Система защиты BREX из Escherichia coli HS и ее вирусные ингибиторы/BREX Defence System from Escherichia coli HS and its Virus-Encoded Inhibitor тема диссертации и автореферата по ВАК РФ 03.01.03, кандидат наук Исаев Артём Борисович

  • Исаев Артём Борисович
  • кандидат науккандидат наук
  • 2022, ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)»
  • Специальность ВАК РФ03.01.03
  • Количество страниц 217
Исаев Артём Борисович. Система защиты BREX из Escherichia coli HS и ее вирусные ингибиторы/BREX Defence System from Escherichia coli HS and its Virus-Encoded Inhibitor: дис. кандидат наук: 03.01.03 - Молекулярная биология. ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)». 2022. 217 с.

Оглавление диссертации кандидат наук Исаев Артём Борисович

Table of Contents

Abstract

Publications

Conferences

Acknowledgements

Table of Contents

Abbreviations

Chapter 1. Literature Review

1.1 Introduction

1.2 The simplest way of protection - to avoid recognition

Role of extracellular matrix (ECM) and outer membrane vesicles (OMV)

Receptors alterations

1.3 Small molecules and phage defence

Direct role in defence

Viperins and chain termination nucleotides

Regulatory role

1.4 Phage genome entry inhibition

1.5 DNA modification-based immunity systems

Classical R-M systems

Phage growth limitation (Pgl) system

BacteRiophage Exclusion (BREX) systems

Defence Island Systems Associated with Restriction-Modification (DISARM)

7-Deazapurine in DNA (DPD) systems

Phosphorothioate (PT) modification-based systems

1.6 CRISPR-Cas adaptive immunity systems

Diversity of CRISPR interference mechanisms

CRISPR Adaptation

1.7 Argonaute-mediated interference

1.8 Induced cell dormancy or suicide - Abortive Infection (Abi) and Toxin-Antitoxin (TA) systems

Abi systems

Toxin-Antitoxin (TA) based defence

Retrons as immunity systems

Cyclic-Oligonucleotide-Based Anti-Phage Signalling Systems (CBASS)

1.9 Prophage-mediated defence

1.10 Phage parasites - molecular piracy of the PICIs and PLEs

PICI

PLE

1.11 Systems with plausible novel mechanisms

1.12 Conclusions

Chapter 2. Project Rationale and Objectives

Chapter 3. Materials and Methods

3.1 Buffers

3.2 Bacterial strains, phages and plasmids

3.3 Bacterial and phage propagation

3.4 Phage titer determination and efficiency of plating (EOP) assay

3.5 Phage infection experiments

3.6 One-step growth curve assay

3.7 Efficiency of phage adsorption assay

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

.8 Efficiency of phage DNA injection - potassium efflux assay

.9 Verification of phage X modification status

.10 Restriction endonuclease activity detection in cell lysates

.11 Molecular cloning

.12 Introduction of novel BREX sites in T7 genome

.13 DNA electrophoresis in agarose gel

.14 Preparation of electrocompetent cells

.15 Preparation of chemocompetent cells

.16 Competent cells transformation

.17 DNA purification

.18 ElectroMobility Shift Assay (EMSA)

.19 Southern Blot

.20 Transformation Efficiency Assay with M13 phage

.21 Next Generation gDNA sequencing and data analysis

.22 Sequencing of total DNA purified from T7-infected cells

.23 Strep-Seq analysis of BrxX binding to T7 DNA

.24 Protein purification and pull-down assay

.25 Polyacrylamide gel electrophoresis (PAGE)

.26 Protein identification with mass-spectrometry analysis

.27 Gel filtration

.28 In vitro biochemical activity assays

.29 In vitro ATPase activity assay

.30 In vitro SAM cleavage reaction

.31 HPLC separation of SAM and MTA

pter 4. Results and discussion

4.1 Overview of E. coli HS Type I BREX system proteins and their predicted activities

4.2 BREX proteins exist in a form of multicomponent complexes in vivo

4.3 BREX protects against diverse dsDNA phages

4.4 BREX inhibits early stages of the viral life cycle

4.5 Importance of BREX sites mutual orientation for defence

4.6 BREX defence is inhibited by phage T7 DNA mimic Ocr

Productive infection of BREX culture by phage T7 requires the presence of intact 0.3 gene

Ocr expression from plasmid shuts off the BREX defence

Ocr directly interacts with methyltransferase BrxX

Ocr decreases BREX methylation

4.7 BREX defence is SAM-dependent and is suppressed by phage T3 SAM lyase

Phage T3 overcomes BREX protection

Expression of T3 SAMase shuts off BREX defence

The anti-BREX activity of T3 SAMase is not associated with inhibition of methylation

Catalytically-deficient SAMase mutants retain anti-restriction activity

T3 SAMase binds to the host SAM synthase MetK and inhibits SAM synthesis

4.8 Expanding the network of interactions between defence systems and anti-restriction proteins

Chapter 5. Model of BREX defence and conclusions

Literature Citations

Supplementary Materials

Рекомендованный список диссертаций по специальности «Молекулярная биология», 03.01.03 шифр ВАК

Введение диссертации (часть автореферата) на тему «Система защиты BREX из Escherichia coli HS и ее вирусные ингибиторы/BREX Defence System from Escherichia coli HS and its Virus-Encoded Inhibitor»

Abstract

BREX is a superfamily of recently described phage defence systems that can be found in more than 10% of bacterial and archaeal genomes. Similar to classical Restriction-Modification systems BREX encodes methyltransferase and methylates the cell's own genome to discriminate it from incoming viral or plasmid DNA. However, BREX lacks an obvious restriction module and the set of biochemical activities predicted for BREX proteins (ATPase, alkaline phosphatase, Lon-like protease) is not characteristic for any defence system known. This work describes the Type I BREX defence system from E. coli HS, aiming to decipher how it interferes with viral propagation. It is shown that BREX does not prevent adsorption and injection stages, however, inhibits viral DNA accumulation inside infected cells. BREX system proteins interact with each other and form complexes (BrxBCXZ) that to a certain extent resemble complexes of heterooligomeric Type I/III R-M systems. Similar to these systems, the relative orientation of BREX sites in the viral DNA might be important for the efficiency of defence.

It was studied how certain phages overcome BREX protection, which led to the discovery of the first anti-BREX proteins. Phage T7 DNA-mimic Ocr - a well-known inhibitor of Type I R-M systems - was shown to be competent in shutting off BREX defence and affecting BREX methylation. BrxX methyltransferase appeared to be a target of Ocr anti-BREX activity. Another anti-BREX discovered in this work - phage T3 SAM Lyase, also known to be active against Type I R-M systems. This enzyme cleaves SAM - an important co-factor of R-M I restriction complexes. Results of this work suggest that SAM is required for BREX activity not only as a donor of methyl groups for methylation but also as a co-factor at the defence stage. An additional mechanism was discovered for T3 SAMase that likely contributes to its anti-restriction activity - SAMase is able to bind SAM synthase (MetK) and thus, in addition to direct enzymatic cleavage, depletes SAM pool through inhibition of its synthesis. Cloning and screening of the large collection of anti-restriction proteins allowed to identify phage P1 DarA as another anti-BREX, as well as to demonstrate that certain anti-restriction proteins can simultaneously downregulate Type IE CRISPR-Cas activity.

Publications

1. Gordeeva J., Morozova N., Sierro N., Isaev A., Sinkunas T., Tsvetkova K., Matlashov M., Truncaite L., Morgan R.D., Ivanov N.V., Siksnys V., Zeng L., Severinov K. BREX system of Escherichia coli distinguishes self from non-self by methylation of a specific DNA site. Nucleic Acids Research, Vol. 47(1), p.253-265, 2019

2. Isaev A., Drobiazko, A., Sierro, N., Gordeeva, J., Yosef, I., Qimron, U., Ivanov NV., Severinov, K. (2020). Phage T7 DNA mimic protein Ocr is a potent inhibitor of BREX defence. Nucleic Acids Research., Vol. 48(1), p.5397-5406, 2020

3. Isaev A., Musharova, O., Severinov, K. (2021). Microbial arsenal of antiviral defences -Part I. Biochemistry (Moscow), 86, 319-337, 2021.

4. Isaev A., Musharova, O., Severinov, K. (2021). Microbial arsenal of antiviral defences -Part II. Biochemistry (Moscow), 86, 449-470, 2021

Conferences

1. Isaev A.B., Gordeeva J.M., Tsvetkova K. M., Matlashov M. E., Severinov K. V. Insights from Study of BREX - Novel Bacterial Defence System. Molecular Genetics of Bacteria and Phages Meeting, Wisconsin, Madison, USA, 2018. poster presentation

2. Isaev A.B., Gordeeva J.M., Tsvetkova K. M., Matlashov M. E., Severinov K. V. Characterization of phage defence system BREX from Escherichia coli HS. Bacteriophage in Medicine, Food & Biotechnology, Oxford, UK, 2018. oral presentation

3. Isaev A., Drobiazko A.M., Gordeeva J., Severinov K. DNA mimic protein Ocr from phage T7 is a potent inhibitor of BREX defense system. CRISPR-2019, Quebec, Canada, 2019. poster presentation

4. Isaev A., Drobiazko A.M., Gordeeva J., Severinov K. DNA mimic protein Ocr from phage T7 is a potent inhibitor of BREX defense system. 3rd International Conference on CRISPR Technologies, Wurzburg, Germany, 2019. poster presentation

5. Isaev A., Drobiazko A.M., Gordeeva J., Severinov K. DNA mimic protein Ocr from phage T7 is a potent inhibitor of BREX defense system. Global Young Scientists Summit 2020, Singapore, 2020. poster presentation

Похожие диссертационные работы по специальности «Молекулярная биология», 03.01.03 шифр ВАК

Список литературы диссертационного исследования кандидат наук Исаев Артём Борисович, 2022 год

1. Tsunetomo, Y. (1716) Hagakure.

2. Clokie, M. R. J., Millard, A. D., Letarov, A. V., and Heaphy, S. (2011) Phages in nature,

Bacteriophage, 1, 31-45.

3. Díaz-Muñoz, S. L., and Koskella, B. (2014) Bacteria-phage interactions in natural environments.

In Advances in applied microbiology. Elsevier, Vol. 89, pp. 135-183.

4. Batinovic, S., Wassef, F., Knowler, S. A., Rice, D. T. F., Stanton, C. R., Rose, J., Tucci, J.,

Nittami, T., Vinh, A., and Drummond, G. R. (2019) Bacteriophages in natural and artificial environments, Pathogens, 8, 100.

5. Wommack, K. E., and Colwell, R. R. (2000) Virioplankton: viruses in aquatic ecosystems,

Microbiol. Mol. Biol. Rev., 64, 69-114.

6. Parikka, K. J., Le Romancer, M., Wauters, N., and Jacquet, S. (2017) Deciphering the

virus-to-prokaryote ratio (VPR): insights into virus-host relationships in a variety of ecosystems, Biol. Rev., 92, 1081-1100.

7. Rodriguez-Valera, F., Martin-Cuadrado, A.-B., Rodriguez-Brito, B., Pasic, L., Thingstad, T. F.,

Rohwer, F., and Mira, A. (2009) Explaining microbial population genomics through phage predation, Nat. Preced.

8. Breitbart, M., Bonnain, C., Malki, K., and Sawaya, N. A. (2018) Phage puppet masters of the

marine microbial realm, Nat. Microbiol., 3, 754-766.

9. Brüssow, H., Canchaya, C., and Hardt, W.-D. (2004) Phages and the evolution of bacterial

pathogens: from genomic rearrangements to lysogenic conversion, Microbiol. Mol. Biol. Rev., 68, 560-602.

10. Chiang, Y. N., Penadés, J. R., and Chen, J. (2019) Genetic transduction by phages and chromosomal islands: The new and noncanonical, PLoS Pathog., 15, e1007878.

11. Lang, A. S., Westbye, A. B., and Beatty, J. T. (2017) The distribution, evolution, and roles of

gene transfer agents in prokaryotic genetic exchange, Annu. Rev. Virol., 4, 87-104.

12. Keen, E. C., Bliskovsky, V. V, Malagon, F., Baker, J. D., Prince, J. S., Klaus, J. S., and Adhya,

S. L. (2017) Novel "superspreader" bacteriophages promote horizontal gene transfer by transformation, MBio, 8.

13. Koonin, E. V., Wolf, Y. I., and Katsnelson, M. I. (2017) Inevitability of the emergence and

persistence of genetic parasites caused by evolutionary instability of parasite-free states, Biol. Direct, 12, 1-12.

14. Szathmâry, E., and Demeter, L. (1987) Group selection of early replicators and the origin of life,

J. Theor. Biol., 128, 463-486.

15. Krupovic, M., Dolja, V. V., and Koonin, E. V. (2019) Origin of viruses: primordial replicators

recruiting capsids from hosts, Nat. Rev. Microbiol., 17, 449-458.

16. Koonin, E. V., Makarova, K. S., and Wolf, Y. I. (2017) Evolutionary Genomics of Defense

Systems in Archaea and Bacteria, Annu. Rev. Microbiol., 71, 233-261.

17. Galperin, M. Y., and Koonin, E. V (2000) Who's your neighbor? New computational approaches for functional genomics, Nat. Biotechnol., 18, 609-613.

18. Shmakov, S. A., Faure, G., Makarova, K. S., Wolf, Y. I., Severinov, K. V., and Koonin, E. V.

(2019) Systematic prediction of functionally linked genes in bacterial and archaeal genomes, Nat. Protoc, 14, 3013-3031.

19. Makarova, K. S., Wolf, Y. I., Snir, S., and Koonin, E. V (2011) Defense islands in bacterial and

archaeal genomes and prediction of novel defense systems., J. Bacteriol., 193, 6039-56.

20. Oliveira, P. H., Touchon, M., and Rocha, E. P. C. (2014) The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts, Nucleic Acids Res., 42, 10618-10631.

21. Koonin, E. V., Makarova, K. S., Wolf, Y. I., and Krupovic, M. (2020) Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire, Nat. Rev. Genet., 21, 119-131.

22. Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., and Sorek, R.

(2018) Systematic discovery of antiphage defense systems in the microbial pangenome, Science (80-. )., 359.

23. Gao, L., Altae-Tran, H., Bohning, F., Makarova, K. S., Segel, M., Schmid-Burgk, J. L., Koob, J.,

Wolf, Y. I., Koonin, E. V, and Zhang, F. (2020) Diverse enzymatic activities mediate antiviral immunity in prokaryotes, Science (80-. )., 369, 1077-1084.

24. Makarova, K. S., Wolf, Y. I., and Koonin, E. V. (2019) Towards functional characterization of

archaeal genomic dark matter, Biochem. Soc. Trans., 47, 389-398.

25. Eraslan, G., Avsec, Z., Gagneur, J., and Theis, F. J. (2019) Deep learning: new computational

modelling techniques for genomics, Nat. Rev. Genet., 20, 389-403.

26. Eitzinger, S., Asif, A., Watters, K. E., Iavarone, A. T., Knott, G. J., Doudna, J. A., and Minhas,

F. ul A. A. (2020) Machine learning predicts new anti-CRISPR proteins, Nucleic Acids Res.,

48, 4698-4708.

27. Gussow, A. B., Park, A. E., Borges, A. L., Shmakov, S. A., Makarova, K. S., Wolf, Y. I., Bondy-Denomy, J., and Koonin, E. V (2020) Machine-learning approach expands the repertoire of anti-CRISPR protein families, Nat. Commun., 11, 1-12.

28. Kronheim, S., Daniel-Ivad, M., Duan, Z., Hwang, S., Wong, A. I., Mantel, I., Nodwell, J. R., and

Maxwell, K. L. (2018) A chemical defence against phage infection, Nature, 564, 283-286.

29. Kever, L., Hardy, A., Luthe, T., Hunnefeld, M., Gatgens, C., Milke, L., Wiechert, J., Wittmann,

J., Moraru, C., and Marienhagen, J. (2021) Aminoglycoside antibiotics inhibit phage infection by blocking an early step of the phage infection cycle, bioRxiv.

30. Fillol-Salom, A., Miguel-Romero, L., Marina, A., Chen, J., and Penades, J. R. (2020) Beyond

the CRISPR-Cas safeguard: PICI-encoded innate immune systems protect bacteria from bacteriophage predation, Curr. Opin. Microbiol., 56, 52-58.

31. O'Hara, B. J., Barth, Z. K., McKitterick, A. C., and Seed, K. D. (2017) A highly specific phage

defense system is a conserved feature of the Vibrio cholerae mobilome, PLoS Genet., 13, 1-17.

32. Roberts, R. J., Vincze, T., Posfai, J., and Macelis, D. (2015) REBASE--a database for DNA

restriction and modification: enzymes, genes and genomes, Nucleic Acids Res., 43, D298-D299.

