Исследование плазмонного усиления ультрафиолетовой люминесценции полупроводниковых нанокристаллов оксида цинка в присутствии наночастиц алюминия, синтезированных газофазными методами / Investigation of plasmon-enhanced ultraviolet luminescence of zinc oxide semiconductor nanocrystals in the presence of aluminum nanoparticles synthesized by gas-phase methods тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Мало Дана

  • Мало Дана
  • кандидат науккандидат наук
  • 2024, ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)»
  • Специальность ВАК РФ00.00.00
  • Количество страниц 112
Мало Дана. Исследование плазмонного усиления ультрафиолетовой люминесценции полупроводниковых нанокристаллов оксида цинка в присутствии наночастиц алюминия, синтезированных газофазными методами / Investigation of plasmon-enhanced ultraviolet luminescence of zinc oxide semiconductor nanocrystals in the presence of aluminum nanoparticles synthesized by gas-phase methods: дис. кандидат наук: 00.00.00 - Другие cпециальности. ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)». 2024. 112 с.

Оглавление диссертации кандидат наук Мало Дана

Contents

Acknowledgments

Abstract

List of Abbreviations and Definitions

Introduction

Chapter 1 Introduction to Metallic Enhanced Photoluminescence

1.1 Localized Surface Plasmon Resonance

1.2 Metallic Nanoparticles

1.3 Optical Properties of Metallic Nanoparticles

1.3.1 Spectrophotometry Measurements

1.3.2 Plasmon Resonance

1.4 Electrical Properties of Surface Layers

1.5 Optical Properties of Aluminum Nanoparticles

1.6 Plasmon-enhanced Nanostructures

1.7 Nanoparticles Synthesis

1.7.1 Solid-phase Synthesis

1.7.2 Liquid-phase Synthesis

1.7.3 Gas-phase Synthesis

1.8 Nanostructures Formation

1.9 Ultrasonic Dispersion of Suspensions

1.10 Sedimentation of Particles in Centrifugal Fields

1.11 Stabilization Methods of Colloidal Solutions

1.12 Absorption Modeling Methods

1.13 Theory for Numerical Modeling

1.14 Conclusion to the Chapter

Chapter 2 Materials and Methods

2.1 Characterization Methods

2.1.1 Scanning Electron Microscopy

2.1.2 Transmission Electron Microscopy

2.1.3 Dynamic Light Scattering

2.2 Nanoparticles Synthesis in Gas-phase

2.2.1 Electrical Explosion of Wires Method

2.2.2 Spark Discharge Method

2.3 Preparation of Colloidal Solutions

2.3.1 Zinc Oxide NPs Colloids

2.3.2 Aluminum NPs Colloids

2.4 Film Fabrication

2.4.1 Microplotter Printing

2.4.2 Dry Aerosol Printing

2.5 Measurement Procedure

2.6 Numerical Modeling

2.6.1 Photoluminescence Intensity Enhancement Factor Versus Excitation Wavelength and Metal-Emitter Spacing

2.6.2 Size Effect of Aluminum Nanoparticles on Photoluminescence Intensity Enhancement Factor

2.7 Conclusion to the Chapter

Chapter 3 Plasmon-enhanced Ultraviolet Luminescence of Zinc Oxide Nanocrystals in the Presence of Aluminum Nanoparticles, Synthesized by Electrical Explosion of Wires, in Colloids and Film Nanostructures Fabricated by Microplotter Printing

3.1 Preparation of Stable Dispersions of Aluminum Nanoparticles

3.2 Experimental Section

3.3 Characterization and Enhancement Results

3.3.1 Luminescence in Colloids

3.3.2 Luminescence in Film Nanostructures

3.4 Conclusion to the Chapter

Chapter 4 Spark Discharge Aluminum Nanostructures for Ultraviolet Photoluminescence Enhancement of Zinc Oxide Nanocrystals

4.1 Ultraviolet Photoluminescence Enhancement in Colloids

4.1.1 Stability of Spark Discharge Aluminum Nanoparticles Colloids

4.1.2 Experimental Section

4.1.3 Characterization and Enhancement Results

4.2 The Particle Size Influence of Aluminum Nanostructures on Plasmon-Enhanced Ultraviolet Photoluminescence of Zinc Oxide Nanocrystals

4.2.1 Experimental Section

4.2.2 Characterization and Enhancement Results

4.3 Optical Density Influence of Aluminum Nanostructures on Plasmon-Enhanced Ultraviolet Photoluminescence of Zinc Oxide Nanocrystals

4.3.1 Experimental Section

4.3.2 Characterization and Enhancement Results

4.4 Conclusion to the Chapter

Chapter 5 Conclusions

List of Publications

References

Введение диссертации (часть автореферата) на тему «Исследование плазмонного усиления ультрафиолетовой люминесценции полупроводниковых нанокристаллов оксида цинка в присутствии наночастиц алюминия, синтезированных газофазными методами / Investigation of plasmon-enhanced ultraviolet luminescence of zinc oxide semiconductor nanocrystals in the presence of aluminum nanoparticles synthesized by gas-phase methods»

Introduction

Relevance of the Research

Nowadays, the study of nanoplasmonics, particularly focused on the unique behaviors of metal nanoparticles exhibiting localized surface plasmon resonance (LSPR), represents a fertile area of inquiry within the scientific community [1, 2]. This resonance leads to observable light absorption and scattering at certain wavelengths due to the synchronized oscillations of electrons in the metal's conduction band. The practical applications of this phenomenon span various domains, including medical research, for instance in the development of new pharmaceuticals, as well as the engineering of chemical and biosensors, enhancement of solar energy conversion efficiency, advancement of fluorescent lighting technology, and the design of optoelectronic components [3-6].

A variety of studies discussed the plasmonic properties of metal nanoparticles such as Au, Ag, Pt, and Al in various ranges of spectrum (near infrared, visible, and ultraviolet). Since the metal has its own unique properties and its own resonance extinction wavelength, that can be affected by several parameters, such as the dimensional characteristics, shape, morphology, and agglomeration of NPs [7]. For example, the study [8] demonstrated that the nanostructures based on Al/TiO2 films exhibited enhanced photocatalytic activity, where the reaction rate on nanostructures containing aluminum boosted up to 7-fold compared to films of pure TiO2.

Plasmonic nanostructures in UV range of spectrum and their properties have recently received widespread attention in terms of how to create and produce them, as well as how to develop technologies and their parameters related to the synthesis, production, and printing of nanoparticles' inks, especially those based on Al NPs [8-10].

Aluminum nanoparticles have attracted interest as a promising metal with many benefits, such as low cost, strong absorption in the mid-near ultraviolet range, high plentiful in nature, high stability due to the existence of a protective natural oxide shell, and easy insertion into manufacturing processes. The position of the absorption peak for Al NPs ranges from 200 to 500 nm depending on the morphology, oxide shell thickness, and size of particles [9-11].

In a semiconductor phosphor system, fluorescence amplification is the process to boost the fluorescence signal that a phosphor material emits by interacting with a nanosized metal. In order to enable the metal to absorb the photons released by the phosphor, the absorption spectra of the metal and the semiconductor-phosphor are carefully designed to intersect [4].

