Синтез и свойства коллоидных квантовых точек на основе халькогенидов ртути / Synthesis and properties of colloidal quantum dots based on mercury chalcogenides тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Мардини Алаа Алддин
- Специальность ВАК РФ00.00.00
- Количество страниц 136
Оглавление диссертации кандидат наук Мардини Алаа Алддин
Contents
Abstract
Chapter 1. Introduction to the mercury chalcogenides CQDs preparation methods
1.1 HgTe CQDs
1.1.1 Preparation and characterization of HgTe CQDS in aqueous solutions
1.1.2 Preparation and characterization of HgTe CQDS in organic mediums
1.1.2.1 Tri-n-octylphosphine telluride (TOPTe)
1.1.2.2 Bis(trimethylsilyl) telluride (TMS)2Te
1.1.2.3 Bis(trimethylsilyl) telluride (TMS)2Te and tri-n-octylphosphine telluride (TOPTe)
1.1.2.4 Tri-butylphosphine telluride (TBPTe)
1.1.3 Preparation and characterization of HgTe CQDS using aprotic solvents
1.2 HgTe NPLs
1.3 HgS CQDs
1.3.1 Preparation and characterization of HgS CQDS in aqueous solutions
1.3.2 Preparation and characterization of HgS CQDS in organic mediums
1.3.2.1 Bis(trimethylsilyl) sulfide (TMS)2S
1.3.2.2 Tri-n-octylphosphine sulfide (TOPS)
1.3.2.3 Phosphine-free precursors of sulfide
Chapter 2. The experimental section
2.1 Synthesis of HgTe CQDs
2.1.1 Synthesis of the tellurium precursors
2.1.2 Synthesis of HgTe CQDs
2.2 Preparation of telluride NCs using (Cy)3PTe/THF Precursor
2.2.1 Synthesis of PbTe CQDs
2.2.2 Synthesis of CdTe CQDs
3
2.2.3 Synthesis of ZnTe CQDs
2.3 Synthesis of HgS CQDs
2.3.1 Synthesis of the THF solution of tricyclohexylphosphine sulfide
2.3.2 Synthesis of HgS CQDs
Chapter 3. Results, Discussion, and Conclusion
3.1. Investigation of tellurium precursors using NMR spectroscopy
3.1.1 Investigation of TOPTe using 31P and 125Te NMR spectroscopy
3.1.2 Investigation of TDMAPTe using 31P NMR spectroscopy
3.1.3 Investigation of (Cy)sPTe using *H, 13C, 31P and 125Te, COSY and HSQC NMR spectroscopy
3.2 Characterization of HgTe CQDs
3.2.1 Investigation of the quantum confinement effect of HgTe QDs
3.2.2 Investigation of the chemical composition and crystal shape of HgTe NCs
3.2.3 Investigation of the kinetics of growth of HgTe CQDs
3.2.4 Optical properties of HgTe CQDs
3.3 Characterization of telluride NCs prepared using (Cy)3PTe/THF precursor
3.3.1 Characterization and optical properties of PbTe CQDs
3.3.2 Characterization and optical properties of CdTe CQDs
3.3.3 Characterization of ZnTe CQDs
3.4 Characterization of HgS CQDs
3.4.1 Investigation of the quantum confinement effect, chemical composition, and crystal structure of HgS CQDs
3.4.2 Optical properties of HgS CQDs
3.5 Conclusion
References
4
List of abbreviations
List of figures
List of tables
Publications
Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК
The Role of Carbon and Nanocomposite Hybrid Materials as Supports for Transition Metal Sulfide-based Catalysts in Higher Alcohols Synthesis from Syngas (Роль углерода и нанокомпозитных гибридных материалов в качестве носителей для катализаторов на основе сульфидов переходных металлов в синтезе высших спиртов из синтез-газа)2022 год, кандидат наук Осман Мохамед Изелдин Абдалла
Создание 2D-полупроводниковых структур методом прямого лазерного синтеза (Laser-writing of 2D semiconductors)2025 год, кандидат наук Аверченко Александр Владимирович
Исследование плазмонного усиления ультрафиолетовой люминесценции полупроводниковых нанокристаллов оксида цинка в присутствии наночастиц алюминия, синтезированных газофазными методами / Investigation of plasmon-enhanced ultraviolet luminescence of zinc oxide semiconductor nanocrystals in the presence of aluminum nanoparticles synthesized by gas-phase methods2024 год, кандидат наук Мало Дана
Новые адсорбенты на основе хитозана и галлуазитных нанотрубчатых материалов для сорбции ионов Cu (II) и Zn (II)2023 год, кандидат наук Абуелсоад Асмаа Мансур Ахмед
Coordination compounds of some metals with hydroxy and hydrazine derivatives of benzoic acid as precursors of nanosized oxide catalysts (Координационные соединения некоторых металлов с гидрокси- и гидразинпроизводными бензойной кислоты в качестве предшественников наноразмерных оксидных катализаторов)2021 год, кандидат наук Алабада Русул Яхья Джасим
Введение диссертации (часть автореферата) на тему «Синтез и свойства коллоидных квантовых точек на основе халькогенидов ртути / Synthesis and properties of colloidal quantum dots based on mercury chalcogenides»
The facility of adjusting the optical features of colloidal quantum dots is one of their most important discovered properties [1]. By merging all known materials that can be prepared as CQDs with quantum confinement, the energy of the optical transition can be adjusted from a few millielectron volts (far infrared) up to several electron volts (ultraviolet) [2]. After the discovery of the optical properties of inorganic CQDs in the visible range [3], the possibility of detecting these properties in the infrared range has become one of the most promising applications of nanocrystals and a key benefit compared to organic materials [4]. The implementations of CQDs in the infrared window have initially been focused on the absorption of the infrared radiation of the solar spectrum for solar cell applications [2]. Later, the possibility of designing infrared detectors in various ranges of IR wavelengths has also been investigated, including near-infrared (NIR, 0.7-1.4 ^m) [5-7], short-wavelength infrared (SWIR, 1.4-3 ^m) [8-10], mid-wavelength infrared (MWIR, 3-8 ^m) [11-14] to even long-wavelength infrared (LWIR, 8-15 ^m) [15, 16]. Mercury chalcogenides (HgX: HgS, HgSe, and HgTe) have the ability to process this part of the electromagnetic range because they gather between IR-tunable optical properties and photoconduction [17]. As a bulk material, HgTe exists as a semi-metal with almost zero band gap. If this material is made in the form of nano-sized particles and quantum confinement occurs, the band gap widens and the material can exhibit the properties of a semiconductor with potential absorption peaks that cover the whole infrared window [1]. Different telluride precursors were used in the synthesis of HgTe CQDs. The previous works showed that the preparation of HgTe CQDs was performed using hydrogen telluride H2Te in the aqueous solution [8, 18, 19]. Meanwhile, tri-n-octylphosphine telluride TOPTe [1, 13, 20-24] and bis(trimethylsilyl) telluride (TMS)2Te [25, 26] were employed in the organic medium. Compared to aqueous routes, non-aggregated, faceted, and sphere-shaped HgTe QDs were obtained using organic methods. More improvement in the non-aggregation and sphericity of the prepared QDs was achieved using the (TMS)2Te precursor. As for HgS NCs, two crystalline forms of bulk mercury sulfide, a-HgS and P-HgS, were observed [27]. Both structures have uses in infrared technology [15, 28]. Sulfur [1, 29, 30], thioacetamide (TAA) [31], sodium sulfide (SS) [27, 32], ammonium sulfide (AS) [33], tri-n-octylphosphine sulfide (TOPS) [28], and bis(trimethylsilyl) sulfide (TMS)2S [34, 35] were utilized as sulfide precursors. Only (TMS)2S produced high-
monodispersed and highly colloidally stable HgS CQDs [35]. However, the high cost and poor stability of (TMS)2X (X: Te, S) [36] make the synthesis of mercury chalcogenides CQDs impractical, at least on an industrial scale. An urgent need has emerged to find new alternatives that can be used instead of common telluride and sulfide precursors in the QDs preparation. Solid-structured phosphine chalcogenide precursors are one of the alternative materials that have never been tested in the synthesis of metal chalcogenide NCs.