33. Akarsu, H., Bordes, P., Mansour, M., Bigot, D.-J., Genevaux, P., and Falquet, L. (2019) TASmania: a bacterial toxin-antitoxin systems database, PLOS Comput. Biol., 15, e1006946.

34. Zhang, F., Zhao, S., Ren, C., Zhu, Y., Zhou, H., Lai, Y., Zhou, F., Jia, Y., Zheng, K., and Huang,

Z. (2018) CRISPRminer is a knowledge base for exploring CRISPR-Cas systems in microbe and phage interactions, Commun. Biol., 1, 1-5.

35. Pourcel, C., Touchon, M., Villeriot, N., Vernadet, J.-P., Couvin, D., Toffano-Nioche, C., and

Vergnaud, G. (2020) CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers, Nucleic Acids Res., 48, D535-D544.

36. Zhang, Y., Zhang, Z., Zhang, H., Zhao, Y., Zhang, Z., and Xiao, J. (2020) PADS Arsenal: A

database of prokaryotic defense systems related genes, Nucleic Acids Res., 48, D590-D598.

37. Mendler, K., Chen, H., Parks, D. H., Lobb, B., Hug, L. A., and Doxey, A. C. (2019) Annotree:

Visualization and exploration of a functionally annotated microbial tree of life, Nucleic Acids Res., 47, 4442-4448.

38. Howard-Varona, C., Lindback, M. M., Bastien, G. E., Solonenko, N., Zayed, A. A., Jang, H.,

Andreopoulos, B., Brewer, H. M., del Rio, T. G., and Adkins, J. N. (2020) Phage-specific

metabolic reprogramming of virocells, ISME J., 14, 881-895.

39. Ghosh, S., Hamdan, S. M., Cook, T. E., and Richardson, C. C. (2008) Interactions of Escherichia

coli Thioredoxin, the Processivity Factor, with Bacteriophage T7 DNA Polymerase and Helicase, N 46 J. Biol. Chem., 283, 2020.

40. Qimron, U., Marintcheva, B., Tabor, S., and Richardson, C. C. (2006) Genomewide screens for

Escherichia coli genes affecting growth of T7 bacteriophage, Proc. Natl. Acad. Sci., 103, 19039-19044.

41. Maynard, N. D., Birch, E. W., Sanghvi, J. C., Chen, L., Gutschow, M. V, and Covert, M. W.

(2010) A forward-genetic screen and dynamic analysis of lambda phage host-dependencies reveals an extensive interaction network and a new anti-viral strategy, PLoS Genet, 6, e1001017.

42. Bohm, K., Porwollik, S., Chu, W., Dover, J. A., Gilcrease, E. B., Casjens, S. R., McClelland,

M., and Parent, K. N. (2018) Genes affecting progression of bacteriophage P22 infection in Salmonella identified by transposon and single gene deletion screens, Mol. Microbiol., 108, 288-305.

43. Piya, D., Lessor, L., Koehler, B., Stonecipher, A., Cahill, J., and Gill, J. J. (2020) Genome-wide

screens reveal Escherichia coli genes required for growth of T1-like phage LL5 and V5-like phage LL12, Sci. Rep., 10, 1-9.

44. Rousset, F., Cui, L., Siouve, E., Becavin, C., Depardieu, F., and Bikard, D. (2018) Genome-wide

CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors, PLoS Genet., 14, e1007749.

45. Kortright, K. E., Chan, B. K., and Turner, P. E. (2020) High-throughput discovery of phage

receptors using transposon insertion sequencing of bacteria, Proc. Natl. Acad. Sci., 117, 1867018679.

46. Mutalik, V. K., Adler, B. A., Rishi, H. S., Piya, D., Zhong, C., Koskella, B., Calendar, R., Novichkov, P., Price, M. N., and Deutschbauer, A. M. (2020) High-throughput mapping of the phage resistance landscape in E. coli, bioRxiv.

47. Luria, S. E., and Delbrück, M. (1943) Mutations of bacteria from virus sensitivity to virus resistance, Genetics, 28, 491.

48. Bertozzi Silva, J., Storms, Z., and Sauvageau, D. (2016) Host receptors for bacteriophage adsorption, FEMSMicrobiol. Lett., 363.

49. Dowah, A. S. A., and Clokie, M. R. J. (2018) Review of the nature, diversity and structure of

bacteriophage receptor binding proteins that target Gram-positive bacteria, Biophys. Rev., 10,

50. Stone, E., Campbell, K., Grant, I., and McAuliffe, O. (2019) Understanding and exploiting phage-host interactions, Viruses, 11, 567.

51. Dragos, A., and Kovács, Á. T. (2017) The peculiar functions of the bacterial extracellular matrix, Trends Microbiol., 25, 257-266.

52. Hansen, M. F., Svenningsen, S. Lo, R0der, H. L., Middelboe, M., and Burm0lle, M. (2019) Big

Impact of the Tiny: Bacteriophage-Bacteria Interactions in Biofilms, Trends Microbiol., 27, 739-752.

53. Abedon, S. T. (2017) Phage "delay" towards enhancing bacterial escape from biofilms: a more

comprehensive way of viewing resistance to bacteriophages, AIMS Microbiol., 3, 186.

54. Fernández, L., Rodríguez, A., and García, P. (2018) Phage or foe: an insight into the impact of

viral predation on microbial communities, ISME J., 12, 1171-1179.

55. Henriksen, K., R0rbo, N., Rybtke, M. L., Martinet, M. G., Tolker-Nielsen, T., H0iby, N., Middelboe, M., and Ciofu, O. (2019) P. aeruginosa flow-cell biofilms are enhanced by repeated phage treatments but can be eradicated by phage-ciprofloxacin combination: —monitoring the phage-P. aeruginosa biofilms interactions, Pathog. Dis., 77, ftz011.

56. Hosseinidoust, Z., Tufenkji, N., and van de Ven, T. G. M. (2013) Formation of biofilms under

phage predation: considerations concerning a biofilm increase, Biofouling, 29, 457-468.

57. Bull, J. J., Christensen, K. A., Scott, C., Jack, B. R., Crandall, C. J., and Krone, S. M. (2018)

Phage-bacterial dynamics with spatial structure: self organization around phage sinks can promote increased cell densities, Antibiotics, 7, 8.

58. Tan, D., Dahl, A., and Middelboe, M. (2015) Vibriophages differentially influence biofilm formation by Vibrio anguillarum strains, Appl. Environ. Microbiol., 81, 4489-4497.

59. Vidakovic, L., Singh, P. K., Hartmann, R., Nadell, C. D., and Drescher, K. (2018) Dynamic

biofilm architecture confers individual and collective mechanisms of viral protection, Nat. Microbiol., 3, 26-31.

60. Scanlan, P. D., and Buckling, A. (2012) Co-evolution with lytic phage selects for the mucoid

phenotype of Pseudomonas fluorescens SBW25, ISME J.., 6, 1148-1158.

61. Wilkinson, B. J., and Holmes, K. M. (1979) Staphylococcus aureus cell surface: capsule as a

barrier to bacteriophage adsorption., Infect. Immun., 23, 549-552.

62. Kim, M. S., Kim, Y. D., Hong, S. S., Park, K., Ko, K. S., and Myung, H. (2015) Phage-encoded

colanic acid-degrading enzyme permits lytic phage infection of a capsule-forming resistant mutant Escherichia coli strain, Appl. Environ. Microbiol., 81, 900-909.

63. Reyes-Robles, T., Dillard, R. S., Cairns, L. S., Silva-Valenzuela, C. A., Housman, M., Ali, A.,

Wright, E. R., and Camilli, A. (2018) Vibrio cholerae outer membrane vesicles inhibit bacteriophage infection, J. Bacteriol., 200, 1-9.

64. Manning, A. J., and Kuehn, M. J. (2011) Contribution of bacterial outer membrane vesicles to

innate bacterial defense, BMC Microbiol., 11, 258.

65. Tzipilevich, E., Habusha, M., and Ben-Yehuda, S. (2017) Acquisition of Phage Sensitivity by

Bacteria through Exchange of Phage Receptors, Cell, 168, 186-199.e12.

66. Betts, A., Gifford, D. R., MacLean, R. C., and King, K. C. (2016) Parasite diversity drives rapid

host dynamics and evolution of resistance in a bacteria-phage system, Evolution (N. Y)., 70, 969-978.

67. Braun, V. (2009) FhuA (TonA), the career of a protein, J. Bacteriol., 191, 3431-3436.

68. Chatterjee, S., and Rothenberg, E. (2012) Interaction of bacteriophage l with its E. coli receptor,

LamB, Viruses, 4, 3162-3178.

69. Kulikov, E. E., Golomidova, A. K., Prokhorov, N. S., Ivanov, P. A., and Letarov, A. V (2019)

High-throughput LPS profiling as a tool for revealing of bacteriophage infection strategies, Sci. Rep., 9, 1-10.

70. Moller, A. G., Lindsay, J. A., and Read, T. D. (2019) Determinants of phage host range in

Staphylococcus species, Appl. Environ. Microbiol., 85.

71. Wright, R. C. T., Friman, V.-P., Smith, M. C. M., and Brockhurst, M. A. (2018) Cross-resistance

is modular in bacteria-phage interactions, PLoS Biol., 16, e2006057.

72. Christen, M., Beusch, C., Bösch, Y., Cerletti, D., Flores-Tinoco, C. E., Del Medico, L., Tschan,

F., and Christen, B. (2016) Quantitative selection analysis of bacteriophage ^CbK susceptibility in Caulobacter crescentus, J. Mol. Biol., 428, 419-430.

73. Bikard, D., and Marraffini, L. A. (2012) Innate and adaptive immunity in bacteria: mechanisms

of programmed genetic variation to fight bacteriophages., Curr. Opin. Immunol., 24, 15-20.

74. van Houte, S., Buckling, A., and Westra, E. R. (2016) Evolutionary Ecology of Prokaryotic

Immune Mechanisms, Microbiol. Mol. Biol. Rev., 80, 745-763.

75. Riede, I., and Eschbach, M. L. (1986) Evidence that TraT interacts with OmpA of Escherichia

coli., FEBSLett., 205, 241-5.

76. Harvey, H., Bondy-Denomy, J., Marquis, H., Sztanko, K. M., Davidson, A. R., and Burrows, L.

L. (2018) Pseudomonas aeruginosa defends against phages through type IV pilus glycosylation, Nat. Microbiol., 3, 47-52.

77. Kim, M., and Ryu, S. (2012) Spontaneous and transient defence against bacteriophage by

phase-variable glucosylation of O-antigen in S almonella enterica serovar T yphimurium, Mol. Microbiol., 86, 411-425.

78. Fallico, V., Ross, R. P., Fitzgerald, G. F., and McAuliffe, O. (2011) Genetic response to bacteriophage infection in Lactococcus lactis reveals a four-strand approach involving induction of membrane stress proteins, D-alanylation of the cell wall, maintenance of proton motive force, and energy conservation, J. Virol., 85, 12032-12042.

79. Power, P. M., Sweetman, W. A., Gallacher, N. J., Woodhall, M. R., Kumar, G. A., Moxon, E.

R., and Hood, D. W. (2009) Simple sequence repeats in Haemophilus influenzae, Infect. Genet. Evol, 9, 216-228.

80. Turkington, C. J. R., Morozov, A., Clokie, M. R. J., and Bayliss, C. D. (2019) Phage-resistant

phase-variant sub-populations mediate herd immunity against bacteriophage invasion of bacterial meta-populations, Front. Microbiol., 10, 1473.

81. Seed, K. D., Faruque, S. M., Mekalanos, J. J., Calderwood, S. B., Qadri, F., and Camilli, A.

(2012) Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1, PLoSPathog, 8, e1002917.

82. Komano, T. (1999) Shufflons: multiple inversion systems and integrons, Annu. Rev. Genet., 33,

171-191.

83. Brouwer, M. S. M., Jurburg, S. D., Harders, F., Kant, A., Mevius, D. J., Roberts, A. P., and

Bossers, A. (2019) The shufflon of IncI1 plasmids is rearranged constantly during different growth conditions, Plasmid, 102, 51-55.

84. Porter, N. T., Hryckowian, A. J., Merrill, B. D., Fuentes, J. J., Gardner, J. O., Glowacki, R. W.

P., Singh, S., Crawford, R. D., Snitkin, E. S., and Sonnenburg, J. L. (2020) Phase-variable capsular polysaccharides and lipoproteins modify bacteriophage susceptibility in Bacteroides thetaiotaomicron, Nat. Microbiol., 5, 1170-1181.

85. Quemin, E. R. J., and Quax, T. E. F. (2015) Archaeal viruses at the cell envelope: entry and

egress, Front. Microbiol., 6, 552.

86. Hartman, R., Eilers, B. J., Bollschweiler, D., Munson-McGee, J. H., Engelhardt, H., Young, M.

J., and Lawrence, C. M. (2019) The molecular mechanism of cellular attachment for an archaeal virus, Structure, 27, 1634-1646.

87. Deng, L., He, F., Bhoobalan-Chitty, Y., Martinez-Alvarez, L., Guo, Y., and Peng, X. (2014)

Unveiling cell surface and type IV secretion proteins responsible for archaeal rudivirus entry, J. Virol., 88, 10264-10268.

88. Asheshov, I. N., Strelitz, F., and Hall, E. A. (1949) Antibiotics active against bacterial viruses,

Br. J. Exp. Pathol., 30, 175.

89. Cohen, S. S. (1949) Growth requirements of bacterial viruses, Bacteriol. Rev., 13, 1.

90. Putnam, F. W. (1953) Bacteriophages: nature and reproduction. In Advances in Protein Chemistry. Elsevier, Vol. 8, pp. 175-284.

91. Neter, E. (1942) Effects of tyrothricin and actinomycin a upon bacteriophage and bacterial toxins and toxin-like substances, J Bacteriol, 43.

92. Jones, D. (1945) The effect of antibiotic substances upon bacteriophage, J. Bacteriol., 50, 341.

93. Knezevic, P., and Sabo, V. A. (2019) Combining Bacteriophages with Other Antibacterial Agents to Combat Bacteria. In Phage Therapy: A Practical Approach. Springer, pp. 257-293.

94. Morita, J., Tanaka, A., Komano, T., and Oki, T. (1979) Inactivation of Phage 4 X174 by Anthracycline Antibiotics, Aclacinomycin A, Doxorubicin and Daunorubicin, Agric. Biol. Chem., 43, 2629-2631.

95. Duan, Z. (2016) Identification and Characterization of Novel Anti-phage Compounds using a

High Throughput Approach,.

96. Zulauf, K. E., and Kirby, J. E. (2020) Discovery of small-molecule inhibitors of multidrug-

resistance plasmid maintenance using a high-throughput screening approach, Proc. Natl. Acad. Sci., 117, 29839-29850.

97. Rivera-Serrano, E. E., Gizzi, A. S., Arnold, J. J., Grove, T. L., Almo, S. C., and Cameron, C. E.

(2020) Viperin reveals its true function, Annu. Rev. Virol., 7, 421-446.

98. Gizzi, A. S., Grove, T. L., Arnold, J. J., Jose, J., Jangra, R. K., Garforth, S. J., Du, Q., Cahill, S.

M., Dulyaninova, N. G., and Love, J. D. (2018) A naturally occurring antiviral ribonucleotide encoded by the human genome, Nature, 558, 610-614.

99. Fenwick, M. K., Li, Y., Cresswell, P., Modis, Y., and Ealick, S. E. (2017) Structural studies of

viperin, an antiviral radical SAM enzyme, Proc. Natl. Acad. Sci., 114, 6806-6811.

100. Bernheim, A., Millman, A., Ofir, G., Meitav, G., Avraham, C., Shomar, H., Rosenberg, M. M., Tal, N., Melamed, S., and Amitai, G. (2020) Prokaryotic viperins produce diverse antiviral molecules, Nature.

101. Ng, W.-L., and Bassler, B. L. (2009) Bacterial quorum-sensing network architectures, Annu. Rev. Genet., 43, 197-222.

102. Moreau, P., Diggle, S. P., and Friman, V. (2017) Bacterial cell-to-cell signaling promotes the evolution of resistance to parasitic bacteriophages, Ecol. Evol., 7, 1936-1941.

103. Srivastava, D., and Waters, C. M. (2012) A tangled web: regulatory connections between quorum sensing and cyclic di-GMP, J. Bacteriol., 194, 4485-4493.

104. H0yland-Kroghsbo, N. M., Mœrkedahl, R. B., and Svenningsen, S. Lo (2013) A quorum-sensing-induced bacteriophage defense mechanism, MBio, 4.

105. Tan, D., Svenningsen, S. Lo, and Middelboe, M. (2015) Quorum sensing determines the choice of antiphage defense strategy in Vibrio anguillarum, MBio, 6, 1-10.

106. Castillo, D., R0rbo, N., J0rgensen, J., Lange, J., Tan, D., Kalatzis, P. G., Svenningsen, S. Lo, and Middelboe, M. (2019) Phage defense mechanisms and their genomic and phenotypic implications in the fish pathogen Vibrio anguillarum, FEMSMicrobiol. Ecol., 95.