Unique properties of zinc oxide nanoparticles have made them beneficial for a wide range of industries, such as in photocatalysis for water purification, as sensors for gas and chemical detection, in biomedical applications for drug delivery and tissue engineering, and in optoelectronics for solar cells and LEDs due to their semiconducting properties [12, 13]. Zinc oxide nanoparticles have an absorption edge of about 360 nm and a large exciton binding energy of 60 meV, enabling efficient excitonic emission at a wavelength of 380 nm [13]. Semiconductor ZnO nanocrystals are the most prevalent material for investigating the phenomena of metal-enhanced photoluminescence (PL) in the ultraviolet range near plasmonic structures based on noble metals [14] and aluminum [8, 15]. Several scientific papers have studied the role of Al nanoparticles in enhancing the UV photoluminescence in film nanostructures, whereas in colloids they do not exist. When ZnO NPs were added to an Al array created by electron beam lithography, the PL enhancement factor was only 1.5 times [10]. In another study [16], the scientists achieved 9.7-fold PL enhancement of the ZnO on an oval Al NPs array compared to bare ZnO NPs. A different research team observed that the presence of periodic arrays of aluminum nanoparticles (Al NPs) with a diameter of 70 nm and a spacing of 195 nm led to an enhancement in the zinc oxide (ZnO) band-edge luminescence by a factor of 2.4 [17].

Aluminum nanoparticles (Al NPs) can be produced via various chemical and physical methodologies [18]. Every technique presents distinct benefits based on the targeted characteristics, dimension, and shape of Al NPs for particular uses in the field of photonics. Developing aluminum-based plasmonic nanostructures that possess the essential optical characteristics is a complex challenge and requires being aware of the parameters during fabrication. Numerous techniques of film creation, including molecular beam epitaxy [19], electron beam lithography [16], solvent evaporation [20], electrostatic deposition [21], etc., have been reported for photoluminescence

enhancement in nanostructures. The most prominent of them are those that rely on colloids due to their many advantages, such as tunable properties, stability, enhanced reactivity, scalability, versatility, low cost, and compatibility with many materials. Preparation of Al colloids with stable concentrations without agglomeration is a challenge, especially due to their rapid susceptibility to metal nanoparticle transformation into aluminum hydroxide in water-based solutions [22]. Thus, the synthesis of aluminum nanoparticles and fabrication of nanostructures based on them by simple and reproducible synthesis methods and printing techniques, studying their optical properties, and discovering their role in enhancing the photoluminescence of semiconductor materials in the ultraviolet range of the spectrum in colloids and film nanostructures with different dimensional particles are extremely relevant for the development of nanophotonics.

Aim and Objectives of the Dissertation

The aim of the dissertation is to investigate the effect of particle's size, concentration, and synthesis methods of aluminum nanoparticles and nanostructure formation methods on photoluminescence of zinc oxide in films and colloid solutions. In this research aluminum nanoparticles synthesized by two gas-phase methods (an electrical explosion of wires and a spark discharge) were used. To achieve this goal, the following tasks were solved:

1. Preparation of stable colloids of plasmonic aluminum nanoparticles synthesized by gas-phase methods with different concentrations and sizes and creation of mixtures with zinc oxide nanocrystals.

2. Investigation of the concentration effect of plasmonic aluminum nanoparticle in colloid mixtures on plasmon induced enhancement of zinc oxide photoluminescence in the ultraviolet region.

3. Determination of the optimal procedure and design of film layers based on aluminum and zinc oxide nanoparticles by microplotter printing to obtain the maximum amplification of zinc oxide photoluminescence in the ultraviolet region.

4. Investigation of the size effect of aluminum nanoparticles produced by gas-phase methods and deposited on a quartz substrate by dry aerosol and microplotter

printing techniques on the luminescent properties of zinc oxide in the ultraviolet region.

5. Examination of the relationship between plasmon-enhanced ultraviolet photoluminescence of zinc oxide nanocrystals and the optical density of aluminum film nanostructures formed by dry aerosol printing.

Scientific Novelty, Theoretical and Practical Significance

The scientific novelty of the dissertation consists in obtaining new scientific results

in metal-enhanced luminescence in ultraviolet range in colloid solutions and

nanostructures based on aluminum nanoparticles and ZnO as a phosphor, specifically:

1. For the first time plasmon-enhanced photoluminescence in ultraviolet range in the presence of aluminum nanoparticles in colloids was observed. There was shown the increase of photoluminescence of ZnO with the peak of emission at 377 nm with the growth of Al nanoparticles concentration from 0.001 to 0.057 g/L and the increase of particle size from 22 to 55 nm.

2. There was established the nature of stable enhancement of photoluminescence in colloid mixtures of ZnO and Al nanoparticle, that is the closed optimal distance between metal and semiconductor nanoparticles, which is ensured by Coulomb attraction of opposite charged surfaces of nanoparticles.

3. For the first time it was established that colloid mixtures of metal nanoparticles and phosphor used as inks for microplotter printing support the maximum PL intensity in luminescence nanostructures by comparison to sequential deposition of layers from colloids of pure materials. The ultraviolet emitting luminescence nanostructures with different layers' configuration were prepared. The increase of PL enhancement factor up to 30% while using the colloid mixtures was demonstrated.

4. It was found that aluminum nanoparticles with the size of 55 nm give the greatest plasmon-enhanced PL intensity of ZnO nanocrystals not only in colloids but also in film nanostructures. The obtained experimental results were confirmed by Mie simulations of PL amplification factor for polydisperse nanoparticles with different average sizes.

5. For the first time there was established the important role of optical density of film Al nanostructures in plasmon-enhanced luminescence in ultraviolet range. To get the maximum PL amplification the optical density of aluminum nanostructures has to be in the range from 0.12 to 0.15 at the excitation wavelength.

Practical significance of the dissertation results is the following:

1. The results of studies of plasmon enhanced luminescence of ZnO in the presence of aluminum nanoparticles in colloid mixtures and found dependences of the amplification factor on the size and concentration of aluminum nanoparticles will be applied for development of inks for microplotter and aerosol printing, also for the development of sensor devices and novel ultraviolet light sources.

2. The results of the research on the effects of layer configuration on luminescence enhancement in films will be in demand for technologies producing plasmon enhanced nanostructures for sensing applications including analysis of small concentrations of chemical compounds in the composition of objects by Raman spectroscopy and biotesting.

3. Evidence-based scientific foundations of the influence of size and optical density of plasmon nanostructures based on aluminum nanoparticles will be widely used for the manufacturing of optoelectronic devices, such as improving efficiency of solar cells and UV diodes.

Statements to Be Defended

1. There was established the growth of photoluminescence (PL) intensity of ZnO nanocrystals in ultraviolet (UV) range in colloid mixtures with plasmon polydisperse aluminum nanoparticles (NPs) due to an increase in the concentrations of Al NPs from 0.001 to 0.057 g/L. The maximum PL enhancement factor of 3-fold in colloids were achieved with usage of Al NPs with mean particle size 54.6 ± 25.1 nm.

