Optical properties of graphene and Two dimensional transition metal dichalcogenides/Оптические свойства графена и двумерных дихалькогенидов переходных металлов тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Элсайед Марва Али Абделразик

  • Элсайед Марва Али Абделразик
  • кандидат науккандидат наук
  • 2022, ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)»
  • Специальность ВАК РФ00.00.00
  • Количество страниц 108
Элсайед Марва Али Абделразик. Optical properties of graphene and Two dimensional transition metal dichalcogenides/Оптические свойства графена и двумерных дихалькогенидов переходных металлов: дис. кандидат наук: 00.00.00 - Другие cпециальности. ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)». 2022. 108 с.

Оглавление диссертации кандидат наук Элсайед Марва Али Абделразик

List of contents

Description of the dissertation work

Chapter 1. Two-dimensional layered van der Waals materials

1.1 Graphene: Forerunner of 2D systems

1.1.1 Atomic and crystalline structure

1.1.2 Spectacular optical behavior

1.1.3 Current applications and limitations

1.2 Transition metal dichalcogenides monolayers (ML TMDCs)

1.2.1 Geometric description and common polytypes

1.2.2 Band structure and main optical transitions

1.2.3 Exciton signature in monolayers

1.3 2D van der Waals heterostructures

1.4 Assessment of optical properties

Chapter 2. Experimental section

2.1 Materials

2.2 Research techniques and setups

2.2.1 Optical visualization

2.2.2 Raman and photoluminescence spectroscopies

2.2.3 Optical transmittance measurements

2.2.4 Atomic force microscopy

2.2.5 Scanning electron microscopy

2.2.6 X-ray diffraction

2.2.7 X-ray photoelectron spectroscopy

2.2.8 Dielectric response measurements

2.2.8.1 First- principle calculations

2.2.8.2 Imaging ellipsometry

2.2.8.3 Variable angle spectroscopic ellipsometry

2.2.8.4 Data analysis process

Chapter 3. Dielectric response of graphene for photonic applications

3.1 Introduction

3.2 Characterization of the graphene samples

3.3 Analysis of the dielectric response

3.4 Relevance of the study in nanophotonic applications

3.5 Conclusions

Chapter 4. Optical and structural characteristics of two-dimensional

epitaxial MoS2

4.1 Introduction

4.2 Surface and structural morphology study

4.3 Optical signatures of excitons in molybdenum disulfide monolayer

4.4 Applications of optical properties in nanophotonics

4.5 Conclusions

Chapter 5. New dielectric photonics by SnS2 and SnSe2 films

5.1 Introduction

5.2 Surface morphological and structural features

5.3 Crystal structure analysis and Raman characterization

5.4 Experimental investigations of optical properties

5.5 Theoretical investigations of dielectric functions

5.6 Prospects of SnS2 for dielectric nanophotonic applications

5.7 Conclusions

Thesis summary

Bibliography

Appendix A

Appendix B

Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Введение диссертации (часть автореферата) на тему «Optical properties of graphene and Two dimensional transition metal dichalcogenides/Оптические свойства графена и двумерных дихалькогенидов переходных металлов»

Description of the dissertation work

The thesis presents a thorough study of the optical properties of some prospective two-dimensional materials. Additionally, the microstructure and surface morphology of the studied samples were investigated by several advanced laboratory techniques. The following section provides the importance of the thesis work, identifies the main objectives and tasks, reflects the novelty of the study, theoretical and practical significance, propositions for the defense, and describes the structure of the thesis.

Relevance of the research topic

Research into two-dimensional (2D) materials began with the discovery of graphene, ushering in a new era of two-dimensional materials [1,2]. Beyond graphene, researchers have discovered other materials characterized by van der Waals (vdW) type bonds like multi-layered structures of 2D materials [3]. This discovery paved the way for a concerted effort aimed at revisiting research areas that appeared to have reached a point where everything was figured it out. Since then, research into atomically thin layers of semiconductors has become a critical topic in physics. The striking result is that material features can change substantially, approaching the limit of 2D nanotechnology, which marks a turning point in material science research. These materials are characterized by robust intra-layer covalent interactions and by weak vdW forces between the layers, thus leading to different properties that differ from those of 3D solids [4]. The materials obtained can be insulating, semiconductor or metallic, and have their own unique properties [5].

With the discovery of these new classes of materials - one-atom-thick materials, the demand for more efficient electrical, photonic devices, and the construction of novel architectures has become necessary. Interestingly, two-dimensional materials give rise to several unique phenomena. This involves quantum well systems with quantized energy levels, as well as two-dimensional electron gas systems capable of exhibiting the integer and fractional quantum Hall effects [6]. Two-dimensional materials have already proven totally distinct magnetic, optoelectronic, and optoelectronic properties, making them a perfect candidate for a variety of technological applications [7,8].

The most intriguing categories of 2D materials are graphene and TMDCs semiconductors. The optoelectronic properties of these materials are quite fascinating. Semi-metallic graphene, for example, has a high photoactivity governed by hot carriers

[9], whereas the photo-response of 2D-TMDCs is dominated by strong excitonic effects

[10]. However, the spectrum of applications is determined by the characteristics exploited. For instance, the semi-metallic nature of graphene allows it to act as transparent electrodes for PN junctions in solar cells, and its high mobility allows its use in high-frequency integrated circuits [11]. However, its restricted zero-band structure limits its application in the field of semiconductors, primarily for field-effect transistors.

Transition metal dichalcogenides monolayers (2D TMDCs), on the other hand, surpass the restrictions of graphene. The band gap is therefore not only non-zero, but also direct and controllable. The bandgap values of TMDCs compounds range from 0.1 to 3 eV, allowing them to be tailored to the appropriate wavelength range for a variety of devices [5].

However, the wide frameworks and various functionalities of these materials, the effective implementation of them and of their heterostructures in scientific and technological devices is incredibly dependent on an understanding of their optical properties. Careful consideration of the optical properties and complex dielectric functions of the two-dimensional materials used, ensures optimal performance and effectively contributes to the upgrading and development of these devices [12-14], which will be clarified in the thesis work. Hence, a lack of knowledge of their optical characteristics, on the other hand, could seriously limit their applicability. Therefore, the study of optical response of such materials is a very critical and important topic. A thorough understanding of the linear optical properties of 2D materials is essential for the rapid development of high-performance photonic, plasmonic, and optoelectronics, as well as paving the way for researchers and developers to construct sophisticated devices.

The Objectives of the thesis

The specific objectives of the thesis work address the following challenges: 1. Developing a reliable methodology based on ellipsometry for determining the dielectric response of some 2D materials over a broadband of spectra.

2. Understanding the influence of the predominant exciton of 2D materials on their optical response.

3. Studying the influence of dielectric including surroundings manufacturing, thee type of the underlying substrate, and layer thickness, the optical response of 2D materials.

4. Determination the impact of the optical properties of 2D materials on the output characteristics of optical devices through using examples of surface plasmon resonance-based biosensors with 2D vdW materials.

The study targeted one of the most promising materials; graphene and transition metal dichalcogenides semiconductors (Monolayers, as well as atomically thin films). The presented results can be used in photonics and optoelectronics, thus contributing to the development and design of high-performance devices based on 2D-materials and their heterostructures.

Research objects: The raw materials for the thesis investigations are graphene monolayers (thickness less than 0.35 nm) synthesized by chemical vapor deposition technique (CVD), transition metal semiconductor monolayers (TMDCs) represented by Molecular epitaxy MoS2, and atomically thin films of CVD- SnS2 and SnSe2. Scientific novelty of the dissertation work

❖ The optical properties of chemical vapor deposited (CVD) monolayer graphene on three different substrates were thoroughly investigated for the ultraviolet, visible, and near-infrared spectral ranges (from 240 to 1000 nm). A perfect ellipsometric model consisting of substrate layers and a single layer of graphene was used to achieve high convergence. Without any extra assumptions, such as the existence of water or any other media on or under the graphene, ellipsometry data were analyzed and modeled with high accuracy. The accuracy of our ellipsometric analysis was explained using a technique that combines measurements of X-ray photoelectron spectroscopy (XPS), atomic force (AFM) and scanning electron (SEM) microscopy, Raman spectroscopy, optical transmission spectroscopy measurements, and theoretical calculations. The optical constants of graphene showed less than 5% variation with substrate change and are remarkably like those of graphite, implying that obtained optical constants can also be applied to multilayer graphene structures. Additionally, the operation of several

SPR sensors has been shown to exhibit considerable variations in predicted signal intensity and is highly dependent on the graphene optical response sources employed.