Aim and Objectives of the dissertation
The aim of this work is the preparation and characterization of mercury chalcogenide CQDs using solid-structured phosphine-chalcogen precursors.
In order to achieve this goal, the following objectives were completed:
• Preparation of tricyclohexylphosphine telluride using different solvents such as THF, 1,4-dioxane, and toluene.
• Characterization of the pure (Cy)sPTe crystals using *H, 13C, COSY, HSQC, 31P, and 125Te NMR spectroscopy.
• Investigation of the reactivity of the obtained tricyclohexylphosphine telluride solutions (in THF, 1,4-dioxane, and toluene) compared to TOPTe/TOP and TDMAPTe/THF in the synthesis of HgTe CQDs.
• Examination of the efficiency of the prepared (Cy)3PTe/THF precursor in the synthesis of other telluride QDs such as PbTe, CdTe, and ZnTe.
• Characterization of the prepared telluride NCs utilizing transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis-NIR spectroscopy, fluorescence spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), and Raman spectroscopy.
• Exploring the possible use of tricyclohexylphosphine sulfide in THF (Cy)3PS/THF as a novel phosphine-sulfur precursor in the synthesis of HgS CQDs.
The scientific novelty of the work
Applying solid-structured phosphine chalcogenide precursors, such as (Cy)3PX (X: Te, S), is one of the new trends in QDs synthesis that have never been explored before. Due to the steric effect of the cyclohexyl substituents, the tricyclohexylphosphine, as a white, solid substance, can withstand brief contact with air. As a result, the preparation of the corresponding chalcogen precursor may be performed considerably more simply than using trimethylsilyl (TMS) or other common phosphines, such as trioctylphosphine (TOP), which easily oxidize or even ignite when in contact with air. In addition, the solvent-limited reactivity of such precursors allows one to modify the characteristics of the prepared QDs to be suitable for different IR applications.
The practical importance of the work
Solid-structured phosphine-chalcogen precursors, such as (Cy)3PX (X: Te, S), will be the best alternative materials compared to common chalcogenide ones (TOPX and (TMS)2X), as they are cheaper, easier-handled, and have solvent-limited reactivity.
Statements to be defended
1. Successfully applying (Cy)3PX (X: Te, S) for the first time in the preparation of HgX (X: Te, S) CQDs.
2. Establishing the relationship between the chemical reactivity of the telluride precursor and the kinetics of the growth of HgTe CQDs. Under the same empirical conditions, the more reactive phosphine-telluride precursor produced the larger-sized HgTe CQDs.
3. Proving the effect of the polarity of the solvent on the chemical reactivity of the (Cy)3PTe precursor. An increase in the chemical reactivity of (Cy)3PTe in the synthesis of HgTe CQDs was observed by changing the solvent from a moderate polar aprotic solvent (THF) to a nonpolar one (toluene).
4. Demonstrating how the reaction temperature affected the chemical reactivity of the telluride precursors, namely TOPTe and (Cy)3PTe, that were applied in the preparation of HgTe CQDs. Larger-sized HgTe CQDs were obtained by increasing the reaction temperature from 60 to 100 oC at the same reaction times.
5. As for tricyclohexylphosphine telluride that was prepared using THF, (Cy)3PTe/THF, an increase in its chemical reactivity in the synthesis of HgTe CQDs by increasing its initial molar ratio relative to mercury precursor from Hg:Te (1:1) to Hg:Te (1:2) was shown.
6. Beside of the preparation of HgTe CQDs using (Cy)3PTe/THF, the dissertation showed successfully employing the titled precursor for the first time in the synthesis of different telluride QDs, namely PbTe, CdTe, and ZnTe CQDs.
Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Прямое C-C(X)-сочетание при активированной связи CHC(Y) в гетеро-/карбоциклах как инструмент зеленой химии для создания перспективных биологически активных молекул2024 год, доктор наук Сантра Согата
Направленная модификация катодных материалов со структурой трифилина / Three-dimensional modification of triphylite-type cathode materials2024 год, кандидат наук Назаров Евгений Евгеньевич
Li-проводящий керамический электролит со структурой NASICON для твердотельных аккумуляторов2024 год, кандидат наук Сюй Сеюй
Моделирование влияния модификации структуры низкоразмерных материалов ZnO, β-C3N4, InSe и однослойного бора на их физические свойства2021 год, кандидат наук Лэй Сюе
Магнитная анизотропия оксидных наноархитектур2022 год, кандидат наук Омельянчик Александр Сергеевич
Заключение диссертации по теме «Другие cпециальности», Мардини Алаа Алддин
3.5 Conclusion
Tri-n-octylphosphine telluride (TOPTe), tris(dimethylamino)phosphine telluride (TDMAPTe), and tricyclohexylphosphine telluride (Cy)3PTe precursors were prepared and characterized. The characterization of the synthesized precursors was performed mainly applying 31P and 125Te NMR spectroscopy. (Cy)3PTe and TDMAPTe were used for the first time in the synthesis of HgTe CQDs. Tetrahydrofuran (THF), 1,4-dioxane, and toluene were employed as solvents in the preparation of (Cy)3PTe. Meanwhile, only THF was utilized in the synthesis of TDMAPTe. In the synthesis of HgTe CQDs and under the same empirical conditions, the highest chemical reactivity of the studied telluride precursors was observed in the case of using TDMAPTe/THF, followed by TOPTe/TOP. Meanwhile, a lower chemical reactivity was shown in the case of applying (Cy)3PTe prepared in toluene, 1,4-dioxane, and THF respectively. The increasing in the chemical reactivity of (Cy)3PTe in the synthesis of HgTe CQDs by varying the solvent from ethers to toluene highlighted the role of the polarity of the solvent in the chemical reactivity of such precursors. Moreover, it opened the door to overcome the oxygen-sensitivity problem that was observed in the preparation of the common telluride precursors such as TOPTe, TBPTe, and (TMS)2Te. An increase in the chemical reactivity of the (Cy)3PTe/THF precursor was observed as well in the case of raising the reaction temperature or its initial molar ratio. The influence of raising the reaction temperature on the chemical reactivity of the titled precursors was
observed only in the case of using TOPTe and (Cy)3PTe in the preparation of HgTe CQDs. The IR spectra of the produced QDs demonstrated band-edge excitons shifted to longer wavelengths between the near and mid-infrared (1.4-4 ^m) based on the experimental parameters. A comprehensive investigation of the prepared HgTe NCs using HgCl2 and (Cy)3PTe/THF was performed. Sphere-shaped quantum dots with a zinc blende structure of bulk HgTe were observed in the TEM and XRD, respectively. Meanwhile, XPS analysis confirmed that the prepared NCs were mercury-rich and free of tellurites such as HgTeO3 or TeO2. (Cy)3PTe/THF was also successfully applied in the synthesis of different telluride QDs such as PbTe, CdTe, and ZnTe.