2. Plasmon-enhanced UV luminescence of ZnO NPs in colloids is ensured by the formation of Al-ZnO complexes due to Coulomb attraction between semiconductor

crystals and metal NPs, since the surfaces of Al and ZnO NPs in colloids have opposite charge signs according to zeta potential measurements.

3. The preparation procedure of film plasmon nanostructures plays a crucial role in the enhancement factor of luminescence. The greatest PL enhancement factor of 2.4-fold was achieved using a colloidal mixture of metal and semiconductor nanoparticles as inks instead of sequential application of pure Al and ZnO colloids for film fabrication by microplotter printing. Whereas in the case of sequential deposition of Al nanoparticles on the ZnO film and vice versa, the resulting nanostructures have the same plasmon luminescence amplification factor by 1.8 times.

4. The size of aluminum particles affects the plasmon amplification effect. In particular, the intensity of ultraviolet photoluminescence of ZnO films in the presence of Al NPs increases by 50% with the growth of the average size of Al NPs from 9.5 to 54.6 nm, that is confirmed by theoretical Mie calculations.

5. The optimal optical density of aluminum film nanostructures with an average particle size of 14.3 ± 6.6 nm has to be from 0.12 to 0.15 to obtain the maximum plasmon enhancement factor for ZnO nanocrystals luminescence up to 1.5 times in the ultraviolet range.

Personal contribution of the applicant. All experimental investigations, analysis

of the obtained results presented in the dissertation were made by the applicant in person

or in collaboration with her direct participation, under the supervising of the Prof. Victor

Vladimirovich Ivanov.

The Validity and Reliability of Results and Conclusions

The conclusions of the dissertation are substantiated and confirmed by:

• carrying out detailed calculations and comparing the calculation results with experimental data;

• comparing the research results with the data from foreign and domestic experience, namely with published articles and patents of scientific and technological groups,

as well as when discussing the results and comparing them with similar works at international and All-Russian scientific conferences;

• expert assessments of specialists during the publication of results in scientific journals (during the review of published articles);

• publications of research results in peer-reviewed scientific publications, as well as citations of published articles.

A high degree of measurement accuracy and objectivity of the evaluation of the results of the study is ensured by:

• using modern data collection techniques and equipment with sufficient accuracy of measurements of the parameters of the studied objects;

• reproducibility of measurement results;

• direct participation of the applicant in obtaining initial data and scientific experiments, therefore, full control and understanding of the research process. The provisions and conclusions formulated in the dissertation have received

qualified approbation at international and Russian scientific conferences and seminars.

Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Заключение диссертации по теме «Другие cпециальности», Мало Дана

Chapter 5 Conclusions

In this research, the ultraviolet photoluminescence enhancement of semiconductor phosphors such as zinc oxide nanocrystals in colloid solutions for the first time and in film nanostructure in the presence of plasmonic aluminum nanoparticles with a metal core and an aluminum oxide shell synthesized by two methods of production: an electrical explosion of wires and spark discharge was studied at excitation wavelengths of 300 nm and 325 nm.

The main outcomes of the research can be summarized as follows:

1. Plasmon-enhanced UV photoluminescence of ZnO NPs (with a mean particle size of 26.6 ± 7.4 nm) in colloids is ensured by the formation of Al-ZnO complexes due to Coulomb attraction between semiconductor crystals and metal NPs, since the surfaces of Al and ZnO NPs in colloids have opposite charge signs according to zeta potential measurements.

2. The formation of Al-ZnO agglomerates 130-450 nm in size using Al NPs (with an average particle size of 54.6 ± 25.1 nm) synthesized by an electrical explosion of wires, which provided the enhancement of UV photoluminescence in solutions up to 2.9- and 3.0-fold at excitation wavelengths of 300 nm and 325 nm, respectively.

3. It was found that an increase in the photoluminescence intensity of ZnO NPs from 130 to 300% at an emission wavelength of 377 nm was observed with an increase in the concentration of Al NPs from 0.00285 to 0.057 g/L with several ZnO NPs concentrations from 0.022 to 0.44 g/L.

4. The preparation procedure of film plasmon nanostructures with different constructions of layers plays a crucial role in the enhancement factor of luminescence. Using a colloidal mixture of metal and semiconductor fluorophore nanoparticles as inks instead of sequential application of pure Al (0.18 g/L, a mean particle size of 54.6 ± 25.1 nm) and ZnO (2.2 g/L, a mean particle size of 26.6 ± 7.4 nm) colloids allows us to achieve the greatest enhancement factor of 2.4-fold in plasmon nanostructures, while the sandwich-like structure gave only 1.1 times.

Whereas plasmon structures (Al/ZnO) and (ZnO/Al) have almost the same amplification, about 1.8 times.

5. Photoluminescence enhancement factor in the UV region at excitation wavelengths of 300 nm and 325 nm was reached up to 2.4-fold of ZnO (0.022 and 0.22 g/L) at an emission wavelength of 377 nm in colloidal mixtures with plasmonic Al NPs synthesized by spark discharge method with an average particle size of 22.3 ± 7.7 nm and various concentrations from 0.001 to 0.015 g/L.

6. In the presence of Al film with several mean particle sizes deposited on quartz substrate, it has been found that metal-enhanced photoluminescence of ZnO film in the UV region increased at wavelength 377 nm by 50% with the growth of Al NPs size from 10 to 55 nm at an excitation wavelength of 325 nm, which is in good comparability with numerical modeling that confirms the growth in photoluminescence enhancement factor up to 5-fold with the increase of Al particle size from 15 to 55 nm at an emission wavelength of 377 nm, where distribution width w = 0.4 and quantum yield Q0 = 1.

7. It has been established that the optical density of aluminum nanostructures affects the ultraviolet photoluminescence of zinc oxide at an emission wavelength of 377 nm, and its optimal value is from 0.12 to 0.15 to obtain the maximum plasmon gain coefficient up to 1.5 times at an excitation wavelength of 300 nm.

8. The obtained results provide important knowledge about plasmon enhancement of the electromagnetic field in the ultraviolet range in the presence of aluminum nanoparticles, and they are necessary for the development of technologies for the manufacture of thin-film structures based on aluminum nanoparticles, which can be used in many industrial and medical applications.

Список литературы диссертационного исследования кандидат наук Мало Дана, 2024 год

List of Publications

Publications in peer-reviewed scientific journals that meet the Regulations on the Award of Academic Degrees at MIPT:

1) A.A. Lizunova, D. Malo, D.V. Guzatov,I.S. Vlasov, E.I. Kameneva, I.A. Shuklov, M.N. Urazov, A.A. Ramanenka, V.V. Ivanov. Plasmon-Enhanced Ultraviolet Luminescence in Colloid Solutions and Nanostructures Based on Aluminum and ZnO Nanoparticles. Nanomaterials. 12 (22) (2022) 4051. DOI: 10.3390/nano12224051.