❖ A molecular beam epitaxy (MBE)-grown monolayer of MoS2 on a sapphire substrate was thoroughly investigated for its optical and structural characteristics. Using the Accurion Ep4 imaging ellipsometer, which can capture the signal from a small micrometer-scaled area, the dielectric response of MBE MoS2 was measured in a broad spectral range from 250 to 1700 nm and compared them with the available data of CVD-grown and exfoliated monolayer MoS2. A combination of optical microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoemission spectroscopy (XPS), Raman spectroscopy, and photoluminescence imaging was used to evaluate the structural features of MoS2 samples. It was found that molecular beam epitaxy technique produces a polycrystalline monolayer film with high crystallinity and a higher quantum yield of luminescence than CVD monolayers of MoS2, closer to superior properties of exfoliated MoS2, but at a large scale. The accuracy of the optical properties was further validated by measuring the optical transmittance spectrum, which agrees perfectly with calculations based on the optical constants obtained through ellipsometry. Furthermore, we compared the features of SPR sensors calculated using different constants to show the significance of our accurate measurements for practical applications. It was found that when alternative sources of optical properties are employed, even systems with only a few atomic layers of MoS2 show radical changes in sensitivity and expected signal intensity.

❖ The linear optical characteristics of thin films of SnS2 and SnSe2 produced by chemical vapor deposition (CVD) were investigated through experimental and theoretical investigation. Using a variety of laboratory techniques, including optical microscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman spectroscopy, and X-ray diffraction (XRD), the surface morphology, roughness, homogeneity, thickness, and phase structures of the research samples were all examined. Utilizing spectroscopic ellipsometry and first-principles calculations from ultraviolet to mid-infrared wavelengths (300 - 3300 nm), the entire broadband dielectric tensors of SnS2 and SnSe2 were derived. To further verify, the optical

transmittance spectra of the films were measured and compared with the transfer matrix calculations based on the observed optical constants. In addition to the traditional high-refractive-index materials Si, GaP, and TiO2, SnS2 revealed a novel high-refractive-index material. The thin films of SnS2 and SnSe2 have been proven to be promising for nanophotonics demanding high refractive index and low absorption, as well as next-generation SnS2 and SnSe2-based devices. Theoretical and experimental significance of the thesis results

As a result of the work, the optical, structural, and factors influencing the optical properties of some two-dimensional materials at monolayer and low dimension thickness were thoroughly investigated, along with theoretical substantiation of the obtained results.

Over a wide energy spectrum, a method for accurately measuring the optical constants of thin films and monolayers of TMDCs has been developed, considering the sample fabrication technique, grown substrate, and internal structures. Personal contribution of the author

All the major findings of the dissertation were either acquired by the author or with her direct participation. The author took an active part in all stages of the work from the formulation of the problem to the writing of articles.

Basic research methods

Spectroscopic ellipsometry, atomic force and scanning electron microscopy, X-ray diffractometry, scanning near-field optical microscopy, and SPR spectroscopy were all employed in the research. Furthermore, the method of transfer matrices and first-principles computations were applied in this research work.

Scientific provisions submitted for defense:

1. A method for determining the optical constants of two-dimensional materials that considers the predominantly exciton nature of the optical response and returns the dielectric function that satisfies the Kramers-Kronig relations.

2. Optical constants of graphene obtained by the method of chemical vapor deposition in the spectral range of 240 - 1000 nm.

3. Optical constants of two-dimensional molybdenum disulfide obtained by molecular beam epitaxy in the spectral range of 250 - 1700 nm.

4. Linear properties of tin sulfide and selenide obtained by chemical vapor deposition in the spectral range of 300 - 3300 nm.

Reliability of experimental results:

The reliability of all experimental results of the study is ensured using approved calibrated modern measuring instruments, and test measurements of standard samples. The reliability of the experimental results obtained is confirmed by theoretical calculations and comparison with theoretical models. The conclusions formulated in the dissertation received qualified approbation at international and Russian conferences, their reliability is confirmed publication of research results in international scientific journals on research topics. Approbation of work

The key findings of the dissertation were presented and discussed at seminars held by the Laboratory of Nano-optics and Plasmonics, center for photonics and 2D materials, MIPT, as well as oral and poster presentations at Russian and international conferences.

• The annual MIPT conferences within the sections "Nanoscale Optoelectronics" and "Photonics and Two-Dimensional Materials" (2019, 2020 and 2021).

• International Congress on Graphene, 2D Materials and Applications, 30th September -04th October 2019, Sochi, Russia.

• VIII International Youth Scientific Conference at Physics and technologies // May 1721, 2021, Ekaterinburg, Russia.

• The International conference on photonics and information optics, January 27-29, 2021, Moscow.

List of thesis publications

Based on the dissertation materials, five publications have been published (four of them are included in the WoS and Scopus citation databases.

1. M.A. El-Sayed, A.V. Arsenin, A.A. Vyshnevyy, A.A. Voronov, V.S. Volkov, Comparative analysis of optical properties of CVD graphene and graphite via

spectroscopic ellipsometry // AIP Conference Proceedings 2359, 020020 (2021). https://doi.org/10.1063/5.0055462

2. M.A. El-Sayed, G.A. Ermolaev, K.V. Voronin, R.I. Romanov, G.I. Tselikov, D.I. Yakubovsky, N.V. Doroshina, A.B. Nemtsov, V.R. Solovey, A.A. Voronov, S.M. Novikov, A.A. Vyshnevyy, A.M. Markeev, A.V. Arsenin, V.S. Volkov, Optical constants of chemical vapor deposited graphene for photonic applications // Nanomaterials 11(5), 1230 (2021). https://doi.org/10.3390/nano11051230

3. G.A. Ermolaev, M.A. El-Sayed, D.I. Yakubovsky, K.V. Voronin, R.I. Romanov, M.K. Tatmyshevskiy, N.V. Doroshina, A.B. Nemtsov, A.A.Voronov, S.M. Novikov, A.M. Markeev, G.I. Tselikov, A.A. Vyshnevyy, A.V. Arsenin, V.S. Volkov, Optical Constants and Structural Properties of Epitaxial MoS2 Monolayers // Nanomaterials 11(6), 1411 (2021). https://doi.org/10.3390/nano11061411

4. G.A. Ermolaev, D.I. Yakubovsky, M.A. El-Sayed, M.K. Tatmyshevskiy, A.B. Mazitov, A.A. Popkova, I.M. Antropov, V.O. Bessonov, A.S. Slavich, G.I. Tselikov, I.A. Kruglov, S.M. Novikov, A.A. Vyshnevyy, A.A. Fedyanin, A.V. Arsenin, V.S. Volkov, Broadband optical constants and nonlinear properties of SnS2 and SnSe2 // Nanomaterials 12 (1), 141 (2022). Indexed by Scopus and Web of Science. https://doi.org/10.3390/nano12010141

5. Сюй А.В., Целиков Г.И., Дорошина Н.В. Элсайед М.А, Антонычева Е.А., Сюй М.В. Лазерный синтез наночастиц ZnS // Вып. № 26 / под редакцией В.И. Иванова. - Хабаровск: Изд-во ДВГУПС, 2021. - № 26. - с. 10-17. https://www.elibrary.ru/item.asp?id=47330927

List of conferences on the dissertation topic

1. М.А. Элсайед, Сравнительный анализ оптических свойств графена и графита // 62-я научная конференция МФТИ, 18-23 ноября 2019 г., г. Долгопрудный, Россия.

2. М.А. Элсайед, Н. В. Дорошина, Д. И. Якубовский, П. Мишра, Г.И. Целиков, Г. А. Ермолаев, В. Соловей, А.А. Вишневый, С.М. Новиков, А.В. Арсенин, В.С. Волков, Оптические свойства графена, синтезированного химическим

осаждением из газовой фазы // 63-я научная конференция МФТИ, 23-29 ноября 2020 г., г. Долгопрудный, Россия.

3. Marwa A. El-Sayed, Natalia V. Doroshina, Dmitry I. Yakubovsky, Layer thinning and etching of Quasi-ID TiS3 Nanoribbons using Raman spectroscopy // VIII International Youth Scientific Conference at Physics and technologies, May 17-21, 2021, Ekaterinburg, Russia.

4. М.А. Элсайед, Г. А. Ермолаев, И. Якубовский, М.К. Татмышевский, А.С. Славич, С. М. Новиков, Г.И. Целиков, А.А. Вишневый, А. В. Арсенин, В. С. Волков, Исследование оптических констант диселенида и дисульфида олова методом спектроскопической эллипсометрии // 64-я научная конференция МФТИ, 29 ноября - 03 декабря 2021 г., г. Долгопрудный, Россия.

5. M.A. El-Sayed, N.V. Doroshina, S.M. Novikov, A.A. Cherry, A.V. Arsenin, V.S. Volkov, Analysis of the Raman spectra of van der Waals heterostructures of molybdenum disulfide // International conference on photonics and information optics, January 27-29, 2021, Moscow, Russia.

