Modification of living cells with microencapsulated drugs for use in regenerative medicine / Модификация живых клеток микроинкапсулированными лекарствами для использования в регенеративной медицине тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Шэнь Нинфей

  • Шэнь Нинфей
  • кандидат науккандидат наук
  • 2025, ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)»
  • Специальность ВАК РФ00.00.00
  • Количество страниц 104
Шэнь Нинфей. Modification of living cells with microencapsulated drugs for use in regenerative medicine / Модификация живых клеток микроинкапсулированными лекарствами для использования в регенеративной медицине: дис. кандидат наук: 00.00.00 - Другие cпециальности. ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)». 2025. 104 с.

Оглавление диссертации кандидат наук Шэнь Нинфей

Contents

Summary

Publications

Introduction

Chapter 1. Literature review

1.1. Cell therapy

1.2. Non-genetic modification of cells for drug delivery

1.3. Exploiting cell-based systems for drug delivery

1.4. Therapeutic loading strategies

1.4.1. Attachment of nanoparticles to the cell surface

1.4.2. Intracellular encapsulation of nanoparticles

1.5. Application of living cells for regenerative medicine

1.6. Cytoprotective agents and proteins

Chapter 2. Materials and methods

2.1. Synthesis and characterization of PLGA/Prx1 microparticles and

PLGA/SBN nanoparticles

2.1.1. Synthesis of PLGA/Prx1 microparticles

2.1.2. Synthesis of PLGA/SBN nanoparticles

2.1.3. Characterization of PLGA/Prx1 microparticles and PLGA/SBN nanoparticles

2.2. Cell culture

2.3. Analysis of macrophage activation by Prx1 released from PLGA microparticles

2.4. PLGA/Prx1 microparticle conjugation to 3T3 cells

2.5. PLGA/SBN nanoparticle uptake by MSCs

2.6. Oxidative stress induction and measurement of cell viability

2.7. Cell viability analysis

2.8. Measurement of protein expression level

2.9. Analysis of 3T3 cell senescence

2.10. Scratch assay

2.11. In vivo study

2.12. Statistical analysis

Chapter 3. Results

3.1. Characterization of PLGA/Prx1 microformulations

3.2. Bioactivity of Prx1 released from PLGA/Prx1 microparticles

3.3. PLGA/Prx1 microparticle conjugation to 3T3 cells

3.4. Protective effects of PLGA/Prx1 microparticles under oxidative stress

3.5. Fibroblast modification with PLGA/Prx1 microparticles stimulates cell migration

3.6. Modification of fibroblasts with PLGA/Prx1 microparticles stimulates collagen type I production

3.7. Characterization of PLGA/SBN nanoformulations

3.8. Characterization of isolated MSCs

3.9. PLGA/SBN nanoparticles are rapidly internalized by MSCs

3.10. Treatment of MSCs with PLGA/SBN NPs upregulates antioxidant enzymes and enhances cell resistance to oxidative stress

3.11. Modification of MSCs with PLGA/SBN nanoparticles accelerates cutaneous wound closure

3.14 PLGA/SBN modification of MSCs leads to improved cell survival and cytokine expression alterations in the wound microenvironment

Chapter 4. Discussion

Conclusions

List of Abbreviations

Acknowledgements

References

Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Введение диссертации (часть автореферата) на тему «Modification of living cells with microencapsulated drugs for use in regenerative medicine / Модификация живых клеток микроинкапсулированными лекарствами для использования в регенеративной медицине»

Summary

Fibroblasts and mesenchymal stromal cells hold great promise for regenerative medicine. However, the therapeutic advantages have been diminished since transplanting fibroblasts and mesenchymal stromal cells (MSCs) into injured or inflamed tissues results in a poor survival rate. Innovative methods for altering cells with the goal of enhancing their characteristics and therapeutic effectiveness have been developed. It was hypothesized that the cells can be physically or chemically modified by artificial drug-loaded particles to provide them new therapeutic functionalities. In certain cases, non-genetic alteration of the cells may also be employed to modify their specialized roles, enhance their secretory capacity, and improve their capacity to migrate to target regions, altering their destiny. In this work, we aimed to develop two strategies for boosting the cell resistance to oxidative stress and enhancing their regenerative property. In particular, we proposed modification of the fibroblast surface by covalent attachment of microparticles based on polylactide-co-glycolide (PLGA) containing the protein peroxiredoxin-1 (Prx1) and modification of MSCs by internalization of PLGA nanoparticles containing a small-molecule agent silibinin (SBN). The results demonstrated that the released Prx1 interacts with TLR4 receptors on the fibroblast surface that increases cell survival under oxidative stress, cell motility, and production of collagen type I. In the case of PLGA/SBN-modified MSCs, the released SBN stimulates the Nrf2/Keap1 signaling pathway after internalization, which activates a number of genes involved in the production of antioxidant enzymes. In addition, SBN directly scavenges reactive oxygen species (ROS). As a consequence, after being treated with tert-butyl hydroperoxide (tBHP), PLGA/SBN-modified MSCs demonstrated higher viability. Modification of MSCs with silibinin-loaded PLGA nanoparticles increased their survival upon transplantation to the cutaneous wound and improved wound healing. Overall, our work implies that modifying living cells with synthetic cytoprotective materials could serve as a feasible method for enhancing cell survival after delivery and expanding their use in regenerative medicine.

Publications

1. Ningfei Shen, Xiaoli Qi, Dmitry V. Bagrov, Sergey P. Krechetov, Mars G. Sharapov,Mikhail O. Durymanov*, Surface modification of fibroblasts with peroxiredoxin-1-loaded polymeric microparticles increases cell mobility, resistance to oxidative stress and collagen I production, Colloids and Surfaces B: Biointerfaces, 2022, 219, 112834.

2. Marina V. Volkova, Ningfei Shen, Anna Polyanskaya, Xiaoli Qi, Valery V. Boyarintsev, Elena V. Kovaleva, Alexander V. Trofimenko, Gleb I. Filkov, Alexandre V. Mezentsev, Sergey P. Rybalkin, Mikhail O. Durymanov*, Tissue-oxygen-adaptation of bone marrow-derived mesenchymal stromal cells enhances their immunomodulatory and pro-angiogenic capacity, resulting in accelerated healing of chemical burns, Int. J. Mol. Sci. 2023, 24(4), 4102.

3. Ningfei Shen, Anna Polyanskaya, Xiaoli Qi, Aya Al Othman, Anastasia Permyakova, Marina V. Volkova, Alexandre Mezentsev, Mikhail O. Durymanov*, Modification of mesenchymal stromal cells with silibinin-loaded PLGA nanoparticles improves their therapeutic efficacy for cutaneous wound repair, Nanomedicine, 2024, 61, 102767.

Introduction

Transplantation of autologous or allogeneic cells is a promising technique for regenerative medicine to restore or replace damaged or diseased cells or tissue. A number of cell therapies in the field of regenerative medicine are now either established practices or FDA-approved for commercial use, including skin substitutes derived from fibroblasts for the therapy of diabetic foot ulcers or burns, scaffolds containing keratinocytes and fibroblasts for surgically generated vascular wound bed treatment, and others [1]. Fibroblasts hold great application potential in the area of tissue engineering and regenerative medicine due to their ability to synthesize and deposit extracellular matrix components [2]. MSCs are another promising candidate for regenerative therapy, owing mainly to their multi-lineage differentiation potential as well as secretory property. MSC-secreted factors regulate cell proliferation, direct migration, and initiate differentiation [3]. In regenerative applications, MSCs have demonstrated encouraging regenerative potential for treatment of osteoarthritis [4], Alzheimer's disease [5], deep burns [6], and mechanical wounds [7].

