Исследование методом конфокальной микроскопии компонент трехмерных полимерных микроструктур, изготовленных прямым лазерным письмом тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Матитал Рилонд Паттиа

  • Матитал Рилонд Паттиа
  • кандидат науккандидат наук
  • 2023, ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)»
  • Специальность ВАК РФ00.00.00
  • Количество страниц 113
Матитал Рилонд Паттиа. Исследование методом конфокальной микроскопии компонент трехмерных полимерных микроструктур, изготовленных прямым лазерным письмом: дис. кандидат наук: 00.00.00 - Другие cпециальности. ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)». 2023. 113 с.

Оглавление диссертации кандидат наук Матитал Рилонд Паттиа

Table of Contents

abstract

preface

chapter 1 introduction to direct laser writing-lithography and confocal microscopy methods

1.1. 3d microstructures by dlw-lithography

1.1.1. Two-photon polymerization

1.1.2. Photopolymerization Induced by tpa

1.1.3. Principle of DLW-lithography

1.1.4. Resolutions limit

1.1.5. Current advanced and advantages of the DLW-lithography

1.2. confocal laser scanning microscopy for the study of 3d microstructures

1.2.1 Principle clsm

1.2.2 Resolution in Confocal Microscopy

1.2.3 Current stage and application of Confocal Microscope

chapter 2 experimental

2.1. 3d printing setup (nanoscribe photonics direct laser writing)

2.1.1. Material and sample preparation

2.1.2. Fabrication Process

2.2. confocal microscopy setup (clsm 510 meta)

2.2.1. Material and sample preparation

2.2.2. 3d Confocal Imaging reconstruction

chapter 3 result

3.1. luminescence of pwb 3d microstructure

3.1.1. Experimental

3.1.2. Luminescence Investigation

3.2. verification OF methacrylate containing photoinitiator 4metbac

3.2.1. Experimental

3.2.2. tpp for scaffold and cylinder spiral structure

3.3. benzylidene - the optimal parameters for the fabrication of mechanically stable refractive x-ray 3d microstructures

3.3.1. Experimental

3.3.2. 3d polymer microstructure fabrication

3.3.3. X-ray Lens Morphology

3.3.4. Nondestructive analysis of the 3d microstructure

3.4. ASPERICAL lens and microlens array

3.4.1. Experimental

3.4.2. Optimization computer model of the 3d polymer microstructure

3.4.3. morphological features

chapter 4 discussion and conclusion

4.1. discussion

4.2. conclusion

references

Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Введение диссертации (часть автореферата) на тему «Исследование методом конфокальной микроскопии компонент трехмерных полимерных микроструктур, изготовленных прямым лазерным письмом»

Preface

The development of 3D microstructures fabrication has become an important task in recent decades for scientists and engineers due to numerous implementations in various research fields. Various 3D microstructures have been developed using technology of 3D additive manufacturing techniques for application in photonics integrated circuits (PIC), x-ray optics, optics communication, and bioengineering. Among these 3D microstructures are such structures as photonics wire bond (PWB), x-ray microlens, micro lens array (MLA), and cell scaffold [1-9]. Fabrication of various 3D microstructures with arbitrary and complex architecture could be provided with 3D additive manufacturing technology. Various methods of 3D additive manufacturing such as micro-electrical discharge machining (micro-EDM) mold, electric-field-driven (EFD) microscale 3D printing, thermal reflow, direct-write UV laser photolithography, direct laser writing-lithography (DLW-lithography) based on two-photon polymerization, focused ion beam etching, and electron beam etching have been developed [10-17]. However, compared to other methods mentioned before, DLW-lithography provided more advantages and has become one of the most rapidly developing methods for 3D microstructure fabrication in the last decades. This method is based on the phenomenon of nonlinear multiphoton absorption by photopolymers, when the beam of a femtosecond laser is directly focused inside the volume of photoresist, causing it to polymerize locally [18]. DLW-lithography provides high-resolution fabrication below 100 nm [19]. The moving direction of the laser beam or sample stage for the fabrication process is based on a Computer Aided Design (CAD) model which allows one to fabricate a realistic 3D microstructure out of the 3D model microstructure. In other words DLW-lithography enables direct writing of the 3D microstructure from a computer data trough CAD design.

Three-dimensional microstructures fabricated using DLW-lithography method were applied in different fields such as optics, biomedical research, surface coatings, and anticounterfeiting [20]. In the field of optics for imaging application, the capability to fabricate 3D microobjective lens to improve the image processing in the camera system is provided by DLW-lithography method. The highly miniaturized camera consists of a 3D printed foveated imaging system-multi objective lenses which increase angular resolution of up to 2 cycles/deg field of view were fabricated using DLW-lithography method [21]. The fabrication of PWB by DLW-lithography method for the application in PIC can simplify the complexity topography of

PIC. This 3D microstructure can be used as an optical link between chips which can serve as a low-loss broadband connection [22]. Moreover, PWB has been applied to eliminate discontinuities in the silicon waveguide of light with a coupling efficiency better than 6 dB (25%) [23]. In the application across different fields such as biomedical, bioengineering, optoelectronics, microoptics, astrophotonics, nanophotonics and micro-manufacturing, significant advantages such as increases the performance of the optical devices as well as the possibility of further miniaturization of devices and setups ranging from the prototype to consumer products is provided by MLA [11-13]. Furthermore, for specific fields such as x-ray optics, the effectiveness and size compaction of x-ray components, with a wide range of working energies could be provided with the fabrication of refractive x-ray microlens. In addition, it has become the standard element of X-rays optics for the application such as synchrotron x-ray microscopy [24-26].

In order to optimize the performance of 3D microstructure in those applications mentioned before, one should determine the correct lithography parameters in the fabrication process. Following the fabrication process, the morphology of the 3D microstructures components can be investigated using several approaches. The characterization of optical properties and luminescence maps generated from specific dye within PWB microstructure components are important, hence one can employ reliable and accurate techniques for the investigation [27]. Compound refractive lenses for X-rays optics performance are characterized by transmission efficiency and focusing properties, which those two are dependent on the profile shape of the refractive lens, thus improving their performance requires optimizing their profile shape [28, 29]. Achieving high precision profile shape and smoothness of the structures demands strong control lithography parameters such as size of slicing and hatching, scanning speed, laser power. The correction of geometrical parameters for different morphological structures also play an important role. In addition, 3D microstructures such as X-Ray microlenses require challenging morphological analysis due to high complicity of the structure profile shape. The application of the MLA in different fields requires different morphological shapes and size of this 3D microstructure, which in turn lead to requirements of controlling the morphology of the fabricated MLA [13-15, 30-32]. Complex architecture of MLA and free form lens was fabricated for fiber and beam shaping applications which required controlling morphology and complex analysis of the geometrical parameters [14, 15, 30]. The properties of the MLA such as surface profile,

refractive index, optical properties and morphological parameters are crucial for the application mentioned above. Moreover, in bioengineering the fabrication of 3D microstructure of scaffold for the cell and tissue studying requires additional morphological analysis not only for the 3D microstructure fabricated but also when living cells are placed in the scaffold. This allows full inspection of the 3D microstructure and the biological sample [8, 33, 34].

Aim and Objectives of the dissertation

The aim of this investigation work was to fabricate 3D microstructures based on two photon polymerization (TPP) DLW methods and to investigate them by confocal laser scanning microscopy (CLSM). Confirmation of CLSM as a costless, effective, and alternative method to Electron Microscopy for morphological analysis of 3D microstructure.

To achieve this aim, we need to meet several objectives:

1. To optimize the resolution and parameters of CLSM for the investigation of a 3D-microstructure fabricated using DLW methods, down to the submicron size.

2. To investigate suitable lithography parameters for each 3D microstructure fabricated using DLW techniques.

3. To investigate the optical properties of various photoresists used for 3D microstructure fabricated using DLW.

4. To evaluate the topological features of micron objects fabricated using DLW

Scientific Novelty

The dissertation demonstrates the use of confocal laser scanning microscopy for non-destructive study of the morphology of various microstructures fabricated by direct laser writing. The novelty lies in the use of photoresists containing luminescent components, allowing more efficient use of the method of confocal microscopy. The proposed approach is an alternative to electron microscopy and allows for express analysis of fabricated 3D microstructures with submicron accuracy.

The Theoretical and Practical Value of the Work in the Thesis

To fabricate 3D-microstructure, the methods of DLW lithography were used in this work. Various complex 3D microstructures consisting of different photoresist were fabricated using

Nanoscribe Photonic Professional (Nanoscribe GmbH, Germany). This commercial setup has software which allows us not only to prepare the high speed of the structure design but also the possibility to control the lithography parameters. Following the fabrication process, the investigation of the various 3D microstructures to meet the objectives of this research were carried out using Confocal Laser Scanning Microscope 510 META (Carl Zeiss, Germany). The CLSM setup has the software which also allows us to control individually the morphology analysis of the 3D microstructure with a nondestructive approach. For the comparison of the investigation results, the scanning electron microscopy and atomic force microscope were used in this work. In addition, various optics materials were used as a photoresist for the fabrication process, which the additional dye as a photoinitiator in photocompositions of the material provide the advantages for the CLSM in investigation of the complex morphology of 3D microstructure. The optical parameters of the 3D microstructures were also studied using optical microscopy, the 3D profiles were studied using profilometers and luminescence spectrum intensity were studied using Spectrometry.

Statements to Be Defended

1. The 3D microstructures morphology study with resolution along all spatial directions not

worse than 600 nm could be effectively carried out with a non-destructive method of laser confocal microscopy due to include in DLW lithography photoresists compound luminescent component (in particular, coumarin dyes and/or methacrylate-containing dyes derived from benzylidene-cyclopentanone).

2. Propagation losses of radiation along 3D photonic connectors (PWB) depend on their shape and distance to the PIC surface. In particular, measured by the CLSM method, changing the distance between the top of the PWB from 7 to 12 |im reduces the transmission from -2 to -4.5 dB.

3. A detailed analysis of the X-ray optics refractive elements geometry for the X-ray range from 8 to 12 keV could be carried out with the method of confocal microscopy. The method was applied to lenses with a radius of curvature in the range from 1 to 5 p,m made of a polymer material with radiation resistance of 1013ph (mm2 s) -1 for X-ray radiation.

Presentations and Validation of Research Results

The results presented in the dissertation and conclusions have been extensively supported by the experimental evidence obtained using the most advanced instrumental techniques, research and characterization methodologies and some innovative approaches developed by the author. Furthermore, the scientific content of the dissertation passed a qualified approbation at national and international conferences and seminars, with participation of world-leading experts in Microscopy, Photonics, Polymer Materials Science and Advanced Material and Devices Science. The results presented and discussed in the dissertation were published in high-impact peer-reviewed international journals.