The structure of the thesis

The thesis consists of an introduction, five chapters, a conclusion summarizes the main results of the dissertation work, and two appendices.

Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Заключение диссертации по теме «Другие cпециальности», Элсайед Марва Али Абделразик

5.7 Conclusions

In conclusion, theoretical calculations, and experimental investigations of the anisotropic optical constants of SnS2 and SnSe2 across a wide spectral range (300 - 3300 nm) have been performed. Such findings demonstrate the high dielectric response, broad range, and lack of absorption of SnS2 and SnSe2. More notably, SnS2 fits into this range, providing it a novel high-refractive-index substance that works together with Si, GaP, and TiO2 as well as other high-refractive-index substances. From a broader perspective, this research offers a foundation for advanced optical engineering using SnS2 and SnSe2 films.

Thesis summary

The activity of this thesis focused on experimental studies of the optical properties of some promising 2D vdW materials (monolayers and atomically thin films) over a broadband of spectra. In additions, the characterization of their structural, thickness, chemical composition, microstructure, surface morphology and roughness by means of various laboratory techniques. The main results of the thesis can be summarized as follows.

❖ It allowed for the development of a trustworthy method based on spectroscopic ellipsometry for figuring out the dielectric response of single layer graphene and other 2D systems, over a broad range of spectra.

❖ It was possible to reconstruct images with high spatial resolution through dark and bright field optical microscopy of the 2D materials under study.

❖ Raman spectroscopy and photoluminescence (PL) allowed the study of both the vibrational and electronic properties of each sample.

❖ From the study of the spatial distribution of the Raman spectrum and PL peaks it was possible to recognize the monolayer signature, the number of layers with defects in the surface structure. The various microspectroscopy techniques (XPS, XRD, AFM) have also made it possible to confirm the effectiveness of the optical response method analysis for the recognition of the complete picture of the macro- and microstructures.

❖ In the UV-visible-near-IR (240-1000 nm) range, the optical properties of a single sheet of graphene synthesized by chemical vapor deposition and deposited on glass, quartz, and SiO2/Si substrates were addressed. A good convergence has been achieved without the auxiliary layers that are typically added to account for residual water and PMMA. Transmittance experiments, which show impressive agreement with estimates based on the obtained optical constants, were used to further confirm the accuracy of the reported optical response. Notably, the derived optical constants are applicable to multilayer graphene structures since they are very similar to those of graphite and only fluctuate by less than 5% when the substrate changes. This research provides exact and typical graphene optical responses for the design of photonic devices.

❖ For the first time, a thorough analysis of the structural and optical characteristics of monolayer MoS2 produced via MBE was conducted. Through Raman and AFM tests, we proved that the sample does indeed include a single-atomic layer of MoS2, and XPS studies validated its great purity. Dark-field microscopy, SEM, and AFM imaging confirmed the material to be highly crystalline, with a typical crystallite size of 0.65 nm. The superior quantum yield of MBE MoS2 as illustrated by PL measurements demonstrated its advantages for active photonic applications. MBE MoS2 optical constants were found to be intermediate between CVD and exfoliated MoS2. For example, the refractive indexes of CVD, MBE, and exfoliated MoS2 at X = 750 nm are 3.2, 4.0, and 5.2, respectively. Furthermore, the importance of our precise measurements for practical applications was demonstrated by comparing the characteristics of SPR sensors calculated with different constants. When alternative sources of optical characteristics are employed, even devices with just a few atomic layers of MoS2 show considerable changes in sensitivity and expected signal strength. These results provide a solid foundation for the utilization of transition metal dichalcogenides for photonic applications.

❖ For the first time, The Linear optical constants, and anisotropic features of SnS2 and SnSe2 over a broad spectral range (300-3300 nm) were experimentally and theoretically determined. SnS2 and SnSe2 have been demonstrated to have a robust dielectric response and transparency over a broad spectral range. Using first-principles calculations, it was possible to identify the optical anisotropy, which is more pronounced for SnS2 having a birefringence of 5n = nab - nc = 0.3 and is almost undetectable for SnSe2. SnS2 has been demonstrated to be a one-of-a-kind high-refractive-index material that complements the traditional high-refractive-index materials TiO2, GaP, and Si2. This research paves the way for advanced optical engineering with SnS2 and SnSe2.

Finally, the results presented in this thesis are consistent with those that have been reported in the literature. The thesis provided reliable data on the dielectric response of different promising 2D materials. The results are applicable to the development of novel devices for basic research as well as applications in optoelectronics and photonics.

Список литературы диссертационного исследования кандидат наук Элсайед Марва Али Абделразик, 2022 год

Bibliography

[1] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials. 6 (2007) 183-191. https://doi.org/10.1038/nmat1849.

[2] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences. 102 (2005) 10451-10453. https://doi.org/10.1073/pnas.0502848102.

[3] S. Das, J.A. Robinson, M. Dubey, H. Terrones, M. Terrones, Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids, Annual Review of Materials Research. 45 (2015) 1-27. https://doi.org/10.1146/annurev-matsci-070214-021034.

[4] B. Dubertret, T. Heine, M. Terrones, The Rise of Two-Dimensional Materials, Accounts of Chemical Research. 48 (2015) 1-2. https://doi.org/10.1021/ar5004434.

[5] T. Liang, Y. Cai, H. Chen, M. Xu, Two-Dimensional Transition Metal Dichalcogenides: An Overview, Two Dimensional Transition Metal Dichalcogenides. (2019) 1-27. https://doi.org/10.1007/978-981-13-9045-6_1.

[6] Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature. 438 (2005) 201-204. https://doi .org/ 10.1038/nature04235.

[7] K.F. Mak, K.L. McGill, J. Park, P.L. McEuen, The valley Hall effect in MoS 2 transistors, Science. 344 (2014) 1489-1492. https://doi.org/10.1126/science.1250140.

[8] Y.M. Jhon, J.H. Lee, 2D Materials for Nanophotonics, Elsevier, 2020. https://play.google.com/store/books/details?id=MnHhDwAAQBAJ.

[9] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters. 8 (2008) 902-907. https://doi.org/10.1021/nl0731872.

[10] K.F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics. 10 (2016) 216-226. https://doi.org/10.1038/nphoton.2015.282.

[11] A.H.C. Neto, AH. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Reviews of Modern Physics. 81 (2009) 109-162. https://doi.org/10.1103/revmodphys.81.109.

[12] G.A. Ermolaev, M.A. El-Sayed, D.I. Yakubovsky, K.V. Voronin, R.I. Romanov, M.K. Tatmyshevskiy, N.V. Doroshina, A.B. Nemtsov, A.A. Voronov, S.M. Novikov, A.M. Markeev, G.I. Tselikov, A.A. Vyshnevyy, A.V. Arsenin, V.S. Volkov, Optical Constants and Structural Properties of Epitaxial MoS2 Monolayers, Nanomaterials (Basel). 11 (2021). https://doi.org/10.3390/nano11061411.

[13] B. Jia, 2D optical materials and the implications for photonics, APL Photonics. 4 (2019) 080401. https://doi.Org/10.1063/1.5120030.

[14] M.A. El-Sayed, G.A. Ermolaev, K.V. Voronin, R.I. Romanov, G.I. Tselikov, D.I. Yakubovsky, N.V. Doroshina, A.B. Nemtsov, V.R. Solovey, A.A. Voronov, S.M. Novikov, A.A. Vyshnevyy, A.M. Markeev, A.V. Arsenin, V.S. Volkov, Optical Constants of Chemical Vapor Deposited Graphene for Photonic Applications, Nanomaterials (Basel). 11 (2021). https://doi.org/10.3390/nano11051230.

[15] PR. Wallace, The Band Theory of Graphite, Physical Review. 71 (1947) 622-634. https://doi.org/10.1103/physrev.71.622.

[16] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science. 306 (2004) 666-669. https://doi.org/10.1126/science.1102896.

[17] H. Kashani, Y. Ito, J. Han, P. Liu, M. Chen, Extraordinary tensile strength and ductility of scalable nanoporous graphene, Sci Adv. 5 (2019) eaat6951. https://doi.org/10.1126/sciadv.aat6951.

[18] A.K. Geim, Graphene: Status and Prospects, Science. 324 (2009) 1530-1534. https://doi.org/10.1126/science.1158877.

[19] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications. 146 (2008) 351-355. https://doi.org/10.1016Zj.ssc.2008.02.024.

[20] E.O. Polat, O. Balci, N. Kakenov, H.B. Uzlu, C. Kocabas, R. Dahiya, Synthesis of Large Area Graphene for High Performance in Flexible Optoelectronic Devices, Scientific Reports. 5 (2015). https: //doi.org/ 10.1038/srep16744.