2) D. Malo, A.A. Lizunova, M. Nouraldeen, V.I. Borisov, V.V. Ivanov. Aluminum Nanostructures Produced by Aerosol Dry Printing for Ultraviolet Photoluminescence Enhancement. St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 15 (3.3) (2022) 276-280. DOI: 10.18721/JPM.153.354.

3) D. Malo, A.A. Lizunova, O.V. Vershinina, E.M. Filalova, V.V. Ivanov. Ultraviolet Photoluminescence Enhancement of Zinc Oxide Nanocrystals in Colloidal Mixtures with Spark Discharge Aluminum Nanoparticles. St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 16 (3.2) (2023) 261266. DOI: 10.18721/ JPM.163.245.

Abstracts of conference papers:

1) D. Malo, A.A. Lizunova, V.V. Ivanov. Investigation of Luminescence Enhancement in Mixture Solutions of Zinc Oxide and Aluminum Nanoparticles. 64th All-Russian Scientific Conference of MIPT 2021. Moscow, Russia. 2021. P. 171-172.

2) D. Malo, A.A. Lizunova, M. Nouraldeen, V.I. Borisov, V.V. Ivanov. Aluminum Nanostructures Produced by Aerosol Dry Printing for Ultraviolet Photoluminescence Enhancement. 9th International School and Conference on Optoelectronics, Photonics, Engineering and Nanostructures SPBOPEN 2022. Saint Petersburg, Russia. 2022. P. 322-323.

3) D. Malo, A.A. Lizunova, E.I. Kameneva, V.V. Ivanov. Investigation of Ultraviolet Photoluminescence Enhancement of Zinc Oxide in Plasmonic Structures Based on Aluminum Nanoparticles Obtained by Microplotter Printing. 65th All-Russian Scientific Conference of MIPT 2023. Moscow, Russia. 2023. P. 159-160.

4) D. Malo, A.A. Lizunova, O.V. Vershinina, E.M. Filalova, V.V. Ivanov. "Ultraviolet Photoluminescence Enhancement of Zinc Oxide Nanocrystals in Colloidal Mixtures with Spark Discharge Aluminum Nanoparticles. 10th International School and Conference on Optoelectronics, Photonics, Engineering and Nanostructures SPBOPEN 2023. Saint Petersburg, Russia. 2023. P. 403-404.

5) D. Malo, A.A. Lizunova, V.V. Ivanov. Ultraviolet Photoluminescence Enhancement of Zinc Oxide Nanocrystals Based on Aluminum Nanoparticles. 66th All-Russian Scientific Conference of MIPT 2024. Moscow, Russia. 2024. P. 138139.

6) D. Malo, A.A. Lizunova, A.K. Novoselov, A.F. Sanatulina, M.F. Kerechanina, O.V. Vershinina, E.I. Kameneva, M.N. Urazov, V.V. Ivanov. Influence of Optical Density of Aluminum Nanostructures on Plasmon Enhancement of Ultraviolet Photoluminescence of Zinc Oxide Nanocrystals. All-Russian Scientific School-Seminar MetaNanoBio 2024. Saratov, Russia. 2024. P. 115-118.

References

1. Klimov V. Surface plasmons // NanoplasmonicsJenny Stanford Publishing, 2014. - C. 79-106.

2. Introduction to nanophotonics. / Gaponenko S. V.: Cambridge University Press, 2010.

3. Yu H., Peng Y., Yang Y., Li Z.-Y. Plasmon-enhanced light-matter interactions and applications // npj Computational Materials. - 2019. - T. 5, № 1. - C. 1-14.

4. Badshah M. A., Koh N. Y., Zia A. W., Abbas N., Zahra Z., Saleem M. W. Recent developments in plasmonic nanostructures for metal enhanced fluorescence-based biosensing // Nanomaterials. - 2020. - T. 10, № 9. - C. 1749.

5. Applied nanophotonics. / Gaponenko S. V., Demir H. V.: Cambridge University Press, 2018.

6. Khan I., Saeed K., Khan I. Nanoparticles: Properties, applications and toxicities // Arabian journal of chemistry. - 2019. - T. 12, № 7. - C. 908-931.

7. Mody V. V., Siwale R., Singh A., Mody H. R. Introduction to metallic nanoparticles // Journal of Pharmacy and Bioallied Sciences. - 2010. - T. 2, № 4. - C. 282-289.

8. Chen Y., Xin X., Zhang N., Xu Y. J. Aluminum-Based Plasmonic Photocatalysis // Particle & Particle Systems Characterization. - 2017. - T. 34, № 8. - C. 1600357.

9. Knight M. W., King N. S., Liu L., Everitt H. O., Nordlander P., Halas N. J. Aluminum for plasmonics // ACS nano. - 2014. - T. 8, № 1. - C. 834-840.

10. Martin J., Khlopin D., Zhang F., Schuermans S., Proust J., Maurer T., Gérard D., Plain J. Aluminum nanostructures for ultraviolet plasmonics // UV and Higher Energy Photonics: From Materials to Applications 2017. - T. 10351 -International Society for Optics and Photonics, 2017. - C. 103510D.

11. Gérard D., Gray S. K. Aluminium plasmonics // Journal of Physics D: Applied Physics. - 2014. - T. 48, № 18. - C. 184001.

12. Raha S., Ahmaruzzaman M. ZnO nanostructured materials and their potential applications: progress, challenges and perspectives // Nanoscale Advances. - 2022. - T. 4, № 8. - C. 1868-1925.

13. Borysiewicz M. A. ZnO as a functional material, a review // Crystals. - 2019. - T. 9, № 10. - C. 505.

14. Wang X., Ye Q., Bai L.-H., Su X., Wang T.-T., Peng T.-W., Zhai X.-Q., Huo Y., Wu H., Liu C. Enhanced UV emission from ZnO on silver nanoparticle arrays by the surface plasmon resonance effect // Nanoscale Research Letters. - 2021. - T. 16, № 1. - C. 1-7.

15. Lu J., Li J., Xu C., Li Y., Dai J., Wang Y., Lin Y., Wang S. Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods // ACS Applied Materials & Interfaces. - 2014. - T. 6, № 20. - C. 18301-18305.

16. Muravitskaya A., Gokarna A., Movsesyan A., Kostcheev S., Rumyantseva A., Couteau C., Lerondel G., Baudrion A.-L., Gaponenko S., Adam P.-M. Refractive index mediated plasmon hybridization in an array of aluminium nanoparticles // Nanoscale. -2020. - T. 12, № 11. - C. 6394-6402.

17. Ye Q., Cao R.-Y., Wang X., Zhai X.-Q., Wang T.-T., Xu Y., He Y., Jia M., Su X., Bai L.-H. Localized surface plasmon and transferred electron enhanced UV emission of ZnO by periodical aluminum nanoparticle arrays // Journal of Luminescence. - 2022. -T. 244. - C. 118740.

18. Ghorbani H. R. A review of methods for synthesis of Al nanoparticles // Orient. J. chem. - 2014. - T. 30, № 4. - C. 1941-1949.

19. Cheng C.-W., Raja S. S., Chang C.-W., Zhang X.-Q., Liu P.-Y., Lee Y.-H., Shih C.K., Gwo S. Epitaxial aluminum plasmonics covering full visible spectrum // Nanophotonics. - 2021. - T. 10, № 1. - C. 627-637.