The materials of the dissertation are fully presented in the following published works:

1. Anton E Egorov, Alexey A Kostyukov, Denis A Shcherbakov, Danila A Kolymagin, Dmytro A Chubich, Rilond P Matital, Maxim V Arsenyev, Ivan D Burtsev, Mikhail G Mestergazi, Elnara R Zhiganshina, Sergey A Chesnokov, Alexei G Vitukhnovsky, Vladimir A Kuzmin\\ Benzylidene Cyclopentanone Derivative Photoinitiator for Two-Photon Photopolymerization-Photochemistry and 3D microstructures Fabrication for X-ray Application doi.org/10.3390/polym15010071 2023 Polymers (Q1)

2. Denis A. Shcherbakov, Danila A. Kolymagin, Rilond P. Matital, Dmytro A. Chubich, Ekaterina V. Gladkikh, Alexei S. Useinov, Maxim V. Arsenyev, Sergey A. Chesnokov, and Alexei G. Vitukhnovsky\\ Direct Laser Writing of Microscale 3D-structures: Morphological and mechanical properties. doi.org/10.1007/s10946-023-10106-0 2023 Journal of Russian Laser Research (Q3)

3. Elnara R. Zhiganshina, Maxim V. Arsenyev , Dmytro A. Chubich, Danila A. Kolymagin, Anastasia V. Pisarenko, Dmitry S. Burkatovsky, Evgeny V. Baranov, Alexei G. Vitukhnovsky, Andrew N. Lobanov, Rilond P. Matital , Diana Ya. Aleynik, Sergey A. Chesnokov\\Tetramethacrylicbenzylidenecyclopentanone dye for one- and two-photon photopolymerization. doi.org/10.1016/j.eurpolymj.2021.110917 2022 European Polymer Journal (Q1)

4. RP Matital, DA Kolymagin, DA Chubich, DD Merkushev, AG Vitukhnovsky\\Luminescence confocal microscopy of 3D components of photonic integrated circuits fabricated by two-photon photopolymerization

doi.org/10.1016/j.jsamd.2021.100413\\ 2022 Journal of Science: Advanced Materials and Devices (Q1)

5. AD Patolyatov, DA Shcherbakov, DA Kolymagin, RP Matital, DA Chubich, AG Vitukhovsky\\ Refractive X-Ray Lenses Made by the Two-Photon Laser Lithography Method doi.org/10.3103/S1541308X22060085 2022 Physics of Wave Phenomena (Q3)

The personal contribution of the applicantin the articles with co-authors is as follows:

The applicant in publication (4) performed the major part of the research work. The applicant designed & conducted the experiments, prepared the computer model, fabricated and characterized the structures, and analyzed the data. The applicant was responsible for writing the original draft of the paper. In the publication (1), (2), and (5) the applicant contributed to methodology and results, formal analysis, fabricated, investigated and characterized the 3D X-ray microlens. The applicant in the publication (3) contributed to investigating, visualizing and characterizing the 3D cylindrical spiral.

Thesis materials were presented at the following conferences:

1. R. P. Matital (Poster Presentation), D. A. Kolymagin1, D. A. Shcherbakov, D. A. Chubich, A. G. Vitukhnovsky\\Optical Characterization and Morphology Analysis of 3D Polymer X-Rays Lens through Confocal Microscope SPIE-CLP Conference on Advanced Photonics 2022 (AP2022)

2. R. P.Matital, D. A. Chubich, D. A. Kolymagin, A. G. Vitukhnovsky 3D creation of various microlenses using two-photon photopolymerization. 64th International MIPT Scientific Conference 2021

3. Rilond P. Matital (Oral Presentation), D. A. Chubich, D. A. Kolymagin, D. D. Merkushev, R. D. Zvagelsky, A. G. Vitukhnovsky Visualization of 3D polymer photonics wire bonds by means of confocal laser scanning microscope. International Conference, Focus on Microscope 2021. Online Format, 28-31 March 2021

4. D. D Merkushev, R. P. Matital, R. D. Zvagelsky D. A. Kolymagin, A. G. Vitukhnovsky D. A. Chubich. Three-dimensional polymer optical interconnections: studying morphology and transmission. X International Conference Photonics and Information Optics January 27-29, 2021 Russia, Moscow

5. R. D. Zvagelsky, D. A. Chubich, ,, D. A. Kolymagin, A. V. Pisarenko, Rilond P. Matital, A. G. Vitukhnovsky. Femtosecond laser lithography of 3D microstructures for photonic integrated circuits. IV International Conference on Ultrafast Optical Science-Ultrafast Light 2020. September 28 - October 2, 2020. Lebedev Physical Institute, Moscow.

6. D. D. Merkushev, R. P. Matital (Oral Presentation), R. D. Zvagelsky, D. A. Kolymagin, A G Vitukhnovsky. Three-dimensional Polymer Optical Bridges: The Study of Morphology. 63-я Всероссийская научная конференция МФТИ. 23-29 November 2020, Dolgoprudny.

Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Заключение диссертации по теме «Другие cпециальности», Матитал Рилонд Паттиа

Chapter 4 Discussion and Conclusion 4.1. Discussion

1. In this complex research, a number of the new photosensitive composition advantages over such commercial photocompositions as IP-L and IP-Dip was demonstrated. One of the advantages is high photosensitivity due to the increase of the PI (4Met-BAC) concentration in the composition. It has several times lower reduced Young's modulus saturation threshold of dose than the commercial photocompositions; see Sec. 1. Also, it has a large over exposure threshold, which can be explained by the integration of the initiator in the polymer chain and by the effect of linear dose accumulation. The mechanical properties of fabricated structures are comparable with the corresponding properties of structures fabricated with commercial photocompositions. Moreover, the reduced Young's modulus can be increased, using a mixture of compatible acrylate monomers instead of using pure PETA monomer. Examined photosensitive compositions can be successfully used for polymer microoptics fabrication. Such optical elements are important for such applications as synchrotron X-ray microscopy with the energy range from 8 to 12 keV [5].

2. The solvent effect plays a substantial role in deactivation pathways for MBAC and 4Met-BAC excited states. Protic conditions provide additional stabilization in 4Met-BAC molecules due to hydrogen bond formation with the four methyl methacrylate groups. As a result, fluorescence quantum yield and lifetime increase. Since PI triplet state is CT in nature in protic solvent, it is easily stabilized. Due to additional stabilization of triplet state 4Met-BAC in protic conditions, amplified singlet oxygen quantum yield is observed compared to MBAC. In toluene, the results are opposite: methyl methacrylate substituents provide additional options for vibrational relaxation processes, thus increasing the role of internal conversion and resulting in lower values of fluorescence and singlet oxygen quantum yield for 4Met-BAC. Since the polymerization conditions used in this work in terms of molecular surrounding are similar to PIs in alcohol solution, the latter could be considered as a model system for PI photochemical studies. Under these conditions, the methyl methacrylate derivative (4Met-BAC) shows increased triplet and radical generation ability, which alongside improved solubility in PETA monomer make it a more efficient photoinitiator.

Expanding concentration limits for this initiator in the composition allows for the photosensitivity of the composition to be controlled to a greater extent. Moreover, changes in the

concentration of the photoinitiator in the composition do not significantly affect the physical and mechanical properties of the final polymer. These features are provided by chemical similarity between the photoinitiator and the monomer. Additionally, a high overexposure threshold can be associated with the inclusion of the photoinitiator molecules into the polymer chain. Experiments for investigation of the morphological and mechanical properties of polymerized areas during DLW photolithography were carried out with variations in laser power from 0 to 50 mW and varying lithography speeds of 1 to 200 m/s. Based on this research, an anomalous behavior for laser lithography was determined. When linear lithography speed was in the range of 0 to 50 m/s, a deviation from the monotonic voxel size increase with decreasing speed was observed. Additionally, lithographical mode increasing the conversion degree with an increase in laser power in the range of 0 to 5 mW was also discovered. A threshold dose value (radiation power of 5 mW at a speed of 180 m/s) where the studied properties reach saturation values of (351) % were identified. These results make it possible to determine optimal parameters for lithography that allow for the production of mechanically stable structures [175].

3. Unique approaches were used in this work, and a number of important results were obtained for further practical applications. First of all, extensive characterization of microoptical elements was carried out using LSCM methods. Its data allow primary morphological analysis of the microlens to be performed. Further analysis of the positions of focal spots after the radiation passed through the precisely aligned MLA may provide information on the shape and quality of the surface. In addition, optical elements can be characterized using the methods of wavefront measurement or optical ray tracing for obtaining the aberration map or ray transfer matrix respectively. Aberrations maps for unknown optical elements give necessary information for developing elements that minimize total aberrations of the system. The wavefront sensor consists of an MLA and a detector. After passing through the microlens field, the flat wavefront generates on the detector a regular point matrix, whose spots have the same separation distance as the microlenses. If the wavefront is curved, the spots generated by the microlenses are correspondingly displaced far from the optical axis. The wavefront can be reconstructed from this displacement of the spots. The wavefront sensors have production and R&D uses in optics, laser industry, astronomy, space research, and manufacture of contact and intraocular lenses, including optic elements for mobile telephones, microscopes, and camera objectives. Characterization of the wavefront direction and shape is an important applied problem, and its

solution makes alignment of optical systems considerably easier and faster. Wavefront sensors are also used to measure the imaging quality of objective lenses and the shape of plane, spherical, and slightly aspherical surfaces. In laser beam characterization, a single wavefront measurement by the sensor allows laser beam parameters to be fast and precisely measured, adaptive optics to be controlled, and thermal lenses to be measured [185] 4.2. Conclusion

1. The possibility and efficiency of creating 3D components for PICs using the method of two-photon femtosecond photopolymerization have been demonstrated. The characteristics of 3D PWBs were investigated using confocal microscopy and compared with the results of electron microscopy. A confocal microscopy that captures multiple 2D images at different depths and reconstructs them as a 3D PIC image, providing real high-resolution 3D images.

The average values of the geometric parameters of the 3D PWB structure obtained using confocal microscopy are comparable with the calculation of a computer model and the result of electron microscopy. The average length of a single PWB bridge structure is 139.6 nm obtained by confocal microscopy and is comparable to the length of 140 nm of the same structure obtained by electron microscopy. These results show that the geometric parameters of the 3D PWB structure obtained using confocal microscopy correspond to the real parameters of the 3D PWB structure. For PWB data, light transmission loss is specified and is estimated to be approximately 2 dB at 1550 nm. The luminescence characteristics of a 3D PIC in various spectral ranges was measured [27].

2. The crystalline one-component methacrylate-containing photoinitiator 4Met-BAC has been synthesized. This benzylidene cyclopentanone dye is well PI for both one- (LED@380) and two-photon (800 nm) photopolymerization of PETA has been demonstrated. Additional introduction of tertiary amine increases the initiating rate and conversion of double bonds in the polymer. The presence of ethoxymethacrylate groups in the structure of 4Met-BAC significantly increases its solubility in the high-viscosity PETA monomer (11.5 mM) in contrast with methylsubstituted benzylidene cyclopentanone dye MBAC (2.5 mM). Without the use of additional additives, the resin R3 based on 4Met-BAC decreases the polymerization threshold down to 0.9 mW under two-photon photopolymerization conditions at the recording speed of 170 p,m/s. Structures with linear fragment sizes of 72 ± 5 nm (less than A/10) have been obtained by nanolithography. Additionally, the presence of polymerizable methacrylate groups in the dye

structure leads to the incorporation of the 4Met-BAC initiator molecules into the polymer chain and decreases the dye washout from the polymer. The final material is biocompatible. Therefore the composition based on one-component methacrylate-containing photoinitiator 4Met-BAC opens up wide possibilities for the fabrication of three-dimensional topological structures with high submicron resolution by the DLW method for optoelectronic and biological applications [8].

3. Photochemical properties of a methacrylate benzylidene cyclopentanone derivative were studied. This PI possesses an enhanced ability to generate singlet oxygen and radical intermediates compared to the parent molecule in polar and protic surroundings similar to the PETA monomer environment. The experimental and analytical dependence of the size and elastic properties of voxels on the lithography parameters was established, which is important for the additive method of manufacturing 3D structures. These results make it possible to optimize algorithms for selecting lithography trajectory when creating continuous mechanically stable objects, such as micro-optical elements with high curvature values (including X-ray microlenses). The possibility of using a composition based on the 4Met-BAC photoinitiator to create microstructures for X-ray radiation is also justified due to the possibility of implementing sub-100 nm lithography with a smallest element size of 45 nm [175].