[21] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, JR. Potts, R.S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Advanced Materials. 22 (2010) 3906-3924. https://doi.org/10.1002/adma.201001068.

[22] R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, (1998). https://doi.org/10.1142/p080.

[23] N.M.R. Peres, Graphene, new physics in two dimensions, Europhysics News. 40 (2009) 17-20. https://doi.org/10.1051/epn/2009501.

[24] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature. 438 (2005) 197-200. https://doi.org/10.1038/nature04233.

[25] A.N. Grigorenko, M. Polini, K.S. Novoselov, Graphene plasmonics, Nature Photonics. 6 (2012) 749-758. https://doi.org/10.1038/nphoton.2012.262.

[26] RR. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, NMR. Peres, A.K. Geim, Fine Structure Constant Defines Visual Transparency of Graphene, Science. 320 (2008) 1308-1308. https://doi.org/10.1126/science.1156965.

[27] F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics, Nature Photonics. 4 (2010) 611-622. https://doi.org/10.1038/nphoton.2010.186.

[28] K.F. Mak, L. Ju, F. Wang, T.F. Heinz, Optical spectroscopy of graphene: From the far infrared to the ultraviolet, Solid State Communications. 152 (2012) 1341-1349. https://doi.org/10.1016Zj.ssc.2012.04.064.

[29] M.A. El-Sayed, A.V. Arsenin, A.A. Vyshnevyy, A.A. Voronov, V.S. Volkov, Comparative analysis of optical properties of CVD graphene and graphite via spectroscopic ellipsometry, American Institute of Physics Inc., 2021. https://doi.org/10.1063/5.0055462.

[30] E. McCann, K. Kechedzhi, V.I. Fal'ko, H. Suzuura, T. Ando, B.L. Altshuler, Weak-Localization Magnetoresistance and Valley Symmetry in Graphene, Physical Review Letters. 97 (2006). https://doi.org/10.1103/physrevlett.97.146805.

[31] Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes - A review, Journal of Materiomics. 2 (2016) 37-54. https://doi.org/10.1016/jjmat.2016.01.001.

[32] D. Fisher, Graphene Composite Supercapacitor Electrodes, Materials Research Foundations. (2022). https://doi.org/10.21741/9781644901939.

[33] J.K. Wassei, R.B. Kaner, Graphene, a promising transparent conductor, Materials Today. 13 (2010) 52-59. https://doi.org/10.1016/s1369-7021(10)70034-1.

[34] X. Wang, L. Zhi, K. Müllen, Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells, Nano Letters. 8 (2008) 323-327. https://doi.org/10.1021/nl072838r.

[35] I. Meric, M.Y. Han, A.F. Young, B. Ozyilmaz, P. Kim, K.L. Shepard, Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nature Nanotechnology. 3 (2008) 654-659. https://doi.org/10.1038/nnano.2008.268.

[36] J. Baringhaus, J. Aprojanz, J. Wiegand, D. Laube, M. Halbauer, J. Hübner, M. Oestreich, C. Tegenkamp, Growth and characterization of sidewall graphene nanoribbons, Applied Physics Letters. 106 (2015) 043109. https://doi.org/10.1063/L4907041.

[37] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M F. Crommie, Y. Ron Shen, F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene, Nature. 459 (2009) 820-823. https://doi.org/10.1038/nature08105.

[38] X. Xu, C. Liu, Z. Sun, T. Cao, Z. Zhang, E. Wang, Z. Liu, K. Liu, Interfacial engineering in graphene bandgap, Chemical Society Reviews. 47 (2018) 3059-3099. https://doi.org/10.1039/c7cs00836h.

[39] T. Spalvins, Lubrication with sputtered M0S2 films: Principles,operation, and limitations, Journal of Materials Engineering and Performance. 1 (1992) 347-351. https://doi.org/10.1007/bf02652388.

[40] I.G. Lezama, A. Arora, A. Ubaldini, C. Barreteau, E. Giannini, M. Potemski, A.F. Morpurgo, Indirect-to-Direct Band Gap Crossover in Few-Layer MoTe2, Nano Letters. 15 (2015) 23362342. https://doi.org/10.1021/nl5045007.

[41] Y. Sun, D. Wang, Z. Shuai, Indirect-to-Direct Band Gap Crossover in Few-Layer Transition Metal Dichalcogenides: A Theoretical Prediction, The Journal of Physical Chemistry C. 120 (2016) 21866-21870. https://doi.org/10.1021/acs.jpcc.6b08748.

[42] X.-X. Zhang, Y. Lai, E. Dohner, S. Moon, T. Taniguchi, K. Watanabe, D. Smirnov, T.F. Heinz, Zeeman-Induced Valley-Sensitive Photocurrent in Monolayer MoS2, Physical Review Letters. 122 (2019). https://doi.org/10.1103/physrevlett.122.127401.

[43] E. Barré, J.A.C. Incorvia, S.H. Kim, C.J. McClellan, E. Pop, H.-S.P. Wong, T.F. Heinz, Spatial Separation of Carrier Spin by the Valley Hall Effect in Monolayer WSe2 Transistors, Nano Letters. 19 (2019) 770-774. https://doi.org/10.1021/acs.nanolett.8b03838.

[44] K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der Waals heterostructures, Science. 353 (2016). https://doi.org/10.1126/science.aac9439.

[45] Z. He, W. Que, Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction, Applied Materials Today. 3 (2016) 23-56. https://doi.org/10.1016yj.apmt.2016.02.001.

[46] J. Strachan, A.F. Masters, T. Maschmeyer, 3R-MoS2 in Review: History, Status, and Outlook, ACS Applied Energy Materials. 4 (2021) 7405-7418. https://doi.org/10.1021/acsaem.1c00638.

[47] J.A. Wilson, A.D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties, Advances in Physics. 18 (1969) 193335. https://doi.org/10.1080/00018736900101307.

[48] H. Xu, J. Yi, X. She, Q. Liu, L. Song, S. Chen, Y. Yang, Y. Song, R. Vajtai, J. Lou, H. Li, S. Yuan, J. Wu, P.M. Ajayan, 2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution, Applied Catalysis B: Environmental. 220 (2018) 379-385. https://doi.org/10.1016Zj.apcatb.2017.08.035.

[49] R.M.A. Khalil, R.M. Arif Khalil, F. Hussain, A.M. Rana, M. Imran, G. Murtaza, Comparative study of polytype 2H-MoS2 and 3R-MoS2 systems by employing DFT, Physica E: Low-Dimensional Systems and Nanostructures. 106 (2019) 338-345. https://doi.org/10.1016/j.physe.2018.07.003.

[50] D. Tan, M. Willatzen, Z.L. Wang, Prediction of strong piezoelectricity in 3R-MoS2 multilayer structures, Nano Energy. 56 (2019) 512-515. https://doi.org/10.1016/j.nanoen.2018.11.073.

[51] R.A. Bromley, R.B. Murray, The band structures of some transition metal dichalcogenides. I. A semiempirical tight binding method, Journal of Physics C: Solid State Physics. 5 (1972) 738745. https://doi.org/10.1088/0022-3719/5/7/005.

[52] N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P.M. Ajayan, J. Lou, H. Zhao, Second harmonic microscopy of monolayer MoS2, Physical Review B. 87 (2013). https://doi.org/10.1103/physrevb.87.161403.

[53] C.V. Nguyen, N.N. Hieu, D. Muoi, C.A. Duque, E. Feddi, H.V. Nguyen, L.T.T. Phuong, B.D. Hoi, H.V. Phuc, Linear and nonlinear magneto-optical properties of monolayer MoS2, Journal of Applied Physics. 123 (2018) 034301. https://doi.org/10.1063A.5009481.

[54] D. Xiao, G.-B. Liu, W. Feng, X. Xu, W. Yao, Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides, Physical Review Letters. 108 (2012). https://doi.org/10.1103/physrevlett.108.196802.

[55] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically ThinMoS2: A New Direct-Gap Semiconductor, Physical Review Letters. 105 (2010). https://doi.org/10.1103/physrevlett.105.136805.

[56] R.A. Bromley, R.B. Murray, A.D. Yoffe, The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials, Journal of Physics C: Solid State Physics. 5 (1972) 759-778. https://doi.org/10.1088/0022-3719/5Z7/007.

[57] X. Xu, W. Yao, D. Xiao, T.F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides, Nature Physics. 10 (2014) 343-350. https://doi.org/10.1038/nphys2942.

[58] K.F. Mak, K. He, J. Shan, T.F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity, Nature Nanotechnology. 7 (2012) 494-498. https://doi.org/10.1038/nnano.2012.96.