20. Vaschenko S. V., Ramanenka A., Guzatov D. V., Stankevich V. V., Lunevich A. Y., Glukhov Y. F., Sveklo I. F., Gaponenko S. V. Plasmon-enhanced fluorescence of labeled biomolecules on top of a silver sol-gel film // Journal of Nanophotonics. - 2012. - T. 6, № 1. - C. 061710.

21. Ramanenka A., Vaschenko S., Stankevich V., Lunevich A. Y., Glukhov Y. F., Gaponenko S. Plasmonic enhancement of luminescence of fluorscein isothiocyanate and human immunoglobulin conjugates // Journal of Applied Spectroscopy. - 2014. - T. 81, № 2. - C. 222-226.

22. Ramanenka A., Lizunova A., Mazharenko A., Kerechanina M., Ivanov V., Gaponenko S. Preparation and Optical Properties of Isopropanol Suspensions of Aluminum Nanoparticles // Journal of Applied Spectroscopy. - 2020. - T. 87, № 4.

23. Unser S., Bruzas I., He J., Sagle L. Localized surface plasmon resonance biosensing: current challenges and approaches // Sensors. - 2015. - T. 15, № 7. - C. 15684-15716.

24. Darvill D., Centeno A., Xie F. Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology // Physical Chemistry Chemical Physics. - 2013. - T. 15, № 38. - C. 15709-15726.

25. Yaraki M. T., Tan Y. N. Metal nanoparticles-enhanced biosensors: synthesis, design and applications in fluorescence enhancement and surface-enhanced Raman scattering // Chemistry-An Asian Journal. - 2020. - T. 15, № 20. - C. 3180-3208.

26. Kelly K. L., Coronado E., Zhao L. L., Schatz G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment // Book The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment / EditorACS Publications, 2003. - C. 668-677.

27. Mock J., Barbic M., Smith D., Schultz D., Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles // The Journal of Chemical Physics. - 2002. - T. 116, № 15. - C. 6755-6759.

28. Khabarov K., Nouraldeen M., Tikhonov S., Lizunova A., Efimov A., Ivanov V. Modification of Aerosol Gold Nanoparticles by Nanosecond Pulsed-Periodic Laser Radiation // Nanomaterials. - 2021. - T. 11, № 10. - C. 2701.

29. Starke R., Kock B., Roth P. Nano-particle sizing by laser-induced-incandescence (LII) in a shock wave reactor // Shock waves. - 2003. - T. 12, № 5. - C. 351-360.

30. Biskos G., Vons V., Yurteri C. U., Schmidt-Ott A. Generation and sizing of particles for aerosol-based nanotechnology // KONA Powder and Particle Journal. - 2008. - T. 26. - C. 13-35.

31. Liu M., Guyot-Sionnest P., Lee T.-W., Gray S. K. Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations // Physical Review B—Condensed Matter and Materials Physics. - 2007. - T. 76, № 23. - C. 235428.

32. Zhang Y., Cai B., Jia B. Ultraviolet plasmonic aluminium nanoparticles for highly efficient light incoupling on silicon solar cells // Nanomaterials. - 2016. - T. 6, № 6. -C. 95.

33. Korotun A. V. e., Koval' A. A. e. Optical properties of spherical metal nanoparticles coated with an oxide layer // Optics and Spectroscopy. - 2019. - T. 127, №2 6. - C. 11611168.

34. Tsoulos T., Han L., Weir J., Xin H., Fabris L. A closer look at the physical and optical properties of gold nanostars: an experimental and computational study // Nanoscale. -2017. - T. 9, № 11. - C. 3766-3773.

35. Miller M. M., Lazarides A. A. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment // The Journal of Physical Chemistry B. - 2005.

- T. 109, № 46. - C. 21556-21565.

36. Курс коллоидной химии. / Фридрихсберг Д. А.: Рипол Классик, 1984.

37. Norton J. D., White H. S., Feldberg S. W. Effect of the electrical double layer on voltammetry at microelectrodes // Journal of physical chemistry. - 1990. - T. 94, № 17.

- C. 6772-6780.

38. Wang H., Pilon L. Accurate simulations of electric double layer capacitance of ultramicroelectrodes // The Journal of Physical Chemistry C. - 2011. - T. 115, № 33. -C. 16711-16719.

39. Ostolska I., Wisniewska M. Application of the zeta potential measurements to explanation of colloidal Cr 2 O 3 stability mechanism in the presence of the ionic polyamino acids // Colloid and polymer science. - 2014. - T. 292. - C. 2453-2464.

40. Riegsinger S., Popescu R., Gerthsen D., Feldmann C. Room-temperature liquidphase synthesis of aluminium nanoparticles // Chemical Communications. - 2022. - T. 58, № 54. - C. 7499-7502.

41. Katyal J., Soni R. Size-and shape-dependent plasmonic properties of aluminum nanoparticles for nanosensing applications // Journal of Modern Optics. - 2013. - T. 60, № 20. - C. 1717-1728.

42. Ziashahabi A., Poursalehi R. The effects of surface oxidation and interparticle coupling on surface plasmon resonance properties of aluminum nanoparticles as a UV plasmonic material // Procedia Materials Science. - 2015. - T. 11. - C. 434-437.

43. Mokkath J. H., Henzie J. One-dimensional aluminum nanoparticle chains: the influence of interparticle spacing and chain length on plasmon coupling behavior // Journal of Materials Chemistry C. - 2017. - T. 5, № 18. - C. 4379-4383.

44. Rassekh M., Shirmohammadi R., Ghasempour R., Astaraei F. R., Shayesteh S. F. Effect of plasmonic Aluminum nanoparticles shapes on optical absorption enhancement in silicon thin-film solar cells // Physics Letters A. - 2021. - T. 408. - C. 127509.

45. Xu Q., Liu F., Liu Y., Meng W., Cui K., Feng X., Zhang W., Huang Y. Aluminum plasmonic nanoparticles enhanced dye sensitized solar cells // Optics express. - 2014. -T. 22, № 102. - C. A301-A310.

46. Nanostructured Surfaces and Thin Films Synthesis by Physical Vapor Deposition. / Alvarez R.: MDPI, 2021.

47. Hachem K., Ansari M. J., Saleh R. O., Kzar H. H., Al-Gazally M. E., Altimari U. S., Hussein S. A., Mohammed H. T., Hammid A. T., Kianfar E. Methods of chemical synthesis in the synthesis of nanomaterial and nanoparticles by the chemical deposition method: a review // BioNanoScience. - 2022. - T. 12, № 3. - C. 1032-1057.

48. Xu Z., Wang L., Fang F., Fu Y., Yin Z. A review on colloidal self-assembly and their applications // Current Nanoscience. - 2016. - T. 12, № 6. - C. 725-746.

49. Thanner C., Eibelhuber M. UV nanoimprint lithography: Geometrical impact on filling properties of nanoscale patterns // Nanomaterials. - 2021. - T. 11, № 3. - C. 822.