However, the low survival rate of fibroblasts and MSCs when transplanted into damaged or inflamed tissues is one of the major obstacles for their use in regenerative medicine. Following transplantation, the cells are exposed to severe environmental factors, such as oxidative stress, hypoxia, and ischemia. It was reported that MSCs are more sensitive to oxidative stress compared to other differentiated cell types, and excess intracellular ROS or endogenously induced oxidative stress impairs MSCs proliferation, self-renewal, and differentiation capacities [8]. In addition, excessive levels of oxidative stress can damage the transplanted cells, including their lipids, proteins, and DNA [9]. Approaches based on engineering provide solutions to overcome these limitations. In particular, the development of biomaterials has enabled the control of biophysical and biochemical properties of materials that can alter the behavior and function of the transplanted cells. Many biomaterials have been reported to improve the regenerative properties of MSCs and fibroblasts, ranging from natural to synthetic materials. For example, hydrogels can provide a tunable environment for extracellular matrix (ECM)

and cell-cell interactions.

The scientific significance of this study is the development of techniques to enhance the viability of fibroblasts and MSCs by modifying these cells with polymeric micro- or nanoparticles containing cytoprotective molecules. Peroxiredoxin-1 (Prx1) is a multifunctional protein, that is normally expressed intracellularly and plays a dual role of molecular chaperone and peroxidase. In this study, Prx1-loaded PLGA-based microparticles were covalently attached to the fibroblast cell surface, providing sustained Prx1 release. The released protein interacted with TLR4 receptors on the fibroblast surface in a pseudoautocrine manner, resulting in improved fibroblast resistance to oxidative stress and their enhanced migration capacity. To improve the regenerative potential of MSCs, the cells were modified via endocytic uptake by SBN-loaded PLGA nanoparticles. SBN is a phytochemical and antioxidant, that activates the Nrf2-Keap1 signaling pathway responsible for cell survival under oxidative stress. In turn, the modification of MSCs with PLGA/SBN nanoparticles improved the cell survival and wound healing effects after cells were transplanted into the area of damaged tissue, which has been shown in experiments using an animal wound model.

Goal: To study the feasibility of intracellular and cell surface modification of living cells with cytoprotective polymeric microparticles to improve their regenerative properties.

Objectives:

• To synthesize Prx1-loaded PLGA microparticles capable of sustained Prx1 release and preservation of the bioactivity of released Prx1;

• To study the feasibility of fibroblast surface modification with Prx1-loaded PLGA microparticles to enhance their regenerative properties;

• To synthesize SBN-loaded PLGA nanoparticles, which can be effectively internalized by MSCs;

• To investigate the mechanism by which PLGA/SBN nanoparticles protect MSCs from oxidative stress;

• To investigate the viability of MSCs modification with PLGA/SBN nanoparticles

to enhance regenerative properties, and to determine the function of these modified MSCs in the cutaneous wound healing process in a mouse model.

Заключение диссертации по теме «Другие cпециальности», Шэнь Нинфей

Conclusions

This dissertation introduced two non-genetic cell modification strategies, namely loading drug-encapsulated synthetic carriers "onto" the 3T3 fibroblast cell surface by covalent binding and "into" MSCs by cellular internalization, in order to improve cell functions for regenerative medicine purposes.

• Synthesized PLGA/Prx1 microparticles exhibited a sustained protein release profile in the absence of toxic effects on 3T3 fibroblasts. Bioactivity of released Prx1 from PLGA microparticles has been demonstrated.

• Through the EDC/NHS reaction, PLGA/Prx1 particles adhered covalently to the 3T3 cell membrane. The procedure does not affect cell viability, and results in PLGA/Prx1 microparticles attachment to the cell surface without further uptake.

• PLGA/Prx1-modified 3T3 fibroblasts displayed an increase in survival rate under oxidative stress, enhanced cell mobility, increased collagen I generation, and reduced cell senescence in response to t-BHP-induced oxidative stress.

• PLGA/SBN nanoparticles could be rapidly internalized by MSCs via clathrin-mediated endocytosis. The internalized nanoparticles neutralized the intracellular ROS and protected cells from oxidative damage induced by t-BHP. The antioxidative protective mechanism of released SBN intracellularly lies in that released SBN could activate the Nrf2 signaling pathway, resulting in the generation of antioxidant proteins including NQO1, GSTP1, and Prx2.

• PLGA/SBN-modified MSCs accelerated wound closure and enhanced the grade of tissue repair when compared to wounds treated with empty HA hydrogel and unmodified MSCs. Only in the group treated with PLGA/SBN-modified MSCs were GFP-positive cells detected in the dermal layer of newly formed epidermis, indicating that this modification improved cell survival and retention after delivery.

• Additionally, the wound tissue treated with PLGA/SBN-modified MSCs showed a lower expression of cytokines and growth factors implicated in the inflammatory and proliferative phases of wound healing, indicating a greater degree of their completion. All of these contribute to enhanced wound healing.

In summary, we developed a novel method for modifying fibroblasts to improve their biological properties, which can be advantageous for wound repair, cosmetic dermatology, and tissue engineering. The modification of MSCs with SBN-loaded PLGA nanoparticles enhanced their viability when transplanted into full-thickness cutaneous lesions and accelerated wound healing. could be a promising method for accelerating wound recovery.

Список литературы диссертационного исследования кандидат наук Шэнь Нинфей, 2025 год

References

1. El-Kadiry A.E.-H., Rafei M., Shammaa R. Cell therapy: Types, regulation, and clinical benefits // Front. Med. 2021. Vol. 8. P. 756029.

2. Costa-Almeida R., Soares R., Granja P.L. Fibroblasts as maestros orchestrating tissue regeneration // Journal of Tissue Engineering and Regenerative Medicine. 2018. Vol. 12, № 1. P. 240-251.

3. Wechsler M.E. et al. Engineering the MSC secretome: A hydrogel focused approach // Advanced Healthcare Materials. 2021. Vol. 10, № 7. P. 2001948.

4. Wang A.-T. et al. Application of mesenchymal stem cell therapy for the treatment of osteoarthritis of the knee: A concise review // World J. Stem Cells. 2019. Vol. 11, № 4. P. 222-235.

5. Lee J. et al. Cerebrospinal fluid from Alzheimer's disease patients as an optimal formulation for therapeutic application of mesenchymal stem cells in Alzheimer's disease // Scientific Reports. 2019. Vol. 9, № 564. P. 1-9.

6. Volkova M.V. et al. Local injection of bone-marrow derived mesenchymal stromal cells alters a molecular expression profile of a contact frostbite injury wound and improves healing in a rat model // Burns. 2023. Vol. 49, № 2. P. 432-443.

7. Jo H. et al. Applications of mesenchymal stem cells in skin regeneration and rejuvenation: 5 // International Journal of Molecular Sciences. 2021. Vol. 22, № 5. P. 2410.

8. Denu R.A., Hematti P. Effects of oxidative stress on mesenchymal stem cell biology // oxidative medicine and cellular longevity // Hindawi, 2016. Vol. 2016. P. e2989076.