4. Furthermore, a complex three-dimensional optical structure fabricated by the DLW method is presented, which consists of a single aspherical lens aligned with an MLA. Since the single aspherical microlens and the MLA are made in the single process, alignment of these elements is better than 0.2 p,m. It is a high-precision approach to fabrication of microoptical elements with a resolution no worse than 0.3 p,m in the lateral direction and 1 p,m in the axial direction. The roughness of the fabricated surfaces was below 0.2 p,m. Moreover, the DLW method allows making microlenses and microlens systems of an arbitrary shape with a curvature radius of about 5 p,m. Another part of the investigations was aimed at studying morphology of structures with nondestructive confocal microscopy methods. Compared to electron microscopy methods, nonresonant luminescence excitation does not produce any noticeable effect on the morphology of the structure under study. First of all, polymeric structures feature a charge effect which is much stronger that the ponderomotive forces. Also, excitation of photoinitiator luminescence greatly slows down the singlet-triplet transition initiating the polymerization

reaction. Thus, because of nonresonant luminescence excitation in confocal microscopy, properties of structures do not have any significant changes/distributions in morphology. The confocal microscopy methods were used to measure the structure parameters (diameter and height) of the 3D single aspherical microlens, which were 15 and 28 p,m respectively (diameter of spherical microlenses was 5 p,m). The measured parameters differ from the model parameters by no more than 0.2 p,m. A combination of DLW photolithography methods and CLSM investigations allows fabricating microoptical elements with a high degree of characterization. To conclude, it is worth mentioning that investigations into development and characterization of microoptical elements are of importance for advances in designing of X-ray refractive optics elements, which have a wide range of applications in X-ray microscopy, e.g., for analysis of integrated circuits and biological objects (in vitro), and for metrological investigations [185].

Thus, in this thesis, the use of confocal laser scanning microscopy for non-destructive study of the morphology of various microstructures fabricated by direct laser writing has been demonstrated. A systematic study of various 3D polymer microstructures based on different photoresists resulted in improved efficiency of investigation methods of fabricated 3D polymer microstructures.

1. The 3D-microstructures morphology study with resolution along all spatial directions not worse than 600 nm could be effectively carried out with a non-destructive method of laser confocal microscopy due to include in DLW lithography photoresists compound luminescent component (in particular, coumarin dyes and/or methacrylate-containing dyes derived from benzylidene-cyclopentanone).

2. Propagation losses of radiation along 3D photonic connectors (PWB) depend on their shape

and distance to the PIC surface. In particular, measured by the CLSM method, changing the distance between the top of the PWB from 7 to 12 |im reduces the transmission from -2 to -4.5 dB.

3. A detailed analysis of the X-ray optics refractive elements geometry for the X-ray range from

8 to 12 keV could be carried out with the method of confocal microscopy. The method was applied to lenses with a radius of curvature in the range from 1 to 5 p,m made of a polymer material with radiation resistance of 1013ph (mm2 s) for X-ray radiation.

Список литературы диссертационного исследования кандидат наук Матитал Рилонд Паттиа, 2023 год

References

[1] Lindenmann, N.; Balthasar, G.; Hillerkuss, D.; Schmogrow, R.; Jordan, M.; Leuthold, J.; Freude, W.; Koos, C. Photonic Wire Bonding: A Novel Concept for Chip-Scale Interconnects. Opt. Express 2012, 20 (16), 17667. https://doi.org/10.1364/oe.20.017667.

[2] Zvagelsky, R. D.; Chubich, D. A.; Kolymagin, D. A.; Korostylev, E. V.; Kovalyuk, V. V.; Prokhodtsov, A. I.; Prokhodtsov, A. I.; Tarasov, A. V.; Goltsman, G. N.; Goltsman,

G. N.; Vitukhnovsky, A. G.; Vitukhnovsky, A. G. Three-Dimensional Polymer Wire Bonds on a Chip: Morphology and Functionality. J. Phys. D. Appl. Phys. 2020, 53 (35). https://doi.org/10.1088/1361-6463/ab8e7f.

[3] Xu, Y.; Maier, P.; Blaicher, M.; Dietrich, P. I.; Marin-Palomo, P.; Hartmann, W.; Bao, Y.; Peng, H.; Billah, M. R.; Singer, S.; Troppenz, U.; Moehrle, M.; Randel, S.; Freude, W.; Koos, C. Hybrid External-Cavity Lasers (ECL) Using Photonic Wire Bonds as Coupling Elements. Sci. Rep. 2021, 11 (1), 1-10. https://doi.org/10.1038/s41598-021-95981-w.

[4] Petrov, A. K.; Bessonov, V. O.; Abrashitova, K. A.; Kokareva, N. G.; Safronov, K. R.; Barannikov, A. A.; Ershov, P. A.; Klimova, N. B.; Lyatun, I. I.; Yunkin, V. A.; Polikarpov, M.; Snigireva, I.; Fedyanin, A. A.; Snigirev, A. Polymer X-Ray Refractive Nano-Lenses Fabricated by Additive Technology. Opt. Express 2017, 25 (13), 14173. https://doi.org/10.1364/oe.25.014173.

[5] Shcherbakov, D. A.; Kolymagin, D. A.; Matital, R. P.; Chubich, D. A.; Gladkikh, E. V.; Useinov, A. S.; Arsenyev, M. V.; Chesnokov, S. A.; Vitukhnovsky, A. G. Direct Laser Writing of Microscale 3D microstructures: Morphological and Mechanical Properties. J. Russ. Laser Res. 2023, 44 (1), 47-55. https://doi.org/10.1007/s10946-023-10106-0.

[6] Pisarenko, A. V.; Zvagelsky, R. D.; Kolymagin, D. A.; Katanchiev, B. V.; Vitukhnovsky, A. G.; Chubich, D. A. DLW-Printed Optical Fiber Micro-Connector Kit for Effective Light Coupling in Optical Prototyping. Optik (Stuttg). 2020, 201 (May 2019), 1-9. https://doi.org/10.1016/j.ijleo.2019.163350.

[7] Mu, H.; Smith, D.; Katkus, T.; Gailevicius, D.; Malinauskas, M.; Nishijima, Y.; Stoddart, P. R.; Ruan, D.; Ryu, M.; Morikawa, J.; Vasiliev, T.; Lozovski, V.; Moraru, D.; Ng, S.

H.; Juodkazis, S. Polarisation Control in Arrays of Microlenses and Gratings: Performance in Visible-IR Spectral Ranges. Micromachines 2023, 14 (4), 1-19. https://doi.org/10.3390/mi14040798.

[8] Zhiganshina, E. R.; Arsenyev, M. V.; Chubich, D. A.; Kolymagin, D. A.; Pisarenko, A. V.; Burkatovsky, D. S.; Baranov, E. V.; Vitukhnovsky, A. G.; Lobanov, A. N.; Matital, R. P.; Aleynik, D. Y.; Chesnokov, S. A. Tetramethacrylic Benzylidene Cyclopentanone Dye for One- and Two-Photon Photopolymerization. Eur. Polym. J. 2022, 162 (November 2021), 110917. https://doi .org/10.1016/j.eurpolymj .2021.110917.

[9] Jonusauskas, L.; Pautienius, A.; Ezerskyte, E.; Grigas, J.; Andriukaitis, D.; Gricius, H.; Baravykas, T.; Andrijec, D.; Vargalis, R.; Bandzeviciüte, G.; Stankevicius, A. Femtosecond Laser-Made 3D Micro-Chainmail Scaffolds towards Regenerative Medicine. Opt. Laser Technol. 2023, 162 (January). https://doi.org/10.1016/j. optl astec.2023.109240.

[10] Li, K.; Xu, G.; Huang, X.; Xie, Z.; Gong, F. Manufacturing of Micro-Lens Array Using Contactless Micro-Embossing with an EDM-Mold. Appl. Sci. 2018, 9 (1). https://doi .org/10.3390/app9010085.

[11] Zhang, H.; Qi, T.; Zhu, X.; Zhou, L.; Li, Z.; Zhang, Y. F.; Yang, W.; Yang, J.; Peng, Z.; Zhang, G.; Wang, F.; Guo, P.; Lan, H. 3D Printing of a PDMS Cylindrical Microlens Array with 100% Fill-Factor. ACS Appl. Mater. Interfaces 2021, 13 (30), 36295-36306. https://doi.org/10.1021/acsami.1c08652.

[12] Motoyama, Y.; Sugiyama, K.; Tanaka, H.; Tsuchioka, H.; Matsusaki, K.; Fukumoto, H. High-Efficiency OLED Microdisplay with Microlens Array. J. Soc. Inf. Disp. 2019, 27 (6), 354-360. https://doi.org/10.1002/jsid.784.

[13] Fang, C.; Zheng, J.; Zhang, Y.; Li, Y.; Liu, S.; Wang, W.; Jiang, T.; Zhao, X.; Li, Z. Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells. ACS Appl. Mater. Interfaces 2018, 10 (26), 21950-21956. https://doi .org/10.1021/acsami.7b19743.

[14] Dietrich, P.-I.; Harris, R. J.; Blaicher, M.; Corrigan, M. K.; Morris, T. J.; Freude, W.; Quirrenbach, A.; Koos, C. Printed Freeform Lens Arrays on Multi-Core Fibers for Highly Efficient Coupling in Astrophotonic Systems. Opt. Express 2017, 25 (15), 18288. https://doi.org/10.1364/oe.25.018288.

[15] Dietrich, P. I.; Blaicher, M.; Reuter, I.; Billah, M.; Hoose, T.; Hofmann, A.; Caer, C.; Dangel, R.; Offrein, B.; Troppenz, U.; Moehrle, M.; Freude, W.; Koos, C. In Situ 3D Nanoprinting of Free-Form Coupling Elements for Hybrid Photonic Integration. Nat. Photonics 2018, 12 (4), 241-247. https://doi.org/10.1038/s41566-018-0133-4.

[16] Yang, S. P.; Kim, J. B.; Jeong, K. H. Pattern Projector Using Superposition of Double Microlens Arrays for Hybrid 3D Endoscope. Proc. IEEE Int. Conf. Micro Electro Mech. Syst. 2018, 2018-Janua (January), 422-425. https://doi.org/10.1109/MEMSYS.2018.8346578.

[17] Grigaliünas, V.; Lazauskas, A.; Jucius, D.; Virzonis, D.; Abakeviciene, B.; Smetona, S.; Tamulevicius, S. Microlens Fabrication by 3D Electron Beam Lithography Combined with Thermal Reflow Technique. Microelectron. Eng. 2016, 164, 23-29. https://doi.org/10.1016/j.mee.2016.07.003.

[18] Selimis, A.; Mironov, V.; Farsari, M. Direct Laser Writing: Principles and Materials for Scaffold 3D Printing. Microelectron. Eng. 2015, 132, 83-89. https://doi.org/10.1016/j.mee.2014.10.001.

[19] Bernardeschi, I.; Ilyas, M.; Beccai, L. A Review on Active 3D Microstructures via Direct Laser Lithography. Adv. Intell. Syst. 2021, 3 (9), 2100051. https://doi.org/10.1002/aisy.202100051.