50. Tzadka S., Urena Martin C., Toledo E., Yassin A. A. K., Pandey A., Le Saux G., Porgador A., Schvartzman M. A Novel Approach for Colloidal Lithography: From Dry Particle Assembly to High-Throughput Nanofabrication // ACS applied materials & interfaces. - 2024. - T. 16, № 14. - C. 17846-17856.

51. Yue W., Wang Z., Yang Y., Chen L., Syed A., Wong K., Wang X. Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering // Journal of Micromechanics and Microengineering. - 2012. - T. 22, № 12. - C. 125007.

52. Povolotskiy A., Soldatova D., Lukyanov D., Solovyeva E. An Electrostatic Mechanism for the Formation of Hybrid Nanostructures Based on Gold Nanoparticles and Cationic Porphyrins // Russian Journal of Physical Chemistry B. - 2023. - T. 17, № 6. - C. 1398-1402.

53. Mayer M., Schnepf M. J., König T. A., Fery A. Colloidal Self-Assembly Concepts for Plasmonic Metasurfaces // Advanced Optical Materials. - 2019. - T. 7, № 1. - C. 1800564.

54. Paskevicius M., Webb J., Pitt M., Blach T., Hauback B., Gray E. M., Buckley C. Mechanochemical synthesis of aluminium nanoparticles and their deuterium sorption properties to 2 kbar // Journal of alloys and compounds. - 2009. - T. 481, № 1 -2. - C. 595-599.

55. Rijesh M., Sreekanth M., Deepak A., Dev K., Surendranathan A. Effect of milling time on production of aluminium nanoparticle by high energy ball milling // Int. J. Mech. Eng. Technol. - 2018. - T. 9, № 8. - C. 646-652.

56. Borisov V., Lizunova A., Mazharenko A., Malo D., Ramanenka A., Shuklov I., Ivanov V. Aluminum nanoparticles synthesis in spark discharge for ultraviolet plasmonics // Journal of Physics: Conference Series. - T. 1695 -IOP Publishing, 2020.

- C. 012021.

57. Liu L., Zhang Q., Zhao J., Yan W., Zhang L., Wang Z., Tie W. Study on characteristics of nanopowders synthesized by nanosecond electrical explosion of thin aluminum wire in the argon gas // IEEE Transactions on Plasma Science. - 2013. - T. 41, № 8. - C. 2221-2226.

58. Kotov Y. The Electrical Explosion of Wire: A method for the synthesis of weakly aggregated nanopowders // Nanotechnologies in Russia. - 2009. - T. 4. - C. 415-424.

59. Kotov Y. A. Electric explosion of wires as a method for preparation of nanopowders // Journal of nanoparticle research. - 2003. - T. 5. - C. 539-550.

60. Физические явления в вакууме и разреженных газах. / Капцов Н. А.: Рипол Классик, 2013.

61. Базелян Э., Райзер Ю. Искровой разряд //. - 1997.

62. Cundall C., Craggs J. Electrode vapour jets in spark discharges // Spectrochimica Acta. - 1955. - T. 7. - C. 149-164.

63. Durnford J., McCormick N. The production of current pulses by means of a chopped discharge // Proceedings of the IEE-Part II: Power Engineering. - 1952. - T. 99, № 67.

- C. 33-37.

64. Физика газового разряда. / Райзер Ю. П.: Наука. Гл. ред. физ.-мат. лит., 1987.

65. Lee D., Lee K., Kim D. S., Lee J.-K., Park S. J., Choi M. Hydrogen-assisted spark discharge generation of highly crystalline and surface-passivated silicon nanoparticles // Journal of Aerosol Science. - 2017. - T. 114. - C. 139-145.

66. Cole J. J., Lin E.-C., Barry C. R., Jacobs H. O. Continuous nanoparticle generation and assembly by atmospheric pressure arc discharge // Applied Physics Letters. - 2009. - T. 95, № 11.

67. Stein M., Kruis F. E. Optimization of a transferred arc reactor for metal nanoparticle synthesis // Journal of Nanoparticle Research. - 2016. - T. 18. - C. 1-11.

68. Pfeiffer T., Feng J., Schmidt-Ott A. New developments in spark production of nanoparticles // Advanced Powder Technology. - 2014. - T. 25, № 1. - C. 56-70.

69. Hontañón E., Palomares J. M., Stein M., Guo X., Engeln R., Nirschl H., Kruis F. E. The transition from spark to arc discharge and its implications with respect to nanoparticle production // Journal of nanoparticle research. - 2013. - T. 15. - C. 1-19.

70. Tabrizi N. S., Ullmann M., Vons V., Lafont U., Schmidt-Ott A. Generation of nanoparticles by spark discharge // Journal of Nanoparticle Research. - 2009. - T. 11. -C. 315-332.

71. Maisser A., Barmpounis K., Attoui M., Biskos G., Schmidt-Ott A. Atomic cluster generation with an atmospheric pressure spark discharge generator // Aerosol Science and Technology. - 2015. - T. 49, № 10. - C. 886-894.

72. Donaldson A., Hagler M., Kristiansen M., Jackson G., Hatfield L. Electrode erosion phenomena in a high-energy pulsed discharge // IEEE transactions on plasma science. -1984. - T. 12, № 1. - C. 28-38.

73. Петров А. А., Амиров Р. Х., Коростылев Е. В., Самойлов И. С. Исследование эрозии катода в отрицательном коронном разряде // Труды Московского физико-технического института. - 2013. - T. 5, № 1-17. - C. 72-79.

74. Mesyats G., Bochkarev M., Petrov A., Barengolts S. On the mechanism of operation of a cathode spot cell in a vacuum arc // Applied Physics Letters. - 2014. - T. 104, № 18.

75. PETROV A. A., AMIROV R. H., ASINOVSKII E. I., SAMOYLOV I. S. Electro-Explosive Mechanism of Carbon Cathode Destruction in Negative Corona Discharge in Trichel Pulse Regime //. - 2009.

76. Асиновский Э., Петров А., Самойлов И. Эрозия медного катода в отрицательном коронном разряде // Журнал технической физики. - 2008. - T. 78, № 2. - C. 137.

77. Petrov A. A., Amirov R. H., Samoylov I. S. On the nature of copper cathode erosion in negative corona discharge // IEEE transactions on plasma science. - 2009. - T. 37, № 7. - C. 1146-1149.

78. Noh S. R., Lee D., Park S. J., Kim D. S., Choi M. High throughput nanoparticle generation utilizing high-frequency spark discharges via rapid spark plasma removal // Aerosol Science and Technology. - 2017. - T. 51, № 1. - C. 116-122.

79. Breeman J., Pfeiffer T. V., Schmidt -. O. A. Effect of flow configuration on size distributions in a VSP-G1 spark generator // Zurich: European Aerosol Conference. -2017.

80. Vons V. A., de Smet L. C., Munao D., Evirgen A., Kelder E. M., Schmidt-Ott A. Silicon nanoparticles produced by spark discharge // Journal of Nanoparticle Research. - 2011. - T. 13. - C. 4867-4879.