9. Lin W. et al. A barrier against reactive oxygen species: chitosan/acellular dermal matrix scaffold enhances stem cell retention and improves cutaneous wound healing // Stem Cell Research & Therapy. 2020. Vol. 11, № 1. P. 383.

10. Atilla E., Kilic P., Gurman G. Cellular therapies: Day by day, all the way // Transfus Apher Sci. 2018. Vol. 57, № 2. P. 187-196.

11. Wang L.L.-W. et al. Cell therapies in the clinic // Bioeng Transl Med. 2021. Vol. 6, № 2. P. e10214.

12. Madge H. M. On transfusion of blood // The BMJ. 1874. Vol. 1, P. 42.

13. Thomas E. D. et al. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy // N. Engl. J. Med. 1957. Vol. 257, № 11. P. 491-496.

14. Mayani H., Wagner J.E., Broxmeyer H.E. Cord blood research, banking, and transplantation: achievements, challenges, and perspectives // Bone Marrow Transplant. 2020. Vol. 55, № 1. P. 48-61.

15. Bashor C.J. et al. Engineering the next generation of cell-based therapeutics // Nat Rev Drug Discov. 2022. Vol. 21, № 9. P. 655-675.

16. Navigating Market Authorization: The path holoclar took to become the first stem cell product approved in the European Union // Stem Cells Translational Medicine. 2018. Vol. 7, № 1. P. 146-154.

17. Buscail E. et al. Adipose-derived stem cells in the treatment of perianal fistulas in crohn's disease: rationale, clinical results and perspectives // Int. J. Mol. Sci. 2021. Vol. 22, № 18. P. 9967.

18. Kaiser A.D. et al. Towards a commercial process for the manufacture of genetically modified T cells for therapy: 2 // Cancer Gene Ther. Nature Publishing Group, 2015. Vol. 22, № 2. P. 72-78.

19. Wei W. et al. Improved therapeutic potential of MSCs by genetic modification // Gene Therapy. 2018. P. 538-547.

20. Abbasi S. et al. Chimeric antigen receptor T (CAR-T) cells: Novel cell therapy for hematological malignancies // Cancer Medicine. 2023. Vol. 12, № 7. P. 7844-7858.

21. Jinek M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity // Science. 2012. Vol. 337, № 6096. P. 816-821.

22. Mali P. et al. RNA-guided human genome engineering via Cas9 // Science. 2013. Vol. 339, № 6121. P. 823-826.

23. Finck A.V. et al. Engineered cellular immunotherapies in cancer and beyond: 4 // Nat. Med. 2022. Vol. 28, № 4. P. 678-689.

24. Thomas C. E. et al. Progress and problems with the use of viral vectors for gene therapy // Nature Reviews Genetics. 2003. Vol. 4, P. 346-358.

25. Wang Q. et al. Non-genetic engineering of cells for drug delivery and cell-based therapy // Advanced Drug Delivery Reviews. 2015. Vol. 91. P. 125-140.

26. Amaral A.J.R., Pasparakis G. Cell membrane engineering with synthetic materials: Applications in cell spheroids, cellular glues and microtissue formation // Acta. Biomaterialia. 2019. Vol. 90. P. 21-36.

27. Combes F., Meyer E., Sanders N.N. Immune cells as tumor drug delivery vehicles // Journal of Controlled Release. 2020. Vol. 327. P. 70-87.

28. Wu H.-H. et al. Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic // Journal of Controlled Release. 2019. Vol. 294. P. 102-113.

29. Herrmann I. K. et al. Extracellular vesicles as a next-generation drug delivery platform // Nature Nanotechnology. 2021. Vol. 116. P. 748-759.

30. Chugh V. et al. Progression in quantum sensing/bio-sensing technologies for healthcare // IOPscience. 2023. Vol. 2, № 4.

31. Spychalska K. et al. Functional polymers structures for (bio)sensing

application—A review // Polymers. 2020. Vol. 112, № 5. P. 1154.

32. Bertsch P. et al. Self-healing injectable hydrogels for tissue regeneration // Chem. Rev. 2023. Vol. 123, № 2. P. 834-873.

33. Pan W. et al. PRP-chitosan thermoresponsive hydrogel combined with black phosphorus nanosheets as injectable biomaterial for biotherapy and phototherapy treatment of rheumatoid arthritis // Biomaterials. 2020. Vol. 239. P. 119851.

34. Parodi I. et al. 3D bioprinting as a powerful technique for recreating the tumor microenvironment // Gels. 2023. Vol. 9, № 6 P. 482.

35. Loukelis K. et al. Nanocomposite bioprinting for tissue engineering applications // Gels. 2023. Vol. 9, № 2. P. 103.

36. Amani H. et al. Controlling cell behavior through the design of biomaterial surfaces: A focus on surface modification techniques // Advanced Materials Interfaces. 2019. Vol. 6, № 13.

37. Yoshihara A. et al. Promotion of cell membrane fusion by cell-cell attachment through cell surface modification with functional peptide-PEG-lipids // Biomaterials. 2020. Vol. 253, P. 120113.

38. Niu J. et al. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization: 6 // Nature Chem. 2017. Vol. 9, № 6. P. 537-545.

39. Hussey G. S. et al. Extracellular matrix-based materials for regenerative medicine // Nature Reviews Materials. 2018. Vol. 3, P. 159-173.

40. Theocharis A.D. et al. Extracellular matrix structure // Advanced Drug Delivery Reviews. 2016. Vol. 97. P. 4-27.

41. Sackett S. D. et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas // Scientific Reports. 2018. Vol. 8. P. 10452.

42. Kim D.-H. et al. Matrix nanotopography as a regulator of cell function // Journal of Cell Biology. 2012. Vol. 197, № 3. P. 351-360.

43. Overview of extracellular matrix // Current Protocols in Cell Biology. 2012. Vol. 57, № 1.

44. Saldin L.T. et al. Extracellular matrix hydrogels from decellularized tissues: Structure and function // Acta Biomaterialia. 2017. Vol. 49. P. 1-15.

45. Gardin C. et al. Decellularization and delipidation protocols of bovine bone and pericardium for bone grafting and guided bone regeneration procedures // PLOS ONE. 2015. Vol. 100, № 77. P. e0132344.

46. Keane T.J., Swinehart I.T., Badylak S.F. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance // Methods. 2015.

Vol. 84. P. 25-34.

47. Dearth C.L. et al. The effect of terminal sterilization on the material properties and in vivo remodeling of a porcine dermal biologic scaffold // Acta Biomaterialia. 2016. Vol. 33. P. 78-87.

48. Wong M.L. et al. In vivo xenogeneic scaffold fate is determined by residual antigenicity and extracellular matrix preservation // Biomaterials. 2016. Vol. 92. P. 1-12.

49. Geckil H. et al. Engineering hydrogels as extracellular matrix mimics // Nanomedicine. 2017. Vol. 5, № 3. P. 469-484.

50. Vega, S.L., Kwon, M.Y. and Burdick, J.A. Recent advances in hydrogels for cartilage tissue engineering // European cells & materials. 2017. Vol. 33. P. 5975.

51. Willemse J. et al. Hydrogels derived from decellularized liver tissue support the growth and differentiation of cholangiocyte organoids // Biomaterials. 2022. Vol. 284. P. 121473.