[20] Chee Leng Lay, Charlynn Sher Lin Koh, Yih Hong Lee, Gia Chuong Phan-Quang, Howard Yi Fan Sim, Shi Xuan Leong, Xuemei Han, In Yee Phang, and Xing Yi Ling ACS Applied Materials & Interfaces 2020 12 (9), 10061-10079 https://doi .org/10.1021/acsami.9b20911

[21] Thiele, S.; Arzenbacher, K.; Gissibl, T.; Giessen, H.; Herkommer, A. M. 3D-Printed Eagle Eye: Compound Microlens System for Foveated Imaging. Sci. Adv. 2017, 3 (2), 17. https://doi.org/10.1126/sciadv.1602655.

[22] Wollhofen, R.; Katzmann, J.; Hrelescu, C.; Jacak, J.; Klar, T. A. 120 Nm Resolution and 55 Nm Structure Size in STED-Lithography. Opt. Express 2013, 21 (9), 10831. https://doi.org/10.1364/oe.21.010831.

[23] Lindenmann, N.; Dottermusch, S.; Goedecke, M. L.; Hoose, T.; Billah, M. R.; Onanuga, T. P.; Hofmann, A.; Freude, W.; Koos, C. Connecting Silicon Photonic Circuits to Multicore Fibers by Photonic Wire Bonding. J. Light. Technol. 2015, 33 (4), 755-760. https://doi.org/10.1109/JLT.2014.2373051.

[24] Simons, H.; King, A.; Ludwig, W.; Detlefs, C.; Pantleon, W.; Schmidt, S.; Stöhr, F.; Snigireva, I.; Snigirev, A.; Poulsen, H. F. Dark-Field X-Ray Microscopy for Multiscale Structural Characterization. Nat. Commun. 2015, 6, 1-6. https://doi.org/10.1038/ncomms7098.

[25] Simons, H.; Stöhr, F.; Michael-Lindhard, J.; Jensen, F.; Hansen, O.; Detlefs, C.; Poulsen,

H. F. Full-Field Hard x-Ray Microscopy with Interdigitated Silicon Lenses. Opt. Commun. 2016, 359, 460-464. https://doi.org/10.1016/j.optcom.2015.09.103.

[26] Hilhorst, J.; Marschall, F.; Tran Thi, T. N.; Last, A.; Schülli, T. U. Full-Field X-Ray Diffraction Microscopy Using Polymeric Compound Refractive Lenses. J. Appl. Crystallogr. 2014, 47 (6), 1882-1888. https://doi.org/10.1107/S1600576714021256.

[27] Matital, R. P.; Kolymagin, D. A.; Chubich, D. A.; Merkushev, D. D.; Vitukhnovsky, A. G. Luminescence Confocal Microscopy of 3D Components of Photonic Integrated Circuits Fabricated by Two-Photon Photopolymerization. J. Sci. Adv. Mater. Devices 2022, 7 (2), 100413. https://doi .org/10.1016/j.j samd.2021.100413.

[28] Lengeler, B.; Schroer, C.; Tümmler, J.; Benner, B.; Richwin, M.; Snigirev, A.; Snigireva,

I.; Drakopoulos, M. Imaging by Parabolic Refractive Lenses in the Hard X-Ray Range. J. Synchrotron Radiat. 1999, 6 (6), 1153-1167. https://doi.org/10.1107/S0909049599009747.

[29] Seiboth, F.; Scholz, M.; Patommel, J.; Hoppe, R.; Wittwer, F.; Reinhardt, J.; Seidel, J.; Knaut, M.; Jahn, A.; Richter, K.; Bartha, J. W.; Falkenberg, G.; Schroer, C. G. Hard X-

Ray Nanofocusing by Refractive Lenses of Constant Thickness. Appl. Phys. Lett. 2014, 105 (13). https://doi.org/10.1063/L4896914.

[30] Hottinger, P.; Harris, R. J.; Dietrich, P.-I.; Blaicher, M.; Glück, M.; Bechter, A.; Pott, J-U.; Sawodny, O.; Quirrenbach, A.; Crass, J.; Koos, C. Micro-Lens Arrays as Tip-Tilt Sensor for Single Mode Fiber Coupling. 2018, 1070629 (July 2018), 77. https://doi.org/10.1117/12.2312015.

[31] Kim, H. M.; Kim, M. S.; Lee, G. J.; Yoo, Y. J.; Song, Y. M. Large Area Fabrication of Engineered Microlens Array with Low Sag Height for Light-Field Imaging. Opt. Express 2019, 27 (4), 4435. https://doi.org/10.1364/oe.27.004435.

[32] Fan, Z. Bin; Qiu, H. Y.; Zhang, H. Le; Pang, X. N.; Zhou, L. D.; Liu, L.; Ren, H.; Wang, Q. H.; Dong, J. W. A Broadband Achromatic Metalens Array for Integral Imaging in the Visible. Light Sci. Appl. 2019, 8 (1). https://doi .org/10.1038/s41377-019-0178-2.

[33] Hippler, M.; Lemma, E. D.; Bertels, S.; Blasco, E.; Barner-Kowollik, C.; Wegener, M.; Bastmeyer, M. 3D Scaffolds to Study Basic Cell Biology. Adv. Mater. 2019, 31 (26). https://doi.org/10.1002/adma.201808110.

[34] Klein, F.; Richter, B.; Striebel, T.; Franz, C. M.; Freymann, G. Von; Wegener, M.; Bastmeyer, M. Two-Component Polymer Scaffolds for Controlled Three-Dimensional Cell Culture. Adv. Mater. 2011, 23 (11), 1341-1345. https://doi.org/10.1002/adma.201004060.

[35] Shoji Maruo, Osamu Nakamura, and S. K. Three-Dimensional Microfabrication with Two-Photon-Absorbed Photopolymerization. Opt. Lett. 1997, 22 (2), 132. https://doi.org/https://doi.org/10.1364/0L.22.000132.

[36] Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D. L.; Ehrlich, J. E.; Erskine, L. L.; Heikal, A. A.; Kuebler, S. M.; Lee, I. S.; Mccord-maughon, D.; Qin, J.; Rumi, M.; Wu, X.; Marder, S. R.; Perry, J. W. 2PP Two Photo Polymerization Initiators for Three Dimensional. 1999, 398 (March), 51-54.

[37] Strickler, J. H.; Webb, W. W. Two-Photon Excitation in Laser Scanning Fluorescence Microscopy James. Proc. SPIE 1398, CAN-AM East. '90 1991, 1398. https://doi.org/https://doi.org/10.1117/12.47787.

[38] Serbin, J.; Egbert, A.; Ostendorf, A.; Chichkov, B. N.; Houbertz, R.; Domann, G.; Schulz, J.; Cronauer, C.; Fröhlich, L.; Popall, M. Femtosecond Laser-Induced Two-Photon Polymerization of Inorganic-Organic Hybrid Materials for Applications in Photonics. Opt. Lett. 2003, 28 (5), 301. https://doi.org/10.1364/ol.28.000301.

[39] Serbin, J.; Ovsianikov, A.; Chichkov, B. Fabrication of Woodpile Structures by Two-Photon Polymerization and Investigation of Their Optical Properties. Opt. Express 2004, 12 (21), 5221. https://doi.org/10.1364/opex.12.005221.

[40] Deubel, M.; Von Freymann, G.; Wegener, M.; Pereira, S.; Busch, K.; Soukoulis, C. M. Direct Laser Writing of Three-Dimensional Photonic-Crystal Templates for Telecommunications. Nat. Mater. 2004, 3 (7), 444-447. https://doi.org/10.1038/nmat1155.

[41] Hippler, M.; Weißenbruch, K.; Richler, K.; Lemma, E. D.; Nakahata, M.; Richter, B.; Barner-Kowollik, C.; Takashima, Y.; Harada, A.; Blasco, E.; Wegener, M.; Tanaka, M.; Bastmeyer, M. Mechanical Stimulation of Single Cells by Reversible Host-Guest Interactions in 3D Microscaffolds. Sci. Adv. 2020, 6 (39). https://doi.org/10.1126/sciadv.abc2648.

[42] Richter, B.; Hahn, V.; Bertels, S.; Claus, T. K.; Wegener, M.; Delaittre, G.; Barner-Kowollik, C.; Bastmeyer, M. Guiding Cell Attachment in 3D Microscaffolds Selectively Functionalized with Two Distinct Adhesion Proteins. Adv. Mater. 2017, 29 (5). https://doi .org/10.1002/adma.201604342.

[43] Zeng, H.; Wasylczyk, P.; Parmeggiani, C.; Martella, D.; Burresi, M.; Wiersma, D. S. Light-Fueled Microscopic Walkers. Adv. Mater. 2015, 27 (26), 3883-3887. https://doi .org/10.1002/adma.201501446.

[44] Frenzel, T.; Kadic, M.; Wegener, M. Three-Dimensional Mechanical Metamaterials with a Twist. Science (80-. ). 2017, 358 (6366), 1072-1074. https://doi .org/10.1126/science.aao4640.

[45] Schmid, M.; Thiele, S.; Herkommer, A.; Giessen, H. Three-Dimensional Direct Laser Written Achromatic Axicons and Multi-Component Microlenses. Opt. Lett. 2018, 43 (23), 5837. https://doi.org/10.1364/ol.43.005837.

[46] Gissibl, T.; Thiele, S.; Herkommer, A.; Giessen, H. Sub-Micrometre Accurate Free-Form Optics by Three-Dimensional Printing on Single-Mode Fibres. Nat. Commun. 2016, 7. https://doi.org/10.1038/ncomms11763.

[47] Gissibl, T.; Thiele, S.; Herkommer, A.; Giessen, H. Two-Photon Direct Laser Writing of Ultracompact Multi-Lens Objectives. Nat. Photonics 2016, 10 (8), 554-560. https://doi.org/10.1038/nphoton.2016.121.

[48] Dietrich, P. I.; Blaicher, M.; Reuter, I.; Billah, M.; Hoose, T.; Hofmann, A.; Caer, C.; Dangel, R.; Offrein, B.; Troppenz, U.; Moehrle, M.; Freude, W.; Koos, C. In Situ 3D Nanoprinting of Free-Form Coupling Elements for Hybrid Photonic Integration. Nat. Photonics 2018, 12 (4), 241-247. https://doi.org/10.1038/s41566-018-0133-4.

[49] Hahn, V.; Kiefer, P.; Frenzel, T.; Qu, J.; Blasco, E.; Barner-Kowollik, C.; Wegener, M. Rapid Assembly of Small Materials Building Blocks (Voxels) into Large Functional 3D Metamaterials. Adv. Funct. Mater. 2020, 30 (26). https://doi.org/10.1002/adfm.201907795.

[50] Hohmann, J. K.; Renner, M.; Waller, E. H.; von Freymann, G. Three-Dimensional p-Printing: An Enabling Technology. Adv. Opt. Mater. 2015, 3 (11), 1488-1507. https://doi .org/10.1002/adom.201500328.

[51] Meza, L. R.; Greer, J. R. Mechanical Characterization of Hollow Ceramic Nanolattices. J. Mater. Sci. 2014, 49 (6), 2496-2508. https://doi.org/10.1007/s10853-013-7945-x.

[52] Montemayor, L. C.; Meza, L. R.; Greer, J. R. Design and Fabrication of Hollow Rigid Nanolattices via Two-Photon Lithography. Adv. Eng. Mater. 2014, 16 (2), 184-189. https://doi.org/10.1002/adem.201300254.