107. Patterson, A. G., Jackson, S. A., Taylor, C., Evans, G. B., Salmond, G. P. C., Przybilski, R., Staals, R. H. J., and Fineran, P. C. (2016) Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR-Cas systems, Mol. Cell, 64, 1102-1108.

108. H0yland-Kroghsbo, N. M., Paczkowski, J., Mukherjee, S., Broniewski, J., Westra, E., Bondy-Denomy, J., and Bassler, B. L. (2017) Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system, Proc. Natl. Acad. Sci., 114, 131-135.

109. Silpe, J. E., and Bassler, B. L. (2019) A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision, Cell, 176, 268-280.

110. Erez, Z., Steinberger-Levy, I., Shamir, M., Doron, S., Stokar-Avihail, A., Peleg, Y., Melamed, S., Leavitt, A., Savidor, A., and Albeck, S. (2017) Communication between viruses guides lysis-lysogeny decisions, Nature, 541, 488-493.

111. Stokar-Avihail, A., Tal, N., Erez, Z., Lopatina, A., and Sorek, R. (2019) Widespread utilization of peptide communication in phages infecting soil and pathogenic bacteria, Cell Host Microbe, 25, 746-755.

112. Bernard, C., Li, Y., Lopez, P., and Bapteste, E. (2020) Beyond arbitrium: identification of a second communication system in Bacillus phage phi3T that may regulate host defense mechanisms, ISME J.

113. Grayson, P., and Molineux, I. J. (2007) Is phage DNA 'injected'into cells—biologists and physicists can agree, Curr. Opin. Microbiol., 10, 401-409.

114. Labrie, S. J., Samson, J. E., and Moineau, S. (2010) Bacteriophage resistance mechanisms, Nat. Rev. Microbiol., 8, 317-327.

115. Abedon, S. T. (2015) Bacteriophage secondary infection, Virol. Sin., 30, 3-10.

116. Bebeacua, C., Lorenzo Fajardo, J. C., Blangy, S., Spinelli, S., Bollmann, S., Neve, H., Cambillau, C., and Heller, K. J. (2013) X-ray structure of a superinfection exclusion lipoprotein from phage TP-J34 and identification of the tape measure protein as its target., Mol. Microbiol., 89, 152-65.

117. Ali, Y., Koberg, S., Heßner, S., Sun, X., Rabe, B., Back, A., Neve, H., and Heller, K. J. (2014) Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type, Front. Microbiol., 5, 98.

118. Cumby, N., Edwards, A. M., Davidson, A. R., and Maxwell, K. L. (2012) The bacteriophage HK97 gp15 moron element encodes a novel superinfection exclusion protein, J. Bacteriol., 194, 5012-5019.

119. Cumby, N., Reimer, K., Mengin-Lecreulx, D., Davidson, A. R., and Maxwell, K. L. (2015) The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK 97, Mol. Microbiol., 96, 437-447.

120. Lu, M. J., and Henning, U. (1994) Superinfection exclusion by T-even-type coliphages., Trends Microbiol., 2, 137-9.

121. Lu, M. J., and Henning, U. (1989) The immunity (imm) gene of Escherichia coli bacteriophage T4., J. Virol., 63, 3472-3478.

122. Ko, C., and Hatfull, G. F. (2018) Mycobacteriophage Fruitloop gp52 inactivates Wag31 (DivIVA) to prevent heterotypic superinfection, Mol. Microbiol., 108, 443-460.

123. Mahony, J., McGrath, S., Fitzgerald, G. F., and van Sinderen, D. (2008) Identification and characterization of lactococcal-prophage-carried superinfection exclusion genes., Appl. Environ. Microbiol., 74, 6206-15.

124. Hofer, B., Ruge, M., and Dreiseikelmann, B. (1995) The superinfection exclusion gene (sieA) of bacteriophage P22: identification and overexpression of the gene and localization of the gene product., J. Bacteriol., 177, 3080-3086.

125. Nesper, J., Blaß, J., Fountoulakis, M., and Reidl, J. (1999) Characterization of the Major Control Region ofVibrio cholerae Bacteriophage K139: Immunity, Exclusion, and Integration, J. Bacteriol., 181, 2902-2913.

126. Kliem, M., and Dreiseikelmann, B. (1989) The superimmunity gene sim of bacteriophage P1 causes superinfection exclusion, Virology, 171, 350-355.

127. Carballo-Ontiveros, M. A., Cazares, A., Vinuesa, P., Kameyama, L., and Guarneros, G. (2020) The concerted action of two B3-like prophage genes exclude superinfecting bacteriophages by blocking DNA entry into Pseudomonas aeruginosa., J. Virol.

128. Domingo-Calap, P., Mora-Quilis, L., and Sanjuan, R. (2020) Social bacteriophages, Microorganisms, 8, 1 -10.

129. Ragunathan, P. T., and Vanderpool, C. K. (2019) Cryptic-prophage-encoded small protein

DicB protects Escherichia coli from phage infection by inhibiting inner membrane receptor proteins, J. Bacteriol., 201.

130. Dillingham, M. S., and Kowalczykowski, S. C. (2008) RecBCD enzyme and the repair of double-stranded DNA breaks, Microbiol. Mol. Biol. Rev., 72, 642-671.

131. Cheng, K., Wilkinson, M., Chaban, Y., and Wigley, D. B. (2020) A conformational switch in response to Chi converts RecBCD from phage destruction to DNA repair, Nat. Struct. Mol. Biol., 27, 71-77.

132. Raleigh, E. A., and Brooks, J. E. (1998) Restriction Modification Systems: Where They Are and What They Do, Bact. Genomes, 10.1007/978-1-4615-6369-3_8.

133. Loenen, W. A. M., Dryden, D. T. F., Raleigh, E. A., Wilson, G. G., and Murray, N. E. (2014) Highlights of the DNA cutters: a short history of the restriction enzymes, Nucleic Acids Res., 42, 3-19.

134. Bertani, G., and Weigle, J. J. (1953) Host controlled variation in bacterial viruses, J. Bacteriol., 65, 113.

135. Luria, S. E. (1953) Host-induced modifications of viruses. In Cold Spring Harbor Symposia on Quantitative Biology. Cold Spring Harbor Laboratory Press, Vol. 18, pp. 237-244.

136. Berg, P., and Mertz, J. E. (2010) Personal reflections on the origins and emergence of recombinant DNA technology, Genetics, 184, 9-17.

137. Roberts, R. J., Belfort, M., Bestor, T., Bhagwat, A. S., Bickle, T. A., et al. (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes., Nucleic Acids Res., 31, 1805-12.

138. Bower, E. K. M., Cooper, L. P., Roberts, G. A., White, J. H., Luyten, Y., Morgan, R. D., and Dryden, D. T. F. (2018) A model for the evolution of prokaryotic DNA restriction-modification systems based upon the structural malleability of Type I restriction-modification enzymes, Nucleic Acids Res., 46, 9067-9080.

139. Pingoud, A., Fuxreiter, M., Pingoud, V., and Wende, W. (2005) Type II restriction endonucleases: structure and mechanism, Cell. Mol. life Sci., 62, 685.

140. Pingoud, A., Wilson, G. G., and Wende, W. (2014) Type II restriction endonucleases—a historical perspective and more, Nucleic Acids Res., 42, 7489-7527.

141. Nelson, M., Raschke, E., and McClelland, M. (1993) Effect of site-specific methylation on restriction endonucleases and DNA modification methyltransferases., Nucleic Acids Res., 21, 3139.

142. Morgan, R. D., Bhatia, T. K., Lovasco, L., and Davis, T. B. (2008) MmeI: a minimal Type II

restriction-modification system that only modifies one DNA strand for host protection, Nucleic Acids Res., 36, 6558-6570.

143. Janulaitis, A., Petrusyte, M., Maneliene, Z., Klimasauskas, S., and Butkus, V. (1992) Purification and properties of the Eco57l restriction endonuclease and methylas—prototypes of a new class (type IV), Nucleic Acids Res., 20, 6043-6049.

144. Sorokin, V., Severinov, K., and Gelfand, M. S. (2009) Systematic prediction of control proteins and their DNA binding sites, Nucleic Acids Res., 37, 441-451.

145. Klimuk, E., Bogdanova, E., Nagornykh, M., Rodic, A., Djordjevic, M., Medvedeva, S., Pavlova, O., and Severinov, K. (2018) Controller protein of restriction-modification system Kpn2I affects transcription of its gene by acting as a transcription elongation roadblock, Nucleic Acids Res., 46, 10810-10826.

146. Zakharova, M., Minakhin, L., Solonin, A., and Severinov, K. (2004) Regulation of RNA polymerase promoter selectivity by covalent modification of DNA, J. Mol. Biol., 335, 103-111.

147. Murray, N. E. (2000) Type I Restriction Systems: Sophisticated Molecular Machines (a Legacy of Bertani and Weigle), Microbiol. Mol. Biol. Rev., 64, 412-434.

148. Loenen, W. A. M., Dryden, D. T. F., Raleigh, E. A., and Wilson, G. G. (2014) Type I restriction enzymes and their relatives, Nucleic Acids Res., 42, 20-44.

149. Gao, Y., Cao, D., Zhu, J., Feng, H., Luo, X., Liu, S., Yan, X.-X., Zhang, X., and Gao, P. (2020) Structural insights into assembly, operation and inhibition of a type I restriction-modification system, Nat. Microbiol.

150. Neaves, K. J., Cooper, L. P., White, J. H., Carnally, S. M., Dryden, D. T. F., Edwardson, J. M., and Henderson, R. M. (2009) Atomic force microscopy of the EcoKI Type I DNA restriction enzyme bound to DNA shows enzyme dimerization and DNA looping, Nucleic Acids Res., 37, 2053-2063.

151. Bianco, P. R., and Hurley, E. M. (2005) The type I restriction endonuclease EcoR124I, couples ATP hydrolysis to bidirectional DNA translocation, J. Mol. Biol., 352, 837-859.

152. Janscak, P., MacWilliams, M. P., Sandmeier, U., Nagaraja, V., and Bickle, T. A. (1999) DNA translocation blockage, a general mechanism of cleavage site selection by type I restriction enzymes, EMBO J., 18, 2638-2647.

153. Studier, F. W., and Bandyopadhyay, P. K. (1988) Model for how type I restriction enzymes select cleavage sites in DNA, Proc. Natl. Acad. Sci., 85, 4677-4681.

154. Smith, R. M., Diffin, F. M., Savery, N. J., Josephsen, J., and Szczelkun, M. D. (2009) DNA cleavage and methylation specificity of the single polypeptide restriction-modification enzyme

LlaGI, Nucleic Acids Res., 37, 7206-7218.

155. Chand, M. K., Carle, V., Anuvind, K. G., and Saikrishnan, K. (2020) DNA-mediated coupling of ATPase, translocase and nuclease activities of a Type ISP restriction-modification enzyme, Nucleic Acids Res., 48, 2594-2603.

156. Makovets, S., Titheradge, A. J. B., and Murray, N. E. (1998) ClpX and ClpP are essential for the efficient acquisition of genes specifying type IA and IB restriction systems, Mol. Microbiol., 28, 25-35.

157. Simons, M., Diffin, F. M., and Szczelkun, M. D. (2014) ClpXP protease targets long-lived DNA translocation states of a helicase-like motor to cause restriction alleviation, Nucleic Acids Res., 42, 12082-12091.

158. Dybvig, K., Sitaraman, R., and French, C. T. (1998) A family of phase-variable restriction enzymes with differing specificities generated by high-frequency gene rearrangements, Proc. Natl. Acad. Sci., 95, 13923-13928.

159. Rao, D. N., Dryden, D. T. F., and Bheemanaik, S. (2014) Type III restriction-modification enzymes: a historical perspective., Nucleic Acids Res., 42, 45-55.

160. Butterer, A., Pernstich, C., Smith, R. M., Sobott, F., Szczelkun, M. D., and Toth, J. (2014) Type III restriction endonucleases are heterotrimeric: comprising one helicase-nuclease subunit and a dimeric methyltransferase that binds only one specific DNA, Nucleic Acids Res., 42, 5139-5150.

161. Gupta, Y. K., Chan, S.-H., Xu, S., and Aggarwal, A. K. (2015) Structural basis of asymmetric DNA methylation and ATP-triggered long-range diffusion by EcoP15I, Nat. Commun., 6, 110.

162. Janscak, P., Sandmeier, U., Szczelkun, M. D., and Bickle, T. A. (2001) Subunit assembly and mode of DNA cleavage of the type III restriction endonucleases EcoP1I and EcoP15I, J. Mol. Biol., 306, 417-431.

163. van Aelst, K., Toth, J., Ramanathan, S. P., Schwarz, F. W., Seidel, R., and Szczelkun, M. D. (2010) Type III restriction enzymes cleave DNA by long-range interaction between sites in both head-to-head and tail-to-tail inverted repeat, Proc. Natl. Acad. Sci., 107, 9123-9128.

164. Schwarz, F. W., Toth, J., van Aelst, K., Cui, G., Clausing, S., Szczelkun, M. D., and Seidel, R. (2013) The helicase-like domains of type III restriction enzymes trigger long-range diffusion along DNA, Science (80-.)., 340, 353-356.

165. Ahmad, I., Kulkarni, M., Gopinath, A., and Saikrishnan, K. (2018) Single-site DNA cleavage by Type III restriction endonuclease requires a site-bound enzyme and a trans-acting enzyme

that are ATPase-activated, Nucleic Acids Res., 46, 6229-6237.

166. Srikhanta, Y. N., Fox, K. L., and Jennings, M. P. (2010) The phasevarion: phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes, Nat. Rev. Microbiol., 8, 196-206.

167. Weigele, P., and Raleigh, E. A. (2016) Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses, Chem. Rev., 116, 12655-12687.

168. Tock, M. R., and Dryden, D. T. (2005) The biology of restriction and anti-restriction, Curr. Opin. Microbiol., 8, 466-472.

169. Loenen, W. A. M., and Raleigh, E. A. (2014) The other face of restriction: modification-dependent enzymes, Nucleic Acids Res., 42, 56-69.

170. Czapinska, H., Kowalska, M., Zagorskaite, E., Manakova, E., Slyvka, A., Xu, S., Siksnys, V., Sasnauskas, G., and Bochtler, M. (2018) Activity and structure of EcoKMcrA, Nucleic Acids Res., 46, 9829-9841.

171. Siwek, W., Czapinska, H., Bochtler, M., Bujnicki, J. M., and Skowronek, K. (2012) Crystal structure and mechanism of action of the N6-methyladenine-dependent type IIM restriction endonuclease R. DpnI, Nucleic Acids Res., 40, 7563-7572.

172. Liu, G., Ou, H.-Y., Wang, T., Li, L., Tan, H., Zhou, X., Rajakumar, K., Deng, Z., and He, X. (2010) Cleavage of phosphorothioated DNA and methylated DNA by the type IV restriction endonuclease ScoMcrA, PLoSGenet, 6, e1001253.

173. Sutherland, E., Coe, L., and Raleigh, E. A. (1992) McrBC: a multisubunit GTP-dependent restriction endonuclease, J. Mol. Biol., 225, 327-348.

174. Xu, S., Corvaglia, A. R., Chan, S.-H., Zheng, Y., and Linder, P. (2011) A type IV modification-dependent restriction enzyme SauUSI from Staphylococcus aureus subsp. aureus USA300, Nucleic Acids Res., 39, 5597-5610.

175. Vasu, K., and Nagaraja, V. (2013) Diverse Functions of Restriction-Modification Systems in Addition to Cellular Defense, Microbiol. Mol. Biol. Rev., 77, 53-72.

176. Murphy, J., Mahony, J., Ainsworth, S., Nauta, A., and van Sinderen, D. (2013) Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence, Appl. Environ. Microbiol., 79, 7547-7555.

177. Adhikari, S., and Curtis, P. D. (2016) DNA methyltransferases and epigenetic regulation in bacteria, FEMSMicrobiol. Rev., 40, 575-591.

178. Kobayashi, I. (2001) Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution, Nucleic Acids Res., 29, 3742-3756.

179. Ershova, A. S., Rusinov, I. S., Spirin, S. A., Karyagina, A. S., and Alexeevski, A. V. (2015) Role of restriction-modification systems in prokaryotic evolution and ecology, Biochem., 80, 1373-1386.

180. Seib, K. L., Srikhanta, Y. N., Atack, J. M., and Jennings, M. P. (2020) Epigenetic Regulation of Virulence and Immunoevasion by Phase-Variable Restriction-Modification Systems in Bacterial Pathogens, Annu. Rev. Microbiol., 74, 655-671.

181. Dimitriu, T., Szczelkun, M. D., and Westra, E. R. (2020) Evolutionary Ecology and Interplay of Prokaryotic Innate and Adaptive Immune Systems, Curr. Biol., 30, R1189-R1202.