52. Huang Y.-A. et al. Nanoimprinted anisotropic topography preferentially guides axons and enhances nerve regeneration // Macromolecular Bioscience. 2018. Vol. 18, № 12. P. 1800335.

53. Radhakrishnan J. et al. Topographic cue from electrospun scaffolds regulate myelin-related gene expressions in Schwann cells // Journal of Biomedical Nanotechnology. 2015. Vol. 11, № 3. P. 512-521.

54. Hu Y. et al. 3D-engineering of cellularized conduits for peripheral nerve regeneration: 1 // Sci. Rep. 2016. Vol. 6, № 1. P. 32184.

55. Li G. et al. Construction of biofunctionalized anisotropic hydrogel micropatterns and their effect on Schwann cell behavior in peripheral nerve regeneration // ACS Applied Materials & Interfaces. 2019. Vol. 11, № 41. P. 3739737410.

56. Zhang Y. et al. Porous decellularized trachea scaffold prepared by a laser micropore technique // Journal of the Mechanical Behavior of Biomedical Materials. 2019. Vol. 90. P. 96-103.

57. Alqahtani Q. et al. Decellularized swine dental pulp tissue for regenerative root canal therapy // J. Dent. Res. 2018. Vol. 97, № 13. P. 1460-1467.

58. Hassanpour A. et al. Decellularized human ovarian scaffold based on a sodium lauryl ester sulfate (SLES)-treated protocol, as a natural three-dimensional scaffold for construction of bioengineered ovaries // Stem Cell Research & Therapy. 2018. Vol. 9, № 1. P. 252.

59. Xiao S. et al. Bladder acellular matrix prepared by a self-designed perfusion system and adipose-derived stem cells to promote bladder tissue regeneration //

Frontiers in Bioengineering and Biotechnology. 2022. Vol. 10.

60. Seo Y., Jung Y., Kim S.H. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis // Acta Biomaterialia. 2018. Vol. 67. P. 270-281.

61. Ventura R.D. et al. Enhanced decellularization technique of porcine dermal ECM for tissue engineering applications // Materials Science and Engineering: C. 2019. Vol. 104. P. 109841.

62. Simsa R. et al. Brain organoid formation on decellularized porcine brain ECM hydrogels // PLOS ONE. Public Library of Science, 2021. Vol. 16, № 1. P. e0245685.

63. Durymanov M.O., Rosenkranz A.A., Sobolev A.S. Current approaches for improving intratumoral accumulation and distribution of nanomedicines // Theranostics. 2015. Vol. 5, № 9. P. 1007-1020.

64. Ayer M., Klok H.-A. Cell-mediated delivery of synthetic nano- and microparticles // J. Control Release. 2017. Vol. 259. P. 92-104.

65. Zhao. Z. et al. Engineering of living cells with polyphenol-functionalized biologically active nanocomplexes // Advanced Materials. 2020. Vol. 32, № 49. P. 2003492.

66. Zelepukin I. V. et al. Nanoparticle-based drug delivery via RBC-hitchhiking for the inhibition of lung metastases growth // Nanoscale. 2019. Vol. 11, № 4. P. 1636-1646.

67. Huynh C.T., Lee D.S. Controlled release // Encyclopedia of Polymeric Nanomaterials. 2015. P. 439-449.

68. Geraili A., Xing M., Mequanint K. Design and fabrication of drug-delivery systems toward adjustable release profiles for personalized treatment // VIEW. 2021. Vol. 2, № 5. P. 20200126.

69. Laracuente M.-L., Yu M.H., McHugh K.J. Zero-order drug delivery: State of the art and future prospects // Journal of Controlled Release. 2020. Vol. 327. P. 834-856.

70. Allen T.M., Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications // Advanced Drug Delivery Reviews. 2013. Vol. 65, № 1. P. 3648.

71. Wissing S.A., Kayser O., Müller R.H. Solid lipid nanoparticles for parenteral drug delivery // Advanced Drug Delivery Reviews. 2004. Vol. 56, № 9. P. 1257-1272.

72. Alper I. I., Yildiz O., and Sevil D. I. Advances in micelle-based drug delivery: Cross-linked systems // Current Topics in Medicinal Chemistry. 2017. Vol. 17, № 13. P.1469-1489.

73. George A., Shah P.A., Shrivastav P.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review // International Journal of Pharmaceutics. 2019. Vol. 561. P. 244-264.

74. Boztepe T., Castro G.R., León I.E. Lipid, polymeric, inorganic-based drug delivery applications for platinum-based anticancer drugs // International Journal of Pharmaceutics. 2021. Vol. 605. P. 120788.

75. Carazo, E. et al. Advanced inorganic nanosystems for skin drug delivery // The Chemical Record. 2018. Vol. 18. P. 891-899.

76. Erdogar N., Akkin S., Bilensoy E. Nanocapsules for drug delivery: An updated review of the last decade // Recent Pat Drug Deliv Formul. 2018. Vol. 12, № 4. P. 252-266.

77. Asil S.M. et al. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases // Biomater Sci. 2020. Vol. 8, № 15. P. 4109-4128.

78. Wilhelm S. et al. Analysis of nanoparticle delivery to tumours // Nature Reviews Materials. 2016. Vol. 11, № 5. P. 1-12.

79. Dai Q. et al. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors // ACS Nano. 2018. Vol. 12, № 8. P. 8423-8435.

80. Hamidi M. et al. A pharmacokinetic overview of nanotechnology-based drug delivery systems: an ADME-oriented approach // Crit Rev Ther Drug Carrier Syst. 2013. Vol. 30, № 5. P. 435-467.

81. Greish K. et al. Nanomedicine: is it lost in translation? // Ther Deliv. 2018. Vol. 9, № 4. P. 269-285.

82. Chen B. et al. Current multistage drug delivery systems based on the tumor microenvironment // Theranostics. 2017. Vol. 7, № 3. P. 538-558.

83. Liu T. et al. Cell-based carrier for targeted hitchhiking delivery // Drug Delivery and Translational Research. 2022. Vol. 12, № 11. P. 2634-2648.

84. Sarkar S. et al. Drug delivery using platelet cancer cell interaction // Pharm Res. 2013. Vol. 30, № 11. P. 2785-2794.

85. Zhang C. et al. Direct macromolecular drug delivery to cerebral ischemia area using neutrophil-mediated nanoparticles // Theranostics. Ivyspring International Publisher, 2017. Vol. 7, № 13. P. 3260-3275.

86. Krueger T.E.G. et al. Concise review: Mesenchymal stem cell-based drug delivery: The good, the bad, the ugly, and the promise // Stem Cells Transl Med. 2018. Vol. 7, № 9. P. 651-663.

87. Ihler G. M., Robert H. G., and Frederick W. S. Enzyme loading of erythrocytes // Proceedings of the National Academy of Sciences. 1973. Vol. 70, № 9. P. 2663-2666.

88. Li W. et al. Cytopharmaceuticals: An emerging paradigm for drug delivery

// Journal of Controlled Release. 2020. Vol. 328. P. 313-324.

89. Tang L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery // Nature Biotechnology. 2018. Vol. 36, № 8 P. 707-716.

90. Chen W. et al. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis: 4 // Nat Rev Cardiol. Nature Publishing Group, 2022. Vol. 19, № 4. P. 228-249.