In terms of sulfide precursor, (Cy)3PS/THF was applied for the first time in the synthesis of HgS CQDs. The findings revealed that mercury chloride is the best Hg precursor for obtaining QDs with long-wavelength interband absorptions in the near-IR window. The prepared HgS CQDs using (Cy)3PS/THF and HgCh as precursors had inter- and intraband absorption peaks. The interband absorptions were red-shifted to longer wavelengths in the N-IR window between 0.8 and 1.2 ^m. Whereas the red-shifting of the 1Se-1Pe intraband transitions in the mid-IR range was between 3.9 and 5.5 ^m. Sphere-shaped with a cubic structure of bulk P-HgS (metacinnabar) were shown in the TEM and XRD measurements, respectively. While XPS analysis proved that the synthesized NCs were mercury-rich and free of mercury oxide (HgO).
Список литературы диссертационного исследования кандидат наук Мардини Алаа Алддин, 2024 год
References
1. Goubet N., Jagtap A., Livache C., Martinez B., Portales H., Xu X. Z., Lobo R., Dubertret B., Lhuillier E. Terahertz HgTe Nanocrystals: Beyond Confinement // Journal of the American Chemical Society. - 2018. - T. 140, № 15. - C. 5033-5036.
2. Kagan C. R., Lifshitz E., Sargent E. H., Talapin D. V. Building devices from colloidal quantum dots // Science. - 2016. - T. 353, № 6302. - C. 885-894.
3. Keuleyan S., Kohler J., Guyot-Sionnest P. Photoluminescence of Mid-Infrared HgTe Colloidal Quantum Dots // The Journal of Physical Chemistry C. - 2014. - T. 118, № 5. - C. 2749-2753.
4. Livache C., Martinez B., Goubet N., Greboval C., Qu J., Chu A., Royer S., Ithurria S., Silly M. G., Dubertret B., Lhuillier E. A colloidal quantum dot infrared photodetector and its use for intraband detection // Nature Communications. - 2019. - T. 10, № 1. - C. 2125-2134.
5. Chuang C. H., Brown P. R., Bulovic V., Bawendi M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering // Nature Materials. - 2014. - T. 13, № 8. - C. 796-801.
6. Kim J., Ouellette O., Voznyy O., Wei M., Choi J., Choi M. J., Jo J. W., Baek S. W., Fan J., Saidaminov M. I., Sun B., Li P., Nam D. H., Hoogland S., Lu Z. H., Garcia de Arquer F. P., Sargent E. H. Butylamine-Catalyzed Synthesis of Nanocrystal Inks Enables Efficient Infrared CQD Solar Cells // Advanced Materials. - 2018. - T. 30, № 45. - C. 1803830-1803836.
7. Im S. H., Kim H. J., Kim S. W., Kim S. W., Seok S. I. Efficient HgTe colloidal quantum dot-sensitized near-infrared photovoltaic cells // Nanoscale. - 2012. - T. 4, № 5. - C. 1581-1584.
8. Kovalenko M. V., Kaufmann E., Pachinger D., Roither J., Huber M., Stangl J., Hesser G., Schaffler F., Heiss W. Colloidal HgTe Nanocrystals with Widely Tunable Narrow Band Gap Energies: From Telecommunications to Molecular Vibrations // Journal of the American Chemical Society. - 2006. - T. 128, № 11. - C. 3516-3517.
9. Chen M., Shao L., Kershaw S. V., Yu H., Wang J., Rogach A. L., Zhao N. Photocurrent Enhancement of HgTe Quantum Dot Photodiodes by Plasmonic Gold Nanorod Structures // ACS Nano. - 2014. - T. 8, № 8. - C. 8208-8216.
10. Chen M., Yu H., Kershaw S. V., Xu H., Gupta S., Hetsch F., Rogach A. L., Zhao N. Fast, Air-Stable Infrared Photodetectors based on Spray-Deposited Aqueous HgTe Quantum Dots // Advanced Functional Materials. - 2014. - T. 24, № 1. - C. 53-59.
109
11. Tang X., Ackerman M. M., Guyot-Sionnest P. Thermal Imaging with Plasmon Resonance Enhanced HgTe Colloidal Quantum Dot Photovoltaic Devices // ACS Nano. - 2018. - T. 12, № 7. - C. 7362-7370.
12. Tang X., Ackerman M. M., Chen M., Guyot-Sionnest P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes // Nature Photonics. - 2019. - T. 13, № 4. - C. 277-282.
13. Keuleyan S., Lhuillier E., Brajuskovic V., Guyot-Sionnest P. Mid-infrared HgTe colloidal quantum dot photodetectors // Nature Photonics. - 2011. - T. 5, № 8. - C. 489-493.
14. Hafiz S. B., Scimeca M. R., Zhao P., Paredes I. J., Sahu A., Ko D.-K. Silver Selenide Colloidal Quantum Dots for Mid-Wavelength Infrared Photodetection // ACS Applied Nano Materials. -2019. - T. 2, № 3. - C. 1631-1636.
15. Hafiz S. B., Scimeca M., Sahu A., Ko D.-K. Colloidal quantum dots for thermal infrared sensing and imaging // Nano Convergence. - 2019. - T. 6, № 1. - C. 7-28.
16. Tang X., Tang X., Lai K. W. C. Scalable Fabrication of Infrared Detectors with Multispectral Photoresponse Based on Patterned Colloidal Quantum Dot Films // ACS Photonics. - 2016. - T. 3, № 12. - C. 2396-2404.
17. Green M., Mirzai H. Synthetic routes to mercury chalcogenide quantum dots // Journal of Materials Chemistry C. - 2018. - T. 6, № 19. - C. 5097-5112.