182. Lomovskaia, N. D., Mkrtumian, N. M., and Gostimskaya, N. L. (1970) Isolation and characterization of the actinophage of Streptomyces coelicolor, Genetica, 6, 135.

183. Chinenova, T. A., Mkrtumian, N. M., and Lomovskaia, N. D. (1982) Genetic characteristics of a new phage resistance trait in Streptomyces coelicolor A3(2)., Genetika.

184. Chater, K. F. (1986) Streptomyces phages and their applications to Streptomyces genetics, Bact., 9, 119-158.

185. Bedford, D. J., Laity, C., and Buttner, M. J. (1995) Two genes involved in the phase-variable phi C31 resistance mechanism of Streptomyces coelicolor A3(2)., J. Bacteriol., 177, 4681-9.

186. Laity, C., Chater, K. F., Lewis, C. G., and Buttner, M. J. (1993) Genetic analysis of the phi C31-specific phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2)., Mol. Microbiol., 7, 329-36.

187. Sumby, P., and Smith, M. C. M. (2002) Genetics of the phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2)., Mol. Microbiol., 44, 489-500.

188. Hoskisson, P. A., Sumby, P., and Smith, M. C. M. (2015) The phage growth limitation system in Streptomyces coelicolor A(3)2 is a toxin/antitoxin system, comprising enzymes with DNA methyltransferase, protein kinase and ATPase activity, Virology, 477, 100-109.

189. Goldfarb, T., Sberro, H., Weinstock, E., Cohen, O., Doron, S., Charpak-Amikam, Y., Afik, S., Ofir, G., and Sorek, R. (2015) BREX is a novel phage resistance system widespread in microbial genomes, EMBO J., 34, 169-183.

190. Pu, T., Mei, Z., Zhang, W., Liang, W., Zhou, X., Liang, J., Deng, Z., and Wang, Z. (2020) An in vitro DNA phosphorothioate modification reaction, Mol. Microbiol., 113, 452-463.

191. Gordeeva, J., Morozova, N., Sierro, N., Isaev, A., Sinkunas, T., Tsvetkova, K., Matlashov, M., Truncaite, L., Morgan, R. D., Ivanov, N. V, Siksnys, V., Zeng, L., and Severinov, K. (2019) BREX system of Escherichia coli distinguishes self from non-self by methylation of a specific DNA site., Nucleic Acids Res., 47, 253-265.

192. LeGault, K., Hays, S. G., Angermeyer, A., McKitterick, A. C., Johura, F., Sultana, M., Alam, M., and Seed, K. D. (2020) Temporal Shifts in Antibiotic Resistance Elements Govern Virus-Pathogen Conflicts, bioRxiv.

193. Hui, W., Zhang, W., Kwok, L.-Y., Zhang, H., Kong, J., and Sun, T. (2019) Identification and functional analysis of the pglX gene of Lactobacillus casei Zhang bacteriophage exclusive (BREX) system, Appl. Environ. Microbiol.

194. Goldfarb, T., Sberro, H., Weinstock, E., Cohen, O., Doron, S., Charpak-Amikam, Y., Afik, S., Ofir, G., and Sorek, R. (2015) BREX is a novel phage resistance system widespread in microbial genomes, EMBO J., 34, 169-183.

195. Isaev, A., Drobiazko, A., Sierro, N., Gordeeva, J., Yosef, I., Qimron, U., Ivanov, N. V, and Severinov, K. (2020) Phage T7 DNA mimic protein Ocr is a potent inhibitor of BREX defence, Nucleic Acids Res., 48, 5397-5406.

196. Bandyopadhyay, P. K., Studier, F. W., Hamilton, D. L., and Yuan, R. (1985) Inhibition of the type I restriction-modification enzymes EcoB and EcoK by the gene 0.3 protein of bacteriophage T7, J. Mol. Biol., 182, 567-578.

197. Ofir, G., Melamed, S., Sberro, H., Mukamel, Z., Silverman, S., Yaakov, G., Doron, S., and Sorek, R. (2018) DISARM is a widespread bacterial defence system with broad anti-phage activities, Nat. Microbiol., 3, 90-98.

198. Mahankali, M., Alter, G., and Gomez-Cambronero, J. (2015) Mechanism of enzymatic reaction and protein-protein interactions of PLD from a 3D structural model, Cell. Signal., 27, 69-81.

199. Thiaville, J. J., Kellner, S. M., Yuan, Y., Hutinet, G., Thiaville, P. C., Jumpathong, W., Mohapatra, S., Brochier-Armanet, C., Letarov, A. V., Hillebrand, R., Malik, C. K., Rizzo, C. J., Dedon, P. C., and De Crécy-Lagard, V. (2016) Novel genomic island modifies DNA with 7-deazaguanine derivatives, Proc. Natl. Acad. Sci. U. S. A., 113, E1452-E1459.

200. Iyer, L. M., Zhang, D., Maxwell Burroughs, A., and Aravind, L. (2013) Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA, Nucleic Acids Res., 41, 7635-7655.

201. Hutinet, G., Kot, W., Cui, L., Hillebrand, R., Balamkundu, S., Gnanakalai, S., Neelakandan, R., Carstens, A. B., Lui, C. F., and Tremblay, D. (2019) 7-Deazaguanine modifications protect phage DNA from host restriction systems, Nat. Commun., 10, 1-12.

202. Kot, W., Olsen, N. S., Nielsen, T. K., Hutinet, G., de Crécy-Lagard, V., Cui, L., Dedon, P. C., Carstens, A. B., Moineau, S., and Swairjo, M. A. (2020) Detection of preQ0 deazaguanine modifications in bacteriophage CAjan DNA using Nanopore sequencing reveals same

hypermodification at two distinct DNA motifs, Nucleic Acids Res., 48, 10383-10396.

203. Wang, L., Jiang, S., Deng, Z., Dedon, P. C., and Chen, S. (2019) DNA phosphorothioate modification - A new multi-functional epigenetic system in bacteria, FEMS Microbiol. Rev., 43, 109-122.

204. Xiong, L., Liu, S., Chen, S., Xiao, Y., Zhu, B., Gao, Y., Zhang, Y., Chen, B., Luo, J., and Deng, Z. (2019) A new type of DNA phosphorothioation-based antiviral system in archaea, Nat. Commun., 10, 1-11.

205. Xiong, X., Wu, G., Wei, Y., Liu, L., Zhang, Y., et al. (2020) SspABCD-SspE is a phosphorothioation-sensing bacterial defence system with broad anti-phage activities, Nat. Microbiol., 10.1038/s41564-020-0700-6.

206. Zhou, X., He, X., Liang, J., Li, A., Xu, T., Kieser, T., Helmann, J. D., and Deng, Z. (2005) A novel DNA modification by sulphur, Mol. Microbiol., 57, 1428-1438.

207. Wang, L., Chen, S., Xu, T., Taghizadeh, K., Wishnok, J. S., Zhou, X., You, D., Deng, Z., and Dedon, P. C. (2007) Phosphorothioation of DNA in bacteria by dnd genes, Nat. Chem. Biol., 3, 709-710.

208. He, W., Huang, T., Tang, Y., Liu, Y., Wu, X., Chen, S., Chan, W., Wang, Y., Liu, X., and Chen, S. (2015) Regulation of DNA phosphorothioate modification in Salmonella enterica by DndB, Sci. R^ep., 5, 12368.

209. You, D., Wang, L., Yao, F., Zhou, X., and Deng, Z. (2007) A Novel DNA Modification by Sulfur: DndA Is a NifS-like Cysteine Desulfurase Capable of Assembling DndC as an Iron-Sulfur Cluster Protein in Streptomyces lividans, Biochemistry, 46, 6126-6133.

210. Yao, F., Xu, T., Zhou, X., Deng, Z., and You, D. (2009) Functional analysis of spfD gene involved in DNA phosphorothioation in Pseudomonas fluorescens Pf0-1, FEBS Lett., 583, 729-733.

211. Wu, Y., Tang, Y., Dong, X., Zheng, Y. Y., Haruehanroengra, P., Mao, S., Lin, Q., and Sheng, J. (2020) RNA Phosphorothioate Modification in Prokaryotes and Eukaryotes, ACS Chem. Biol.

212. Tong, T., Chen, S., Wang, L., Tang, Y., Ryu, J. Y., Jiang, S., Wu, X., Chen, C., Luo, J., and Deng, Z. (2018) Occurrence, evolution, and functions of DNA phosphorothioate epigenetics in bacteria, Proc. Natl. Acad. Sci., 115, E2988-E2996.

213. Xu, T., Yao, F., Zhou, X., Deng, Z., and You, D. (2010) A novel host-specific restriction system associated with DNA backbone S-modification in Salmonella., Nucleic Acids Res., 38, 7133-41.

214. Cao, B., Cheng, Q., Gu, C., Yao, F., DeMott, M. S., Zheng, X., Deng, Z., Dedon, P. C., and You, D. (2014) Pathological phenotypes and in vivo DNA cleavage by unrestrained activity of a phosphorothioate-based restriction system in S almonella, Mol. Microbiol., 93, 776-785.

215. Gan, R., Wu, X., He, W., Liu, Z., Wu, S., Chen, C., Chen, S., Xiang, Q., Deng, Z., and Liang, D. (2014) DNA phosphorothioate modifications influence the global transcriptional response and protect DNA from double-stranded breaks, Sci. Rep., 4, 6642.

216. Cao, B., Chen, C., DeMott, M. S., Cheng, Q., Clark, T. A., Xiong, X., Zheng, X., Butty, V., Levine, S. S., and Yuan, G. (2014) Genomic mapping of phosphorothioates reveals partial modification of short consensus sequences, Nat. Commun., 5, 1-13.

217. Li, J., Chen, Y., Zheng, T., Kong, L., Zhu, S., Sun, Y., Deng, Z., Yang, L., and You, D. (2019) Quantitative mapping of DNA phosphorothioatome reveals phosphorothioate heterogeneity of low modification frequency, PLoS Genet., 15, e1008026.

218. Wu, X., Cao, B., Aquino, P., Chiu, T.-P., Chen, C., Jiang, S., Deng, Z., Chen, S., Rohs, R., and Wang, L. (2020) Epigenetic competition reveals density-dependent regulation and target site plasticity of phosphorothioate epigenetics in bacteria, Proc. Natl. Acad. Sci.

219. Wang, S., Wan, M., Huang, R., Zhang, Y., Xie, Y., Wei, Y., Ahmad, M., Wu, D., Hong, Y., and Deng, Z. (2021) SspABCD-SspFGH Constitutes a New Type of DNA Phosphorothioate-Based Bacterial Defense System, MBio, 12, e00613-21.

220. Jansen, R., Embden, J. D. A. van, Gaastra, W., and Schouls, L. M. (2002) Identification of genes that are associated with DNA repeats in prokaryotes, Mol. Microbiol., 43, 1565-1575.

221. Mojica, F. J. M., and Garrett, R. A. (2013) Discovery and seminal developments in the CRISPR field. In CRISPR-Cas Systems. Springer, pp. 1-31.

222. Nussenzweig, P. M., and Marraffini, L. A. (2020) Molecular Mechanisms of CRISPR-Cas Immunity in Bacteria, Annu. Rev. Genet., 54.

223. Makarova, K. S., Wolf, Y. I., Iranzo, J., Shmakov, S. A., Alkhnbashi, O. S., et al. (2020) Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants, Nat. Rev. Microbiol., 18, 67-83.

224. Jackson, R. N., and Wiedenheft, B. (2015) A conserved structural chassis for mounting versatile CRISPR RNA-guided immune responses, Mol. Cell, 58, 722-728.

225. Liu, T. Y., and Doudna, J. A. (2020) Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation, J. Biol. Chem., 295, 14473-14487.

226. Reeks, J., Graham, S., Anderson, L., Liu, H., White, M. F., and Naismith, J. H. (2013) Structure of the archaeal Cascade subunit Csa5: relating the small subunits of CRISPR effector

complexes, RNA Biol., 10, 762-769.

227. Jore, M. M., Lundgren, M., van Duijn, E., Bultema, J. B., Westra, E. R., et al. (2011) Structural basis for CRISPR RNA-guided DNA recognition by Cascade., Nat. Struct. Mol. Biol., 18, 52936.

228. Wiedenheft, B., Lander, G. C., Zhou, K., Jore, M. M., Brouns, S. J. J., van der Oost, J., Doudna, J. A., and Nogales, E. (2011) Structures of the RNA-guided surveillance complex from a bacterial immune system, Nature, 477, 486-489.

229. Sinkunas, T., Gasiunas, G., Waghmare, S. P., Dickman, M. J., Barrangou, R., Horvath, P., and Siksnys, V. (2013) In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus, EMBO J.., 32, 385-394.

230. Benda, C., Ebert, J., Scheltema, R. A., Schiller, H. B., Baumgärtner, M., Bonneau, F., Mann, M., and Conti, E. (2014) Structural model of a CRISPR RNA-silencing complex reveals the RNA-target cleavage activity in Cmr4, Mol. Cell, 56, 43-54.

231. Rouillon, C., Zhou, M., Zhang, J., Politis, A., Beilsten-Edmands, V., Cannone, G., Graham, S., Robinson, C. V, Spagnolo, L., and White, M. F. (2013) Structure of the CRISPR interference complex CSM reveals key similarities with cascade, Mol. Cell, 52, 124-134.

232. Hale, C. R., Zhao, P., Olson, S., Duff, M. O., Graveley, B. R., Wells, L., Terns, R. M., and Terns, M. P. (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex, Cell, 139, 945-956.

233. Zhang, J., Kasciukovic, T., and White, M. F. (2012) The CRISPR associated protein Cas4 Is a 5' to 3' DNA exonuclease with an iron-sulfur cluster, PLoS One, 7, e47232.

234. Elmore, J. R., Sheppard, N. F., Ramia, N., Deighan, T., Li, H., Terns, R. M., and Terns, M. P. (2016) Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system, Genes Dev., 30, 447-459.

235. Estrella, M. A., Kuo, F.-T., and Bailey, S. (2016) RNA-activated DNA cleavage by the Type III-B CRISPR-Cas effector complex, Genes Dev., 30, 460-470.

236. Kazlauskiene, M., Tamulaitis, G., Kostiuk, G., Venclovas, C., and Siksnys, V. (2016) Spatiotemporal control of type III-A CRISPR-Cas immunity: coupling DNA degradation with the target RNA recognition, Mol. Cell, 62, 295-306.

237. Samai, P., Pyenson, N., Jiang, W., Goldberg, G. W., Hatoum-Aslan, A., and Marraffini, L. A. (2015) Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity, Cell, 161, 1164-1174.

238. Liu, T., Pan, S., Li, Y., Peng, N., and She, Q. (2017) Type III CRISPR-Cas system:

introduction and its application for genetic manipulations., Curr. Issues Mol. Biol., 26, 1-14.

239. Goldberg, G. W., Jiang, W., Bikard, D., and Marraffini, L. A. (2014) Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting, Nature, 514, 633-637.

240. Kazlauskiene, M., Kostiuk, G., Venclovas, C., Tamulaitis, G., and Siksnys, V. (2017) A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems, Science (80-. )., 357, 605609.

241. Niewoehner, O., Garcia-Doval, C., Rost0l, J. T., Berk, C., Schwede, F., Bigler, L., Hall, J., Marraffini, L. A., and Jinek, M. (2017) Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers, Nature, 548, 543-548.

242. You, L., Ma, J., Wang, J., Artamonova, D., Wang, M., Liu, L., Xiang, H., Severinov, K., Zhang, X., and Wang, Y. (2019) Structure studies of the CRISPR-Csm complex reveal mechanism of co-transcriptional interference, Cell, 176, 239-253.

243. Koonin, E. V, and Makarova, K. S. (2017) Mobile genetic elements and evolution of CRISPR-Cas systems: all the way there and back, Genome Biol. Evol., 9, 2812-2825.

244. Özcan, A., Pausch, P., Linden, A., Wulf, A., Schühle, K., Heider, J., Urlaub, H., Heimerl, T., Bange, G., and Randau, L. (2019) Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum, Nat. Microbiol., 4, 89-96.

245. Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., et al. (2015) An updated evolutionary classification of CRISPR-Cas systems, Nat. Rev. Microbiol., 13, 722736.

246. Koonin, E. V, and Makarova, K. S. (2019) Origins and evolution of CRISPR-Cas systems, Philos. Trans. R. Soc. B, 374, 20180087.

247. Pinilla-Redondo, R., Mayo-Muñoz, D., Russel, J., Garrett, R. A., Randau, L., S0rensen, S. J., and Shah, S. A. (2020) Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids, Nucleic Acids Res., 48, 2000-2012.

248. Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria, Proc. Natl. Acad. Sci., 109, E2579-E2586.

249. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science (80-.)., 337, 816-821.