[59] K. Xiao, T. Yan, Q. Liu, S. Yang, C. Kan, R. Duan, Z. Liu, X. Cui, Many-Body Effect on Optical Properties of Monolayer Molybdenum Diselenide, J. Phys. Chem. Lett. 12 (2021) 2555-2561. https://doi.org/10.1021/acs.jpclett.1c00320.

[60] T. Mueller, E. Malic, Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors, Npj 2D Materials and Applications. 2 (2018). https://doi.org/10.1038/s41699-018-0074-2.

[61] H.M. Hill, A.F. Rigosi, C. Roquelet, A. Chernikov, T.C. Berkelbach, D R. Reichman, M.S. Hybertsen, L.E. Brus, T.F. Heinz, Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy, Nano Letters. 15 (2015) 2992-2997. https://doi.org/10.1021/nl504868p.

[62] E. Jung, J.C. Park, Y.-S. Seo, J.-H. Kim, J. Hwang, Y.H. Lee, Unusually large exciton binding energy in multilayered 2H-MoTe, Sci. Rep. 12 (2022) 4543. https://doi.org/10.1038/s41598-022-08692-1.

[63] J. Shang, X. Shen, C. Cong, N. Peimyoo, B. Cao, M. Eginligil, T. Yu, Observation of Excitonic Fine Structure in a 2D Transition-Metal Dichalcogenide Semiconductor, ACS Nano. 9 (2015) 647-655. https://doi.org/10.1021/nn5059908.

[64] A. Chernikov, T.C. Berkelbach, H.M. Hill, A. Rigosi, Y. Li, O.B. Aslan, D R. Reichman, M.S. Hybertsen, T.F. Heinz, Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2, Physical Review Letters. 113 (2014). https://doi.org/10.1103/physrevlett.113.076802.

[65] J R. Schaibley, H. Yu, G. Clark, P. Rivera, J.S. Ross, K.L. Seyler, W. Yao, X. Xu, Valleytronics in 2D materials, Nature Reviews Materials. 1 (2016). https://doi .org/ 10.1038/natrevmats.2016.55.

[66] A. Raja, A. Chaves, J. Yu, G. Arefe, H.M. Hill, A.F. Rigosi, T.C. Berkelbach, P. Nagler, C. Schüller, T. Korn, C. Nuckolls, J. Hone, L.E. Brus, T.F. Heinz, D.R. Reichman, A. Chernikov, Coulomb engineering of the bandgap and excitons in two-dimensional materials, Nat. Commun. 8 (2017) 15251. https://doi.org/10.1038/ncomms15251.

[67] L. Huang, A. Krasnok, A. Alú, Y. Yu, D. Neshev, A.E. Miroshnichenko, Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides, Rep. Prog. Phys. 85 (2022). https://doi.org/10.1088/1361-6633/ac45f9.

[68] T. LaMountain, E. Lenferink, S.H. Amsterdam, M.C. Hersam, N.P. Stern, Valley-selective optical Stark effect of exciton-polaritons in a monolayer semiconductor, 2D Photonic Materials and Devices III. (2020). https://doi.org/10.1117/12.2546644.

[69] G. Plechinger, P. Nagler, A. Arora, A. Granados Del Águila, M.V. Ballottin, T. Frank, P. Steinleitner, M. Gmitra, J. Fabian, P.C.M. Christianen, R. Bratschitsch, C. Schüller, T. Korn, Excitonic Valley Effects in Monolayer WS under High Magnetic Fields, Nano Lett. 16 (2016) 7899-7904. https://doi.org/10.1021/acs.nanolett.6b04171.

[70] A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures, Nature. 499 (2013) 419-425. https://doi .org/ 10.1038/nature 12385.

[71] X. Zhou, X. Hu, J. Yu, S. Liu, Z. Shu, Q. Zhang, H. Li, Y. Ma, H. Xu, T. Zhai, 2D Layered Material-Based van der Waals Heterostructures for Optoelectronics, Advanced Functional Materials. 28 (2018) 1706587. https://doi.org/10.1002/adfm.201706587.

[72] C. Zhang, C.-P. Chuu, X. Ren, M.-Y. Li, L.-J. Li, C. Jin, M.-Y. Chou, C.-K. Shih, Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS/WSe hetero-bilayers, Sci Adv. 3 (2017) e1601459. https://doi.org/10.1126/sciadv.1601459.

[73] Dynamic Tuning of Moire Excitons in a WSe2/WS2 Heterostructure via Mechanical Deformation, (n.d.). https://doi.org/10.1021/acs.nanolett.1c03611.s001.

[74] B. Hunt, J.D. Sanchez-Yamagishi, A.F. Young, M. Yankowitz, B.J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, R.C. Ashoori, Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure, Science. 340 (2013) 1427-1430. https://doi.org/10.1126/science.1237240.

[75] M. Velicky, P.S. Toth, From two-dimensional materials to their heterostructures: An electrochemist's perspective, Applied Materials Today. 8 (2017) 68-103. https://doi.org/10.1016/j.apmt.2017.05.003.

[76] M. Massicotte, P. Schmidt, F. Vialla, KG. Schädler, A. Reserbat-Plantey, K. Watanabe, T. Taniguchi, K.J. Tielrooij, F.H.L. Koppens, Picosecond photoresponse in van der Waals heterostructures, Nature Nanotechnology. 11 (2016) 42-46. https://doi.org/10.1038/nnano.2015.227.

[77] Y. Jung, J. Shen, J.J. Cha, Surface effects on electronic transport of 2D chalcogenide thin films and nanostructures, Nano Converg. 1 (2014) 18. https://doi.org/10.1186/s40580-014-0018-2.

[78] A. Mishchenko, J.S. Tu, Y. Cao, R.V. Gorbachev, JR. Wallbank, M.T. Greenaway, V.E. Morozov, S.V. Morozov, M.J. Zhu, S.L. Wong, F. Withers, C.R. Woods, Y.-J. Kim, K. Watanabe, T. Taniguchi, E.E. Vdovin, O. Makarovsky, T.M. Fromhold, V.I. Fal'ko, A.K. Geim, L. Eaves, K.S. Novoselov, Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures, Nature Nanotechnology. 9 (2014) 808-813. https://doi.org/10.1038/nnano.2014.187.

[79] J. Kang, S. Tongay, J. Zhou, J. Li, J. Wu, Band offsets and heterostructures of two-dimensional semiconductors, Applied Physics Letters. 102 (2013) 012111. https://doi.org/10.1063/L4774090.

[80] N. Ubrig, E. Ponomarev, J. Zultak, D. Domaretskiy, V. Zolyomi, D. Terry, J. Howarth, I. Gutierrez-Lezama, A. Zhukov, Z.R. Kudrynskyi, Z.D. Kovalyuk, A. Patane, T. Taniguchi, K. Watanabe, R.V. Gorbachev, V.I. Fal'ko, A.F. Morpurgo, Design of van der Waals interfaces for broad-spectrum optoelectronics, Nature Materials. 19 (2020) 299-304. https://doi.org/10.1038/s41563-019-0601-3.

[81] Y. Li, C.-Y. Xu, J.-K. Qin, W. Feng, J.-Y. Wang, S. Zhang, L.-P. Ma, J. Cao, P.A. Hu, W. Ren, L. Zhen, Tuning the Excitonic States in MoS2/Graphene van der Waals Heterostructures via Electrochemical Gating, Advanced Functional Materials. 26 (2016) 293-302. https://doi.org/10.1002/adfm.201503131.

[82] R. Frisenda, Y. Niu, P. Gant, A.J. Molina-Mendoza, R. Schmidt, R. Bratschitsch, J. Liu, L. Fu, D. Dumcenco, A. Kis, D.P. De Lara, A. Castellanos-Gomez, Micro-reflectance and transmittance

spectroscopy: a versatile and powerful tool to characterize 2D materials, Journal of Physics D: Applied Physics. 50 (2017) 074002. https://doi.org/10.1088/1361-6463/aa5256.

[83] D. Hu, X. Yang, C. Li, R. Liu, Z. Yao, H. Hu, S.N. Gilbert Corder, J. Chen, Z. Sun, M. Liu, Q. Dai, Probing optical anisotropy of nanometer-thin van der waals microcrystals by near-field imaging, Nature Communications. 8 (2017). https://doi.org/10.1038/s41467-017-01580-7.

[84] W. Li, A. Glen Birdwell, M. Amani, R.A. Burke, X. Ling, Y.-H. Lee, X. Liang, L. Peng, C.A. Richter, J. Kong, D.J. Gundlach, N.V. Nguyen, Broadband optical properties of large-area monolayer CVD molybdenum disulfide, Physical Review B. 90 (2014). https://doi.org/10.1103/physrevb.90.195434.