91. Gao S. et al. Selenium-containing nanoparticles combine the NK cells mediated immunotherapy with radiotherapy and chemotherapy // Advanced Materials. 2020. Vol. 32, № 12. P. 1907568.

92. Chu D. et al. Neutrophil-based drug delivery systems // Advanced Materials. 2018. Vol. 30, № 22. P. 1706245.

93. Fan X. et al. Cell-based drug delivery systems participate in the cancer immunity cycle for improved cancer immunotherapy // Small. 2023. Vol. 19, № 4. P. 2205166.

94. Wang C. et al. Construction and evaluation of red blood cells-based drug delivery system for chemo-photothermal therapy // Colloids and Surfaces B: Biointerfaces. 2021. Vol. 204. P. 111789.

95. Han X. Chao W. and Zhuang L. Red blood cells as smart delivery systems // Bioconjugate Chemistry. 2018. Vol. 29, № 4. P. 852-860.

96. Gao M. et al. Photosensitizer decorated red blood cells as an ultrasensitive light-responsive drug delivery system // ACS Applied Materials & Interfaces. 2017. Vol. 9, № 7. P. 5855-5863.

97. Li Y. et al. Clinical progress and advanced research of red blood cells based drug delivery system // Biomaterials. 2021. Vol. 279. P. 121202.

98. Xie Z. et al. Immune cell-mediated biodegradable theranostic nanoparticles for melanoma targeting and drug delivery // Small. 2017. Vol. 13, № 10. P. 1603121.

99. Dou H. et al. Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery // Blood. 2006. Vol. 108, № 8. P. 2827-2835.

100. Batrakova E. V. et al. A macrophage-nanozyme delivery system for Parkinson's disease // Bioconjugate Chemistry. 2007. Vol18, № 5. P. 1498-1506.

101. Muzykantov V.R. Drug delivery by red blood cells: vascular carriers designed by Mother Nature // Expert Opin Drug Deliv. 2010. Vol. 7, № 4. P. 403427.

102. Anselmo A.C., Mitragotri S. Cell-mediated delivery of nanoparticles: Taking advantage of circulatory cells to target nanoparticles // Journal of Controlled Release. 2014. Vol. 190. P. 531-541.

103. Brenner J. S. et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude // Nature Communications.

2018. Vol. 9, № 1. P. 2684.

104. Rodriguez P.L. et al. Minimal "Self' peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles // Science. 2013. Vol. 339, № 6122. P.971-975.

105. Lucas A., Dawn L., and Pedro C. Doxorubicin-loaded red blood cells reduced cardiac toxicity and preserved anticancer activity // Drug delivery. 2019. Vol. 26, № 1. P. 433-442.

106. Franchetti P., et al. Inhibition of HIV-1 replication in macrophages by red blood cell-mediated delivery of a heterodinucleotide of azidothymidine and 9-(R)-2-(phosphono methoxypropyl) adenine // Antiviral Chemistry and Chemotherapy. 2001. Vol. 12, № 3. P. 151-159.

107. Hamidi M. et al. Preparation and in vitro evaluation of carrier erythrocytes for RES-targeted delivery of interferon-alpha 2b // International Journal of Pharmaceutics. 2007. Vol. 341, № 1. P. 125-133.

108. Coker S.A. et al. A Study of the Pharmacokinetic Properties and the In Vivo Kinetics of Erythrocytes Loaded With Dexamethasone Sodium Phosphate in Healthy Volunteers // Transfusion Medicine Reviews. 2018. Vol. 32, № 2. P. 102110.

109. Bax B.E. et al. In vitro and in vivo studies with human carrier erythrocytes loaded with polyethylene glycol-conjugated and native adenosine deaminase // British Journal of Haematology. 2000. Vol. 109, № 3. P. 549-554.

110. Bax, Bridget E., et al. "Erythrocyte encapsulated thymidine phosphorylase for the treatment of patients with mitochondrial neurogastrointestinal encephalomyopathy: study protocol for a multi-centre, multiple dose, open label trial // Journal of clinical medicine. 2019. Vol. 8, № 8. P. 1096.

111. Rossi L. et al. Erythrocyte-mediated delivery of phenylalanine ammonia lyase for the treatment of phenylketonuria in BTBR-Pahenu2 mice // Journal of Controlled Release. 2014. Vol. 194. P. 37-44.

112. Carnemolla R. et al. Targeting thrombomodulin to circulating red blood cells augments its protective effects in models of endotoxemia and ischemia-reperfusion injury // FASEB J. 2017. Vol. 31, № 2. P. 761-770.

113. Yuan S.-H. et al. Slow release properties and liver-targeting characteristics of methotrexate erythrocyte carriers // Fundamental & Clinical Pharmacology. 2009. Vol. 23, № 2. P. 189-196.

114. Shavi G.V. et al. Erythrocytes as carrier for prednisolone: in vitro and in vivo evaluation // Pak. J. Pharm. Sci. 2010.

115. Mukthavaram R. et al. Targeting and depletion of circulating leukocytes and cancer cells by lipophilic antibody-modified erythrocytes // Journal of Controlled

Release. 2014. Vol. 183. P. 146-153.

116. Dong X., Chu D., Wang Z. Leukocyte-mediated delivery of nanotherapeutics in inflammatory and tumor sites // Theranostics. 2017. Vol. 7, № 3. P. 751-763.

117. Chen Y. et al. Living leukocyte-based drug delivery systems // Advanced Materials. 2023. Vol. 35, № 17. P. 2207787.

118. Kolaczkowska E., Kubes P. Neutrophil recruitment and function in health and inflammation: 3 // Nat Rev Immunol. Nature Publishing Group, 2013. Vol. 13, № 3. P. 159-175.

119. Su M. et al. Effects of host plant factors on the bacterial communities associated with two whitefly sibling species // PloS one. 2016. Vol. 11, № 3. P. e0152183.

120. Niethammer P. et al. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish // Nature. 2009. Vol. 459, № 7249. P. 996-999.

121. van der Vliet A., Janssen-Heininger Y.M.W. Hydrogen peroxide as a damage signal in tissue injury and inflammation: Murderer, mediator, or messenger? // J Cell Biochem. 2014. Vol. 115, № 3. P. 427-435.

122. Lee W. et al. Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum // J Exp Med. 2019. Vol. 216, № 1. P. 176-194.

123. Charoentong P. et al. Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade // Cell Rep. 2017. Vol. 18, № 1. P. 248-262.

124. Huang Y., Gao X., Chen J. Leukocyte-derived biomimetic nanoparticulate drug delivery systems for cancer therapy // Acta Pharmaceutica Sinica B. 2018. Vol.

8, № 1. P. 4-13.

125. Xue J. et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence // Nat Nanotechnol. 2017. Vol. 12, № 7. P. 692-700.

126. Shapouri-Moghaddam A. et al. Macrophage plasticity, polarization, and function in health and disease // Journal of Cellular Physiology. 2018. Vol. 233, №

9. P. 6425-6440.

127. Huang X. et al. Synthesis of siRNA nanoparticles to silence plaque-destabilizing gene in atherosclerotic lesional macrophages: 3 // Nat Protoc. Nature Publishing Group, 2022. Vol. 17, № 3. P. 748-780.

128. DiPietro L.A., Wilgus T.A., Koh T.J. Macrophages in healing wounds: Paradoxes and paradigms: 2 // International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute, 2021. Vol. 22, № 2. P. 950.