250. Hsu, P. D., Lander, E. S., and Zhang, F. (2014) Development and applications of CRISPR-Cas9 for genome engineering, Cell, 157, 1262-1278.

251. Mali, P., Esvelt, K. M., and Church, G. M. (2013) Cas9 as a versatile tool for engineering biology, Nat. Methods, 10, 957-963.

252. Sander, J. D., and Joung, J. K. (2014) CRISPR-Cas systems for editing, regulating and targeting genomes, Nat. Biotechnol., 32, 347-355.

253. Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., Van Der Oost, J., and Regev, A. (2015) Cpfl is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system, Cell, 163, 759-771.

254. Yamano, T., Zetsche, B., Ishitani, R., Zhang, F., Nishimasu, H., and Nureki, O. (2017) Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1, Mol. Cell, 67, 633-645.

255. Chen, J. S., Ma, E., Harrington, L. B., Da Costa, M., Tian, X., Palefsky, J. M., and Doudna, J. A. (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity, Science (80-.)., 360, 436-439.

256. Harrington, L. B., Burstein, D., Chen, J. S., Paez-Espino, D., Ma, E., Witte, I. P., Cofsky, J. C., Kyrpides, N. C., Banfield, J. F., and Doudna, J. A. (2018) Programmed DNA destruction by miniature CRISPR-Cas14 enzymes, Science (80-. )., 362, 839-842.

257. Chylinski, K., Makarova, K. S., Charpentier, E., and Koonin, E. V (2014) Classification and evolution of type II CRISPR-Cas systems, Nucleic Acids Res., 42, 6091-6105.

258. Shmakov, S., Abudayyeh, O. O., Makarova, K. S., Wolf, Y. I., Gootenberg, J. S., Semenova, E., Minakhin, L., Joung, J., Konermann, S., Severinov, K., Zhang, F., and Koonin, E. V (2015) Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems., Mol. Cell, 60, 385-97.

259. Abudayyeh, O. O., Gootenberg, J. S., Konermann, S., Joung, J., Slaymaker, I. M., Cox, D. B. T., Shmakov, S., Makarova, K. S., Semenova, E., and Minakhin, L. (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector, Science (80-.)., 353.

260. Koonin, E. V, and Krupovic, M. (2015) Evolution of adaptive immunity from transposable elements combined with innate immune systems, Nat. Rev. Genet., 16, 184-192.

261. Koonin, E. V, Makarova, K. S., and Zhang, F. (2017) Diversity, classification and evolution of CRISPR-Cas systems, Curr. Opin. Microbiol., 37, 67-78.

262. Makarova, K. S., and Koonin, E. V (2013) Evolution and classification of CRISPR-Cas systems and cas protein families. In CRISPR-Cas systems. Springer, pp. 61-91.

263. Brouns, S. J. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J. H., Snijders, A. P. L., Dickman, M. J., Makarova, K. S., Koonin, E. V, and Van Der Oost, J. (2008) Small CRISPR

RNAs guide antiviral defense in prokaryotes, Science (80-. )., 321, 960-964.

264. Yosef, I., Goren, M. G., and Qimron, U. (2012) Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli, Nucleic Acids Res., 40, 5569-5576.

265. Datsenko, K. A., Pougach, K., Tikhonov, A., Wanner, B. L., Severinov, K., and Semenova, E. (2012) Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system, Nat. Commun., 3, 1-7.

266. Vorontsova, D., Datsenko, K. A., Medvedeva, S., Bondy-Denomy, J., Savitskaya, E. E., Pougach, K., Logacheva, M., Wiedenheft, B., Davidson, A. R., and Severinov, K. (2015) Foreign DNA acquisition by the IF CRISPR-Cas system requires all components of the interference machinery, Nucleic Acids Res., 43, 10848-10860.

267. Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., Eckert, M. R., Vogel, J., and Charpentier, E. (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III, Nature, 471, 602-607.

268. Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., and Siksnys, V. (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli, Nucleic Acids Res., 39, 9275-9282.

269. Hatoum-Aslan, A., Maniv, I., Samai, P., and Marraffini, L. A. (2014) Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system, J. Bacteriol., 196, 310317.

270. Babu, M., Beloglazova, N., Flick, R., Graham, C., Skarina, T., Nocek, B., Gagarinova, A., Pogoutse, O., Brown, G., and Binkowski, A. (2011) A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair, Mol. Microbiol., 79, 484-502.

271. Wiedenheft, B., Zhou, K., Jinek, M., Coyle, S. M., Ma, W., and Doudna, J. A. (2009) Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense, Structure, 17, 904-912.

272. Beloglazova, N., Lemak, S., Flick, R., and Yakunin, A. F. (2015) Analysis of nuclease activity of Cas1 proteins against complex DNA substrates. In CRISPR. Springer, pp. 251-264.

273. Nam, K. H., Ding, F., Haitjema, C., Huang, Q., DeLisa, M. P., and Ke, A. (2012) Double-stranded endonuclease activity in Bacillus halodurans clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas2 protein, J. Biol. Chem., 287, 35943-35952.

274. Dixit, B., Ghosh, K. K., Fernandes, G., Kumar, P., Gogoi, P., and Kumar, M. (2016) Dual nuclease activity of a Cas2 protein in CRISPR-Cas subtype I-B of Leptospira interrogans, Febs Lett., 590, 1002-1016.

275. Nunez, J. K., Kranzusch, P. J., Noeske, J., Wright, A. V, Davies, C. W., and Doudna, J. A. (2014) Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity, Nat. Struct. Mol. Biol., 21, 528.

276. Savitskaya, E. E., Musharova, O. S., and Severinov, K. V (2016) Diversity of CRISPR-Cas-mediated mechanisms of adaptive immunity in prokaryotes and their application in biotechnology, Biochem., 81, 653-661.

277. Mizuuchi, K., and Adzuma, K. (1991) Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one-step transesterification mechanism, Cell, 66, 129140.

278. Krupovic, M., Makarova, K. S., Forterre, P., Prangishvili, D., and Koonin, E. V (2014) Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity, BMC Biol., 12, 36.

279. Béguin, P., Charpin, N., Koonin, E. V, Forterre, P., and Krupovic, M. (2016) Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems, Nucleic Acids Res., 44, 10367-10376.

280. Rollie, C., Graham, S., Rouillon, C., and White, M. F. (2018) Prespacer processing and specific integration in a Type IA CRISPR system, Nucleic Acids Res., 46, 1007-1020.

281. Levy, A., Goren, M. G., Yosef, I., Auster, O., Manor, M., Amitai, G., Edgar, R., Qimron, U., and Sorek, R. (2015) CRISPR adaptation biases explain preference for acquisition of foreign DNA, Nature, 520, 505-510.

282. Weissman, J. L., Stoltzfus, A., Westra, E. R., and Johnson, P. L. F. (2020) Avoidance of Self during CRISPR Immunization, Trends Microbiol.

283. Dorman, C. J., and Bhriain, N. N. (2020) CRISPR-Cas, DNA Supercoiling, and Nucleoid-Associated Proteins, Trends Microbiol., 28, 19-27.

284. Kurilovich, E., Shiriaeva, A., Metlitskaya, A., Morozova, N., Ivancic-Bace, I., Severinov, K., and Savitskaya, E. (2019) Genome maintenance proteins modulate autoimmunity mediated primed adaptation by the Escherichia coli type IE CRISPR-cas system, Genes (Basel)., 10, 872.

285. Radovcic, M., Killelea, T., Savitskaya, E., Wettstein, L., Bolt, E. L., and Ivancic-Bace, I. (2018) CRISPR-Cas adaptation in Escherichia coli requires RecBCD helicase but not nuclease activity, is independent of homologous recombination, and is antagonized by 5' ssDNA exonucleases, Nucleic Acids Res., 46, 10173-10183.

286. Ivancic-Bace, I., Cass, S. D., Wearne, S. J., and Bolt, E. L. (2015) Different genome stability proteins underpin primed and naive adaptation in E. coli CRISPR-Cas immunity, Nucleic Acids

Res., 43, 10821-10830.

287. Deveau, H., Barrangou, R., Garneau, J. E., Labonté, J., Fremaux, C., Boyaval, P., Romero, D.

A., Horvath, P., and Moineau, S. (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus, J. Bacteriol., 190, 1390-1400.

288. Semenova, E., Jore, M. M., Datsenko, K. A., Semenova, A., Westra, E. R., Wanner, B., Van Der Oost, J., Brouns, S. J. J., and Severinov, K. (2011) Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence, Proc. Natl. Acad. Sci., 108, 10098-10103.

289. Fineran, P. C., Gerritzen, M. J. H., Suárez-Diez, M., Künne, T., Boekhorst, J., van Hijum, S. A. F. T., Staals, R. H. J., and Brouns, S. J. J. (2014) Degenerate target sites mediate rapid primed CRISPR adaptation, Proc. Natl. Acad. Sci., 111, E1629-E1638.

290. Westra, E. R., Semenova, E., Datsenko, K. A., Jackson, R. N., Wiedenheft, B., Severinov, K., and Brouns, S. J. J. (2013) Type IE CRISPR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition, PLoS Genet, 9, e1003742.

291. Richter, C., Dy, R. L., McKenzie, R. E., Watson, B. N. J., Taylor, C., Chang, J. T., McNeil, M.

B., Staals, R. H. J., and Fineran, P. C. (2014) Priming in the Type IF CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer, Nucleic Acids Res., 42, 8516-8526.

292. Garrett, S., Shiimori, M., Watts, E. A., Clark, L., Graveley, B. R., and Terns, M. P. (2020) Primed CRISPR DNA uptake in Pyrococcus furiosus, Nucleic Acids Res., 48, 6120-6135.

293. Li, M., Wang, R., and Xiang, H. (2014) Haloarcula hispanica CRISPR authenticates PAM of a target sequence to prime discriminative adaptation, Nucleic Acids Res., 42, 7226-7235.

294. Rao, C., Chin, D., and Ensminger, A. W. (2017) Priming in a permissive type IC CRISPR-Cas system reveals distinct dynamics of spacer acquisition and loss, RNA, 23, 1525-1538.

295. Almendros, C., Nobrega, F. L., McKenzie, R. E., and Brouns, S. J. J. (2019) Cas4-Cas1 fusions drive efficient PAM selection and control CRISPR adaptation, Nucleic Acids Res., 47, 5223-5230.

296. Nussenzweig, P. M., McGinn, J., and Marraffini, L. A. (2019) Cas9 cleavage of viral genomes primes the acquisition of new immunological memories, Cell Host Microbe, 26, 515-526.

297. Savitskaya, E., Semenova, E., Dedkov, V., Metlitskaya, A., and Severinov, K. (2013) High-throughput analysis of type IE CRISPR/Cas spacer acquisition in E. coli, RNA Biol., 10, 716725.

298. Xue, C., Seetharam, A. S., Musharova, O., Severinov, K., J. Brouns, S. J., Severin, A. J., and

Sashital, D. G. (2015) CRISPR interference and priming varies with individual spacer sequences, Nucleic Acids Res., 43, 10831-10847.

299. Künne, T., Kieper, S. N., Bannenberg, J. W., Vogel, A. I. M., Miellet, W. R., Klein, M., Depken, M., Suarez-Diez, M., and Brouns, S. J. J. (2016) Cas3-derived target DNA degradation fragments fuel primed CRISPR adaptation, Mol. Cell, 63, 852-864.

300. Dillard, K. E., Brown, M. W., Johnson, N. V, Xiao, Y., Dolan, A., Hernandez, E., Dahlhauser, S. D., Kim, Y., Myler, L. R., and Anslyn, E. V (2018) Assembly and translocation of a CRISPR-Cas primed acquisition complex, Cell, 175, 934-946.

301. Redding, S., Sternberg, S. H., Marshall, M., Gibb, B., Bhat, P., Guegler, C. K., Wiedenheft, B., Doudna, J. A., and Greene, E. C. (2015) Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system, Cell, 163, 854-865.

302. Sashital, D. G., Wiedenheft, B., and Doudna, J. A. (2012) Mechanism of foreign DNA selection in a bacterial adaptive immune system, Mol. Cell, 46, 606-615.

303. Semenova, E., Savitskaya, E., Musharova, O., Strotskaya, A., Vorontsova, D., Datsenko, K. A., Logacheva, M. D., and Severinov, K. (2016) Highly efficient primed spacer acquisition from targets destroyed by the Escherichia coli type IE CRISPR-Cas interfering complex, Proc. Natl. Acad. Sci., 113, 7626-7631.

304. Severinov, K., Ispolatov, I., and Semenova, E. (2016) The influence of copy-number of targeted extrachromosomal genetic elements on the outcome of CRISPR-Cas defense, Front. Mol. Biosci., 3, 45.

305. SHABALINA, S., and KOONIN, E. (2008) Origins and evolution of eukaryotic RNA interference, Trends Ecol. Evol., 23, 578-587.

306. Makarova, K. S., Wolf, Y. I., van der Oost, J., and Koonin, E. V (2009) Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements., Biol. Direct, 4, 29.

307. Willkomm, S., Makarova, K. S., and Grohmann, D. (2018) DNA silencing by prokaryotic Argonaute proteins adds a new layer of defense against invading nucleic acids, FEMS Microbiol. Rev., 42, 376-387.

308. Kuzmenko, A., Oguienko, A., Esyunina, D., Yudin, D., Petrova, M., Kudinova, A., Maslova, O., Ninova, M., Ryazansky, S., and Leach, D. (2020) DNA targeting and interference by a bacterial Argonaute nuclease, Nature.

309. Wang, Y., Juranek, S., Li, H., Sheng, G., Tuschl, T., and Patel, D. J. (2008) Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex.,

Nature, 456, 921-6.

310. Olovnikov, I., Chan, K., Sachidanandam, R., Newman, D. K., and Aravin, A. A. (2013) Bacterial argonaute samples the transcriptome to identify foreign DNA., Mol. Cell, 51, 594605.

311. Lisitskaya, L., Aravin, A. A., and Kulbachinskiy, A. (2018) DNA interference and beyond: structure and functions of prokaryotic Argonaute proteins, Nat. Commun., 9, 1-12.

312. Swarts, D. C., Hegge, J. W., Hinojo, I., Shiimori, M., Ellis, M. A., Dumrongkulraksa, J., Terns, R. M., Terns, M. P., and van der Oost, J. (2015) Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA., Nucleic Acids Res., 43, 5120-9.

313. Kuzmenko, A., Yudin, D., Ryazansky, S., Kulbachinskiy, A., and Aravin, A. A. (2019) Programmable DNA cleavage by Ago nucleases from mesophilic bacteria Clostridium butyricum and Limnothrix rosea, Nucleic Acids Res., 47, 5822-5836.

314. Yuan, Y.-R., Pei, Y., Ma, J.-B., Kuryavyi, V., Zhadina, M., Meister, G., Chen, H.-Y., Dauter, Z., Tuschl, T., and Patel, D. J. (2005) Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage, Mol. Cell, 19, 405-419.

315. Wang, Y., Juranek, S., Li, H., Sheng, G., Wardle, G. S., Tuschl, T., and Patel, D. J. (2009) Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes, Nature, 461, 754-761.

316. Kaya, E., Doxzen, K. W., Knoll, K. R., Wilson, R. C., Strutt, S. C., Kranzusch, P. J., and Doudna, J. A. (2016) A bacterial Argonaute with noncanonical guide RNA specificity, Proc. Natl. Acad. Sci., 113, 4057-4062.

317. Willkomm, S., Zander, A., Gust, A., and Grohmann, D. (2015) A prokaryotic twist on argonaute function, Life, 5, 538-553.

318. Swarts, D. C., Jore, M. M., Westra, E. R., Zhu, Y., Janssen, J. H., Snijders, A. P., Wang, Y., Patel, D. J., Berenguer, J., Brouns, S. J. J., and van der Oost, J. (2014) DNA-guided DNA interference by a prokaryotic Argonaute, Nature, 507, 258-261.

319. Ryazansky, S., Kulbachinskiy, A., and Aravin, A. A. (2018) The expanded universe of prokaryotic Argonaute proteins, MBio, 9.

320. Zander, A., Willkomm, S., Ofer, S., Van Wolferen, M., Egert, L., Buchmeier, S., Stöckl, S., Tinnefeld, P., Schneider, S., and Klingl, A. (2017) Guide-independent DNA cleavage by archaeal Argonaute from Methanocaldococcus jannaschii, Nat. Microbiol., 2, 1-10.

321. Swarts, D. C., Szczepaniak, M., Sheng, G., Chandradoss, S. D., Zhu, Y., Timmers, E. M.,

Zhang, Y., Zhao, H., Lou, J., and Wang, Y. (2017) Autonomous generation and loading of DNA guides by bacterial Argonaute, Mol. Cell, 65, 985-998.

322. Jolly, S. M., Gainetdinov, I., Jouravleva, K., Zhang, H., Strittmatter, L., Bailey, S. M., Hendricks, G. M., Dhabaria, A., Ueberheide, B., and Zamore, P. D. (2020) Thermus thermophilus Argonaute Functions in the Completion of DNA Replication, Cell, 182, 15451559.