[85] M.S. Diware, K. Park, J. Mun, H.G. Park, W. Chegal, Y.J. Cho, H.M. Cho, J. Park, H. Kim, S.W. Kang, Y.D. Kim, Characterization of wafer-scale MoS 2 and WSe 2 2D films by spectroscopic ellipsometry, Current Applied Physics. 17 (2017) 1329-1334. https://doi.org/10.1016yj.cap.2017.07.001.

[86] H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, L.-J. Li, Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry, Applied Physics Letters. 105 (2014) 201905. https://doi.org/10.1063A.4901836.

[87] R.M.A. Azzam, Direct relation between Fresnel's interface reflection coefficients for the parallel and perpendicular polarizations: erratum 2, Journal of the Optical Society of America A. 11 (1994) 2159. https://doi.org/10.1364/josaa.11.002159.

[88] B. Johs, J.A. Woollam, C.M. Herzinger, J.N. Hilfiker, R.A. Synowicki, C.L. Bungay, Overview of variable-angle spectroscopic ellipsometry (VASE): II. Advanced applications, SPIE Proceedings. (1999). https://doi.org/10.1117/12.351667.

[89] J. Xu, Q. He, Z. Xiong, Y. Yu, S. Zhang, X. Hu, L. Jiang, S. Su, S. Hu, Y. Wang, J. Xiang, Raman Spectroscopy as a Versatile Tool for Investigating Thermochemical Processing of Coal, Biomass, and Wastes: Recent Advances and Future Perspectives, Energy & Fuels. 35 (2021) 2870-2913. https://doi.org/10.1021/acs.energyfuels.0c03298.

[90] N.C. Passler, A. Paarmann, Generalized 4 x 4 matrix formalism for light propagation in anisotropic stratified media: study of surface phonon polaritons in polar dielectric heterostructures, J. Opt. Soc. Am. B. 34 (2017) 2128. https://doi.org/10.1364/josab.34.002128.

[91] B.J. Inkson, Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, Materials Characterization Using Nondestructive Evaluation (NDE) Methods. (2016) 17-43. https://doi.org/10.1016/b978-0-08-100040-3.00002-x.

[92] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865.

[93] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B Condens. Matter. 59 (1999) 1758-1775. https://doi.org/10.1103/physrevb.59.1758.

[94] M. Shishkin, G. Kresse, Implementation and performance of the frequency-dependentGWmethod within the PAW framework, Phys. Rev. B Condens. Matter Mater. Phys. 74 (2006). https://doi.org/10.1103/physrevb.74.035101.

[95] Z. Sun, A. Martinez, F. Wang, Optical modulators with 2D layered materials, Nature Photonics. 10 (2016) 227-238. https://doi.org/10.1038/nphoton.2016.15.

[96] Y.V. Stebunov, O.A. Aftenieva, A.V. Arsenin, V.S. Volkov, Highly Sensitive and Selective Sensor Chips with Graphene-Oxide Linking Layer, ACS Applied Materials & Interfaces. 7 (2015) 21727-21734. https://doi.org/10.1021/acsami.5b04427.

[97] V.G. Kravets, A.N. Grigorenko, R.R. Nair, P. Blake, S. Anissimova, K.S. Novoselov, A.K. Geim, Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption, Physical Review B. 81 (2010). https://doi.org/10.1103/physrevb.81.155413.

[98] U. Wurstbauer, C. Röling, U. Wurstbauer, W. Wegscheider, M. Vaupel, P.H. Thiesen, D. Weiss, Imaging ellipsometry of graphene, Applied Physics Letters. 97 (2010) 231901. https://doi.org/10.1063/L3524226.

[99] F. Nelson, A. Sandin, D.B. Dougherty, D.E. Aspnes, J.E. Rowe, A.C. Diebold, Optical and structural characterization of epitaxial graphene on vicinal 6H-SiC(0001)-Si by spectroscopic ellipsometry, Auger spectroscopy, and STM, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 30 (2012) 04E106. https://doi.org/10.1116/L4726199.

[100] G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M.C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, W. Mehr, Residual Metallic Contamination of Transferred Chemical Vapor Deposited Graphene, ACS Nano. 9 (2015) 4776-4785. https://doi.org/10.1021/acsnano.5b01261.

[101] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved Raman spectroscopy of single- and few-layer graphene, Nano Lett. 7 (2007) 238-242. https://doi.org/10.1021/nl061702a.

[102] E. Ochoa-Martinez, M. Gabas, L. Barrutia, A. Pesquera, A. Centeno, S. Palanco, A. Zurutuza, C. Algora, Determination of a refractive index and an extinction coefficient of standard production of CVD-graphene, Nanoscale. 7 (2015) 1491-1500. https://doi.org/10.1039/c4nr06119e.

[103] E.D. Palik, Handbook of Optical Constants of Solids, Academic Press, 1998. https://books.google.com/books/about/Handbook_of_Optical_Constants_of_Solids.html?hl=&i d=nxoqxyoHfbIC.

[104] G.A. Ermolaev, A.P. Tsapenko, V.S. Volkov, A.S. Anisimov, Y.G. Gladush, A G. Nasibulin, Express determination of thickness and dielectric function of single-walled carbon nanotube films, Appl. Phys. Lett. 116 (2020) 231103. https://doi.org/10.1063Z5.0012933.

[105] S.-E. Zhu, S. Yuan, G.C.A. Janssen, Optical transmittance of multilayer graphene, EPL (Europhysics Letters). 108 (2014) 17007. https://doi.org/10.1209/0295-5075/108/17007.

[106] S. Chugh, M. Man, Z. Chen, K.J. Webb, Ultra-dark graphene stack metamaterials, Applied Physics Letters. 106 (2015) 061102. https://doi.org/10.1063/L4907633.

[107] H. Lin, B.C.P. Sturmberg, K.-T. Lin, Y. Yang, X. Zheng, T.K. Chong, C M. de Sterke, B. Jia, A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light, Nature Photonics. 13 (2019) 270-276. https://doi.org/10.1038/s41566-019-0389-3.

[108] A. Segura, L. Artus, R. Cusco, T. Taniguchi, G. Cassabois, B. Gil, Natural optical anisotropy of h-BN: Highest giant birefringence in a bulk crystal through the mid-infrared to ultraviolet range, Physical Review Materials. 2 (2018). https://doi.org/10.1103/physrevmaterials.2.024001.

[109] D.I. Yakubovsky, A.V. Arsenin, Y.V. Stebunov, D.Y. Fedyanin, V.S. Volkov, Optical constants and structural properties of thin gold films, Optics Express. 25 (2017) 25574. https://doi.org/10.1364/oe.25.025574.

[110] Y. Wang, Z.-L. Deng, D. Hu, J. Yuan, Q. Ou, F. Qin, Y. Zhang, X. Ouyang, Y. Li, B. Peng, Y. Cao, B. Guan, Y. Zhang, J. He, C.-W. Qiu, Q. Bao, X. Li, Atomically Thin Noble Metal Dichalcogenides for Phase-Regulated Meta-optics, Nano Letters. 20 (2020) 7811-7818. https://doi.org/10.1021/acs.nanolett.0c01805.

[111] M. Castriota, G.G. Politano, C. Vena, M P. De Santo, G. Desiderio, M. Davoli, E. Cazzanelli, C. Versace, Variable Angle Spectroscopic Ellipsometry investigation of CVD-grown monolayer graphene, Applied Surface Science. 467-468 (2019) 213-220. https://doi.org/10.1016/j.apsusc.2018.10.161.

[112] C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, M. Sindoro, H. Zhang, Recent Advances in Ultrathin Two-Dimensional Nanomaterials, Chemical Reviews. 117 (2017) 6225-6331. https://doi.org/10.1021/acs.chemrev.6b00558.

[113] B. Peng, P.K. Ang, K.P. Loh, Two-dimensional dichalcogenides for light-harvesting applications, Nano Today. 10 (2015) 128-137. https://doi.org/10.1016/j.nantod.2015.01.007.

[114] J.D. Caldwell, I. Aharonovich, G. Cassabois, J.H. Edgar, B. Gil, D.N. Basov, Photonics with hexagonal boron nitride, Nature Reviews Materials. 4 (2019) 552-567. https://doi.org/10.1038/s41578-019-0124-1.

[115] A. Ambrosi, Z. Sofer, M. Pumera, Electrochemical Exfoliation of Layered Black Phosphorus into Phosphorene, Angewandte Chemie International Edition. 56 (2017) 10443-10445. https://doi.org/10.1002/anie.201705071.

[116] X. Jiang, A.V. Kuklin, A. Baev, Y. Ge, H. Agren, H. Zhang, P.N. Prasad, Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications, Physics Reports. 848 (2020) 1-58. https://doi.org/10.1016Zj.physrep.2019.12.006.

[117] Y. Saito, T. Nojima, Y. Iwasa, Highly crystalline 2D superconductors, Nature Reviews Materials. 2 (2017). https://doi.org/10.1038/natrevmats.2016.94.