18. Rogach A., Kershaw S. V., Burt M., Harrison M. T., Kornowski A., Eychmuller A., Weller H. Colloidally Prepared HgTe Nanocrystals with Strong Room-Temperature Infrared Luminescence // Advanced Materials. - 1999. - T. 11, № 7. - C. 552-555.
19. T. Harrison M., V. Kershaw S., G. Burt M., Rogach A., Eychmuller A., Weller H. Investigation of factors affecting the photoluminescence of colloidally-prepared HgTe nanocrystals // Journal of Materials Chemistry. - 1999. - T. 9, № 11. - C. 2721-2722.
20. Green M., Wakefield G., Dobson P. J. A simple metalorganic route to organically passivated mercury telluride nanocrystals // Journal of Materials Chemistry. - 2003. - T. 13, № 5. - C. 10761078.
21. Piepenbrock M.-O. M., Stirner T., Kelly S. M., O'Neill M. A Low-Temperature Synthesis for Organically Soluble HgTe Nanocrystals Exhibiting Near-Infrared Photoluminescence and Quantum Confinement // Journal of the American Chemical Society. - 2006. - T. 128, № 21. - C. 7087-7090.
22. Keuleyan S., Lhuillier E., Guyot-Sionnest P. Synthesis of Colloidal HgTe Quantum Dots for Narrow Mid-IR Emission and Detection // Journal of the American Chemical Society. - 2011. - T. 133, № 41. - C. 16422-16424.
23. Keuleyan S. E., Guyot-Sionnest P., Delerue C., Allan G. Mercury Telluride Colloidal Quantum Dots: Electronic Structure, Size-Dependent Spectra, and Photocurrent Detection up to 12 ^m // ACS Nano. - 2014. - T. 8, № 8. - C. 8676-8682.
24. Prado Y., Qu J., Greboval C., Dabard C., Rastogi P., Chu A., Khalili A., Xu X. Z., Delerue C., Ithurria S., Lhuillier E. Seeded Growth of HgTe Nanocrystals for Shape Control and Their Use in Narrow Infrared Electroluminescence // Chemistry of Materials. - 2021. - T. 33, № 6. - C. 20542061.
25. Shen G., Chen M., Guyot-Sionnest P. Synthesis of Nonaggregating HgTe Colloidal Quantum Dots and the Emergence of Air-Stable n-Doping // The Journal of Physical Chemistry Letters. -2017. - T. 8, № 10. - C. 2224-2228.
26. Liu Z., Wang P., Dong R., Gong W., Li J., Dai D., Yan H., Zhang Y. Mid-Infrared HgTe Colloidal Quantum Dots In-Situ Passivated by Iodide // Coatings. - 2022. - T. 12, № 7. - C. 10331045.
27. Yang F., Gao G., Wang J., Chen R., Zhu W., Wang L., Ma Z., Luo Z., Sun T. Chiral p-HgS quantum dots: Aqueous synthesis, optical properties and cytocompatibility // Journal of Colloid and Interface Science. - 2019. - T. 537. - C. 422-430.
28. Wichiansee W., Nordin M. N., Green M., Curry R. J. Synthesis and optical characterization of infra-red emitting mercury sulfide (HgS) quantum dots // Journal of Materials Chemistry. - 2011. - T. 21, № 20. - C. 7331-7336.
29. Xu W., Lou S., Li S., Wang H., Shen H., Niu J. Z., Du Z., Li L. S. Moderate temperature synthesis of flower- and dot-shaped HgS nanocrystals // Colloids and Surfaces A: Physicochemical and Engineering Aspects. - 2009. - T. 341, № 1. - C. 68-72.
30. Xu X., Carraway E. R. Sonication-Assisted Synthesis of P-Mercuric Sulphide Nanoparticles // Nanomaterials and Nanotechnology. - 2012. - T. 2. - C. 17-22.
31. Jeong K. S., Deng Z., Keuleyan S., Liu H., Guyot-Sionnest P. Air-Stable n-Doped Colloidal HgS Quantum Dots // The Journal of Physical Chemistry Letters. - 2014. - T. 5, № 7. - C. 11391143.
32. Goswami N., Giri A., Kar S., Bootharaju M. S., John R., Xavier P. L., Pradeep T., Pal S. K. Protein-Directed Synthesis of NIR-Emitting, Tunable HgS Quantum Dots and their Applications in Metal-Ion Sensing // Small. - 2012. - T. 8, № 20. - C. 3175-3184.
33. Shen G., Guyot-Sionnest P. HgS and HgS/CdS Colloidal Quantum Dots with Infrared Intraband Transitions and Emergence of a Surface Plasmon // The Journal of Physical Chemistry C. - 2016.
- T. 120, № 21. - C. 11744-11753.
34. Higginson K. A., Kuno M., Bonevich J., Qadri S. B., Yousuf M., Mattoussi H. Synthesis and Characterization of Colloidal P-HgS Quantum Dots // The Journal of Physical Chemistry B. - 2002.
- T. 106, № 39. - C. 9982-9985.
35. Yoon B., Jeong J., Jeong K. S. Higher Quantum State Transitions in Colloidal Quantum Dot with Heavy Electron Doping // The Journal of Physical Chemistry C. - 2016. - T. 120, № 38. - C. 22062-22068.
36. Yuan M., Kemp K. W., Thon S. M., Kim J. Y., Chou K. W., Amassian A., Sargent E. H. HighPerformance Quantum-Dot Solids via Elemental Sulfur Synthesis // Advanced Materials. - 2014. -T. 26, № 21. - C. 3513-3519.
37. Nam M., Kim S., Kim S., Jeong S., Kim S.-W., Lee K. Near-infrared-sensitive bulk heterojunction solar cells using nanostructured hybrid composites of HgTe quantum dots and a low-bandgap polymer // Solar Energy Materials and Solar Cells. - 2014. - T. 126. - C. 163-169.
38. Harrison M. T., Kershaw S. V., Burt M. G., Rogach A. L., Kornowski A., Eychmuller A., Weller H. Colloidal nanocrystals for telecommunications. Complete coverage of the low-loss fiber windows by mercury telluride quantum dot // Pure and Applied Chemistry. - 2000. - T. 72, № 1-2.
- C. 295-307.
39. Kershaw S. V., Susha A. S., Rogach A. L. Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties // Chemical Society Reviews. - 2013. - T. 42, № 7. - C. 3033-3087.
40. Izquierdo E., Robin A., Keuleyan S., Lequeux N., Lhuillier E., Ithurria S. Strongly Confined HgTe 2D Nanoplatelets as Narrow Near-Infrared Emitters // Journal of the American Chemical Society. - 2016. - T. 138, № 33. - C. 10496-10501.
41. Livache C., Izquierdo E., Martinez B., Dufour M., Pierucci D., Keuleyan S., Cruguel H., Becerra L., Fave J. L., Aubin H., Ouerghi A., Lacaze E., Silly M. G., Dubertret B., Ithurria S., Lhuillier E.