323. Koonin, E. V. (2017) Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: Common ancestry vs convergence, Biol. Direct, 12, 1-14.

324. Chopin, M.-C., Chopin, A., and Bidnenko, E. (2005) Phage abortive infection in lactococci: variations on a theme., Curr. Opin. Microbiol., 8, 473-9.

325. Lopatina, A., Tal, N., and Sorek, R. (2020) Abortive infection: bacterial suicide as an antiviral immune strategy, Annu. Rev. Virol., 7, 371-384.

326. Fukuyo, M., Sasaki, A., and Kobayashi, I. (2012) Success of a suicidal defense strategy against infection in a structured habitat, Sci. Rep., 2, 238.

327. Barrangou, R., and Horvath, P. (2011) Lactic acid bacteria defenses against phages. In Stress Responses of Lactic Acid Bacteria. Springer, pp. 459-478.

328. Durmaz, E., and Klaenhammer, T. R. (2007) Abortive phage resistance mechanism AbiZ speeds the lysis clock to cause premature lysis of phage-infected Lactococcus lactis, J. Bacteriol., 189, 1417-1425.

329. Wang, C., Villion, M., Semper, C., Coros, C., Moineau, S., and Zimmerly, S. (2011) A reverse transcriptase-related protein mediates phage resistance and polymerizes untemplated DNA in vitro, Nucleic Acids Res., 39, 7620-7629.

330. Tangney, M., and Fitzgerald, G. F. (2002) Effectiveness of the lactococcal abortive infection systems AbiA, AbiE, AbiF and AbiG against P335 type phages, FEMS Microbiol. Lett., 210, 67-72.

331. Parreira, R., Ehrlich, S. D., and Chopin, M. (1996) Dramatic decay of phage transcripts in lactococcal cells carrying the abortive infection determinant AbiB, Mol. Microbiol., 19, 221230.

332. Samson, J. E., Spinelli, S., Cambillau, C., and Moineau, S. (2013) Structure and activity of AbiQ, a lactococcal endoribonuclease belonging to the type III toxin-antitoxin system, Mol. Microbiol., 87, 756-768.

333. Bidnenko, E., Ehrlich, D., and Chopin, M.-C. (1995) Phage operon involved in sensitivity to the Lactococcus lactis abortive infection mechanism AbiD1., J. Bacteriol., 177, 3824-3829.

334. Bouchard, J. D., Dion, E., Bissonnette, F., and Moineau, S. (2002) Characterization of the two-component abortive phage infection mechanism AbiT from Lactococcus lactis, J. Bacteriol., 184, 6325-6332.

335. Haaber, J., Samson, J. E., Labrie, S. J., Campanacci, V., Cambillau, C., Moineau, S., and Hammer, K. (2010) Lactococcal abortive infection protein AbiV interacts directly with the phage protein SaV and prevents translation of phage proteins, Appl. Environ. Microbiol., 76, 7085-7092.

336. Depardieu, F., Didier, J.-P., Bernheim, A., Sherlock, A., Molina, H., Duclos, B., and Bikard, D. (2016) A Eukaryotic-like Serine/Threonine Kinase Protects Staphylococci against Phages., Cell Host Microbe, 20, 471-481.

337. Snyder, L. (1995) Phage-exclusion enzymes: a bonanza of biochemical and cell biology reagents?, Mol. Microbiol., 15, 415-20.

338. Yu, Y. T., and Snyder, L. (1994) Translation elongation factor Tu cleaved by a phage-exclusion system., Proc. Natl. Acad. Sci., 91, 802-806.

339. Levitz, R., Chapman, D., Amitsur, M., Green, R., Snyder, L., and Kaufmann, G. (1990) The optional E. coli prr locus encodes a latent form of phage T4-induced anticodon nuclease., EMBO J., 9, 1383-1389.

340. Cheng, X., Wang, W., and Molineux, I. J. (2004) F exclusion of bacteriophage T7 occurs at the cell membrane., Virology, 326, 340-52.

341. Schmitt, C. K., Kemp, P., and Molineux, I. J. (1991) Genes 1.2 and 10 of bacteriophages T3 and T7 determine the permeability lesions observed in infected cells of Escherichia coli expressing the F plasmid gene pifA., J. Bacteriol., 173, 6507-6514.

342. Toothman, P., and Herskowitz, I. (1980) Rex-dependent exclusion of lambdoid phages II. Determinants of sensitivity to exclusion, Virology, 102, 147-160.

343. Parma, D. H., Snyder, M., Sobolevski, S., Nawroz, M., Brody, E., and Gold, L. (1992) The Rex system of bacteriophage lambda: tolerance and altruistic cell death., Genes Dev., 6, 497-510.

344. Yamaguchi, Y., Park, J.-H., and Inouye, M. (2011) Toxin-Antitoxin Systems in Bacteria and Archaea, Annu. Rev. Genet., 45, 61-79.

345. Page, R., and Peti, W. (2016) Toxin-antitoxin systems in bacterial growth arrest and persistence, Nat. Chem. Biol., 12, 208-214.

346. Makarova, K. S., Wolf, Y. I., and Koonin, E. V. (2013) Comparative genomics of defense systems in archaea and bacteria, Nucleic Acids Res., 41, 4360-4377.

347. Harms, A., Brodersen, D. E., Mitarai, N., and Gerdes, K. (2018) Toxins, targets, and triggers:

an overview of toxin-antitoxin biology, Mol. Cell, 70, 768-784.

348. Fineran, P. C., Blower, T. R., Foulds, I. J., Humphreys, D. P., Lilley, K. S., and Salmond, G. P. C. (2009) The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair, Proc. Natl. Acad. Sci., 106, 894-899.

349. Short, F. L., Akusobi, C., Broadhurst, W. R., and Salmond, G. P. C. (2018) The bacterial Type III toxin-antitoxin system, ToxIN, is a dynamic protein-RNA complex with stability-dependent antiviral abortive infection activity, Sci. Rep., 8, 1-10.

350. Koga, M., Otsuka, Y., Lemire, S., and Yonesaki, T. (2011) Escherichia coli rnlA and rnlB compose a novel toxin-antitoxin system, Genetics, 187, 123-130.

351. Otsuka, Y., and Yonesaki, T. (2012) Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins, Mol. Microbiol., 83, 669-681.

352. Dy, R. L., Przybilski, R., Semeijn, K., Salmond, G. P. C., and Fineran, P. C. (2014) A widespread bacteriophage abortive infection system functions through a Type IV toxin-antitoxin mechanism., Nucleic Acids Res., 42, 4590-605.

353. Cai, Y., Usher, B., Gutierrez, C., Tolcan, A., Mansour, M., Fineran, P. C., Condon, C., Neyrolles, O., Genevaux, P., and Blower, T. R. (2020) A nucleotidyltransferase toxin inhibits growth of Mycobacterium tuberculosis through inactivation of tRNA acceptor stems, Sci. Adv., 6, eabb6651.

354. Hampton, H. G., Smith, L. M., Ferguson, S., Meaden, S., Jackson, S. A., and Fineran, P. C. (2020) Functional genomics reveals the toxin-antitoxin repertoire and AbiE activity in Serratia, Microb. Genomics.

355. Hazan, R., and Engelberg-Kulka, H. (2004) Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1., Mol. Genet. Genomics, 272, 227-34.

356. Pecota, D. C., and Wood, T. K. (1996) Exclusion of T4 phage by the hok/sok killer locus from plasmid R1., J. Bacteriol.., 178, 2044-50.

357. Hayes, F. (2003) Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest, Science (80-.)., 301, 1496-1499.

358. Koonin, E. V., Makarova, K. S., and Wolf, Y. I. (2017) Evolutionary Genomics of Defense Systems in Archaea and Bacteria, Annu. Rev. Microbiol., 71, 233-261.

359. Song, S., and Wood, T. K. (2018) Post-segregational killing and phage inhibition are not mediated by cell death through toxin/antitoxin systems, Front. Microbiol., 9, 814.

360. Sberro, H., Fremin, B. J., Zlitni, S., Edfors, F., Greenfield, N., Snyder, M. P., Pavlopoulos, G. A., Kyrpides, N. C., and Bhatt, A. S. (2019) Large-Scale Analyses of Human Microbiomes

Reveal Thousands of Small, Novel Genes, Cell, 178, 1245-1259.e14.

361. Simon, A. J., Ellington, A. D., and Finkelstein, I. J. (2019) Retrons and their applications in genome engineering, Nucleic Acids Res., 47, 11007-11019.

362. Millman, A., Bernheim, A., Stokar-Avihail, A., Fedorenko, T., Voichek, M., Leavitt, A., Oppenheimer-Shaanan, Y., and Sorek, R. (2020) Bacterial retrons function in anti-phage defense, Cell.

363. Bobonis, J., Mitosch, K., Mateus, A., Kritikos, G., Elfenbein, J. R., Savitski, M. M., Andrews-Polymenis, H., and Typas, A. (2020) Phage proteins block and trigger retron toxin/antitoxin systems, BioRxiv.

364. Bobonis, J., Mateus, A., Pfalz, B., Garcia-Santamarina, S., Galardini, M., Kobayashi, C., Stein, F., Savitski, M. M., Elfenbein, J. R., and Andrews-Poymenis, H. (2020) Bacterial retrons encode tripartite toxin/antitoxin systems, BioRxiv.

365. Burroughs, A. M., Zhang, D., Schäffer, D. E., Iyer, L. M., and Aravind, L. (2015) Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling, Nucleic Acids Res., 43, 10633-10654.

366. Cohen, D., Melamed, S., Millman, A., Shulman, G., Oppenheimer-Shaanan, Y., Kacen, A., Doron, S., Amitai, G., and Sorek, R. (2019) Cyclic GMP-AMP signalling protects bacteria against viral infection, Nature, 574, 691-695.

367. Whiteley, A. T., Eaglesham, J. B., de Oliveira Mann, C. C., Morehouse, B. R., Lowey, B., Nieminen, E. A., Danilchanka, O., King, D. S., Lee, A. S. Y., and Mekalanos, J. J. (2019) Bacterial cGAS-like enzymes synthesize diverse nucleotide signals, Nature, 567, 194-199.

368. Millman, A., Melamed, S., Amitai, G., and Sorek, R. (2020) Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems, Nat. Microbiol.

369. Ablasser, A., and Chen, Z. J. (2019) cGAS in action: Expanding roles in immunity and inflammation, Science (80-. )., 363.

370. Davies, B. W., Bogard, R. W., Young, T. S., and Mekalanos, J. J. (2012) Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence, Cell, 149, 358-370.

371. Severin, G. B., Ramliden, M. S., Hawver, L. A., Wang, K., Pell, M. E., Kieninger, A.-K., Khataokar, A., O'Hara, B. J., Behrmann, L. V, and Neiditch, M. B. (2018) Direct activation of a phospholipase by cyclic GMP-AMP in El Tor Vibrio cholerae, Proc. Natl. Acad. Sci., 115, E6048-E6055.

372. Cohen, D., Melamed, S., Millman, A., Shulman, G., Oppenheimer-Shaanan, Y., Kacen, A.,

Doron, S., Amitai, G., and Sorek, R. (2019) Cyclic GMP-AMP signalling protects bacteria against viral infection, Nature, 574, 691-695.

373. Morehouse, B. R., Govande, A. A., Millman, A., Keszei, A. F. A., Lowey, B., Ofir, G., Shao, S., Sorek, R., and Kranzusch, P. J. (2020) STING cyclic dinucleotide sensing originated in bacteria, Nature, 586, 429-433.

374. Ye, Q., Lau, R. K., Mathews, I. T., Birkholz, E. A., Watrous, J. D., Azimi, C. S., Pogliano, J., Jain, M., and Corbett, K. D. (2020) HORMA Domain Proteins and a Trip13-like ATPase Regulate Bacterial cGAS-like Enzymes to Mediate Bacteriophage Immunity, Mol. Cell, 77, 709-722.e7.

375. Rosenberg, S. C., and Corbett, K. D. (2015) The multifaceted roles of the HORMA domain in cellular signaling, J. Cell Biol., 211, 745-755.

376. Lau, R. K., Ye, Q., Birkholz, E. A., Berg, K. R., Patel, L., Mathews, I. T., Watrous, J. D., Ego, K., Whiteley, A. T., Lowey, B., Mekalanos, J. J., Kranzusch, P. J., Jain, M., Pogliano, J., and Corbett, K. D. (2020) Structure and Mechanism of a Cyclic Trinucleotide-Activated Bacterial Endonuclease Mediating Bacteriophage Immunity, Mol. Cell, 77, 723-733.e6.

377. Lowey, B., Whiteley, A. T., Keszei, A. F. A., Morehouse, B. R., Mathews, I. T., Antine, S. P., Cabrera, V. J., Kashin, D., Niemann, P., and Jain, M. (2020) CBASS immunity uses CARF-related effectors to sense 3'-5'-and 2'-5'-linked cyclic oligonucleotide signals and protect bacteria from phage infection, Cell, 182, 38-49.

378. Casjens, S. (2003) Prophages and bacterial genomics: what have we learned so far?, Mol. Microbiol., 49, 277-300.

379. Canchaya, C., Proux, C., Fournous, G., Bruttin, A., and Brussow, H. (2003) Prophage genomics, Microbiol. Mol. Biol. Rev., 67, 238-276.

380. Bondy-Denomy, J., Qian, J., Westra, E. R., Buckling, A., Guttman, D. S., Davidson, A. R., and Maxwell, K. L. (2016) Prophages mediate defense against phage infection through diverse mechanisms, ISME J.., 10, 2854-2866.

381. Dedrick, R. M., Jacobs-Sera, D., Bustamante, C. A. G., Garlena, R. A., Mavrich, T. N., Pope, W. H., Reyes, J. C. C., Russell, D. A., Adair, T., and Alvey, R. (2017) Prophage-mediated defence against viral attack and viral counter-defence, Nat. Microbiol., 2, 1-13.

382. Roux, S., Krupovic, M., Daly, R. A., Borges, A. L., Nayfach, S., Schulz, F., Sharrar, A., Carnevali, P. B. M., Cheng, J.-F., and Ivanova, N. N. (2019) Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth's biomes, Nat. Microbiol., 4, 1895-1906.

383. Benler, S., and Koonin, E. V (2020) Phage lysis-lysogeny switches and programmed cell death:

Danse macabre, BioEssays.

384. Waldor, M. K., and Friedman, D. I. (2005) Phage regulatory circuits and virulence gene expression, Curr. Opin. Microbiol., 8, 459-465.

385. Juhala, R. J., Ford, M. E., Duda, R. L., Youlton, A., Hatfull, G. F., and Hendrix, R. W. (2000) Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages, J. Mol. Biol., 299, 27-51.

386. Taylor, V. L., Fitzpatrick, A. D., Islam, Z., and Maxwell, K. L. (2019) The diverse impacts of phage morons on bacterial fitness and virulence. In Advances in Virus Research. Elsevier, Vol. 103, pp. 1-31.

387. Newton, G. J., Daniels, C., Burrows, L. L., Kropinski, A. M., Clarke, A. J., and Lam, J. S. (2001) Three-component-mediated serotype conversion in Pseudomonas aeruginosa by bacteriophage D3, Mol. Microbiol., 39, 1237-1247.

388. Krylov, S. V, Kropinski, A. M., Shaburova, O. V, Miroshnikov, K. A., Chesnokova, E. N., and Krylov, V. N. (2013) New temperate Pseudomonas aeruginosa phage, phi297: specific features of genome structure, Russ. J. Genet., 49, 806-818.

389. Taylor, V. L., Hoage, J. F. J., Thrane, S. W., Huszczynski, S. M., Jelsbak, L., and Lam, J. S. (2016) A bacteriophage-acquired O-antigen polymerase (Wzyß) from P. aeruginosa serotype O16 performs a varied mechanism compared to its cognate Wzya, Front. Microbiol., 7, 393.

390. Lehane, A. M., Korres, H., and Verma, N. K. (2005) Bacteriophage-encoded glucosyltransferase GtrII of Shigella flexneri: membrane topology and identification of critical residues, Biochem. J., 389, 137-143.

391. Perry, L. L., SanMiguel, P., Minocha, U., Terekhov, A. I., Shroyer, M. L., Farris, L. A., Bright, N., Reuhs, B. L., and Applegate, B. M. (2009) Sequence analysis of Escherichia coli O157: H7 bacteriophage 0V10 and identification of a phage-encoded immunity protein that modifies the O157 antigen, FEMSMicrobiol. Lett., 292, 182-186.

392. Gentile, G. M., Wetzel, K. S., Dedrick, R. M., Montgomery, M. T., Garlena, R. A., JacobsSera, D., and Hatfull, G. F. (2019) More evidence of collusion: A new prophage-mediated viral defense system encoded by mycobacteriophage sbash, MBio, 10.