[118] F.H. da Jornada, L. Xian, A. Rubio, S.G. Louie, Universal slow plasmons and giant field enhancement in atomically thin quasi-two-dimensional metals, Nat. Commun. 11 (2020) 1013. https://doi .org/ 10.1038/s41467-020-14826-8.

[119] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors, Nature Nanotechnology. 6 (2011) 147-150. https://doi.org/10.1038/nnano.2010.279.

[120] G. Scuri, T.I. Andersen, Y. Zhou, D.S. Wild, J. Sung, R.J. Gelly, D. Berube, H. Heo, L. Shao, A.Y. Joe, A.M. Mier Valdivia, T. Taniguchi, K. Watanabe, M. Loncar, P. Kim, M.D. Lukin, H. Park, Electrically Tunable Valley Dynamics in Twisted WSe2/WSe2 Bilayers, Physical Review Letters. 124 (2020). https://doi.org/10.1103/physrevlett.124.217403.

[121] D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides, ACS Nano. 8 (2014) 1102-1120. https://doi.org/10.1021/nn500064s.

[122] W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications, Materials Today. 20 (2017) 116-130. https://doi.org/10.1016/j.mattod.2016.10.002.

[123] D.I. Yakubovsky, Y.V. Stebunov, R.V. Kirtaev, G.A. Ermolaev, M.S. Mironov, S.M. Novikov, A.V. Arsenin, V.S. Volkov, Au-MoS 2 Interfaces: Ultrathin and Ultrasmooth Gold Films on Monolayer MoS 2 (Adv. Mater. Interfaces 13/2019), Advanced Materials Interfaces. 6 (2019) 1970082. https://doi.org/10.1002/admi.201970082.

[124] M. Amani, D.-H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R.M. Wallace, S.-C. Lee, J.-H. He, J.W. Ager, X. Zhang, E. Yablonovitch, A. Javey, Near-unity photoluminescence quantum yield in MoS2, Science. 350 (2015) 1065-1068. https://doi.org/10.1126/science.aad2114.

[125] T.H. Choudhury, X. Zhang, Z.Y. Al Balushi, M. Chubarov, J.M. Redwing, Epitaxial Growth of Two-Dimensional Layered Transition Metal Dichalcogenides, Annual Review of Materials Research. 50 (2020) 155-177. https://doi.org/10.1146/annurev-matsci-090519-113456.

[126] S.E. Kazzi, S. El Kazzi, W. Mortelmans, T. Nuytten, J. Meersschaut, P. Carolan, L. Landeloos, T. Conard, I. Radu, M. Heyns, C. Merckling, MoS2 synthesis by gas source MBE for transition metal dichalcogenides integration on large scale substrates, Journal of Applied Physics. 123 (2018) 135702. https://doi.org/10.1063/L5008933.

[127] L.L. Chang, K. Ploog, Molecular Beam Epitaxy and Heterostructures, Springer Science & Business Media, 2012. https://play.google.com/store/books/details?id=GID1CAAAQBAJ.

[128] V.G. Kravets, School of Physics and Astronomy, University of Manchester, Manchester, M. 9pl, UK, Ellipsometry and optical spectroscopy of low-dimensional family TMDs, Semiconductor Physics Quantum Electronics and Optoelectronics. 20 (2017) 284-296. https://doi.org/10.15407/spqeo20.03.284.

[129] Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D.E. Aspnes, C.G. Van de Walle, N.V. Nguyen, Y.-W. Zhang, L. Cao, Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films, Sci. Rep. 5 (2015) 16996. https://doi.org/10.1038/srep16996.

[130] H. Zhang, Y. Ma, Y. Wan, X. Rong, Z. Xie, W. Wang, L. Dai, Measuring the refractive index of highly crystalline monolayer MoS2 with high confidence, Sci. Rep. 5 (2015) 8440. https://doi .org/ 10.1038/srep08440.

[131] C. Hsu, R. Frisenda, R. Schmidt, A. Arora, S.M. Vasconcellos, R. Bratschitsch, H.S.J. Zant, A. Castellanos-Gomez, Thickness-Dependent Refractive Index of 1L, 2L, and 3L MoS 2 , MoSe 2 , WS 2 , and WSe 2, Advanced Optical Materials. 7 (2019) 1900239. https://doi.org/10.1002/adom.201900239.

[132] G.A. Ermolaev, D.I. Yakubovsky, Y.V. Stebunov, A.V. Arsenin, V.S. Volkov, Spectral ellipsometry of monolayer transition metal dichalcogenides: Analysis of excitonic peaks in dispersion, Journal of Vacuum Science & Technology B. 38 (2020) 014002. https://doi.org/10.1116/L5122683.

[133] L. Tao, H. Long, B. Zhou, S.F. Yu, S.P. Lau, Y. Chai, K.H. Fung, Y.H. Tsang, J. Yao, D. Xu, Preparation and characterization of few-layer MoS2 nanosheets and their good nonlinear optical responses in the PMMA matrix, Nanoscale. 6 (2014) 9713-9719. https://doi .org/ 10.1039/c4nr02664k.

[134] H. Li, J. Wu, X. Huang, G. Lu, J. Yang, X. Lu, Q. Xiong, H. Zhang, Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy, ACS Nano. 7 (2013) 10344-10353. https://doi.org/10.1021/nn4047474.

[135] D. Kaplan, Y. Gong, K. Mills, V. Swaminathan, P.M. Ajayan, S. Shirodkar, E. Kaxiras, Excitation intensity dependence of photoluminescence from monolayers of MoS 2 and WS 2 /MoS 2 heterostructures, 2d Mater. 3 (2016) 015005. https://doi.org/10.1088/2053-1583/3/1/015005.

[136] B. Chakraborty, H.S.S.R. Matte, A.K. Sood, C.N.R. Rao, Layer-dependent resonant Raman scattering of a few layer MoS2, J. Raman Spectrosc. 44 (2013) 92-96. https://doi.org/10.1002/jrs.4147.

[137] J. Gao, B. Li, J. Tan, P. Chow, T.-M. Lu, N. Koratkar, Aging of Transition Metal Dichalcogenide Monolayers, ACS Nano. 10 (2016) 2628-2635. https://doi.org/10.1021/acsnano.5b07677.

[138] R.C. Longo, R. Addou, K.C. Santosh, J.-Y. Noh, C M. Smyth, D. Barrera, C. Zhang, J.W.P. Hsu, R.M. Wallace, K. Cho, Intrinsic air stability mechanisms of two-dimensional transition metal dichalcogenide surfaces: basal versus edge oxidation, 2D Materials. 4 (2017) 025050. https://doi.org/10.1088/2053-1583/aa636c.

[139] J. Peto, T. Ollar, P. Vancso, Z.I. Popov, G.Z. Magda, G. Dobrik, C. Hwang, P.B. Sorokin, L. Tapaszto, Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions, Nature Chemistry. 10 (2018) 1246-1251. https://doi.org/10.1038/s41557-018-0136-2.

[140] H. Lu, A. Kummel, J. Robertson, Passivating the sulfur vacancy in monolayer MoS2, APL Materials. 6 (2018) 066104. https://doi.org/10.1063/L5030737.

[141] ZeitschriftFurNaturforschung,(1968),https://books.google.com/books/about/Zeitschrift_F%C3 %BCr_Naturforschung.html?hl=&id=tf8dAQAAMAAJ.

[142] T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications, Nat. Photonics. 4 (2010) 297-301. https://doi.org/10.1038/nphoton.2010.40.

[143] K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications, J. Mater. Chem. C Mater. Opt. Electron. Devices. 5 (2017) 11992-12022. https://doi.org/10.1039/c7tc04300g.

[144] K. Thakar, S. Lodha, Optoelectronic and photonic devices based on transition metal dichalcogenides, Mater. Res. Express. 7 (2020) 014002. https://doi.org/10.1088/2053-1591/ab5c9c.

[145] R. Verre, D.G. Baranov, B. Munkhbat, J. Cuadra, M. Kall, T. Shegai, Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators, Nat. Nanotechnol. 14 (2019) 679-683. https://doi.org/10.1038/s41565-019-0442-x.

[146] V.B. Mohan, K.-T. Lau, D. Hui, D. Bhattacharyya, Graphene-based materials and their composites: A review on production, applications and product limitations, Compos. B Eng. 142 (2018) 200-220. https://doi.org/10.1016/j.compositesb.2018.01.013.

[147] A. Castellanos-Gomez, Why all the fuss about 2D semiconductors?, Nat. Photonics. 10 (2016) 202-204. https://doi .org/ 10.1038/nphoton.2016.53.