112
Charge Dynamics and Optolectronic Properties in HgTe Colloidal Quantum Wells // Nano Letters. - 2017. - T. 17, № 7. - C. 4067-4074.
42. Greboval C., Izquierdo E., Livache C., Martinez B., Dufour M., Goubet N., Moghaddam N., Qu J., Chu A., Ramade J., Aubin H., Cruguel H., Silly M., Lhuillier E., Ithurria S. Impact of dimensionality and confinement on the electronic properties of mercury chalcogenide nanocrystals // Nanoscale. - 2019. - T. 11, № 9. - C. 3905-3915.
43. Moghaddam N., Greboval C., Qu J., Chu A., Rastogi P., Livache C., Khalili A., Xu X. Z., Baptiste B., Klotz S., Fishman G., Capitani F., Ithurria S., Sauvage S., Lhuillier E. The Strong Confinement Regime in HgTe Two-Dimensional Nanoplatelets // The Journal of Physical Chemistry C. - 2020. - T. 124, № 42. - C. 23460-23468.
44. Dabard C., Bossavit E., Dang T. H., Ledos N., Cavallo M., Khalili A., Zhang H., Alchaar R., Patriarche G., Vasanelli A., Diroll B. T., Degiron A., Lhuillier E., Ithurria S. Electroluminescence and Plasmon-Assisted Directional Photoluminescence from 2D HgTe Nanoplatelets // The Journal of Physical Chemistry C. - 2023. - T. 127, № 30. - C. 14847-14855.
45. Sokolova A. V., Skurlov I. D., Babaev A. A., Perfenov P. S., Miropoltsev M. A., Danilov D. V., Baranov M. A., Kolesnikov I. E., Koroleva A. V., Zhizhin E. V., Litvin A. P., Fedorov A. V., Cherevkov S. A. Near-Infrared Emission of HgTe Nanoplatelets Tuned by Pb-Doping // Nanomaterials. - 2022. - T. 12, № 23. - C. 4198-4208.
46. Portniagin A. S., Sergeeva K. A., Kershaw S. V., Rogach A. L. Cation-Exchange-Derived Wurtzite HgTe Nanorods for Sensitive Photodetection in the Short-Wavelength Infrared Range // Chemistry of Materials. - 2023. - T. 35, № 14. - C. 5631-5639.
47. Xia K., Fei G. T., Xu S. H., Gao X. D., Liang Y. F. Hot-Injection Synthesis of HgTe Nanoparticles: Shape Control and Growth Mechanisms // Inorganic Chemistry. - 2023. - T. 62, № 33. - C. 13632-13638.
48. Sangsefidi F. S., Salavati-Niasari M., Esmaeili-Zare M. Hydrothermal method for synthesis of HgTe nanorods in presence of a novel precursor // Superlattices and Microstructures. - 2013. - T. 62. - C. 1-11.
49. Gaponik N., Talapin D. V., Rogach A. L., Eychmüller A., Weller H. Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals: From Water to Nonpolar Organic Solvents // Nano Letters. - 2002. - T. 2, № 8. - C. 803-806.
50. O'Connor É., O'Riordan A., Doyle H., Moynihan S., Cuddihy A., Redmond G. Near-infrared electroluminescent devices based on colloidal HgTe quantum dot arrays // Applied Physics Letters.
- 2005. - T. 86, № 20. - C. 201114-201116.
51. Koktysh D. S., Gaponik N., Reufer M., Crewett J., Scherf U., Eychmuller A., Lupton J. M., Rogach A. L., Feldmann J. Near-Infrared Electroluminescence from HgTe Nanocrystals // ChemPhysChem. - 2004. - T. 5, № 9. - C. 1435-1438.
52. Kim H., Cho K., Park B., Kim J.-H., Lee J. W., Kim S., Noh T., Jang E. Optoelectronic characteristics of close-packed HgTe nanoparticles in the infrared range // Solid State Communications. - 2006. - T. 137, № 6. - C. 315-319.
53. Rogach A. L., Koktysh D. S., Harrison M., Kotov N. A. Layer-by-Layer Assembled Films of HgTe Nanocrystals with Strong Infrared Emission // Chemistry of Materials. - 2000. - T. 12, № 6.
- C. 1526-1528.
54. Gunes S., Neugebauer H., Sariciftci N. S., Roither J., Kovalenko M., Pillwein G., Heiss W. Hybrid Solar Cells Using HgTe Nanocrystals and Nanoporous TiO2 Electrodes // Advanced Functional Materials. - 2006. - T. 16, № 8. - C. 1095-1099.
55. Jang J., Cho K., Lee S. H., Kim S. Transparent and flexible thin-film transistors with channel layers composed of sintered HgTe nanocrystals // Nanotechnology. - 2008. - T. 19, № 1. - C. 52045208.
56. Harrison M. T., Kershaw S. V., Rogach A. L., Kornowski A., Eychmuller A., Weller H. Wet Chemical Synthesis of Highly Luminescent HgTe/CdS Core/Shell Nanocrystals // Advanced Materials. - 2000. - T. 12, № 2. - C. 123-125.
57. Rogach A. L., Harrison M. T., Kershaw S. V., Kornowski A., Burt M. G., Eychmuller A., Weller H. Colloidally Prepared CdHgTe and HgTe Quantum Dots with Strong Near-Infrared Luminescence // physica status solidi (b). - 2001. - T. 224, № 1. - C. 153-158.
58. Brus L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state // The Journal of Chemical Physics. -1984. - T. 80, № 9. - C. 4403-4409.
59. Liu H., Keuleyan S., Guyot-Sionnest P. n- and p-Type HgTe Quantum Dot Films // The Journal of Physical Chemistry C. - 2012. - T. 116, № 1. - C. 1344-1349.
60. Ackerman M. M., Chen M., Guyot-Sionnest P. HgTe colloidal quantum dot photodiodes for extended short-wave infrared detection // Applied Physics Letters. - 2020. - T. 116, № 8. - C. 1-4.
61. Rastogi P., Chu A., Dang T. H., Prado Y., Greboval C., Qu J., Dabard C., Khalili A., Dandeu E., Fix B., Xu X. Z., Ithurria S., Vincent G., Gallas B., Lhuillier E. Complex Optical Index of HgTe Nanocrystal Infrared Thin Films and Its Use for Short Wave Infrared Photodiode Design // Advanced Optical Materials. - 2021. - T. 9, № 10. - C. 2002066-2002076.
62. Chu A., Martinez B., Ferre S., Noguier V., Greboval C., Livache C., Qu J., Prado Y., Casaretto N., Goubet N., Cruguel H., Dudy L., Silly M. G., Vincent G., Lhuillier E. HgTe Nanocrystals for SWIR Detection and Their Integration up to the Focal Plane Array // ACS Applied Materials & Interfaces. - 2019. - T. 11, № 36. - C. 33116-33123.