393. Montgomery, M. T., Guerrero Bustamante, C. A., Dedrick, R. M., Jacobs-Sera, D., and Hatfull, G. F. (2019) Yet more evidence of collusion: A new viral defense system encoded by gordonia phage carolann, MBio, 10, 1-18.

394. Jimmy, S., Saha, C. K., Kurata, T., Stavropoulos, C., Oliveira, S. R. A., Koh, A., Cepauskas, A., Takada, H., Rejman, D., and Tenson, T. (2020) A widespread toxin- antitoxin system

exploiting growth control via alarmone signaling, Proc. Natl. Acad. Sci., 117, 10500-10510.

395. Ferullo, D. J., and Lovett, S. T. (2008) The stringent response and cell cycle arrest in Escherichia coli, PLoS Genet, 4, e1000300.

396. Owen, S. V, Wenner, N., Dulberger, C. L., Rodwell, E. V, Bowers-Barnard, A., Quinones-Olvera, N., Rigden, D. J., Rubin, E. J., Garner, E. C., and Baym, M. (2020) Prophage-encoded phage defence proteins with cognate self-immunity, bioRxiv.

397. Rousset, F., Dowding, J., Bernheim, A., Rocha, E., and Bikard, D. (2021) Prophage-encoded hotspots of bacterial immune systems, bioRxiv.

398. Atanasiu, C., Su, T. J., Sturrock, S. S., and Dryden, D. T. F. (2002) Interaction of the ocr gene 0.3 protein of bacteriophage T7 with EcoKl restriction/modification enzyme, Nucleic Acids Res., 30, 3936-3944.

399. Penadés, J. R., and Christie, G. E. (2015) The phage-inducible chromosomal islands: a family of highly evolved molecular parasites, Annu. Rev. Virol., 2, 181-201.

400. Christie, G. E., and Dokland, T. (2012) Pirates of the Caudovirales, Virology, 434, 210-221.

401. Dokland, T. (2019) Molecular piracy: redirection of bacteriophage capsid assembly by mobile genetic elements, Viruses, 11, 1003.

402. Novick, R. P., Christie, G. E., and Penadés, J. R. (2010) The phage-related chromosomal islands of Gram-positive bacteria, Nat. Rev. Microbiol., 8, 541-551.

403. Fillol-Salom, A., Martínez-Rubio, R., Abdulrahman, R. F., Chen, J., Davies, R., and Penadés, J. R. (2018) Phage-inducible chromosomal islands are ubiquitous within the bacterial universe, ISME J., 12, 2114-2128.

404. Mitarai, N. (2020) How pirate phage interferes with helper phage: Comparison of the two distinct strategies, J. Theor. Biol., 486, 110096.

405. Novick, R. P. (2019) Pathogenicity Islands and Their Role in Staphylococcal Biology, Gram-Positive Pathog.

406. Tormo-Más, M. Á., Mir, I., Shrestha, A., Tallent, S. M., Campoy, S., Lasa, Í., Barbé, J., Novick, R. P., Christie, G. E., and Penadés, J. R. (2010) Moonlighting bacteriophage proteins derepress staphylococcal pathogenicity islands, Nature, 465, 779-782.

407. Mir-Sanchis, I., Martínez-Rubio, R., Martí, M., Chen, J., Lasa, Í., Novick, R. P., Tormo-Más, M. Á., and Penadés, J. R. (2012) Control of Staphylococcus aureus pathogenicity island excision, Mol. Microbiol., 85, 833-845.

408. Ram, G., Chen, J., Kumar, K., Ross, H. F., Ubeda, C., Damle, P. K., Lane, K. D., Penadés, J. R., Christie, G. E., and Novick, R. P. (2012) Staphylococcal pathogenicity island interference

with helper phage reproduction is a paradigm of molecular parasitism., Proc. Natl. Acad. Sci. U. S. A., 109, 16300-5.

409. Ram, G., Chen, J., Ross, H. F., and Novick, R. P. (2014) Precisely modulated pathogenicity island interference with late phage gene transcription, Proc. Natl. Acad. Sci., 111, 1453614541.

410. Martínez-Rubio, R., Quiles-Puchalt, N., Martí, M., Humphrey, S., Ram, G., Smyth, D., Chen, J., Novick, R. P., and Penadés, J. R. (2017) Phage-inducible islands in the Gram-positive cocci, ISME J., 11, 1029-1042.

411. Fillol-Salom, A., Bacarizo, J., Alqasmi, M., Ciges-Tomas, J. R., Martínez-Rubio, R., Roszak, A. W., Cogdell, R. J., Chen, J., Marina, A., and Penadés, J. R. (2019) Hijacking the hijackers: Escherichia coli pathogenicity islands redirect helper phage packaging for their own benefit, Mol. Cell, 75, 1020-1030.

412. McKitterick, A. C., and Seed, K. D. (2018) Anti-phage islands force their target phage to directly mediate island excision and spread, Nat. Commun., 9, 1-8.

413. McKitterick, A. C., Hays, S. G., Johura, F. T., Alam, M., and Seed, K. D. (2019) Viral Satellites Exploit Phage Proteins to Escape Degradation of the Bacterial Host Chromosome, Cell Host Microbe, 26, 504-514.e4.

414. Barth, Z. K., Silvas, T. V, Angermeyer, A., and Seed, K. D. (2020) Genome replication dynamics of a bacteriophage and its satellite reveal strategies for parasitism and viral restriction, Nucleic Acids Res., 48, 249-263.

415. Barth, Z. K., Netter, Z., Angermeyer, A., Bhardwaj, P., and Seed, K. D. (2020) A Family of Viral Satellites Manipulates Invading Virus Gene Expression and Can Affect Cholera Toxin Mobilization, Msystems, 5.

416. Hays, S. G., and Seed, K. D. (2020) Dominant Vibrio cholerae phage exhibits lysis inhibition sensitive to disruption by a defensive phage satellite, Elife, 9, e53200.

417. McKitterick, A. C., LeGault, K. N., Angermeyer, A., Alam, M., and Seed, K. D. (2019) Competition between mobile genetic elements drives optimization of a phage-encoded CRISPR-Cas system: insights from a natural arms race, Philos. Trans. R. Soc. B, 374, 20180089.

418. Burroughs, A. M., and Aravind, L. (2020) Identification of uncharacterized components of prokaryotic immune systems and their diverse eukaryotic reformulations, J. Bacteriol., 202.

419. Santiveri, M., Roa-Eguiara, A., Kuhne, C., Wadhwa, N., Berg, H. C., Erhardt, M., and Taylor, N. M. I. (2020) Structure and function of stator units of the bacterial flagellar motor, Cell, 183,

420. Ofir, G., Herbst, E., Baroz, M., Cohen, D., Millman, A., Doron, S., Tal, N., Malheiro, D. B. A., Malitsky, S., and Amitai, G. (2021) Antiviral activity of bacterial TIR domains via signaling molecules that trigger cell death, bioRxiv.

421. Ka, D., Oh, H., Park, E., Kim, J., and Bae, E. Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD+ degradation, Nat. Commun., 10.1038/s41467-020-16703 -w.

422. Bayless, A. M., and Nishimura, M. T. (2020) Enzymatic Functions for Toll/Interleukin-1 Receptor Domain Proteins in the Plant Immune System, Front. Genet., 11, 539.

423. Badrinarayanan, A., Le, T. B. K., and Laub, M. T. (2015) Bacterial chromosome organization and segregation, Annu. Rev. Cell Dev. Biol., 31, 171-199.

424. Panas, M. W., Jain, P., Yang, H., Mitra, S., Biswas, D., Wattam, A. R., Letvin, N. L., and Jacobs, W. R. (2014) Noncanonical SMC protein in Mycobacterium smegmatis restricts maintenance of Mycobacterium fortuitum plasmids, Proc. Natl. Acad. Sci. U. S. A., 111, 13264-13271.

425. Cheng, R., Huang, F., Wu, H., Lu, X., Yan, Y., Yu, B., Wang, X., and Zhu, B. (2021) A nucleotide-sensing endonuclease from the Gabija bacterial defense system, Nucleic Acids Res., 49, 5216-5229.

426. Tal, N., Millman, A., Stokar-Avihail, A., Fedorenko, T., Leavitt, A., Melamed, S., Yirmiya, E., Abraham, C., Amitai, G., and Sorek, R. (2021) Antiviral defense via nucleotide depletion in bacteria, bioRxiv.

427. Severin, G. B., Hsueh, B. Y., Elg, C. A., Dover, J. A., Rhoades, C. R., Wessel, A. J., Ridenhour, B. J., Top, E. M., Ravi, J., and Parent, K. N. (2021) A Broadly Conserved Deoxycytidine Deaminase Protects Bacteria from Phage Infection, bioRxiv.

428. Pace, H. C., and Brenner, C. (2001) The nitrilase superfamily: classification, structure and function, Genome Biol., 2, 1-9.

429. Mekhedov, S. L., Makarova, K. S., and Koonin, E. V (2017) The complex domain architecture of SAMD9 family proteins, predicted STAND-like NTPases, suggests new links to inflammation and apoptosis, Biol. Direct, 12, 13.

430. Forsberg, K. J., and Malik, H. S. (2018) Microbial genomics: the expanding universe of bacterial defense systems, Curr. Biol., 28, R361-R364.

431. Van, V., and Van Valen, L. (1973) A new evolutionary law.,.

432. Stern, A., and Sorek, R. (2011) The phage-host arms race: shaping the evolution of microbes.,

Bioessays, 33, 43-51.

433. Paterson, S., Vogwill, T., Buckling, A., Benmayor, R., Spiers, A. J., Thomson, N. R., Quail, M., Smith, F., Walker, D., and Libberton, B. (2010) Antagonistic coevolution accelerates molecular evolution, Nature, 464, 275-278.

434. Ignacio-Espinoza, J. C., Ahlgren, N. A., and Fuhrman, J. A. (2020) Long-term stability and Red Queen-like strain dynamics in marine viruses, Nat. Microbiol., 5, 265-271.

435. Furuta, Y., Kawai, M., Uchiyama, I., and Kobayashi, I. (2011) Domain movement within a gene: a novel evolutionary mechanism for protein diversification, PLoS One, 6, e18819.

436. Dupuis, M.-È., Villion, M., Magadân, A. H., and Moineau, S. (2013) CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance, Nat. Commun., 4, 1-7.

437. Hynes, A. P., Villion, M., and Moineau, S. (2014) Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages, Nat. Commun., 5, 1-6.

438. Bernheim, A., and Sorek, R. (2020) The pan-immune system of bacteria: antiviral defence as a community resource, Nat. Rev. Microbiol., 18, 113-119.

439. Al-Shayeb, B., Sachdeva, R., Chen, L.-X., Ward, F., Munk, P., Devoto, A., Castelle, C. J., Olm, M. R., Bouma-Gregson, K., and Amano, Y. (2020) Clades of huge phages from across Earth's ecosystems, Nature, 578, 425-431.

440. Lomovskaya, N., Mkrtumian, N. M., and Gostimskaya, N. (1970) Isolation and characteristics of Streptomyces coelicolor actinophage, Genetika, 6, 135--137.

441. Lomovskaya, N. D., Mkrtumian, N. M., Gostimskaya, N. L., and Danilenko, V. N. (1972) Characterization of temperate actinophage phi C31 isolated from Streptomyces coelicolor A3(2)., J. Virol., 9, 258-62.

442. Boltner, D., MacMahon, C., Pembroke, J. T., Strike, P., and Osborn, A. M. (2002) R391: a conjugative integrating mosaic comprised of phage, plasmid, and transposon elements., J. Bacteriol., 184, 5158-69.

443. Levine, M. M., Bergquist, E. J., Nalin, D. R., Waterman, D. H., Hornick, R. B., Young, C. R., and Sotman, S. (1978) Escherichia coli strains that cause diarrhoea but do not produce heat-labile or heat-stable enterotoxins and are non-invasive., Lancet (London, England), 1, 1119-22.

444. Kiljunen, S., Hakala, K., Pinta, E., Huttunen, S., Pluta, P., Gador, A., Lonnberg, H., and Skurnik, M. (2005) Yersiniophage ^R1-37 is a tailed bacteriophage having a 270 kb DNA genome with thymidine replaced by deoxyuridine, Microbiology, 151, 4093-4102.

445. Strotskaya, A., Savitskaya, E., Metlitskaya, A., Morozova, N., Datsenko, K. A., Semenova, E.,

and Severinov, K. (2017) The action of Escherichia coli CRISPR-Cas system on lytic bacteriophages with different lifestyles and development strategies, Nucleic Acids Res., 45, 1946-1957.

446. Guzman, L.-M., Belin, D., Carson, M. J., and Beckwith, J. O. N. (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter, J. Bacteriol., 177, 4121-4130.

447. Semenova, E., Minakhin, L., Bogdanova, E., Nagornykh, M., Vasilov, A., Heyduk, T., Solonin, A., Zakharova, M., and Severinov, K. (2005) Transcription regulation of the EcoRV restriction-modification system, Nucleic Acids Res., 33, 6942-6951.

448. Melkina, O. E., and Zavilgelsky, G. B. (2021) N-Domain of ArdA Antirestriction Proteins Inhibits the Repression Activity of the Histone-Like H-NS Protein, Mol. Biol. (Mosk)., 55, 491-499.

449. Rahman, M. S., Aktar, U., Jani, M. R., and Shatabda, S. (2019) iPro70-FMWin: identifying Sigma70 promoters using multiple windowing and minimal features, Mol. Genet. Genomics, 294, 69-84.

450. Цветкова К.М. (2015) Изучение активности антивирусной системы BREX Escherichia coli, Дипломная работа, МГУ.

451. Meisel, A., Bickle, T. A., Kriiger, D. H., and Schroeder, C. (1992) Type III restriction enzymes need two inversely oriented recognition sites for DNA cleavage, Nature, 355, 467-469.

452. Morgan, R. D., Dwinell, E. A., Bhatia, T. K., Lang, E. M., and Luyten, Y. A. (2009) The MmeI family: type II restriction-modification enzymes that employ single-strand modification for host protection, Nucleic Acids Res., 37, 5208-5221.

453. Chand, M. K., Nirwan, N., Diffin, F. M., Van Aelst, K., Kulkarni, M., Pernstich, C., Szczelkun, M. D., and Saikrishnan, K. (2015) Translocation-coupled DNA cleavage by the Type ISP restriction-modification enzymes, Nat. Chem. Biol., 11, 870.

454. Callahan, S. J., Luyten, Y. A., Gupta, Y. K., Wilson, G. G., Roberts, R. J., Morgan, R. D., and Aggarwal, A. K. (2016) Structure of type IIL restriction-modification enzyme MmeI in complex with DNA has implications for engineering new specificities, PLoS Biol., 14, e1002442.

455. Shen, B. W., Quispe, J. D., Luyten, Y., McGough, B. E., Morgan, R. D., and Stoddard, B. L. (2021) Coordination of phage genome degradation versus host genome protection by a bifunctional restriction-modification enzyme visualized by CryoEM, bioRxiv.

456. Kulkarni, M., Nirwan, N., van Aelst, K., Szczelkun, M. D., and Saikrishnan, K. (2016)

Structural insights into DNA sequence recognition by Type ISP restriction-modification enzymes, Nucleic Acids Res., 44, 4396-4408.

457. Meselson, M., and Yuan, R. (1968) DNA restriction enzyme from E. coli, Nature, 217, 11101114.

458. Nakonieczna, J., Zmijewski, J. W., Banecki, B., and Podhajska, A. J. (2007) Binding of MmeI Restriction-modification Enzyme to its Specific Recognition Sequence is Stimulated by S-adenosyl-l-methionine, Mol. Biotechnol., 37, 127-135.

459. Bist, P., Sistla, S., Krishnamurthy, V., Acharya, A., Chandrakala, B., and Rao, D. N. (2001) S-adenosyl-L-methionine is required for DNA cleavage by type III restriction enzymes, J. Mol. Biol., 310, 93-109.

460. Drobiazko, A. (2019) The Study of BREX System Proteins Functions, Master Thesis, Sk.

461. Hanson, P. I., and Whiteheart, S. W. (2005) AAA+ proteins: have engine, will work, Nat. Rev. Mol. cell Biol., 6, 519-529.

462. Singleton, M. R., Morales, R., Grainge, I., Cook, N., Isupov, M. N., and Wigley, D. B. (2004) Conformational changes induced by nucleotide binding in Cdc6/ORC from Aeropyrum pernix, J. Mol. Biol., 343, 547-557.

463. Dueber, E. L. C., Corn, J. E., Bell, S. D., and Berger, J. M. (2007) Replication origin recognition and deformation by a heterodimeric archaeal Orc1 complex, Science (80-. )., 317, 1210-1213.

464. Tamulaitiene, G., Jakubauskas, A., Urbanke, C., Huber, R., Grazulis, S., and Siksnys, V. (2006) The crystal structure of the rare-cutting restriction enzyme SdaI reveals unexpected domain architecture, Structure, 14, 1389-1400.

