layers from SnS2 Particles for Photoelectrocatalytic Hydrogen Production." In: ChemNanoMat, (2017), Vol. 3, № 8, pp. 591-600, DOI: 10.1002/cnma.201700118.

Li S. et al. "Realization of Large Scale, 2D van der Waals Heterojunction of SnS2/SnS by Reversible Sulfurization." In: Small, (2021), Vol. 17, № 37, p. 2101154, DOI: 10.1002/smll.202101154.

Bonse J. et al. "Laser-Induced Periodic Surface Structures— A Scientific Evergreen." In: IEEE Journal of Selected Topics in Quantum Electronics, (2017), Vol. 23, № 3, p. 1, DOI: 10.1109/JSTQE.2016.2614183.

Alagarasan D. et al. "Influence of nanostructured SnS thin films for visible light photo detection." In: Optical Materials, (2021), Vol. 121, p. 111489, DOI: 10.1016/j.optmat.2021.111489.

Banu S. et al. "Tin monosulfide (SnS) thin films grown by liquid-phase deposition." In: Solar Energy, (2017), Vol. 145, pp. 33-41, DOI: 10.1016/j.solener.2016.12.013.

Sucharitakul S. et al. "Screening limited switching performance of multilayer 2D semiconductor FETs: the case for SnS." In: Nanoscale, (2016), Vol. 8, № 45, pp. 19050-19057, DOI: 10.1039/C6NR07098A.

414

415

416

417

418

419

420

421

422

423

424

425

426

427

Ahmet I.Y. et al. "Evaluation of AA-CVD deposited phase pure polymorphs of SnS for thin films solar cells." In: RSC Advances, (2019), Vol. 9, № 26, pp. 14899-14909, DOI: 10.1039/C9RA01938C.

Guc M. et al. "Structural and vibrational properties of a- and n-SnS polymorphs for photovoltaic applications." In: Acta Materialia, (2020), Vol. 183, pp. 1-10, DOI: 10.1016/j.actamat.2019.11.016.

Mutlu Z. et al. "Phase Engineering of 2D Tin Sulfides." In: Small, (2016), Vol. 12, № 22, pp. 2998-3004, DOI: 10.1002/smll.201600559.

Chao J. et al. "Visible-light-driven photocatalytic and photoelectrochemical properties of porous SnSx(x = 1,2) architectures." In: CrystEngComm, (2012), Vol. 14, № 9, pp. 3163-3168, DOI: 10.1039/C2CE06586J.

Raadik T. et al. "Temperature-dependent photoreflectance of SnS crystals." In: Journal of Physics and Chemistry of Solids, (2013), Vol. 74, № 12, pp. 1683-1685, DOI: 10.1016/j.jpcs.2013.06.002.

Zhao L. et al. "In situ growth of SnS absorbing layer by reactive sputtering for thin film solar cells." In: RSC Advances, (2016), Vol. 6, № 5, pp. 4108-4115, DOI: 10.1039/C5RA24144H.

Jones L.A.H. et al. "Sn 5s2 lone pairs and the electronic structure of tin sulphides: A photoreflectance, high-energy photoemission, and theoretical investigation." In: Physical Review Materials, (Jul. 2020), Vol. 4, № 7, p. 74602, DOI: 10.1103/PhysRevMaterials.4.074602.

Krishnamurthi V. et al. "Liquid-Metal Synthesized Ultrathin SnS Layers for High-Performance Broadband Photodetectors." In: Advanced Materials, (2020), Vol. 32, № 45, p. 2004247, DOI: 10.1002/adma.202004247.

Barone G. et al. "Deposition of tin sulfide thin films from tin(iv) thiolate precursors." In: Journal of Materials Chemistry, (2001), Vol. 11, № 2, pp. 464-468, DOI: 10.1039/B005888M.

Kawano Y. et al. "Impact of growth temperature on the properties of SnS film prepared by thermal evaporation and its photovoltaic performance." In: Current Applied Physics, (2015), Vol. 15, № 8, pp. 897-901, DOI: 10.1016/j.cap.2015.03.026.

Ballipinar F. and Rastogi A.C. "Tin sulfide (SnS) semiconductor photo-absorber thin films for solar cells by vapor phase sulfurization of Sn metallic layers using organic sulfur source." In: Journal of Alloys and Compounds, (2017), Vol. 728, pp. 179-188, DOI: 10.1016/j.jallcom.2017.08.295.

Barman B. et al. "Evaluation of semiconducting p-type tin sulfide thin films for photodetector applications." In: Superlattices and Microstructures, (2019), Vol. 133, p. 106215, DOI: 10.1016/j.spmi.2019.106215.

Alagarasan D. et al. "Effect of annealing temperature on SnS thin films for photodetector applications." In: Journal of Materials Science: Materials in Electronics, (2022), Vol. 33, № 8, pp. 4794-4805, DOI: 10.1007/s10854-021-07668-7.

Eifert B. et al. "Raman studies of the intermediate tin-oxide phase." In: Physical Review Materials, (Jun. 2017), Vol. 1, № 1, p. 14602, DOI: 10.1103/PhysRevMaterials.1.014602.

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Tian Z. et al. "Solar-driven capacity enhancement of aqueous redox batteries with a vertically oriented tin disulfide array as both the photo-cathode and battery-anode." In: Chemical Communications, (2019), Vol. 55, № 9, pp. 1291-1294, DOI: 10.1039/C8CC08684B.

Felton J. et al. "Hydrogen-Induced Conversion of SnS2 into SnS or Sn: A Route to Create SnS2/SnS Heterostructures." In: Small, (2022), Vol. 18, № 33, p. 2202661, DOI: 10.1002/smll.202202661.