129. Hao N.-B. et al. Macrophages in tumor microenvironments and the

progression of tumors // Clin Dev Immunol. 2012. Vol. 2012. P. 948098.

130. Honold L. and Matthias N. Resident and monocyte-derived macrophages in cardiovascular disease // Circulation Research. 2018. Vol. 122, № 1. P. 113-127.

131. Liu Y.-C. et al. Macrophage polarization in inflammatory diseases // International Journal of Biological Sciences. 2014. Vol. 10, № 5. P. 520-529.

132. Jiang J. et al. Tumor hijacks macrophages and microbiota through extracellular vesicles // Quantitative Imaging in Medicine and Surgery. 2022. Vol. 13, № 3. P. 1286-1299.

133. Saradna A. et al. Macrophage polarization and allergic asthma // Transl Res. 2018. Vol. 191. P. 1-14.

134. Zhou H. et al. In situ poly I:C released from living cell drug nanocarriers for macrophage-mediated antitumor immunotherapy // Biomaterials. 2021. Vol. 269. P. 120670.

135. Evans M.A. et al. Macrophage-Mediated Delivery of Hypoxia-Activated Prodrug Nanoparticles // Advanced Therapeutics. 2020. Vol. 3, № 2. P. 1900162.

136. Elbeyli A. et al. Assessment of red cell distribution width, platelet/lymphocyte ratio, systemic immune-inflammation index, and neutrophil/lymphocyte ratio values in patients with central retinal artery occlusion. // Ocular Immunology and Inflammation. 2022. Vol. 30. P. 1940-1944.

137. von Boehmer H. Positive selection of lymphocytes // Cell. 1994. Vol. 76, № 2. P. 219-228.

138. Bergman H. et al. Human NK-92 Cells function as target cells for human NK cells - implications for CAR NK-92 therapies // Anticancer Research. International Institute of Anticancer Research, 2020. Vol. 40, № 10. P. 5355-5359.

139. Paolini R. et al. NK cells and interferons // Cytokine & Growth Factor Reviews. 2015. Vol. 26, № 2. P. 113-120.

140. Neelapu S.S. et al. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities: 1 // Nat Rev Clin Oncol. Nature Publishing Group, 2018. Vol. 15, № 1. P. 47-62.

141. Gomelsky M. Photoactivated cells link diagnosis and therapy // Sci Transl Med. 2017. Vol. 9, № 387. P. eaan3936.

142. Fan X.-L. et al. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy // Cell Mol Life Sci. 2020. Vol. 77, № 14. P. 2771-2794.

143. Satija N.K. et al. Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine // J Cell Mol Med. 2009. Vol. 13, № 11-12. P. 4385-4402.

144. Harrell C.R. et al. Mesenchymal stem cell-based therapy of osteoarthritis: Current knowledge and future perspectives // Biomedicine & Pharmacotherapy. 2019.

Vol. 109. P. 2318-2326.

145. Zhang J. et al. The challenges and promises of allogeneic mesenchymal stem cells for use as a cell-based therapy // Stem Cell Res Ther. 2015. Vol. 6. P. 234.

146. Musial-Wysocka A., Kot M., Majka M. The Pros and Cons of Mesenchymal Stem Cell-Based Therapies // Cell Transplant. 2019. Vol. 28, № 7. P. 801-812.

147. Wakitani S., Saito T., Caplan A.I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine // Muscle Nerve. 1995. Vol. 18, № 12. P. 1417-1426.

148. Sengupta V. et al. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19 // Stem Cells Dev. 2020. Vol. 29, № 12. P. 747-754.

149. Forte D. et al. Bone marrow mesenchymal stem cells support acute myeloid leukemia bioenergetics and enhance antioxidant defense and escape from chemotherapy // Cell Metab. 2020. Vol. 32, № 5. P. 829-843.e9.

150. Maharlooei M.K. et al. Adipose tissue derived mesenchymal stem cell (AD-MSC) promotes skin wound healing in diabetic rats // Diabetes Res Clin Pract. 2011. Vol. 93, № 2. P. 228-234.

151. Sánchez-Guijo F. et al. Adipose-derived mesenchymal stromal cells for the treatment of patients with severe SARS-CoV-2 pneumonia requiring mechanical ventilation. A proof of concept study // EClinicalMedicine. 2020. Vol. 25. P. 100454.

152. Kassis I. et al. Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads: 10 // Bone Marrow Transplant. Nature Publishing Group, 2006. Vol. 37, № 10. P. 967-976.

153. Ukai R. et al. Mesenchymal stem cells derived from peripheral blood protects against ischemia // Journal of Neurotrauma. Mary Ann Liebert, Inc., publishers, 2007. Vol. 24, № 3. P. 508-520.

154. Hass R. et al. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC // Cell Communication and Signaling. 2011. Vol. 9, № 1. P. 12.

155. L. Ramos T. et al. MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry // Cell Communication and Signaling. 2016. Vol. 14, № 1. P. 2.

156. Gao F. et al. Mesenchymal stem cells and immunomodulation: current status and future prospects: 1 // Cell Death Dis. Nature Publishing Group, 2016. Vol. 7, № 1. P. e2062-e2062.

157. Kyurkchiev D. et al. Secretion of immunoregulatory cytokines by mesenchymal stem cells // World J Stem Cells. 2014. Vol. 6, № 5. P. 552-570.

158. Atoui R., Chiu R.C.J. Mesenchymal stromal cells as universal donor cells // Expert Opin Biol Ther. 2012. Vol. 12, № 10. P. 1293-1297.

159. Yagi H. et al. Mesenchymal stem cells: mechanisms of immunomodulation and homing // Cell Transplant. SAGE Publications Inc, 2010. Vol. 19, № 6-7. P. 667-679.

160. Ullah M., Liu D.D., Thakor A.S. Mesenchymal stromal cell homing: mechanisms and strategies for improvement // iScience. 2019. Vol. 15. P. 421-438.

161. Dapkute D. et al. Hitchhiking nanoparticles: mesenchymal stem cellmediated delivery of theranostic nanoparticles // ACS Appl. Mater. Interfaces. 2021. Vol. 13, № 37. P. 43937-43951.

162. Bonomi A. et al. Human amniotic mesenchymal stromal cells (hAMSCs) as potential vehicles for drug delivery in cancer therapy: an in vitro study // Stem Cell Research & Therapy. 2015. Vol. 6. P. 1-10.

163. Zhang T. et al. Mesenchymal stem cells-based targeting delivery system: therapeutic promises and immunomodulation against tumor // Advanced Therapeutics. 2021. Vol. 4, № 8. P. 2100030.

164. Levy O. et al. A prodrug-doped cellular trojan horse for the potential treatment of prostate cancer // Biomaterials. 2016. Vol. 91. P. 140-150.

165. Sadhukha T., O'Brien T.D., Prabha S. Nano-engineered mesenchymal stem cells as targeted therapeutic carriers // J Control Release. 2014. Vol. 196. P. 243-251.

166. Zhao Y. et al. Targeted delivery of doxorubicin by nano-loaded mesenchymal stem cells for lung melanoma metastases therapy // Sci Rep. 2017. Vol. 7. P. 44758.