465. Galperin, M. Y., and Jedrzejas, M. J. (2001) Conserved core structure and active site residues in alkaline phosphatase superfamily enzymes, Proteins Struct. Funct. Bioinforma., 45, 318324.

466. Pabis, A., and Kamerlin, S. C. L. (2016) Promiscuity and electrostatic flexibility in the alkaline phosphatase superfamily, Curr. Opin. Struct. Biol., 37, 14-21.

467. Sharma, U., Pal, D., and Prasad, R. (2014) Alkaline phosphatase: an overview, Indian J. Clin. Biochem., 29, 269-278.

468. Agarwal, V., Borisova, S. A., Metcalf, W. W., Van Der Donk, W. A., and Nair, S. K. (2011) Structural and mechanistic insights into CP bond hydrolysis by phosphonoacetate hydrolase, Chem. Biol., 18, 1230-1240.

469. Tsilibaris, V., Maenhaut-Michel, G., and Van Melderen, L. (2006) Biological roles of the Lon

ATP-dependent protease, Res. Microbiol., 157, 701-713.

470. Botos, I., Lountos, G. T., Wu, W., Cherry, S., Ghirlando, R., Kudzhaev, A. M., Rotanova, T. V, de Val, N., Tropea, J. E., and Gustchina, A. (2019) Cryo-EM structure of substrate-free E. coli Lon protease provides insights into the dynamics of Lon machinery, Curr. Res. Struct. Biol., 1, 13-20.

471. Botos, I., Melnikov, E. E., Cherry, S., Tropea, J. E., Khalatova, A. G., Rasulova, F., Dauter, Z., Maurizi, M. R., Rotanova, T. V, and Wlodawer, A. (2004) The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site, J. Biol. Chem., 279, 8140-8148.

472. Starkova, N. N., Koroleva, E. P., Rumsh, L. D., Ginodman, L. M., and Rotanova, T. V (1998) Mutations in the proteolytic domain of Escherichia coli protease Lon impair the ATPase activity of the enzyme, FEBSLett., 422, 218-220.

473. Kinch, L. N., Ginalski, K., Rychlewski, L., and Grishin, N. V (2005) Identification of novel restriction endonuclease-like fold families among hypothetical proteins, Nucleic Acids Res., 33, 3598-3605.

474. Bujnicki, J. M. (2001) Understanding the evolution of restriction-modification systems: Clues from sequence and structure comparisons., ActaBiochim. Pol., 48, 935-967.

475. Schmidt, T. G., and Skerra, A. (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins, Nat. Protoc., 2, 1528-1535.

476. Schmidt, T. G. M., Batz, L., Bonet, L., Carl, U., Holzapfel, G., Kiem, K., Matulewicz, K., Niermeier, D., Schuchardt, I., and Stanar, K. (2013) Development of the Twin-Strep-tag® and its application for purification of recombinant proteins from cell culture supernatants, Protein Expr. Purif., 92, 54-61.

477. Weigele, P., and Raleigh, E. A. (2016) Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses, Chem. Rev., 116, 12655-12687.

478. Samson, J. E., Magadân, A. H., Sabri, M., and Moineau, S. (2013) Revenge of the phages: defeating bacterial defences, Nat. Rev. Microbiol., 11, 675-687.

479. Markine-Goriaynoff, N., Gillet, L., Van Etten, J. L., Korres, H., Verma, N., and Vanderplasschen, A. (2004) Glycosyltransferases encoded by viruses, J. Gen. Virol., 85, 27412754.

480. Flodman, K., Tsai, R., Xu, M. Y., Corrêa, I. R., Copelas, A., Lee, Y. J., Xu, M. Q., Weigele, P., and Xu, S. Y. (2019) Type II restriction of bacteriophage DNA with 5hmdU-derived base modifications, Front. Microbiol., 10, 1-13.

481. Karambelkar, S., Udupa, S., Gowthami, V. N., Ramachandra, S. G., Swapna, G., and Nagaraja, V. (2020) Emergence of a novel immune-evasion strategy from an ancestral protein fold in bacteriophage Mu, Nucleic Acids Res., 48, 5294-5305.

482. Tsai, R., Corrêa, I. R., Xu, M. Y., and Xu, S. (2017) Restriction and modification of deoxyarchaeosine (dG+)-containing phage 9 g DNA, Sci. Rep., 7, 1-13.

483. Davison, J., and Brunel, F. (1979) Restriction insensitivity in bacteriophage T5 I. Genetic characterization of mutants sensitive to EcoRI restriction., J. Virol., 29, 11.

484. Davison, J., and Brunel, F. (1979) Restriction insensitivity in bacteriophage T5. II. Lack of EcoRI modification in T5+ and T5ris mutants., J. Virol., 29, 17.

485. Artem, I. Study of BREX bacteriophage resistance system from Escherichia coli, Master Thesis, Sk.

486. Hyman, P., and Abedon, S. T. (2010) Bacteriophage host range and bacterial resistance., Adv. Appl. Microbiol., 70, 217-48.

487. Shao, Q., Hawkins, A., and Zeng, L. (2015) Phage DNA dynamics in cells with different fates, Biophys. J., 108, 2048-2060.

488. Center, M. S., Studier, F. W., and Richardson, C. C. (1970) The structural gene for a T7 endonuclease essential for phage DNA synthesis, Proc. Natl. Acad. Sci., 65, 242-248.

489. Shen, B. W., Quispe, J. D., Luyten, Y., McGough, B. E., Morgan, R. D., and Stoddard, B. L. (2021) Coordination of phage genome degradation versus host genome protection by a bifunctional restriction-modification enzyme visualized by CryoEM, Structure, 29, 521-530.e5.

490. Smeal, S. W., Schmitt, M. A., Pereira, R. R., Prasad, A., and Fisk, J. D. (2017) Simulation of the M13 life cycle I: Assembly of a genetically-structured deterministic chemical kinetic simulation, Virology, 500, 259-274.

491. Smeal, S. W., Schmitt, M. A., Pereira, R. R., Prasad, A., and Fisk, J. D. (2017) Simulation of the M13 life cycle II: Investigation of the control mechanisms of M13 infection and establishment of the carrier state, Virology, 500, 275-284.

492. Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors, Gene, 33, 103-119.

493. Simon, M. N., and Studier, F. W. (1973) Physical mapping of the early region of bacteriophage T7 DNA, J. Mol. Biol., 79, 249-265.

494. Cunningham, C. W., Jeng, K., Husti, J., Badgett, M., Molineux, I. J., Hillis, D. M., and Bull, J. J. (1997) Parallel molecular evolution of deletions and nonsense mutations in bacteriophage T7., Mol. Biol. Evol, 14, 113-116.

495. Bull, J. J., Molineux, I. J., and Wilke, C. O. (2012) Slow fitness recovery in a codon-modified viral genome, Mol. Biol. Evol., 29, 2997-3004.

496. Lovett, S. T. (2004) Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences, Mol. Microbiol., 52, 1243-1253.

497. Wu, X., Zhu, J., Tao, P., and Rao, V. B. (2021) Bacteriophage T4 Escapes CRISPR Attack by Minihomology Recombination and Repair, MBio, 10.1128/mbio.01361-21.

498. Studier, F. W. (1975) Gene 0.3 of bacteriophage T7 acts to overcome the DNA restriction system of the host, J. Mol. Biol., 94, 283-295.

499. Walkinshaw, M. D., Taylor, P., Sturrock, S. S., Atanasiu, C., Berge, T., Henderson, R. M., Edwardson, J. M., and Dryden, D. T. F. (2002) Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA, Mol. Cell, 9, 187-194.

500. Michalewicz, J., and Nicholson, A. W. (1992) Molecular cloning and expression of the bacteriophage T7 0.7 Protein kinase) gene, Virology, 186, 452-462.

501. Severinova, E., and Severinov, K. (2006) Localization of the Escherichia coli RNA polymerase P' subunit residue phosphorylated by bacteriophage T7 kinase Gp0. 7, J. Bacteriol., 188, 34703476.

502. Roberts, G. A., Stephanou, A. S., Kanwar, N., Dawson, A., Cooper, L. P., Chen, K., Nutley, M., Cooper, A., Blakely, G. W., and Dryden, D. T. F. (2012) Exploring the DNA mimicry of the Ocr protein of phage T7, Nucleic Acids Res., 40, 8129-8143.

503. Zavilgelsky, G. B., and Kotova, V. Y. (2014) Antirestriction activity of the monomeric and dimeric forms of T7 Ocr,Mol. Biol., 48, 150-157.

504. Zavilgelsky, G. B., Kotova, V. Y., and Rastorguev, S. M. (2008) Comparative analysis of antirestriction activities of ArdA (ColIb-P9) and Ocr (T7) proteins, Biochem., 73, 906-911.

505. Serfiotis-Mitsa, D., Herbert, A. P., Roberts, G. A., Soares, D. C., White, J. H., Blakely, G. W., Uhrin, D., and Dryden, D. T. F. (2010) The structure of the KlcA and ArdB proteins reveals a novel fold and antirestriction activity against Type I DNA restriction systems in vivo but not in vitro, Nucleic Acids Res., 38, 1723-1737.

506. Melkina, O. E., Goryanin, I. I., and Zavilgelsky, G. B. (2016) The DNA-mimic antirestriction proteins ArdA ColIB-P9, Arn T4, and Ocr T7 as activators of H-NS-dependent gene transcription,Microbiol. Res., 192, 283-291.

507. Shah, S., and Heddle, J. G. (2014) Squaring up to DNA: pentapeptide repeat proteins and DNA mimicry, Appl. Microbiol. Biotechnol., 98, 9545-9560.

508. Nekrasov, S. V, Agafonova, O. V, Belogurova, N. G., Delver, E. P., and Belogurov, A. A.

(2007) Plasmid-encoded antirestriction protein ArdA can discriminate between type I methyltransferase and complete restriction-modification system, J. Mol. Biol., 365, 284-297.

509. Gefter, M., Hausmann, R., Gold, M., and Hurwitz, J. (1966) The Enzymatic Methylation of Ribonucleic Acid and Deoxyribonucleic Acid: X. BACTERIOPHAGE T3-INDUCED S-ADENOSYLMETHIONINE CLEAVAGE, J. Biol. Chem., 241, 1995-2006.

510. Guo, X., Söderholm, A., Isaksen, G. V, Warsi, O., Eckhard, U., Trigüis, S., Gogoll, A., Jerlström-Hultqvist, J., Âqvist, J., and Andersson, D. I. (2021) Structure and mechanism of a phage-encoded SAM lyase revises catalytic function of enzyme family, Elife, 10, e61818.

511. SPOEREL, N., and HERRLICH, P. (1979) Colivirus-T3-Coded S-Adenosylmethionine Hydrolase, Eur. J. Biochem., 95, 227-233.

512. Studier, F. W., and Movva, N. R. (1976) SAMase gene of bacteriophage T3 is responsible for overcoming host restriction., J. Virol., 19, 136.

513. Kennaway, C. K., Obarska-Kosinska, A., White, J. H., Tuszynska, I., Cooper, L. P., Bujnicki, J. M., Trinick, J., and Dryden, D. T. F. (2009) The structure of M. EcoKI Type I DNA methyltransferase with a DNA mimic antirestriction protein, Nucleic Acids Res., 37, 762-770.

514. Sistla, S., and Rao, D. N. (2004) S-Adenosyl-L-methionine-dependent restriction enzymes, Crit. Rev. Biochem. Mol. Biol., 39, 1-19.

515. Hausmann, R. (1967) Synthesis of an S-adenosylmethionine-cleaving enzyme in T3-infected Escherichia coli and its disturbance by co-infection with enzymatically incompetent bacteriophage, J. Virol., 1, 57.

516. Spoerel, N., Herrlich, P., and Bickle, T. A. (1979) A novel bacteriophage defence mechanism: the anti-restriction protein, Nature, 278, 30-34.

517. Hughes, J. A., Brown, L. R., and Ferro, A. J. (1987) Expression of the cloned coliphage T3 S-adenosylmethionine hydrolase gene inhibits DNA methylation and polyamine biosynthesis in Escherichia coli., J. Bacteriol., 169, 3625.

518. Posnick, L. M., and Samson, L. D. (1999) Influence of S-adenosylmethionine pool size on spontaneous mutation, dam methylation, and cell growth of Escherichia coli, J. Bacteriol., 181, 6756.

519. Macintyre, G., Atwood, C. V., and Cupples, C. G. (2001) Lowering S-adenosylmethionine levels in Escherichia coli modulates C-to-T transition mutations, J. Bacteriol., 183, 921.

520. LaMonte, B. L., and Hughes, J. A. (2006) In vivo hydrolysis of S-adenosylmethionine induces the met regulon of Escherichia coli, Microbiology, 152, 1451-1459.

521. Hultqvist, J. J., Warsi, O., Söderholm, A., Knopp, M., Eckhard, U., Vorontsov, E., Selmer, M.,

and Andersson, D. I. (2018) A bacteriophage enzyme induces bacterial metabolic perturbation that confers a novel promiscuous function, Nat. Ecol. Evol., 2, 1321-1330.

522. Simon-Baram, H., Kleiner, D., Shmulevich, F., Zarivach, R., Zalk, R., Tang, H., Ding, F., and Bershtein, S. (2021) SAMase of bacteriophage T3 inactivates E. coli methionine S-adenosyltransferase by forming hetero-polymers, bioRxiv.

523. Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance.

524. Goryanin, I. I., Kudryavtseva, A. A., Balabanov, V. P., Biryukova, V. S., Manukhov, I. V, and Zavilgelsky, G. B. (2018) Antirestriction activities of KlcA (RP4) and ArdB (R64) proteins, FEMSMicrobiol. Lett., 365, fny227.

525. Balabanov, V. P., Kotova, V. Y., Kholodii, G. Y., Mindlin, S. Z., and Zavilgelsky, G. B. (2012) A novel gene, ardD, determines antirestriction activity of the non-conjugative transposon Tn 5053 and is located antisense within the tniA gene, FEMS Microbiol. Lett., 337, 55-60.

526. Pacumbaba, R., and Center, M. S. (1975) Partial purification and properties of a bacteriophage T7 inhibitor of the host exonuclease V activity, J. Virol., 16, 1200-1207.

527. Wilkinson, M., Troman, L., Ismah, W. A. K. W. N., Chaban, Y., Avison, M. B., Dillingham, M. S., and Wigley, D. B. (2016) Structural basis for the inhibition of RecBCD by Gam and its synergistic antibacterial effect with quinolones, Elife, 5, e22963.

528. Sberro, H., Leavitt, A., Kiro, R., Koh, E., Peleg, Y., Qimron, U., and Sorek, R. (2013) Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning, Mol. Cell, 50, 136-148.

529. Skorupski, K., Tomaschewski, J., Ruger, W., and Simon, L. D. (1988) A bacteriophage T4 gene which functions to inhibit Escherichia coli Lon protease, J. Bacteriol., 170, 3016-3024.

530. Handa, N., and Kobayashi, I. (2005) Type III restriction is alleviated by bacteriophage (RecE) homologous recombination function but enhanced by bacterial (RecBCD) function, J. Bacteriol., 187, 7362-7373.

531. Toothman, P. (1981) Restriction alleviation by bacteriophages lambda and lambda reverse, J. Virol., 38, 621-631.

532. Guo, Y., Quiroga, C., Chen, Q., McAnulty, M. J., Benedik, M. J., Wood, T. K., and Wang, X. (2014) RalR (a DNase) and RalA (a small RNA) form a type I toxin-antitoxin system in Escherichia coli, Nucleic Acids Res., 42, 6448-6462.

533. Penner, M., Morad, I., Snyder, L., and Kaufmann, G. (1995) Phage T4-coded Stp: double-edged effector of coupled DNA and tRNA-restriction systems, J. Mol. Biol., 249, 857-868.

534. Iida, S., Streiff, M. B., Bickle, T. A., and Arber, W. (1987) Two DNA antirestriction systems of bacteriophage P1, darA, and darB: characterization of darA- phages, Virology, 157, 156-166.

535. Piya, D., Vara, L., Russell, W. K., Young, R., and Gill, J. J. (2017) The multicomponent antirestriction system of phage P1 is linked to capsid morphogenesis, Mol. Microbiol., 105, 399-412.

536. León, L. M., Park, A. E., Borges, A. L., Zhang, J. Y., and Bondy-Denomy, J. (2021) Mobile element warfare via CRISPR and anti-CRISPR in Pseudomonas aeruginosa, Nucleic Acids Res., 49, 2114-2125.

537. Salaj-Smic, E., Marsic, N., Trgovcevic, Z., and Lloyd, R. G. (1997) Modulation of EcoKI restriction in vivo: role of the lambda Gam protein and plasmid metabolism, J. Bacteriol., 179, 1852-1856.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.