[53] Jang, D.; Meza, L. R.; Greer, F.; Greer, J. R. Fabrication and Deformation of Three-Dimensional Hollow Ceramic Nanostructures. Nat. Mater. 2013, 12 (10), 893-898. https://doi .org/10.1038/nmat3738.

[54] Spagnolo, B.; Brunetti, V.; Leménager, G.; De Luca, E.; Sileo, L.; Pellegrino, T.; Paolo Pompa, P.; De Vittorio, M.; Pisanello, F. Three-Dimensional Cage-like Microscaffolds for Cell Invasion Studies. Sci. Rep. 2015, 5, 1-10. https://doi.org/10.1038/srep10531.

[55] Bauer, J.; Hengsbach, S.; Tesari, I.; Schwaiger, R.; Kraft, O. High-Strength Cellular Ceramic Composites with 3D Microarchitecture. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (7), 2453-2458. https://doi.org/10.1073/pnas.1315147111.

[56] Torgersen, J.; Qin, X. H.; Li, Z.; Ovsianikov, A.; Liska, R.; Stampfl, J. Hydrogels for Two-Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix. Adv. Funct. Mater. 2013, 23 (36), 4542-4554. https://doi.org/10.1002/adfm.201203880.

[57] Fouassier, J. P.; Lalev, J. Photoinitiators for Polymer Synthesis; John Wiley and Sons, 2012. https://doi.org/10.1002/9783527648245.

[58] Fouassier, J. P. Photoinitiation, Photopolymerization, and Photocuring (Fundamentals and Applications). IEEE Electr. Insul. Mag. 1996, 12 (6), 36. https://doi.org/10.1109/MEI.1996.546285.

[59] Lee, K.; Kim, R. A. N. H. E. E.; Prabhakaran, P.; Yang, D.; Lim, T. A. E. W. O. O.; Park, S. H. U. Two-Photon Stereolithography. 2007, 16 (1), 59-73.

[60] Lee, K. S.; Yang, D. Y.; Park, S. H.; Kim, R. H. Recent Developments in the Use of Two-Photon Polymerization in Precise 2D and 3D Microfabrications. Polym. Adv. Technol. 2006, 17 (2), 72-82. https://doi.org/10.1002/pat.664.

[61] Goppert-Mayer, M. Elementary Processes with Two Quantum Transitions. Ann. Phys. 2009, 521 (7-8), 466-479. https://doi.org/10.1002/andp.200952107-804.

[62] Kaiser, W.; Garrett, C. G. B. Two-Photon Excitation in CaF2: Eu2+. Phys. Rev. Lett. 1961, 7 (6), 229-231. https://doi.org/10.1103/PhysRevLett7.229.

[63] Rentzepis, P. M. Y. P. Laser - Induced Production of Free Radicals in Organic Compounds. 2004, 95 (1965), 93-95. https://doi.Org/https://doi.org/10.1063/1.1754182.

[64] Boyd, R. W. Nonlinear Optics; Elsavier, 2020. https://doi.org/10.1201/b12037-

[65] He, G. S.; Tan, L. S.; Zheng, Q.; Prasad, P. N. Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications. Chem. Rev. 2008, 108 (4), 1245-1330. https://doi.org/10.1021/cr050054x.

[66] Farsari, M.; Vamvakaki, M.; Chichkov, B. N. Multiphoton Polymerization of Hybrid Materials. J. Opt. 2010, 12 (12). https://doi.org/10.1088/2040-8978/12/12/124001.

[67] Sun, H. B.; Kawata, S. Two-Photon Photopolymerization and 3D Lithographic Microfabrication. Adv. Polym. Sci. 2004, 170, 169-273. https://doi.org/10.1007/b94405.

[68] Lee, K. S.; Kim, R. H.; Yang, D. Y.; Park, S. H. Advances in 3D Nano/Microfabrication Using Two-Photon Initiated Polymerization. Prog. Polym. Sci. 2008, 33 (6), 631-681. https://doi.org/10.1016/j.progpolymsci.2008.01.001.

[69] Zhou, X.; Hou, Y.; Lin, J. A Review on the Processing Accuracy of Two-Photon Polymerization. AIP Adv. 2015, 5 (3). https://doi.org/10.1063/1.4916886.

[70] Fischer, J.; Wegener, M. Three-Dimensional Optical Laser Lithography beyond the Diffraction Limit. Laser Photonics Rev. 2013, 7 (1), 22-44. https://doi.org/10.1002/lpor.201100046.

[71] Sparrow, C. M. On Spectroscopic Resolving Power. Astrophys. J. 1916, 44, 76. https://doi.org/10.1086/142271.

[72] Tommaso Baldacchini. Three-Dimensional Microfabrication Using Two-Photon Polymerization; Elsevier, 2016. https://doi.org/10.1016/C2014-0-01016-7.

[73] Salter, P. S.; Booth, M. J. Adaptive Optics in Laser Processing. Light Sci. Appl. 2019, 8 (1), 1-16. https://doi.org/10.1038/s41377-019-0215-1.

[74] Kuroiwa, Y.; Takeshima, N.; Narita, Y.; Tanaka, S.; Hirao, K. Arbitrary Micropatterning Method in Femtosecond Laser Microprocessing Using Diffractive Optical Elements. Opt. Express 2004, 12 (9), 1908. https://doi.org/10.1364/opex.12.001908.

[75] Kato, J. I.; Takeyasu, N.; Adachi, Y.; Sun Hong-Bo; Kawata, S. Multiple-Spot Parallel Processing for Laser Micronanofabrication. Appl. Phys. Lett. 2005, 86 (4). https://doi.org/10.1063/L1855404.

[76] Kuang, Z.; Perrie, W.; Leach, J.; Sharp, M.; Edwardson, S. P.; Padgett, M.; Dearden, G.; Watkins, K. G. High Throughput Diffractive Multi-Beam Femtosecond Laser Processing Using a Spatial Light Modulator. Appl. Surf. Sci. 2008, 255 (5 PART 1), 2284-2289. https://doi.org/10.1016/Upsusc.2008.07.091.

[77] Kelemen, L.; Valkai, S.; Ormos, P. Parallel Photopolymerisation with Complex Light Patterns Generated by Diffractive Optical Elements. Opt. Express 2007, 15 (22), 14488. https://doi.org/10.1364/oe.15.014488'.

[78] Cumming, B. P.; Jesacher, A.; Booth, M. J.; Wilson, T.; Gu, M. Adaptive Aberration Compensation for Three-Dimensional Micro-Fabrication of Photonic Crystals in Lithium Niobate. Opt. Express 2011, 19 (10), 9419. https://doi.org/10.1364/oe.19.009419.

[79] Cumming, B. P.; Turner, M. D.; Schroder-Turk, G. E.; Debbarma, S.; Luther-Davies, B.; Gu, M. Adaptive Optics Enhanced Direct Laser Writing of High Refractive Index Gyroid Photonic Crystals in Chalcogenide Glass. Opt. Express 2014, 22 (1), 689. https://doi.org/10.1364/oe.22.000689.

[80] Cumming, B. P.; Schroder-Turk, G. E.; Debbarma, S.; Gu, M. Bragg-Mirror-like Circular Dichroism in Bio-Inspired Quadruple-Gyroid 4srs Nanostructures. Light Sci. Appl. 2017, 6 (1), 1-8. https://doi.org/10.1038/lsa.2016.192.

[81] Ams, M.; Marshall, G. D.; Spence, D. J.; Withford, M. J. Slit Beam Shaping Method for Femtosecond Laser Direct-Write Fabrication of Symmetric Waveguides in Bulk Glasses. Opt. Express 2005, 13 (15), 5676. https://doi.org/10.1364/opex.13.005676.

[82] Cheng, Y.; Sugioka, K.; Midorikawa, K.; Masuda, M.; Toyoda, K.; Kawachi, M.; Shihoyama, K. Control of the Cross-Sectional Shape of a Hollow Microchannel Embedded in Photostructurable Glass by Use of a Femtosecond Laser. Opt. Lett. 2003, 28 (1), 55. https://doi.org/10.1364/ol.28.000055.

[83] Cumming, B. P.; Debbarma, S.; Luther-Davis, B.; Gu, M. Simultaneous Compensation for Aberration and Axial Elongation in Three-Dimensional Laser Nanofabrication by a High Numerical-Aperture Objective. Opt. Express 2013, 21 (16), 19135. https://doi.org/10.1364/oe.21.019135.

[84] Liao, Y.; Qi, J.; Wang, P.; Chu, W.; Wang, Z.; Qiao, L.; Cheng, Y. Transverse Writing of Three-Dimensional Tubular Optical Waveguides in Glass with a Slit-Shaped Femtosecond Laser Beam. Sci. Rep. 2016, 6 (April), 4-9. https://doi.org/10.1038/srep28790.

[85] Qi, J.; Wang, P.; Liao, Y.; Chu, W.; Liu, Z.; Wang, Z.; Qiao, L.; Cheng, Y. Fabrication of Polarization-Independent Single-Mode Waveguides in Lithium Niobate Crystal with Femtosecond Laser Pulses. Opt. Mater. Express 2016, 6 (8), 2554. https://doi.org/10.1364/ome.6.002554.

[86] Spagnolo, B.; Brunetti, V.; Lemenager, G.; De Luca, E.; Sileo, L.; Pellegrino, T.; Paolo Pompa, P.; De Vittorio, M.; Pisanello, F. Three-Dimensional Cage-like Microscaffolds for Cell Invasion Studies. Sci. Rep. 2015, 5, 1-10. https://doi.org/10.1038/srep10531.

[87] Greiner, A. M.; Jackel, M.; Scheiwe, A. C.; Stamow, D. R.; Autenrieth, T. J.; Lahann, J.; Franz, C. M.; Bastmeyer, M. Multifunctional Polymer Scaffolds with Adjustable Pore

Size Andchemoattractant Gradients for Studying Cell Matrix Invasion. Biomaterials 2014, 35 (2), 611-619. https://doi.org/10.1016/j.biomaterials.2013.09.095.

[88] Alexander; Quick, S. Functional Microstructures via Direct Laser Writing. Hochschulschrift 2015. https://doi.org/10.5445/IR/1000049780.

[89] Richter, B.; Pauloehrl, T.; Kaschke, J.; Fichtner, D.; Fischer, J.; Greiner, A. M.; Wedlich, D.; Wegener, M.; Delaittre, G.; Barner-Kowollik, C.; Bastmeyer, M. Three-Dimensional Microscaffolds Exhibiting Spatially Resolved Surface Chemistry. Adv. Mater. 2013, 25 (42), 6117-6122. https://doi.org/10.1002/adma.201302678.

[90] Scheiwe, A. C.; Frank, S. C.; Autenrieth, T. J.; Bastmeyer, M.; Wegener, M. Subcellular Stretch-Induced Cytoskeletal Response of Single Fibroblasts within 3D Designer Scaffolds. Biomaterials 2015, 44, 186-194. https://doi.org/10.1016/j.biomaterials.2014.12.018.

[91] Maruo, S.; Ikuta, K.; Korogi, H. Force-Controllable, Optically Driven Micromachines Fabricated by Single-Step Two-Photon Microstereolithography. J. Microelectromechanical Syst. 2003, 12 (5), 533-539. https://doi.org/10.1109/JMEMS.2003.817894.

[92] Maruo, S.; Ikuta, K.; Korogi, H. Submicron Manipulation Tools Driven by Light in a Liquid. Appl. Phys. Lett. 2003, 82 (1), 133-135. https://doi.org/10.1063/1.1533853.