63. Jagtap A., Goubet N., Livache C., Chu A., Martinez B., Greboval C., Qu J., Dandeu E., Becerra L., Witkowski N., Ithurria S., Mathevet F., Silly M. G., Dubertret B., Lhuillier E. Short Wave Infrared Devices Based on HgTe Nanocrystals with Air Stable Performances // The Journal of Physical Chemistry C. - 2018. - T. 122, № 26. - C. 14979-14985.
64. Palosz W., Trivedi S., Zhang D., Meissner G., Olver K., DeCuir E., Wijewarnasuriya P. S., Jensen J. L. HgTe Quantum Dots for Near-, Mid-, and Long-Wavelength IR Devices // Journal of Electronic Materials. - 2017. - T. 46, № 9. - C. 5411-5417.
65. Ackerman M. M., Tang X., Guyot-Sionnest P. Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors // ACS Nano. - 2018. - T. 12, № 7. - C. 7264-7271.
66. Chen M., Lan X., Tang X., Wang Y., Hudson M. H., Talapin D. V., Guyot-Sionnest P. High Carrier Mobility in HgTe Quantum Dot Solids Improves Mid-IR Photodetectors // ACS Photonics. - 2019. - T. 6, № 9. - C. 2358-2365.
67. Cryer M. E., Fiedler H., Halpert J. E. Photo-Electrosensitive Memristor Using Oxygen Doping in HgTe Nanocrystal Films // ACS Applied Materials & Interfaces. - 2018. - T. 10, № 22. - C. 18927-18934.
68. Livache C., Goubet N., Martinez B., Jagtap A., Qu J., Ithurria S., Silly M. G., Dubertret B., Lhuillier E. Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals // ACS Applied Materials & Interfaces. - 2018. - T. 10, № 14. - C. 11880-11887.
69. Martinez B., Ramade J., Livache C., Goubet N., Chu A., Greboval C., Qu J., Watkins W. L., Becerra L., Dandeu E., Fave J. L., Methivier C., Lacaze E., Lhuillier E. HgTe Nanocrystal Inks for
115
Extended Short-Wave Infrared Detection // Advanced Optical Materials. - 2019. - T. 7, № 15. - C. 1900348-1900355.
70. Gréboval C., Noumbé U. N., Chu A., Prado Y., Khalili A., Dabard C., Dang T. H., Colis S., Chaste J., Ouerghi A., Dayen J.-F., Lhuillier E. Gate tunable vertical geometry phototransistor based on infrared HgTe nanocrystals // Applied Physics Letters. - 2020. - T. 117, № 25. - C. 1104-1108.
71. Chee S.-S., Gréboval C., Magalhaes D. V., Ramade J., Chu A., Qu J., Rastogi P., Khalili A., Dang T. H., Dabard C., Prado Y., Patriarche G., Chaste J., Rosticher M., Bals S., Delerue C., Lhuillier E. Correlating Structure and Detection Properties in HgTe Nanocrystal Films // Nano Letters. - 2021. - T. 21, № 10. - C. 4145-4151.
72. Bossavit E., Qu J., Abadie C., Dabard C., Dang T., Izquierdo E., Khalili A., Gréboval C., Chu A., Pierini S., Cavallo M., Prado Y., Parahyba V., Xu X. Z., Decamps-Mandine A., Silly M., Ithurria S., Lhuillier E. Optimized Infrared LED and Its Use in an All-HgTe Nanocrystal-Based Active Imaging Setup // Advanced Optical Materials. - 2022. - T. 10, № 4. - C. 2101755-2101762.
73. Qu J., Rastogi P., Gréboval C., Lagarde D., Chu A., Dabard C., Khalili A., Cruguel H., Robert C., Xu X. Z., Ithurria S., Silly M. G., Ferré S., Marie X., Lhuillier E. Electroluminescence from HgTe Nanocrystals and Its Use for Active Imaging // Nano Letters. - 2020. - T. 20, № 8. - C. 61856190.
74. Shen X., Peterson J. C., Guyot-Sionnest P. Mid-infrared HgTe Colloidal Quantum Dot LEDs // ACS Nano. - 2022. - T. 16, № 5. - C. 7301-7308.
75. Grotevent M. J., Hail C. U., Yakunin S., Bachmann D., Calame M., Poulikakos D., Kovalenko M. V., Shorubalko I. Colloidal HgTe Quantum Dot/Graphene Phototransistor with a Spectral Sensitivity Beyond 3 ^m // Advanced Science. - 2021. - T. 8, № 6. - C. 2003360-2003366.
76. Zhang H., Guyot-Sionnest P. Shape-Controlled HgTe Colloidal Quantum Dots and Reduced Spin-Orbit Splitting in the Tetrahedral Shape // The Journal of Physical Chemistry Letters. - 2020. - T. 11, № 16. - C. 6860-6866.
77. Li L. S., Wang H., Liu Y., Lou S., Wang Y., Du Z. Room temperature synthesis of HgTe nanocrystals // Journal of Colloid and Interface Science. - 2007. - T. 308, № 1. - C. 254-257.
78. Abdelazim N. M., Zhu Q., Xiong Y., Zhu Y., Chen M., Zhao N., Kershaw S. V., Rogach A. L. Room Temperature Synthesis of HgTe Quantum Dots in an Aprotic Solvent Realizing High
Photoluminescence Quantum Yields in the Infrared // Chemistry of Materials. - 2017. - T. 29, № 18. - C. 7859-7867.
79. Kershaw S. V., Yiu W. K., Sergeev A., Rogach A. L. Development of Synthetic Methods to Grow Long-Wavelength Infrared-Emitting HgTe Quantum Dots in Dimethylformamide // Chemistry of Materials. - 2020. - T. 32, № 9. - C. 3930-3943.
80. Sergeeva K. A., Fan K., Sergeev A. A., Hu S., Liu H., Chan C. C., Kershaw S. V., Wong K. S., Rogach A. L. Ultrafast Charge Carrier Dynamics and Transport Characteristics in HgTe Quantum Dots // The Journal of Physical Chemistry C. - 2022. - T. 126, № 45. - C. 19229-19239.
81. Dong Y., Chen M., Yiu W. K., Zhu Q., Zhou G., Kershaw S. V., Ke N., Wong C. P., Rogach A. L., Zhao N. Solution Processed Hybrid Polymer: HgTe Quantum Dot Phototransistor with High Sensitivity and Fast Infrared Response up to 2400 nm at Room Temperature // Advanced Science. - 2020. - T. 7, № 12. - C. 2000068-2000076.
82. Chen M., Lu H., Abdelazim N. M., Zhu Y., Wang Z., Ren W., Kershaw S. V., Rogach A. L., Zhao N. Mercury Telluride Quantum Dot Based Phototransistor Enabling High-Sensitivity Room-Temperature Photodetection at 2000 nm // ACS Nano. - 2017. - T. 11, № 6. - C. 5614-5622.