81. Luidold S., Antrekowitsch H. Hydrogen as a reducing agent: State-of-the-art science and technology // Jom. - 2007. - T. 59. - C. 20-26.

82. Hontanon E., Palomares J. M., Guo X., Engeln R., Nirschl H., Kruis F. E. Influence of the inter-electrode distance on the production of nanoparticles by means of atmospheric pressure inert gas dc glow discharge // Journal of Physics D: Applied Physics. - 2014. - T. 47, № 41. - C. 415201.

83. Efimov A. A., Potapov G. N., Nisan A. V., Ivanov V. V. Controlled focusing of silver nanoparticles beam to form the microstructures on substrates // Results in Physics. -2017. - T. 7. - C. 440-443.

84. Aerosol technology: properties, behavior, and measurement of airborne particles. / Hinds W. C., Zhu Y.: John Wiley & Sons, 2022.

85. Ивлев Л., Довгалюк Ю. Физика атмосферных аэрозольных систем // СПб.: НИИХ СПбГУ. - 1999. - T. 184.

86. Taurozzi J. S., Hackley V. A., Wiesner M. R. Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment-issues and recommendations // Nanotoxicology. - 2011. - T. 5, № 4. - C. 711-729.

87. Bihari P., Vippola M., Schultes S., Praetner M., Khandoga A. G., Reichel C. A., Coester C., Tuomi T., Rehberg M., Krombach F. Optimized dispersion of nanoparticles for biological in vitro and in vivo studies // Particle and fibre toxicology. - 2008. - T. 5.

- C. 1-14.

88. Калинина Е., Ефимов А., Сафронов А., Иванов В., Бекетов И. Получение суспензий на основе нанопорошка оксида алюминия с узким распределением частиц по размерам // Российские нанотехнологии. - 2013. - T. 8, № 7-8. - C. 7883.

89. Rajagopal E. Particle size distributions in ultrasonic emulsification // Proceedings of the Indian Academy of Sciences-Section A. - T. 49 -Springer India New Delhi, 1959. -C. 333-339.

90. Vasylkiv O., Sakka Y. Synthesis and colloidal processing of zirconia nanopowder // Journal of the American Ceramic Society. - 2001. - T. 84, № 11. - C. 2489-2494.

91. Воюцкий С. С. Курс коллоидной химии //. - 1975.

92. Фролов Ю. Г. Курс коллоидной химии: Поверхностные явления и дисперсные системы //. - 2004.

93. Сафронов А., Калинина Е., Благодетелев Д., Котов Ю. Сепарирование нанопорошков оксида алюминия с разной степенью агрегирования методом седиментации в водной среде // Российские нанотехнологии. - 2010. - T. 5, № 7-8.

- C. 82-88.

94. Bonaccorso F., Zerbetto M., Ferrari A. C., Amendola V. Sorting nanoparticles by centrifugal fields in clean media // The Journal of Physical Chemistry C. - 2013. - T. 117, № 25. - C. 13217-13229.

95. Sharma V., Park K., Srinivasarao M. Shape separation of gold nanorods using centrifugation // Proceedings of the National Academy of Sciences. - 2009. - T. 106, № 13. - C. 4981-4985.

96. Коллоидная химия. / Щукин Е. Д., Перцов А. В., Амелина Е. А.: Общество с ограниченной ответственностью Издательство ЮРАЙТ, 2017.

97. Kraynov A., Müller T. E. Concepts for the stabilization of metal nanoparticles in ionic liquids // Applications of ionic liquids in science and technology. - 2011. - T. 9. -C. 235-60.

98. Napper D. H. Polymeric stabilization of colloidal dispersions // (No Title). - 1983.

99. Shi J. Steric Stabilization -, 2002. -.

100. Hidber P. C., Graule T. J., Gauckler L. J. Citric acid—a dispersant for aqueous alumina suspensions // Journal of the American Ceramic Society. - 1996. - T. 79, № 7.

- C. 1857-1867.

101. Liu J., Liu P., Wang M. Molecular dynamics simulations of aluminum nanoparticles adsorbed by ethanol molecules using the ReaxFF reactive force field // Computational Materials Science. - 2018. - T. 151. - C. 95-105.

102. Rodríguez-Mas F., Ferrer J. C., Alonso J. L., Valiente D., Fernández de Ávila S. A comparative study of theoretical methods to estimate semiconductor nanoparticles' size // Crystals. - 2020. - T. 10, № 3. - C. 226.

103. Pujari A., Thomas T. Aluminium nanoparticles alloyed with other earth-abundant plasmonic metals for light trapping in thin-film a-Si solar cells // Sustainable Materials and Technologies. - 2021. - T. 28. - C. e00250.

104. Lizunova A. A., Malo D., Guzatov D. V., Vlasov I. S., Kameneva E. I., Shuklov I. A., Urazov M. N., Ramanenka A. A., Ivanov V. V. Plasmon-Enhanced Ultraviolet Luminescence in Colloid Solutions and Nanostructures Based on Aluminum and ZnO Nanoparticles // Nanomaterials. - 2022. - T. 12, № 22. - C. 4051.

105. Chaumet P. C. The discrete dipole approximation: A review // Mathematics. - 2022.

- T. 10, № 17. - C. 3049.

106. Baker M., Liu W., McLeod E. Accurate and fast modeling of scattering from random arrays of nanoparticles using the discrete dipole approximation and angular spectrum method // Optics Express. - 2021. - T. 29, № 14. - C. 22761-22777.

107. Haque A. J., Shaky M. M., Hasan S. N., Khan T. A., Shamim Kaiser M., Chowdhury M. H. Use of Genetic Algorithm and Finite-Difference Time-Domain Calculations to Optimize "Plasmonic" Thin-Film Solar Cell Performance // The Fourth Industrial Revolution and Beyond: Select Proceedings of IC4IR+Springer, 2023. - C. 459-472.

108. Teixeira F., Sarris C., Zhang Y., Na D.-Y., Berenger J.-P., Su Y., Okoniewski M., Chew W., Backman V., Simpson J. J. Finite-difference time-domain methods // Nature Reviews Methods Primers. - 2023. - T. 3, № 1. - C. 75.

109. Guzatov D. V., Vaschenko S. V., Stankevich V. V., Lunevich A. Y., Glukhov Y. F., Gaponenko S. V. Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment // The Journal of Physical Chemistry C. - 2012. - T. 116, № 19. - C. 10723-10733.

110. Guzatov D. V., Gaponenko S. V., Demir H. V. Colloidal photoluminescent refractive index nanosensor using plasmonic effects // Zeitschrift für Physikalische Chemie. - 2018. - T. 232, № 9-11. - C. 1431-1441.

111. Gaponenko S. V., Adam P.-M., Guzatov D. V., Muravitskaya A. O. Possible nanoantenna control of chlorophyll dynamics for bioinspired photovoltaics // Scientific Reports. - 2019. - T. 9, № 1. - C. 7138.

112. Absorption and scattering of light by small particles. / Bohren C. F., Huffman D. R.: John Wiley & Sons, 2008.

113. Дж Г. Растровая электронная микроскопия и рентгеновский микроанализ //. -1984.