[148] N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I.E. Castelli, A. Cepellotti, G. Pizzi, N. Marzari, Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds, Nat. Nanotechnol. 13 (2018) 246-252. https://doi.org/10.1038/s41565-017-0035-5.

[149] Y. Huang, K. Xu, Z. Wang, T A. Shifa, Q. Wang, F. Wang, C. Jiang, J. He, Designing the shape evolution of SnSe2 nanosheets and their optoelectronic properties, Nanoscale. 7 (2015) 1737517380. https://doi.org/10.1039/c5nr05989e.

[150] Y. Huang, E. Sutter, J.T. Sadowski, M. Cotlet, O.L.A. Monti, D A. Racke, MR. Neupane, D. Wickramaratne, R.K. Lake, B.A. Parkinson, P. Sutter, Tin Disulfide—An Emerging Layered Metal Dichalcogenide Semiconductor: Materials Properties and Device Characteristics, ACS Nano. 8 (2014) 10743-10755. https://doi.org/10.1021/nn504481r.

[151] G. Domingo, R.S. Itoga, C.R. Kannewurf, Fundamental Optical Absorption in SnS2 and SnSe2, Phys. Rev. 143 (1966) 536-541. https://doi.org/10.1103/physrev.143.536.

[152] E. Rozengurt, L.A. Heppel, A Specific effect of external ATP on the permeability of transformed 3T3 cells, Biochem. Biophys. Res. Commun. 67 (1975) 1581-1588. https://doi.org/10.1016/0006-291x(75)90207-7.

[153] Y. Bertrand, G. Leveque, C. Raisin, F. Levy, Optical properties of SnSe2and SnS2, J. Phys. 12 (1979) 2907-2916. https://doi.org/10.1088/0022-3719/12/14/025.

[154] J. Bordas, J. Robertson, A. Jakobsson, Ultraviolet properties and band structure of SnS2, SnSe2, CdI2, PbI2, BiI3and BiOI crystals, J. Phys. 11 (1978) 2607-2621. https://doi.org/10.1088/0022-3719/11/12/021.

[155] S. Mandalidis, J.A. Kalomiros, K. Kambas, A.N. Anagnostopoulos, Optical investigation of SnS2 single crystals, J. Mater. Sci. 31 (1996) 5975-5978. https://doi.org/10.1007/bf01152147.

[156] H S. Song, S.L. Li, L. Gao, Y. Xu, K. Ueno, J. Tang, Y.B. Cheng, K. Tsukagoshi, Highperformance top-gated monolayer SnS 2 field-effect transistors and their integrated logic circuits, Nanoscale. 5 (2013) 9666-9670. https://doi.org/10.1039/C3NR01899G.

[157] G. Su, V.G. Hadjiev, P.E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M Ajayan, J. Lou, H. Peng, Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application, Nano Lett. 15 (2015) 506-513. https://doi.org/10.1021/nl503857r.

[158] C. Guo, Z. Tian, Y. Xiao, Q. Mi, J. Xue, Field-effect transistors of high-mobility few-layer SnSe2, Appl. Phys. Lett. 109 (2016) 203104. https://doi.org/10.1063/L4967744.

[159] F. Tan, S. Qu, J. Wu, K. Liu, S. Zhou, Z. Wang, Preparation of SnS2 colloidal quantum dots and their application in organic/inorganic hybrid solar cells, Nanoscale Research Letters. 6 (2011) 298. https://doi.org/10.1186/1556-276x-6-298.

[160] R. Biswas, M. Dandu, A. Prosad, S. Das, S. Menon, J. Deka, K. Majumdar, V. Raghunathan, Strong near band-edge excited second-harmonic generation from multilayer 2H Tin diselenide, Sci. Rep. 11 (2021) 15017. https://doi.org/10.1038/s41598-021-94612-8.

[161] H.R. Yang, X.M. Liu, Nonlinear optical response and applications of tin disulfide in the near-and mid-infrared, Appl. Phys. Lett. 110 (2017) 171106. https://doi.org/10.1063A.4982624.

[162] M. Müller, R. Zentel, T. Maka, S.G. Romanov, C.M. Sotomayor Torres, Photonic Crystal Films with High Refractive Index Contrast, Advanced Materials. 12 (2000) 1499-1503. https://doi.org/10.1002/1521-4095(200010)12:20<1499::aid-adma1499>3.0.co;2-m.

[163] C. Fan, Z. Liu, S. Yuan, X. Meng, X. An, Y. Jing, C. Sun, Y. Zhang, Z. Zhang, M. Wang, H. Zheng, E. Li, Enhanced photodetection performance of photodetectors based on indium-doped tin disulfide few layers, ACS Appl. Mater. Interfaces. 13 (2021) 35889-35896. https://doi .org/ 10.1021/acsami.1c06305.

[164] A. Joseph, C.R. Anjitha, A. Aravind, P.M. Aneesh, Structural, optical and magnetic properties of SnS2 nanoparticles and photo response characteristics of p-Si/n-SnS2 heterojunction diode, Appl. Surf. Sci. 528 (2020) 146977. https://doi.org/10.1016Zj.apsusc.2020.146977.

[165] J.M. Gonzalez, I.I. Oleynik, Layer-dependent properties of SnS2and SnSe2 two-dimensional materials, Phys. Rev. B Condens. Matter. 94 (2016). https://doi.org/10.1103/physrevb.94.125443.

[166] R.S. Mitchell, Y. Fujiki, Y. Ishizawa, Structural polytypism of SnS2, Nature. 247 (1974) 537538. https://doi.org/10.1038/247537a0.

[167] D.-Y. Lin, H.-P. Hsu, C.-F. Tsai, C.-W. Wang, Y.-T. Shih, Temperature Dependent Excitonic Transition Energy and Enhanced Electron-Phonon Coupling in Layered Ternary SnSSe Semiconductors with Fully Tunable Stoichiometry, Molecules. 26 (2021). https://doi.org/10.3390/molecules26082184.

[168] G. Lin, T. Zheng, L. Zhan, J. Lu, J. Huang, H. Wang, Y. Zhou, X. Zhang, W. Cai, Tunable structure and optical properties of single crystal SnS2 flakes, Appl. Phys. Express. 13 (2020) 035504. https://doi.org/10.35848/1882-0786/ab7443.

[169] Y. Zhang, Y. Shi, M. Wu, K. Zhang, B. Man, M. Liu, Synthesis and Surface-Enhanced Raman Scattering of Ultrathin SnSe2 Nanoflakes by Chemical Vapor Deposition, Nanomaterials. 8 (2018) 515. https://doi.org/10.3390/nano8070515.

[170] G.E. Jellison Jr, F.A. Modine, Parameterization of the optical functions of amorphous materials in the interband region, Appl. Phys. Lett. 69 (1996) 371-373. https://doi.org/10.1063A.118064.

[171] G.A. Ermolaev, D.V. Grudinin, Y.V. Stebunov, K.V. Voronin, V.G. Kravets, J. Duan, A.B. Mazitov, G.I. Tselikov, A. Bylinkin, D.I. Yakubovsky, S.M. Novikov, D.G. Baranov, A.Y. Nikitin, I.A. Kruglov, T. Shegai, P. Alonso-González, A.N. Grigorenko, A.V. Arsenin, K.S. Novoselov, V.S. Volkov, Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics, Nat. Commun. 12 (2021) 854. https://doi.org/10.1038/s41467-021-21139-x.

[172] A.B. Evlyukhin, S.M. Novikov, U. Zywietz, R.L. Eriksen, C. Reinhardt, S.I. Bozhevolnyi, B.N. Chichkov, Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett. 12 (2012) 3749-3755. https://doi.org/10.1021/nl301594s.

[173] D. Khmelevskaia, D.I. Markina, V.V. Fedorov, G.A. Ermolaev, A.V. Arsenin, V.S. Volkov, A.S. Goltaev, Y.M. Zadiranov, I.A. Tzibizov, A.P. Pushkarev, A.K. Samusev, A.A. Shcherbakov, P.A. Belov, I.S. Mukhin, S.V. Makarov, Directly grown crystalline gallium phosphide on sapphire for nonlinear all-dielectric nanophotonics, Appl. Phys. Lett. 118 (2021) 201101. https://doi.org/10.1063Z5.0048969.

[174] CM. Herzinger, B. Johs, W.A. McGahan, J.A. Woollam, W. Paulson, Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation, J. Appl. Phys. 83 (1998) 3323-3336. https://doi.org/10.1063/L367101.

[175] G.A. Ermolaev, S.E. Kushnir, N.A. Sapoletova, K.S. Napolskii, Titania Photonic Crystals with Precise Photonic Band Gap Position via Anodizing with Voltage versus Optical Path Length Modulation, Nanomaterials (Basel). 9 (2019). https://doi.org/10.3390/nano9040651.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.