83. Pedetti S., Nadal B., Lhuillier E., Mahler B., Bouet C., Abecassis B., Xu X., Dubertret B. Optimized Synthesis of CdTe Nanoplatelets and Photoresponse of CdTe Nanoplatelets Films // Chemistry of Materials. - 2013. - T. 25, № 12. - C. 2455-2462.
84. Litvin A. P., Kolesnikov I. E., Cherevkov S. A., Skurlov I. D., Babaev A. A., Sokolova A. V., Grinevich Y. V., Parfenov P. S. Effect of Ligands on the Photoconductivity of HgTe Nanoplatelets // Optics and Spectroscopy. - 2022. - T. 130, № 11. - C. 1487-1491.
85. Mahapatra A. K., Dash A. K. a-HgS nanocrystals: Synthesis, structure and optical properties // Physica E: Low-dimensional Systems and Nanostructures. - 2006. - T. 35, № 1. - C. 9-15.
86. Delin A. First-principles calculations of the II-VI semiconductor \ensuremath{\beta}-HgS: Metal or semiconductor // Physical Review B. - 2002. - T. 65, № 15. - C. 153205-153208.
87. Semiconductors: Data Handbook. / Madelung O.: Cleaver-Hume, 2004. - 691 c.
88. Schooss D., Mews A., Eychmüller A., Weller H. Quantum-dot quantum well CdS/HgS/CdS: Theory and experiment // Physical Review B. - 1994. - T. 49, № 24. - C. 17072-17078.
89. Dybko K., Szuszkiewicz W., Dynowska E., Paszkowicz W., Witkowska B. Band structure of p-HgS from Shubnikov-de Haas effect // Physica B: Condensed Matter. - 1998. - T. 256-258. - C. 629-632.
90. Green M., Prince P., Gardener M., Steed J. Mercury(II) N,N'-Methyl-Phenylethyl-Dithiocarbamate and Its Use as a Precursor for the Room-Temperature Solution Deposition of P-HgS Thin Films // Advanced Materials. - 2004. - T. 16, № 12. - C. 994-996.
91. Siemsen K. J., Riccius H. D. Preparation and Optical Properties of Evaporated P-HgS Films // physica status solidi (b). - 1970. - T. 37, № 1. - C. 445-451.
92. Wang H., Zhang J.-R., Zhu J.-J. A microwave assisted heating method for the rapid synthesis of sphalrite-type mercury sulfide nanocrystals with different sizes // Journal of Crystal Growth. -2001. - T. 233, № 4. - C. 829-836.
93. Liao X.-H., Zhu J.-J., Chen H.-Y. Microwave synthesis of nanocrystalline metal sulfides in formaldehyde solution // Materials Science and Engineering: B. - 2001. - T. 85, № 1. - C. 85-89.
94. Ding T., Zhu J.-J. Microwave heating synthesis of HgS and PbS nanocrystals in ethanol solvent // Materials Science and Engineering: B. - 2003. - T. 100, № 3. - C. 307-313.
95. Zeng J.-h., Yang J., Qian Y.-t. A novel morphology controllable preparation method to HgS // Materials Research Bulletin. - 2001. - T. 36, № 1. - C. 343-348.
96. Patel B. K., Rath S., Sarangi S. N., Sahu S. N. HgS nanoparticles: Structure and optical properties // Applied Physics A. - 2007. - T. 86, № 4. - C. 447-450.
97. Kim J., Yoon B., Kim J., Choi Y., Kwon Y.-W., Park S. K., Jeong K. S. High electron mobility of P-HgS colloidal quantum dots with doubly occupied quantum states // RSC Advances. - 2017. -T. 7, № 61. - C. 38166-38170.
98. Pan Y., Bai H., Pan L., Li Y., Tamargo M. C., Sohel M., Lombardi J. R. Size controlled synthesis of monodisperse PbTe quantum dots: using oleylamine as the capping ligand // Journal of Materials Chemistry. - 2012. - T. 22, № 44. - C. 23593-23601.
99. Smith A. M., Nie S. Bright and Compact Alloyed Quantum Dots with Broadly Tunable Near-Infrared Absorption and Fluorescence Spectra through Mercury Cation Exchange // Journal of the American Chemical Society. - 2011. - T. 133, № 1. - C. 24-26.
100. Wang J., Long Y., Zhang Y., Zhong X., Zhu L. Preparation of highly luminescent CdTe/CdS core/shell quantum dots // Chemphyschem. - 2009. - T. 10, № 4. - C. 680-685.
118
101. Zhang J., Sun Z., Fang J. Wet-Chemical Synthesis of ZnTe Quantum Dots // MRS Online Proceedings Library. - 2006. - T. 942, № 1. - C. 825-829.
102. Wang F., Zhang M., Chen W., Javaid S., Yang H., Wang S., Yang X., Zhang L.-C., Buntine M. A., Li C., Jia G. Atomically thin heavy-metal-free ZnTe nanoplatelets formed from magic-size nanoclusters // Nanoscale Advances. - 2020. - T. 2, № 8. - C. 3316-3322.
103. Chauzov V. A. K. L. P. Alkylation In Situ of Arylphosphines Formed during Thermolysis of Hydrophosphoryl Compounds // Journal of general chemistry of the USSR. - 1991. - T. 61, № 10. - C. 2181-2186.
104. Shuklov I. A., Mikhel I. S., Nevidimov A. V., Birin K. P., Dubrovina N. V., Lizunova A. A., Razumov V. F. Mechanistic Insights into the Synthesis of Telluride Colloidal Quantum Dots with Trioctylphosphine-Tellurium // ChemistrySelect. - 2020. - T. 5, № 38. - C. 11896-11900.
105. Sun H., Wang F., Buhro W. E. Tellurium Precursor for Nanocrystal Synthesis: Tris(dimethylamino)phosphine Telluride // ACS Nano. - 2018. - T. 12, № 12. - C. 12393-12400.
106. Du Mont W. K., H. Zur Reaktion von Organophosphien mit Chalkogenen und Halogenen Rasche Übertragung von Tellurund Jod Zwischen Phosphinen // Journal of Organometallic Chemistry. - 1976. - T. 113, № 3. - C. 35-37.
107. Blinov K. A., Smurnyy Y. D., Elyashberg M. E., Churanova T. S., Kvasha M., Steinbeck C., Lefebvre B. A., Williams A. J. Performance Validation of Neural Network Based 13C NMR Prediction Using a Publicly Available Data Source // Journal of Chemical Information and Modeling. - 2008. - T. 48, № 3. - C. 550-555.
108. Smurnyy Y. D., Blinov K. A., Churanova T. S., Elyashberg M. E., Williams A. J. Toward More Reliable 13C and 1H Chemical Shift Prediction: A Systematic Comparison of Neural-Network and Least-Squares Regression Based Approaches // Journal of Chemical Information and Modeling. - 2008. - T. 48, № 1. - C. 128-134.