167. Pacioni, S. et al. Mesenchymal stromal cells loaded with paclitaxel induce cytotoxic damage in glioblastoma brain xenografts // Stem cell research & therapy. 2015. Vol. 6. P. 1-11.

168. Wang X. et al. Mesenchymal stem cells loaded with paclitaxel-poly(lactic-co-glycolic acid) nanoparticles for glioma-targeting therapy // Int J Nanomedicine. 2018. Vol. 13. P. 5231-5248.

169. Bonomi A. et al. Human amniotic mesenchymal stromal cells (hAMSCs) as potential vehicles for drug delivery in cancer therapy: an in vitro study // Stem Cell Res Ther. 2015. Vol. 6, № 1. P. 155.

170. Kalimuthu S. et al. Migration of mesenchymal stem cells to tumor xenograft models and in vitro drug delivery by doxorubicin // Int J Med Sci. 2018. Vol. 15, № 10. P. 1051-1061.

171. Bonomi A. et al. Gemcitabine-releasing mesenchymal stromal cells inhibit in vitro proliferation of human pancreatic carcinoma cells // Cytotherapy. 2015. Vol.

17, № 12. P. 1687-1695.

172. Kushwah V., et al. Co-delivery of docetaxel and gemcitabine by anacardic acid modified self-assembled albumin nanoparticles for effective breast cancer management // Acta biomaterialia. 2018. Vol. 73. P. 424-436.

173. Wang X. et al. Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system // Acta Pharmaceutica Sinica B. 2019. Vol. 9, № 1. P. 167176.

174. Levy O. et al. A cell-based drug delivery platform for treating central nervous system inflammation // J Mol Med. 2021. Vol. 99, № 5. P. 663-671.

175. Suryaprakash S. et al. Engineered mesenchymal stem cell/nanomedicine spheroid as an active drug delivery platform for combinational glioblastoma therapy // Nano Lett. American Chemical Society, 2019. Vol. 19, № 3. P. 1701-1705.

176. Tripodo G. et al. Mesenchymal stromal cells loading curcumin-INVITE-micelles: A drug delivery system for neurodegenerative diseases // Colloids and Surfaces B: Biointerfaces. 2015. Vol. 125. P. 300-308.

177. Zhang T.-Y. et al. Gene recombinant bone marrow mesenchymal stem cells as a tumor-targeted suicide gene delivery vehicle in pulmonary metastasis therapy using non-viral transfection // Nanomedicine: Nanotechnology, Biology and Medicine. 2014. Vol. 10, № 1. P. 257-267.

178. Rossignoli F. et al. Inducible Caspase9-mediated suicide gene for MSC-based cancer gene therapy // Cancer Gene Ther. Nature Publishing Group, 2019. Vol. 26, № 1. P. 11-16.

179. Hrkach J. et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile // Sci Transl Med. 2012. Vol. 4, № 128. P. 128ra39.

180. Davis M.E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles // Nature. 2010. Vol. 464, № 7291. P. 1067-1070.

181. Barenholz Y. Doxil®--the first FDA-approved nano-drug: lessons learned // J Control Release. 2012. Vol. 160, № 2. P. 117-134.

182. Lee J.-H. et al. Artificially engineered magnetic nanoparticles for ultrasensitive molecular imaging // Nat Med. 2007. Vol. 13, № 1. P. 95-99.

183. Rosi N. L. et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation // Science. 2006. Vol. 312, № 5776. P. 1027-1030.

184. Park J.-H. et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications // Nature Materials. 2009. Vol. 8, № 4. P. 331-336.

185. Choi H.S. et al. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots // Nano Lett. 2009. Vol. 9, № 6. P. 2354-2359.

186. Singh B., Mitragotri S. Harnessing cells to deliver nanoparticle drugs to treat cancer // Biotechnol Adv. 2020. Vol. 42. P. 107339.

187. Yu H. et al. Cell-mediated targeting drugs delivery systems // Drug Delivery. Taylor & Francis, 2020. Vol. 27, № 1. P. 1425-1437.

188. Weiss L., Zeigel R. Cell surface negativity and the binding of positively charged particles // J Cell Physiol. 1971. Vol. 77, № 2. P. 179-186.

189. Gilbert D.L., Ehrenstein G. membrane surface charge // Current Topics in Membranes and Transport. 1984. Vol. 22. P. 407-421.

190. Chambers E., Mitragotri S. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes // J Control Release. 2004. Vol. 100, № 1. P. 111-119.

191. Chambers E., Mitragotri S. Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation // Exp Biol Me. 2007. Vol. 232, № 7. P. 958-966.

192. Anselmo A.C. et al. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells // ACS Nano. 2013. Vol. 7, № 12. P. 11129-11137.

193. Xia T. et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm // Nano Lett. 2006. Vol. 6, № 8. P. 1794-1807.

194. Xia T. et al. Cationic Polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways // ACS Nano. 2008. Vol. 2, № 1. P. 85-96.

195. Cao H. et al. Bioengineered macrophages can responsively transform into nanovesicles to target lung metastasis // Nano Lett. 2018. Vol. 18, № 8. P. 47624770.

196. Swiston A.J. et al. Surface functionalization of living cells with multilayer patches // Nano Lett. 2008. Vol. 8, № 12. P. 4446-4453.

197. Swiston A. J. et al. Freely suspended cellular "backpacks" lead to cell aggregate self-assembly // Biomacromolecules. 2010. Vol. 11, № 7. P. 1826-1832.

198. Vasconcellos F.C. et al. Bioactive polyelectrolyte multilayers: hyaluronic acid mediated B lymphocyte adhesion // Biomacromolecules. 2010. Vol. 11, № 9. P. 2407-2414.

199. Doshi N. et al. Cell-based drug delivery devices using phagocytosis-resistant backpacks // Adv Mater. 2011. Vol. 23, № 12. P. H105-109.

200. Shields C.W. et al. Cellular backpacks for macrophage immunotherapy // Science Advances. American Association for the Advancement of Science, 2020. Vol. 6, № 18. P. eaaz6579.

201. Hu Q. et al. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy // Nat Biomed Eng. 2018. Vol. 2, № 11. P. 831-840.

202. Wang C. et al. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy: 2 // Nat Biomed Eng. Nature Publishing Group, 2017. Vol. 1, № 2. P. 1-10.

203. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles // Nature Medicine. 2010. Vol. 16, № 9. P. 1035-1041.

204. Wu M. et al. MR imaging tracking of inflammation-activatable engineered neutrophils for targeted therapy of surgically treated glioma: 1 // Nat Commun. Nature Publishing Group, 2018. Vol. 9, № 1. P. 4777.

205. Regenerative medicine articles from across Nature Portfolio // Nature Portfolio. URL: https://www.nature.com/subjects/regenerative-medicine.

206. Muzzio N., Moya S., Romero G. Multifunctional scaffolds and synergistic strategies in tissue engineering and regenerative medicine // Pharmaceutics. 2021. Vol. 13, № 6. P. 792.

207. Mao A.S., Mooney D.J. Regenerative medicine: Current therapies and future directions // Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences, 2015. Vol. 112, № 47. P. 14452-14459.

208. Chang Chien G.C., Stogicza A. Regenerative medicine // Pain Care Essentials and Innovations. 2021. P. 245-253.

209. Yu Y. et al. Living materials for regenerative medicine // Engineered Regeneration. 2021. Vol. 2. P. 96-104.

210. Yang J. et al. Fullerol-hydrogel microfluidic spheres for in situ redox regulation of stem cell fate and refractory bone healing // Bioactive Materials. 2021. Vol. 6, № 12. P. 4801-4815.