Yue G.H. et al. "Characterization and optical properties of the single crystalline SnS nanowire arrays." In: Nanoscale Research Letters, (2009), Vol. 4, № 4, pp. 359-363, DOI: 10.1007/s11671-009-9253-6.

Wang F. et al. "How to characterize figures of merit of two-dimensional photodetectors." In: Nature Communications, (2023), Vol. 14, № 1, p. 2224, DOI: 10.1038/s41467-023-37635-1.

Zheng D. et al. "High-detectivity tin disulfide nanowire photodetectors with manipulation of localized ferroelectric polarization field." In: Nanophotonics, (2021), Vol. 10, № 18, pp. 46374644, DOI: 10.1515/nanoph-2021-0480.

Shooshtari L. et al. "Ultrafast and stable planar photodetector based on SnS2 nanosheets/perovskite structure." In: Scientific Reports, (2021), Vol. 11, № 1, p. 19353, DOI: 10.1038/s41598-021-98788-x.

Chen Y. and Zhang M. "Large-area growth of SnS2 nanosheets by chemical vapor deposition for high-performance photodetectors." In: RSC Advances, (2021), Vol. 11, № 48, pp. 29960-29964, DOI: 10.1039/D1RA05779K.

Sheng C. et al. "Phase-Controllable Growth of Air-Stable SnS Nanostructures for HighPerformance Photodetectors with Ultralow Dark Current." In: ACS Applied Materials & Interfaces, (Mar. 2023), Vol. 15, № 11, pp. 14704-14714, DOI: 10.1021/acsami.2c21958.

Ghosh B. et al. "Fabrication of vacuum-evaporated SnS/CdS heterojunction for PV applications." In: Solar Energy Materials and Solar Cells, (2008), Vol. 92, № 9, pp. 1099-1104, DOI: 10.1016/j.solmat.2008.03.016.

Huang Y. et al. "Tin Disulfide—An Emerging Layered Metal Dichalcogenide Semiconductor: Materials Properties and Device Characteristics." In: ACSNano, (Oct. 2014), Vol. 8, № 10, pp. 10743-10755, DOI: 10.1021/nn504481r.

Reddy T.S. and Kumar M.C.S. "Co-evaporated SnS thin films for visible light photodetector applications." In: RSC Advances, (2016), Vol. 6, № 98, pp. 95680-95692, DOI: 10.1039/C6RA20129F.

Yang Y.-B. et al. "Tuning the Phase and Optical Properties of Ultrathin SnSx Films." In: The Journal of Physical Chemistry C, (Jun. 2016), Vol. 120, № 24, pp. 13199-13214, DOI: 10.1021/acs.jpcc.6b03529.

Su G. et al. "Chemical Vapor Deposition of Thin Crystals of Layered Semiconductor SnS2 for Fast Photodetection Application." In: Nano Letters, (Jan. 2015), Vol. 15, № 1, pp. 506-513, DOI: 10.1021/nl503857r.

Indrisiunas S. et al. "New opportunities for custom-shape patterning using polarization control in confocal laser beam interference setup." In: Journal of Laser Applications, (Feb. 2017), Vol. 29, № 1, DOI: 10.2351/1.4976679.

442. Bonse J. and Gräf S. "Maxwell Meets Marangoni—A Review of Theories on Laser-Induced Periodic Surface Structures." In: Laser & Photonics Reviews, (Oct. 2020), Vol. 14, № 10, DOI: 10.1002/lpor.202000215.

443. Durbach S. et al. "Laser-driven self-organized evolution of 1D- and 2D-Nanostructures from metal thin-films on silicon: Influence of alloying and oxidation." In: Applied Surface Science, (Jun. 2023), Vol. 622, p. 156927, DOI: 10.1016/j.apsusc.2023.156927.

444. Atomic force microscopy [Electronic resource] URL: https://en.wikipedia.Org/wiki/Atomic_force_microscopy#/media/File:Atomic_force_microscope

block diagram.svg (Date Accessed 27.09.2024).

445. Yao W. et al. "Synthesis of 2D MoS 2(i-x) Se 2x semiconductor alloy by chemical vapor deposition." In: RSC Advances, (2020), Vol. 10, № 69, pp. 42172-42177, DOI: 10.1039/D0RA07776C.

446. Yi M. and Shen Z. "A review on mechanical exfoliation for the scalable production of graphene." In: Journal of Materials Chemistry A, (2015), Vol. 3, № 22, pp. 11700-11715, DOI: 10.1039/C5TA00252D.

447. DB Group @ MIT ChemE. Interactions of Nanomaterials with Liquid Media [Electronic resource] URL: https://dbgroup.mit.edu/nanomaterials-liquid-media (Date Accessed 27.09.2024).

448. Braga J.P. et al. "Electrical Characterization of Thin-Film Transistors Based on Solution-Processed Metal Oxides." In: Design, Simulation and Construction of Field Effect Transistors, (Jul. 2018), DOI: 10.5772/intechopen.78221.

449. Lasagni A.F. et al. "Design of Perfectly Ordered Periodic Structures on Polymers Using Direct Laser Interference Patterning." In: Wrinkled Polymer Surfaces, (2019), pp. 157-180, DOI: 10.1007/978-3-030-05123-5_7.

450. Understanding Waveplates and Retarders [Electronic resource] URL: https://www.edmundoptics.com/knowledge-center/application-notes/optics/understanding-waveplates/ (Date Accessed 27.09.2024).

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.