109. NMR data interpretation explained_ understanding 1D and 2D NMR spectra of organic compounds and natural products. / Jacobsen N. E.: John Wiley & Sons, Inc., 2017. - 651 c.
110. Hilliard C. R., Bhuvanesh N., Gladysz J. A., Blumel J. Synthesis, purification, and characterization of phosphine oxides and their hydrogen peroxide adducts // Dalton Transactions. -2012. - T. 41, № 6. - C. 1742-1754.
111. Mehta M., Garcia de la Arada I., Perez M., Porwal D., Oestreich M., Stephan D. W. MetalFree Phosphine Oxide Reductions Catalyzed by B(C6F5)3 and Electrophilic Fluorophosphonium Cations // Organometallics. - 2016. - T. 35, № 7. - C. 1030-1035.
112. Brichkin S. B., Razumov V. F. Colloidal quantum dots: synthesis, properties and applications // Russian Chemical Reviews. - 2016. - T. 85, № 12. - C. 1297-1312.
113. Kim S., Kim T., Im S. H., Seok S. I., Kim K. W., Kim S., Kim S.-W. Bandgap engineered monodisperse and stable mercury telluride quantum dots and their application for near-infrared photodetection // Journal of Materials Chemistry. - 2011. - T. 21, № 39. - C. 15232-15236.
114. NIST X-ray Photoelectron Spectroscopy Database. / Wagner C. D., Standards N. I. o., Technology: National Institute of Standards and Technology, 2000. - 65 с.
115. Grazulis S., Chateigner D., Downs R. T., Yokochi A. F. T., Quiros M., Lutterotti L., Manakova E., Butkus J., Moeck P., Le Bail A. Crystallography Open Database - an open-access collection of crystal structures // Journal of Applied Crystallography. - 2009. - T. 42, № 4. - C. 726-729.
116. Nyquist R. A. Interpreting Infrared, Raman, and Nuclear Magnetic Resonance Spectra. - San Diego: Academic Press, 2001. - C. 65-83.
117. Tovstun S. A., Razumov V. F. Theoretical analysis of methods for the colloidal synthesis of monodisperse nanoparticles // High Energy Chemistry. - 2010. - T. 44, № 3. - C. 196-203.
118. Jasieniak J., Smith L., van Embden J., Mulvaney P., Califano M. Re-examination of the Size-Dependent Absorption Properties of CdSe Quantum Dots // The Journal of Physical Chemistry C. - 2009. - T. 113, № 45. - C. 19468-19474.
119. Lhuillier E., Keuleyan S., Guyot-Sionnest P. Optical properties of HgTe colloidal quantum dots // Nanotechnology. - 2012. - T. 23, № 17. - C. 175705-175710.
120. Moreels I., Lambert K., Smeets D., De Muynck D., Nollet T., Martins J. C., Vanhaecke F., Vantomme A., Delerue C., Allan G., Hens Z. Size-Dependent Optical Properties of Colloidal PbS Quantum Dots // ACS Nano. - 2009. - T. 3, № 10. - C. 3023-3030.
121. Moreels I., Lambert K., De Muynck D., Vanhaecke F., Poelman D., Martins J. C., Allan G., Hens Z. Composition and Size-Dependent Extinction Coefficient of Colloidal PbSe Quantum Dots // Chemistry of Materials. - 2007. - T. 19, № 25. - C. 6101-6106.
122. Separation, Preconcentration and Spectrophotometry in Inorganic Analysis. / Marczenko Z., Balcerzak M., Kloczko E.: Elsevier Science, 2000. - 528 с.
120
123. Aubert T., Golovatenko A. A., Samoli M., Lermusiaux L., Zinn T., Abécassis B., Rodina A. V., Hens Z. General Expression for the Size-Dependent Optical Properties of Quantum Dots // Nano Letters. - 2022. - T. 22, № 4. - C. 1778-1785.
124. Tauc J., Grigorovici R., Vancu A. Optical Properties and Electronic Structure of Amorphous Germanium // physica status solidi (b). - 1966. - T. 15, № 2. - C. 627-637.
125. Davis E. A., Mott N. F. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors // The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics. - 1970. - T. 22, № 179. - C. 0903-0922.
126. Electronic Processes in Non-Crystalline Materials. / Mott N. F., Davis E. A.: OUP Oxford, 2012. - 608 c.
127. Makula P., Pacia M., Macyk W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra // The Journal of Physical Chemistry Letters. - 2018. - T. 9, № 23. - C. 6814-6817.
128. Adachi S. Mercury Telluride (HgTe) // Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information / Adachi S. - Boston, MA: Springer US, 1999. - C. 553-558.
129. Urban J. J., Talapin D. V., Shevchenko E. V., Murray C. B. Self-Assembly of PbTe Quantum Dots into Nanocrystal Superlattices and Glassy Films // Journal of the American Chemical Society.
- 2006. - T. 128, № 10. - C. 3248-3255.
130. Peters J. L., de Wit J., Vanmaekelbergh D. Sizing Curve, Absorption Coefficient, Surface Chemistry, and Aliphatic Chain Structure of PbTe Nanocrystals // Chemistry of Materials. - 2019.
- T. 31, № 5. - C. 1672-1680.
131. Clarke R. J., Oprysa A. Fluorescence and Light Scattering // Journal of Chemical Education.
- 2004. - T. 81, № 5. - C. 705-707.
132. Owen N. B., Smith P. L., Martin J. E., Wright A. J. X-ray diffraction at ultra-high pressures // Journal of Physics and Chemistry of Solids. - 1963. - T. 24, № 12. - C. 1519-1524.
133. Yu W. W., Qu L., Guo W., Peng X. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals // Chemistry of Materials. - 2003. - T. 15, № 14. - C. 28542860.
134. Wang Y., Herron N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties // The Journal of Physical Chemistry. - 1991. - T. 95, № 2. - C. 525-532.
135. Brus L. Electronic wave functions in semiconductor clusters: experiment and theory // The Journal of Physical Chemistry. - 1986. - T. 90, № 12. - C. 2555-2560.
136. Spinulescu-Carnaru I. The crystalline structure of ZnTe thin films // physica status solidi (b). - 1966. - T. 18, № 2. - C. 769-778.
137. Doan-Nguyen V. V. T., Carroll P. J., Murray C. B. Structure determination and modeling of monoclinic trioctylphosphine oxide // Acta Crystallographica Section C. - 2015. - T. 71, № 3. - C. 239-241.
138. Onwudiwe D. C., Hrubaru M., Ebenso E. E. Synthesis, Structural and Optical Properties of TOPO and HDA Capped Cadmium Sulphide Nanocrystals, and the Effect of Capping Ligand Concentration // Journal of Nanomaterials. - 2015. - T. 16, № 1. - C. 305-313.
139. Malkova N., Bryant G. W. Negative-band-gap quantum dots: Gap collapse, intrinsic surface states, excitonic response, and excitonic insulator phase // Physical Review B. - 2010. - T. 82, № 15. - C. 155314-155323.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.