[93] Gmbh, Nanoscribe. Photonic Professional ( GT ) User Manual; Nanoscribe GmbH, 2017.

[94] Billah M. R.; Blaicher, M.; Hoose, T.; Dietrich, P, I.; Marin-Palomo, P.; Lindenmann, N.; Nesic, A.; Hofmann, A.; Troppenz, U.; Moehrle, M.; Randel, S.; Freude, W.; and Koss, C. Hybrid Integration of Silicon Photonics Circuits and InP Lasers by Photonic Wire Bonding. Optica 2018, 5 (7), 876-883. https://doi.org/https://doi.org/10.1364/QPTICA.5.000876.

[95] Klein, S.; Barsella, A.; Leblond, H.; Bulou, H.; Fort, A.; Andraud, C.; Lemercier, G.; Mulatier, J. C.; Dorkenoo, K. One-Step Waveguide and Optical Circuit Writing in Photopolymerizable Materials Processed by Two-Photon Absorption. Appl. Phys. Lett. 2005, 86 (21), 1-3. https://doi.org/10.1063/L1915525.

[96] Watanabe, T.; Akiyama, M.; Totani, K.; Kuebler, S. M.; Stellacci, F.; Wenseleers, W.; Braun, K.; Marder, S. R.; Perry, J. W. Photoresponsive Hydrogel Microstructure Fabricated by Two-Photon Initiated Polymerization. Adv. Funct. Mater. 2002, 12 (9), 611-614. https://doi.org/10.1002/1616-3028(20020916)12:9<611::AID-ADFM611>3.Q.CO;2-3.

[97] Clauss, E.; Rehspringer, J.-L.; Mager, L.; Fort, A.; Fontaine, J. Laser Micromachining of Hybrid Sol-Gels: Application to Fabrication of Micro-Optical Elements. Solid State Lasers Amplifiers II 2006, 6190 (2006), 61901B. https://doi.org/10.1117/12.663621.

[98] Xu, B. Bin; Zhang, Y. L.; Xia, H.; Dong, W. F.; Ding, H.; Sun, H. B. Fabrication and Multifunction Integration of Microfluidic Chips by Femtosecond Laser Direct Writing. Lab Chip 2013, 13 (9), 1677-1690. https://doi.org/10.1039/c3lc50160d.

[99] Maruo, S.; Ikuta, K.; Korogi, H. Submicron Manipulation Tools Driven by Light in a Liquid. Appl. Phys. Lett. 2003, 82 (1), 133-135. https://doi.org/10.1063/1.1533853.

[100] Galajda, P.; Ormos, P. Complex Micromachines Produced and Driven by Light. Summ. Pap. Present. Lasers Electro-Optics. CLEO '02. Tech. Diges IEEE 2002. https://doi.org/10.1109/CLE0.2002.1034415.

[101] Chung, T.-T.; Tseng, C.-L.; Hung, C.-P.; Lin, C.-L.; Baldeck, P. L. Design and Two-Photon Polymerization of Complex Functional Micro-Objects for Lab-on-a-Chip: Rotating Micro-Valves. J. Neurosci. Neuroengineering 2013, 2 (1), 48-52. https://doi.org/10.1166/jnsne.2013.1038.

[102] Wang, J.; He, Y.; Xia, H.; Niu, L. G.; Zhang, R.; Chen, Q. D.; Zhang, Y. L.; Li, Y. F.; Zeng, S. J.; Qin, J. H.; Lin, B. C.; Sun, H. B. Embellishment of Microfluidic Devices via Femtosecond Laser Micronanofabrication for Chip Functionalization. Lab Chip 2010, 10 (15), 1993-1996. https://doi.org/10.1039/c003264f.

[103] He, Y.; Huang, B.-L.; Lu, D.-X.; Zhao, J.; Xu, B.-B.; Zhang, R.; Lin, X.-F.; Chen, Q.-D.; Wang, J.; Zhang, Y.-L.; Sun, H.-B. "Overpass" at the Junction of a Crossed Microchannel: An Enabler for 3D Microfluidic Chips. Lab Chip 2012, 12 (20), 3866. https://doi.org/10.1039/c2lc40401j.

[104] Amato, L.; Gu, Y.; Bellini, N.; Eaton, S. M.; Cerullo, G.; Osellame, R. Integrated Three-Dimensional Filter Separates Nanoscale from Microscale Elements in a Microfluidic Chip. Lab Chip 2012, 12 (6), 1135-1142. https://doi.org/10.1039/c2lc21116e.

[105] Wu, D.; Chen, Q. D.; Niu, L. G.; Wang, J. N.; Wang, J.; Wang, R.; Xia, H.; Sun, H. B. Femtosecond Laser Rapid Prototyping of Nanoshells and Suspending Components towards Microfluidic Devices. Lab Chip 2009, 9 (16), 2391-2394. https://doi.org/10.1039/b902159k.

[106] Thiel, M.; Fischer, H.; Freymann, G. Von; Wegener, M. Three-Dimensional Chiral Photonic Superlattices. 2010, 35 (2), 166-168. https://doi.org/https://doi.org/10.1364/0L.35.000166.

[107] Thiel, M.; Decker, M.; Deubel, M.; Wegener, M.; Linden, S.; Von Freymann, G. Polarization Stop Bands in Chiral Polymeric Three-Dimensional Photonic Crystals. Adv. Mater. 2007, 19 (2), 207-210. https://doi.org/10.1002/adma.200601497.

[108] Gansel, J. K.; Thiel, M.; Rill, M. S.; Decker, M.; Bade, K.; Saile, V.; Von Freymann, G.; Linden, S.; Wegener, M. Gold Helix Photonic Metamaterial as Broadband Circular Polarizer. Science (80-. ). 2009, 325 (5947), 1513-1515. https://doi.org/10.1126/science.1177031.

[109] Shukla, S.; Furlani, E. P.; Vidal, X.; Swihart, M. T.; Prasad, P. N. Two-Photon Lithography of Sub-Wavelength Metallic Structures in a Polymer Matrix. Adv. Mater. 2010, 22 (33), 3695-3699. https://doi.org/10.1002/adma.201000059.

[110] Guo, Q.; Ghadiri, R.; Weigel, T.; Aumann, A.; Gurevich, E. L.; Esen, C.; Medenbach, O.; Cheng, W.; Chichkov, B.; Ostendorf, A. Comparison of in Situ and Ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites. Polymers (Basel). 2014, 6 (7), 2037-2050. https://doi.org/10.3390/polym6072037.

[111] Izquierdo-Lorenzo, I.; Jradi, S.; Adam, P. M. Direct Laser Writing of Random Au Nanoparticle Three-Dimensional Structures for Highly Reproducible Micro-SERS Measurements. RSC Adv. 2014, 4 (8), 4128-4133. https://doi.org/10.1039/c3ra46220j.

[112] Von Freymann, G.; Ledermann, A.; Thiel, M.; Staude, I.; Essig, S.; Busch, K.; Wegener, M. Three-Dimensional Nanostructures for Photonics. Adv. Funct. Mater. 2010, 20 (7), 1038-1052. https://doi.org/10.1002/adfm.200901838.

[113] Formanek, F.; Takeyasu, N.; Tanaka, T.; Chiyoda, K.; Ishikawa, A.; Kawata, S. Selective Electroless Plating to Fabricate Complex Three-Dimensional Metallic Micro/Nanostructures. Appl. Phys. Lett. 2006, 88 (8). https://doi.org/10.1063/1.2178261.

[114] Formanek, F.; Takeyasu, N.; Tanaka, T.; Chiyoda, K.; Ishikawa, A.; Kawata, S. Three-Dimensional Fabrication of Metallic Nanostructures over Large Areas by Two-Photon Polymerization. Opt. Express 2006, 14 (2), 800. https://doi.org/10.1364/opex.14.000800.

[115] Kaschke, J.; Blome, M.; Burger, S.; Wegener, M. Tapered N-Helical Metamaterials with Three-Fold Rotational Symmetry as Improved Circular Polarizers. Opt. Express 2014, 22 (17), 19936. https://doi.org/10.1364/oe.22.019936.

[116] Fischer, J.; Ergin, T.; Wegener, M. Three-Dimensional Polarization-Independent Visible-Frequency Carpet Invisibility Cloak. Opt. Lett. 2011, 36 (11), 2059. https://doi.org/10.1364/ol.36.002059.

[117] Marvin Minsky. Memoir on Inventing the Confocal Scanning Microscope. Scanning 1987, 10 (1 988), 128-138. https://doi.org/https://doi.org/10.1002/sca.4950100403.

[118] Davidovits, P.; Egger, M. D. Scanning Laser Microscope for Biological Investigations. Appl. Opt. 1971, 10 (7), 1615. https://doi.org/10.1364/ao.10.001615.

[119] White, J. G.; Amos, W. B. Confocal Microscopy Comes of Age. Nature 1987, 328 (6126), 183-184. https://doi.org/10.1038/328183a0.

[120] Paddock, S. W. Principles and Practices of Laser Scanning Confocal Microscopy. Appl. Biochem. Biotechnol. - Part B Mol. Biotechnol. 2000, 16 (2), 127-149. https://doi.org/10.1385/mb:16:2:127.

[121] Teng, X.; Li, F.; Lu, C. Visualization of Materials Using the Confocal Laser Scanning Microscopy Technique. Chem. Soc. Rev. 2020, 49 (8), 2408-2425. https://doi.org/10.1039/c8cs00061a.

[122] Paddock, S. W.; Eliceiri, K. W. Laser Scanning Confocal Microscopy: History, Applications, and Related Optical Sectioning Techniques; 2014; Vol. 1075. https://doi.org/10.1007/978-1-60761-847-8 2.

[123] Guggenheim, E. J.; Lynch, I.; Rappoport, J. Z. Imaging In Focus: Reflected Light Imaging: Techniques and Applications. Int. J. Biochem. Cell Biol. 2017, 83, 65-70. https://doi.org/10.1016/j.biocel.2016.12.008.

[124] Webb, R. H. Theoretical Basis of Confocal Microscopy; Academic Press, 1999; Vol. 307, pp 3-20. https://doi.org/10.1016/S0076-6879(99)07003-2.

[125] Wilhelm, S.; Grobler, B.; Marthin, G.; Hartmut, H. Zeiss Confocal Principles. Zeiss Microscopy. https://zeiss-campus.magnet.fsu.edu/referencelibrary/pdfs/ZeissConfocalPrinciples.pdf (accessed 2023-07-13).

[126] Webb, R. H. Confocal Optical Microscopy. Reports Prog. Phys. 1996, 59 (3), 427-471. https://doi.org/10.1088/0034-4885/59/3/003.

[127] Raghavendra, P.; Pullaiah, T. Biomedical Imaging Role in Cellular and Molecular Diagnostics. Adv. Cell Mol. Diagnostics 2018, 85-111. https://doi.org/10.1016/b978-0-12-813679-9.00004-x.

[128] Paddock, S. W. Confocal Imaging of Drosophila Embryos. In Methods in Cell Biology; Elsevier Masson SAS, 2002; Vol. 2002, pp 361-378. https://doi.org/10.1016/s0091 -679x(02)70010-1.

[129] Teng, X.; Li, F.; Lu, C. Visualization of Materials Using the Confocal Laser Scanning Microscopy Technique. Chem. Soc. Rev. 2020, 49 (8), 2408-2425. https://doi.org/10.1039/c8cs00061a.