114. Тодуа П., Быков В., Волк Ч., Горнев Е., Желкобаев Ж., Зыкин Л., Ишанов А., Календин В., Новиков Ю., Озерин Ю. Метрологическое обеспечение измерений длины в микрометровом и нанометровом диапазонах и их внедрение в микроэлектронику и нанотехнологию часть II // Микросистемная техника. - 2004. № 2. - C. 24-39.

115. Хирш П., Хови А., Николсон Р., Пэшли Д., Уэлан М. Электронная микроскопия тонких кристаллов //. - 1968.

116. Senoner M., MaaBdorf A., Rooch H., Ôsterle W., Malcher M., Schmidt M., Kollmer F., Paul D., Hodoroaba V.-D., Rades S. Lateral resolution of nanoscaled images delivered by surface-analytical instruments: application of the BAM-L200 certified reference material and related ISO standards // Analytical and bioanalytical chemistry. - 2015. -T. 407. - C. 3211-3217.

117. ISO, 22412-2008. Гранулометрический анализ. Динамическое рассеяние света //. - 2011.

118. ISO, 13321:1996, E. Анализ размеров частиц - Фотонная корреляционная спектроскопия //. - 1999.

119. Meuller B. O., Messing M. E., Engberg D. L., Jansson A. M., Johansson L. I., Norlén S. M., Tureson N., Deppert K. Review of spark discharge generators for production of nanoparticle aerosols // Aerosol Science and Technology. - 2012. - T. 46, № 11. - C. 1256-1270.

120. Efimov A. A., Arsenov P. V., Borisov V. I., Buchnev A. I., Lizunova A. A., Kornyushin D. V., Tikhonov S. S., Musaev A. G., Urazov M. N., Shcherbakov M. I., Spirin D. V., Ivanov V. V. Synthesis of Nanoparticles by Spark Discharge as a Facile and Versatile Technique of Preparing Highly Conductive Pt Nano-Ink for Printed Electronics // Nanomaterials. - 2021. - T. 11, № 1. - C. 234.

121. Kameneva E., Lizunova A., Filalova E., Malo D., Kornyushin D., Ivanov V. Technology of manufacturing thin-film aluminum nanostructures by dry aerosol printing // St. Petersburg State Polytechnical University Journal. Physics and Mathematics. -2023. - T. 16, № 3.2. - C. 282-287.

122. Lakowicz J. In Principles of Fluorescence Spectroscopy // Book In Principles of Fluorescence Spectroscopy / EditorSpringer, US: Boston, MA, 2006.

123. Gaponenko S. V., Guzatov D. V. Colloidal plasmonics for active nanophotonics // Proceedings of the IEEE. - 2020. - T. 108, № 5. - C. 704-720.

124. Handbook of optical constants of solids. / Palik E. D.: Academic press, 1998.

125. Lizunova A. A., Efimov A. A., Urazov M. N., Sivodedov D. A., Lisovskii S. V., Scidin D. O., Loshkarev A. A., Volkov I. A., Ivanov V. V. Development and application of nanoparticle diameter certified reference materials of alumina, titania, silica, and zinc oxide colloidal solutions // Certified Reference Materials. - 2013. № 3. - C. 15-20.

126. Lizunova A., Loshkarev A., Tokunov Y. M., Ivanov V. Comparison of the results of measurements of the sizes of nanoparticles in stable colloidal solutions by the methods of acoustic spectroscopy, dynamic light scattering, and transmission electron microscopy // Measurement Techniques. - 2017. - T. 59. - C. 1151-1155.

127. Joyce C., Fothergill S., Xie F. Recent advances in gold-based metal enhanced fluorescence platforms for diagnosis and imaging in the near-infrared // Materials Today Advances. - 2020. - T. 7. - C. 100073.

128. Sultangaziyev A., Bukasov R. Applications of surface-enhanced fluorescence (SEF) spectroscopy in bio-detection and biosensing // Sensing and Bio-Sensing Research. -2020. - T. 30. - C. 100382.

129. Park K. H., Oh S., Kim J., Yang S. Y., An B.-S., Hwang D. Y., Lee J. H., Kim H. S., Lee J., Seo S. Effect of surface charge of gold nanoparticles on fluorescence amplification of polydiacetylene-based liposomes // Journal of Experimental Nanoscience. - 2020. - T. 15, № 1. - C. 174-181.

130. Starukhin A., Apyari V., Gorski A., Ramanenka A., Furletov A. Plasmon enhancement of fluorescence of phthalocyanines metallocomplexes in solutions of silver nanoparticles // EPJ Web of Conferences. - T. 220 -EDP Sciences, 2019. - C. 03003.

131. Chu V. H., Fort E., Nghiem T. H. L., Tran H. N. Photoluminescence enhancement of dye-doped nanoparticles by surface plasmon resonance effects of gold colloidal nanoparticles // Advances in Natural Sciences: Nanoscience and Nanotechnology. -2011. - T. 2, № 4. - C. 045010.

132. Polyakov A. Y., Yun J. H., Ahn H. K., Usikov A. S., Yakimov E. B., Tarelkin S. A., Smirnov N. B., Shcherbachev K. D., Helava H., Makarov Y. N. Photoluminescence enhancement by localized surface plasmons in AlGaN/GaN/AlGaN double heterostructures // physica status solidi (RRL)-Rapid Research Letters. - 2015. - T. 9, № 10. - C. 575-579.

133. Malo D., Lizunova A., Vershinina O., Filalova E., Ivanov V. Ultraviolet photoluminescence enhancement of zinc oxide nanocrystals in colloidal mixtures with spark discharge aluminum nanoparticles // St. Petersburg State Polytechnical University Journal. Physics and Mathematics. - 2023. - T. 16, № 3.2. - C. 261-266.

134. Malo D., Lizunova A., Nouraldeen M., Borisov V., Ivanov V. Aluminum nanostructures produced by aerosol dry printing for ultraviolet photoluminescence enhancement // St. Petersburg State Polytechnical University Journal. Physics and Mathematics. - 2022. - T. 15, № S3. 3. - C. 276-280.

135. Khabarov K., Nouraldeen M., Lizunova A., Urazov M., Ivanov V. Formation of planar plasmon microstructures by dry aerosol printing // Journal of Physics: Conference Series. - T. 2086 -IOP Publishing, 2021. - C. 012147.

136. Wu K., Lu Y., He H., Huang J., Zhao B., Ye Z. Enhanced near band edge emission of ZnO via surface plasmon resonance of aluminum nanoparticles // Journal of Applied Physics. - 2011. - T. 110, № 2.

137. Malo D., Lizunova A. A., Novoselov A. K., Sanatulina A. F., Kerechanina M. F., Vershinina O. V., Kameneva E. I., Urazov M. N., Ivanov V. V. Influence of Optical Density of Aluminum Nanostructures on Plasmon Enhancement of Ultraviolet Photoluminescence of Zinc Oxide Nanocrystals // All-Russian Scientific School-Seminar MetaNanoBio 2024. - 2024.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.