[130] Tseng, P.; Napier, B.; Zhao, S.; Mitropoulos, A. N.; Applegate, M. B.; Marelli, B.; Kaplan, D. L.; Omenetto, F. G. Directed Assembly of Bio-Inspired Hierarchical Materials with Controlled Nanofibrillar Architectures. Nat. Nanotechnol. 2017, 12 (5), 474-480. https://doi.org/10.1038/nnano.2017A

[131] Tseng, P.; Napier, B.; Zhao, S.; Mitropoulos, A. N.; Applegate, M. B.; Marelli, B.; Kaplan, D. L.; Omenetto, F. G. Directed Assembly of Bio-Inspired Hierarchical Materials with Controlled Nanofibrillar Architectures. Nat. Nanotechnol. 2017, 12 (5), 474-480. https://doi.org/10.1038/nnano.2017A

[132] Ocier, C. R.; Richards, C. A.; Bacon-Brown, D. A.; Ding, Q.; Kumar, R.; Garcia, T. J.; van de Groep, J.; Song, J. H.; Cyphersmith, A. J.; Rhode, A.; Perry, A. N.; Littlefield, A. J.; Zhu, J.; Xie, D.; Gao, H.; Messinger, J. F.; Brongersma, M. L.; Toussaint, K. C.;

Goddard, L. L.; Braun, P. V. Direct Laser Writing of Volumetric Gradient Index Lenses and Waveguides. Light Sci. Appl. 2020, 9 (1). https://doi.org/10.1038/s41377-020-00431 -3.

[133] Tian, R.; Li, K.; Shi, W.; Ding, C.; Lu, C. In Situ Visualization of Hydrophilic Spatial Heterogeneity inside Microfluidic Chips by Fluorescence Microscopy. Lab Chip 2019, 19 (6), 934-940. https://doi.org/10.1039/C8LC01336E.

[134] Cznotka, E.; Jeschke, S.; Schmohl, S.; Johansson, P.; Wiemhöfer, H. D. 3D Laser Scanning Confocal Microscopy of Siloxane-Based Comb and Double-Comb Polymers in PVDF-HFP Thin Films. J. Coatings Technol. Res. 2016, 13 (4), 577-587. https://doi.org/10.1007/s11998-015-9754-4.

[135] Merson, E. D.; Danilov, V. A.; Linderov, M. L.; Myagkikh, P. N.; Merson, D. L.; Vinogradov, A. Assessing Fracture Surface Ductility by Confocal Laser Scanning Microscopy. Procedia Struct. Integr. 2018, 13, 2152-2157. https://doi.org/10.1016/j.prostr.2018.12.149.

[136] Bae, H. J.; Bae, S.; Yoon, J.; Park, C.; Kim, K.; Kwon, S.; Park, W. Self-Organization of Maze-like Structures via Guided Wrinkling. Sci. Adv. 2017, 3 (6). https://doi.org/10.1126/sciadv.1700071.

[137] Zhong, J.; Cui, X.; Guan, W.; Lu, C. Direct Observation of Adsorption Kinetics on Clays by Cation-n Interaction-Triggered Aggregation Luminescence. J. Mater. Chem. C 2018, 6 (48), 13218-13224. https://doi.org/10.1039/c8tc04837a.

[138] Odom, S. A.; Jackson, A. C.; Prokup, A. M.; Chayanupatkul, S.; Sottos, N. R.; White, S. R.; Moore, J. S. Visual Indication of Mechanical Damage Using Core-Shell Microcapsules. ACS Appl. Mater. Interfaces 2011, 3 (12), 4547-4551. https://doi.org/10.1021/am201048a.

[139] Gao, M.; Li, Y.; Chen, X.; Li, S.; Ren, L.; Tang, B. Z. Aggregation-Induced Emission Probe for Light-Up and in Situ Detection of Calcium Ions at High Concentration. ACS Appl. Mater. Interfaces 2018, 10 (17), 14410-14417. https://doi.org/10.1021/acsami.8b00952.

[140] Robb, M. J.; Li, W.; Gergely, R. C. R.; Matthews, C. C.; White, S. R.; Sottos, N. R.; Moore, J. S. A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission. ACS Cent. Sci. 2016, 2 (9), 598-603. https://doi.org/10.1021/acscentsci.6b00198.

[141] Claus, T. K.; Richter, B.; Hahn, V.; Welle, A.; Kayser, S.; Wegener, M.; Bastmeyer, M.; Delaittre, G.; Barner-Kowollik, C. Simultaneous Dual Encoding of Three-Dimensional Structures by Light-Induced Modular Ligation. Angew. Chemie - Int. Ed. 2016, 55 (11), 3817-3822. https://doi.org/10.1002/anie.201509937.

[142] Merson, E.; Danilov, V.; Merson, D.; Vinogradov, A. Confocal Laser Scanning Microscopy: The Technique for Quantitative Fractographic Analysis. Eng. Fract. Mech. 2017, 183, 147-158. https://doi.org/10.1016/i.engfracmech.2017.04.Q26.

[143] Merson, E.; Kudrya, A. V.; Trachenko, V. A.; Merson, D.; Danilov, V.; Vinogradov, A. The Use of Confocal Laser Scanning Microscopy for the 3D Quantitative Characterization of Fracture Surfaces and Cleavage Facets. Procedia Struct. Integr. 2016, 2, 533-540. https://doi.org/10.1016/i.prostr.2016.06.069.

[144] Johnston, A. P. R.; Zelikin, A. N.; Lee, L.; Caruso, F. Approaches to Quantifying and Visualizing Polyelectrolyte Multilayer Film Formation on Particles. Anal. Chem. 2006, 78 (16), 5913-5919. https://doi.org/10.1021/ac060765a.

[145] Zhao, H.; Ni, J.; Zhang, J. J.; Liu, S. Q.; Sun, Y. J.; Zhou, H.; Li, Y. Q.; Duan, C. Y. A Trichromatic MOF Composite for Multidimensional Ratiometric Luminescent Sensing. Chem. Sci. 2018, 9 (11), 2918-2926. https://doi.org/10.1039/c8sc00021b.

[146] Xu, W.; Qin, Z.; Chen, C. T.; Kwag, H. R.; Ma, Q.; Sarkar, A.; Buehler, M. J.; Gracias, D. H. Ultrathin Thermoresponsive Self-Folding 3D Graphene. Sci. Adv. 2017, 3 (10). https://doi.org/10.1126/sciadv.1701084.

[147] Martisek, D.; Prochazkova, J. The Enhancement of 3d Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials. Meas. Sci. Rev. 2017, 17 (6), 273-281. https://doi.org/10.1515/msr-2017-0034.

[148] Roberts, A. D.; Li, X.; Zhang, H. Porous Carbon Spheres and Monoliths: Morphology Control, Pore Size Tuning and Their Applications as Li-Ion Battery Anode Materials. Chem. Soc. Rev. 2014, 43 (13), 4341-4356. https://doi.org/10.1039/c4cs00071d.

[149] Xia, H.; Ueki, T.; Hirai, T. Direct Observation by Laser Scanning Confocal Microscopy of Microstructure and Phase Migration of PVC Gels in an Applied Electric Field. Langmuir 2011, 27 (3), 1207-1211. https://doi.org/10.1021/la104031b.

[150] Nishiyabu, R.; Shimizu, A. Boronic Acid as an Efficient Anchor Group for Surface Modification of Solid Polyvinyl Alcohol. Chem. Commun. 2016, 52 (63), 9765-9768. https://doi .org/10.1039/c6cc02782b.

[151] Forbes, A.; Haverkamp, R. G.; Robertson, T.; Bryant, J.; Bearsley, S. Studies of the Microstructure of Polymer-Modified Bitumen Emulsions Using Confocal Laser Scanning Microscopy. J. Microsc. 2001, 204 (3), 252-257. https://doi.org/10.1046/n365-2818.2001.00955.x.

[152] Mayer, F.; Richter, S.; Hübner, P.; Jabbour, T.; Wegener, M. 3D Fluorescence-Based Security Features by 3D Laser Lithography. Adv. Mater. Technol. 2017, 2 (11), 3-7. https://doi.org/10.1002/admt.201700212.

[153] GmbH, Carl. Zeiss. MicroImaging.; European Molecular Biology Laboratory (EMBL). LSM510 META /LSM510 META DuoScan; Carl Zeiss MicroImaging GmbH, 2006.

[154] Zheng, X.; Cheng, K.; Zhou, X.; Lin, J.; Jing, X. A Method for Positioning the Focal Spot Location of Two Photon Polymerization. AIP Adv. 2017, 7 (9). https://doi.org/10.1063/1.4986102.

[155] Price, R. L.; Jerome, W. G. Basic Confocal Microscopy; Jerome, W. G., Price, R. L., Eds.; Springer International Publishing: Cham, 2018; Vol. Second Edi. https://doi.org/10.1007/978-3-319-97454-5.

[156] Gu, Z.; Amemiya, T.; Ishikawa, A.; Hiratani, T.; Suzuki, J.; Nishiyama, N.; Tanaka, T.; Arai, S. Optical Transmission between III-V Chips on Si Using Photonic Wire Bonding. Opt. Express 2015, 23 (17), 22394. https://doi.org/10.1364/oe.23.022394.

[157] Merklein, M.; Stiller, B.; Kabakova, I. V.; Mutugala, U. S.; Vu, K.; Madden, S. J.; Eggleton, B. J.; Slavik, R. Widely Tunable, Low Phase Noise Microwave Source Based on a Photonic Chip. Opt. Lett. 2016, 41 (20), 4633. https://doi.org/10.1364/ol.41.004633.

[158] Pfeifle, J.; Brasch, V.; Lauermann, M.; Yu, Y.; Wegner, D.; Herr, T.; Hartinger, K.; Schindler, P.; Li, J.; Hillerkuss, D.; Schmogrow, R.; Weimann, C.; Holzwarth, R.; Freude, W.; Leuthold, J.; Kippenberg, T. J.; Koos, C. Coherent Terabit Communications with Microresonator Kerr Frequency Combs. Nat. Photonics 2014, 8 (5), 375-380. https://doi.org/10.1038/nphoton.2014.57.

[159] Kabzinski, J.; Budde-Meiwes, H.; Rahe, C.; Sauer, D. U. Method for Optical Analysis of Surface Structures of Lead-Acid Battery Electrodes Using a Confocal Laser Scanning Microscope. J. Electrochem. Soc. 2016, 163 (6), A995-A1000. https://doi.org/10.1149/2.0861606jes.

[160] Schmid, M.; Ludescher, D.; Giessen, H. Optical Properties of Photoresists for Femtosecond 3D Printing: Refractive Index, Extinction, Luminescence-Dose Dependence, Aging, Heat Treatment and Comparison between 1-Photon and 2-Photon Exposure. Opt. Mater. Express 2019, 9 (12), 4564. https://doi.org/10.1364/ome.9.004564.

[161] Huang, X.; Zhang, Y.; Shi, M.; Zhang, L. P.; Zhang, Y.; Zhao, Y. A Highly Biocompatible Bio-Ink for 3D Hydrogel Scaffolds Fabrication in the Presence of Living Cells by Two-Photon Polymerization. Eur. Polym. J. 2021, 153 (April), 110505. https://doi.org/10.1016/j.eurpolymj.2021.110505.

[162] Wloka, T.; Czich, S.; Kleinsteuber, M.; Moek, E.; Weber, C.; Gottschaldt, M.; Liefeith, K.; Schubert, U. S. Microfabrication of 3D-Hydrogels via Two-Photon Polymerization of Poly(2-Ethyl-2-Oxazoline) Diacrylates. Eur. Polym. J. 2020, 122, 109295. https://doi .org/10.1016/j. eurpolymj .2019.109295.

[163] Nazir, R.; Danilevicius, P.; Ciuciu, A. I.; Chatzinikolaidou, M.; Gray, D.; Flamigni, L.; Farsari, M.; Gryko, D. T. n-Expanded Ketocoumarins As Efficient, Biocompatible Initiators for Two-Photon-Induced Polymerization. Chem. Mater. 2014, 26 (10), 31753184. https://doi.org/10.1021/cm500612w.

[164] Deck, L. M.; Hunsaker, L. A.; Vander Jagt, T. A.; Whalen, L. J.; Royer, R. E.; Vander Jagt, D. L. Activation of Anti-Oxidant Nrf2 Signaling by Enone Analogues of Curcumin. Eur. J. Med. Chem. 2018, 143, 854-865. https://doi.org/10.1016/i.eimech.2017.11.048.

[165] Yin, S.; Zheng, X.; Yao, X.; Wang, Y.; Liao, D. Synthesis and Anticancer Activity of Mono-Carbonyl Analogues of Curcumin. J. Cancer Ther. 2013, 04 (01), 113-123. https://doi.org/10.4236/ict.2013.41016.

[166] Zhao, C.; Cai, Y.; He, X.; Li, J.; Zhang, L.; Wu, J.; Zhao, Y.; Yang, S.; Li, X.; Li, W.; Liang, G. Synthesis and Anti-Inflammatory Evaluation of Novel Mono-Carbonyl Analogues of Curcumin in LPS-Stimulated RAW 264.7 Macrophages. Eur. J. Med. Chem. 2010, 45 (12), 5773-5780. https://doi.org/10.1016/i.eimech.2010.09.037.

[167] Petermann, K. Fundamental Mode Microbending Loss in Graded-Index and W Fibres. Opt. Quantum Electron. 1977, 9 (2), 167-175. https://doi.org/10.1007/BF00619896.

[168] Vlasov, Y. A.; McNab, S. J. Losses in Single-Mode Silicon-on-Insulator Strip Waveguides and Bends. Opt. Express 2004, 12 (8), 1622. https://doi.org/10.1364/opex .12.001622.

[169] Li, J.; Cao, C.; Qiu, Y.; Kuang, C.; Liu, X. Optical Waveguides Fabricated via Femtosecond Direct Laser Writing: Processes, Materials, and Devices. Adv. Mater. Technol. 2023, 2300620, 1-27. https://doi.org/10.1002/admt.202300620.

[170] Wilfred L. F.Armarego; Christina U Un Chai. Purification of Laboratory Chemicals, 3rd Edition; 1988; Vol. 107.

[171] Vatsadze, S. Z.; Gavrilova, G. V.; Zyuz'kevich, F. S.; Nuriev, V. N.; Krut'ko, D. P.; Moiseeva, A. A.; Shumyantsev, A. V.; Vedernikov, A. I.; Churakov, A. V.; Kuz'mina, L. G.; Howard, J. A. K.; Gromov, S. P. Synthesis, Structure, Electrochemistry, and Photophysics of 2,5-Dibenzylidenecyclopentanones Containing in Benzene Rings Substituents Different in Polarity. Russ. Chem. Bull. 2016, 65 (7), 1761-1772. https://doi.org/10.1007/s11172-016-1508-7.

[172] Magde, D.; Wong, R.; Seybold, P. G. Fluorescence Quantum Yields and Their Relation to Lifetimes of Rhodamine 6G and Fluorescein in Nine Solvents: Improved Absolute Standards for Quantum Yields^. Photochem. Photobiol. 2002, 75 (4), 327. https://doi.org/10.1562/0031-8655(2002)075<0327:fqyatr>2.0.co;2.

[173] Zheng, L.; Kurselis, K.; El-Tamer, A.; Hinze, U.; Reinhardt, C.; Overmeyer, L.; Chichkov, B. Nanofabrication of High-Resolution Periodic Structures with a Gap Size Below 100 Nm by Two-Photon Polymerization. Nanoscale Res. Lett. 2019, 14. https://doi.org/10.1186/s11671-019-2955-5.

[174] Lemma, E. D.; Spagnolo, B.; Rizzi, F.; Corvaglia, S.; Pisanello, M.; De Vittorio, M.; Pisanello, F. Microenvironmental Stiffness of 3D Polymeric Structures to Study Invasive Rates of Cancer Cells. Adv. Healthc. Mater. 2017, 6 (22), 1-10. https://doi.org/10.1002/adhm.201700888.

[175] Egorov, A. E.; Kostyukov, A. A.; Shcherbakov, D. A.; Kolymagin, D. A.; Chubich, D. A.; Matital, R. P.; Arsenyev, M. V.; Burtsev, I. D.; Mestergazi, M. G.; Zhiganshina, E. R.; Chesnokov, S. A.; Vitukhnovsky, A. G.; Kuzmin, V. A. Benzylidene Cyclopentanone Derivative Photoinitiator for Two-Photon Photopolymerization-Photochemistry and 3D Structures Fabrication for X-Ray Application. Polymers (Basel). 2023, 15 (1). https://doi .org/10.3390/polym15010071.

[176] Dumur, F. Recent Advances on Benzylidene Ketones as Photoinitiators of Polymerization. Eur. Polym. J. 2022, 178. https://doi.org/10.1016/j. eurpolymj .2022.111500.

[177] Jiang, L. J.; Zhou, Y. S.; Xiong, W.; Gao, Y.; Huang, X.; Jiang, L.; Baldacchini, T.; Silvain, J.-F.; Lu, Y. F. Two-Photon Polymerization: Investigation of Chemical and Mechanical Properties of Resins Using Raman Microspectroscopy. Opt. Lett. 2014, 39 (10), 3034. https://doi.org/10.1364/QL.39.003034.

[178] Bauer, J.; Guell Izard, A.; Zhang, Y.; Baldacchini, T.; Valdevit, L. Programmable Mechanical Properties of Two-Photon Polymerized Materials: From Nanowires to Bulk. Adv. Mater. Technol. 2019, 4 (9), 1-11. https://doi.org/10.1002/admt.201900146.

[179] Fomina, M. V.; Freidzon, A. Y.; Kuz'mina, L. G.; Moiseeva, A. A.; Starostin, R. O.; Kurchavov, N. A.; Nuriev, V. N.; Gromov, S. P. Synthesis, Structure and Photochemistry of Dibenzylidenecyclobutanones. Molecules 2022, 27 (21). https://doi.org/10.3390/molecules27217602.

[180] Bauer, J.; Guell Izard, A.; Zhang, Y.; Baldacchini, T.; Valdevit, L. Programmable Mechanical Properties of Two-Photon Polymerized Materials: From Nanowires to Bulk. Adv. Mater. Technol. 2019, 4 (9), 1-11. https://doi.org/10.1002/admt.201900146.

[181] Flory, P. J. Molecular Size Distribution in Three Dimensional Polymers. I. Gelation. J. Am. Chem. Soc. 1941, 63 (11), 3083-3090. https://doi.org/10.1021/ja01856a061.

[182] Flory, P. J. Molecular Size Distribution in Three Dimensional Polymers. II. Trifunctional Branching Units. J. Am. Chem. Soc. 1941, 63 (11), 3091-3096. https://doi.org/10.1021/ja01856a062.

[183] Stockmayer, W. H. Theory of Molecular Size Distribution and Gel Formation in Branched-Chain Polymers. J. Chem. Phys. 1943, 11 (2), 45-55. https://doi.org/10.1063/L1723803.

[184] Wang, S.; Yu, Y.; Liu, H.; Lim, K. T. P.; Srinivasan, B. M.; Zhang, Y. W.; Yang, J. K. W. Sub-10-Nm Suspended Nano-Web Formation by Direct Laser Writing. Nano Futur. 2018, 2 (2). https://doi.org/10.1088/2399-1984/aabb94.

[185] Matital, R. P.; Kolymagin, D. A.; Pisarenko, A. V; Shcherbakov, D. A.; Vitukhnovsky, A. G. Laser Scanning Confocal Microscopy for Analyzing Qptical Characteristics and Morphology of an Aspherical Microlens Array. 2023, 31 (4), 217-222. https://doi.org/10.3103/S1541308X23040076.

[186] Fang, C.; Zheng, J.; Zhang, Y.; Li, Y.; Liu, S.; Wang, W.; Jiang, T.; Zhao, X.; Li, Z. Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells. ACS Appl. Mater. Interfaces 2018, 10 (26), 21950-21956. https://doi .org/10.1021/acsami .7b19743.

[187] Dietrich, P.-I.; Harris, R. J.; Blaicher, M.; Corrigan, M. K.; Morris, T. J.; Freude, W.; Quirrenbach, A.; Koos, C. Printed Freeform Lens Arrays on Multi-Core Fibers for Highly Efficient Coupling in Astrophotonic Systems. Opt. Express 2017, 25 (15), 18288. https://doi.org/10.1364/oe.25.018288.

[188] Dietrich, P. I.; Blaicher, M.; Reuter, I.; Billah, M.; Hoose, T.; Hofmann, A.; Caer, C.; Dangel, R.; Offrein, B.; Troppenz, U.; Moehrle, M.; Freude, W.; Koos, C. In Situ 3D Nanoprinting of Free-Form Coupling Elements for Hybrid Photonic Integration. Nat. Photonics 2018, 12 (4), 241-247. https://doi.org/10.1038/s41566-018-0133-4.

[189] Hottinger, P.; Harris, R. J.; Dietrich, P.-I.; Blaicher, M.; Glück, M.; Bechter, A.; Pott, J-U.; Sawodny, O.; Quirrenbach, A.; Crass, J.; Koos, C. Micro-Lens Arrays as Tip-Tilt Sensor for Single Mode Fiber Coupling. 2018, 1070629 (July 2018), 77. https://doi.org/10.1117/12.2312015.

[190] Kim, H. M.; Kim, M. S.; Lee, G. J.; Yoo, Y. J.; Song, Y. M. Large Area Fabrication of Engineered Microlens Array with Low Sag Height for Light-Field Imaging. Opt. Express 2019, 27 (4), 4435. https://doi.org/10.1364/oe.27.004435.

[191] Fan, Z. Bin; Qiu, H. Y.; Zhang, H. Le; Pang, X. N.; Zhou, L. D.; Liu, L.; Ren, H.; Wang, Q. H.; Dong, J. W. A Broadband Achromatic Metalens Array for Integral Imaging in the Visible. Light Sci. Appl. 2019, 8 (1). https://doi.org/10.1038/s41377-019-0178-2.

[192] Pisarenko, A. V.; Zvagelsky, R. D.; Kolymagin, D. A.; Katanchiev, B. V.; Vitukhnovsky, A. G.; Chubich, D. A. DLW-Printed Optical Fiber Micro-Connector Kit for Effective Light Coupling in Optical Prototyping. Optik (Stuttg). 2020, 201 (May 2019), 1-9. https://doi.org/10.1016/j.ijleo.2019.163350.

[193] Koo, S. Advanced Micro-Actuator/Robot Fabrication Using Ultrafast Laser Direct Writing and Its Remote Control. Appl. Sci. 2020, 10 (23), 1-21. https://doi.org/10.3390/app10238563.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.