211. Chen S. et al. A conductive cell-delivery construct as a bioengineered patch that can improve electrical propagation and synchronize cardiomyocyte contraction for heart repair // J Control Release. 2020. Vol. 320. P. 73-82.

212. Maumus M., Jorgensen C., Noël D. Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: Role of secretome and exosomes // Biochimie. 2013. Vol. 95, № 12. P. 2229-2234.

213. Jin Y. et al. Application of stem cells in regeneration medicine // MedComm. 2023. Vol. 4, № 4.

214. Sierra-Sánchez Á. et al. Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries // npj Regen Med. Nature Publishing Group, 2021. Vol. 6, № 1. P. 1-23.

215. Riha S. M., Manira M., and Mh Busra F. Synergistic effect of biomaterial

and stem cell for skin tissue engineering in cutaneous wound healing: A concise review // Polymers. 2021. Vol. 13, № 10. P. 1546.

216. Turner C.T. et al. Granzyme K contributes to endothelial microvascular damage and leakage during skin inflammation // British Journal of Dermatology. 2023. Vol. 189, № 3. P. 279-291.

217. Kong P. et al. Placenta mesenchymal stem cell accelerates wound healing by enhancing angiogenesis in diabetic Goto-Kakizaki (GK) rats // Biochemical and Biophysical Research Communications. 2013. Vol. 438, № 2. P. 410-419.

218. Zhang S. et al. Umbilical cord-matrix stem cells induce the functional restoration of vascular endothelial cells and enhance skin wound healing in diabetic mice via the polarized macrophages // Stem Cell Research & Therapy. 2020. Vol. 11, P. 1-15.

219. Luz-Crawford P. et al. Mesenchymal stem cell-derived interleukin 1 receptor antagonist promotes macrophage polarization and inhibits B cell differentiation // Stem Cells. 2016. Vol. 34, № 2. P. 483-492.

220. Pawitan J. A. Prospect of stem cell conditioned medium in regenerative medicine // BioMed research international. 2014. Vol. 1, P. 965849.

221. Zhao F. et al. G-CSF inhibits pulmonary fibrosis by promoting BMSC homing to the lungs via SDF-1/CXCR4 chemotaxis // Scientific Reports. 2020. Vol. 10, № 1. P. 10515.

222. Florencio-Silva R. et al. Biology of bone tissue: structure, function, and factors that influence bone cells // BioMed research international. 2015. Vol. 1, P. 421746.

223. Oh E.J. et al. In vivo migration of mesenchymal stem cells to burn injury sites and their therapeutic effects in a living mouse model // Journal of Controlled Release. 2018. Vol. 279. P. 79-88.

224. Rui Y.F. et al. Higher BMP receptor expression and BMP-2-induced osteogenic differentiation in tendon-derived stem cells compared with bone-marrow-derived mesenchymal stem cells // Int Orthop. 2012. Vol. 36, № 5. P. 1099-1107.

225. Koivusalo L. et al. Tissue adhesive hyaluronic acid hydrogels for sutureless stem cell delivery and regeneration of corneal epithelium and stroma // Biomaterials. 2019. Vol. 225. P. 119516.

226. Gomes R. N., Filipa M., and Diana S. N. The bright side of fibroblasts: molecular signature and regenerative cues in major organs // NPJ Regenerative Medicine. 2021. Vol. 6, № 1. P. 43.

227. McGuire M.K. et al. Living cell-based regenerative medicine technologies for periodontal soft tissue augmentation // Journal of Periodontology. 2020. Vol. 91, № 2. P. 155-164.

228. Santini V., Giles F.J. The potential of amifostine: from cytoprotectant to therapeutic agent: 11 // Haematologica. 1999. Vol. 84, № 11. P. 1035-1042.

229. Orditura M. et al. Amifostine: A selective cytoprotective agent of normal tissues from chemo-radiotherapy induced toxicity (Review). // Oncology Reports. Spandidos Publications, 1999. Vol. 6, № 6. P. 1357-1419.

230. Teratani T., Kobayashi E., Brasile L. Chapter 68 - Stem cells approach to I/R injury // Regenerative Medicine Applications in Organ Transplantation. 2014. P. 945-952.

231. Zimmerman B.J., Granger D.N. Mechanisms of reperfusion injury // The American Journal of the Medical Sciences. 1994. Vol. 307, № 4. P. 284-292.

232. Granger D.N., Kvietys P.R. Reperfusion injury and reactive oxygen species: The evolution of a concept // Redox Biology. 2015. Vol. 6. P. 524-551.

233. Scarabelli T.M. et al. Clinical implications of apoptosis in ischemic myocardium // Current Problems in Cardiology. 2006. Vol. 31, № 3. P. 181-264.

234. Prasad A. et al. Reperfusion injury, microvascular dysfunction, and cardioprotection: the "dark side" of reperfusion // Circulation. 2009. Vol. 120, № 21. P. 2105-2112.

235. Halestrap A.P., Pasdois P. The role of the mitochondrial permeability transition pore in heart disease // Biochimica et Biophysica Acta (BBA) -Bioenergetics. 2009. Vol. 1787, № 11. P. 1402-1415.

236. Zhao T. et al. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries // Bioactive Materials. 2022. Vol. 7. P. 47-72.

237. Kloner R.A. et al. Reduction of ischemia/reperfusion injury with bendavia, a mitochondria-targeting cytoprotective peptide // Journal of the American Heart Association. American Heart Association. Vol. 1, № 3. P. e001644.

238. Szeto, H. H. Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury // Antioxidants & Redox Signaling. 2008. Vol. 10, № 3. P. 601620.

239. Fan Q. et al. Dectin-1 contributes to myocardial ischemia/reperfusion injury by regulating macrophage polarization and neutrophil infiltration // Circulation. 2019. Vol. 139, № 5. P. 663-678.

240. Yajima S. et al. Prostacyclin analogue-loaded nanoparticles attenuate myocardial ischemia/reperfusion injury in rats // JACC: Basic to Translational Science. 2019. Vol. 4, № 3. P. 318-331.

241. Oh Y. S. and Hee-Sook J. Effects of glucagon-like peptide-1 on oxidative stress and Nrf2 signaling // International journal of molecular sciences. 2017. Vol. 19, № 1. P. 26.

242. Barzegar M. et al. Potential therapeutic roles of stem cells in ischemia-reperfusion injury // Stem Cell Research. 2019. Vol. 37. P. 101421.

243. Moren C. et al. Antioxidant therapeutic strategies in neurodegenerative diseases: 16 // International Journal of Molecular Sciences. 2022. Vol. 23, № 16. P. 9328.

244. Hu S. et al. Clinical development of curcumin in neurodegenerative disease // Expert Rev Neurother. 2015. Vol. 15, № 6. P. 629-637.

245. Dimitrov D.S. Therapeutic Proteins // Therapeutic Proteins / ed. Voynov V., Caravella J.A. Totowa, NJ: Humana Press, 2012. Vol. 899. P. 1-26.

246. Novoselova E.G. et al. Peroxiredoxin 6 applied after exposure attenuates damaging effects of x-ray radiation in 3T3 mouse fibroblasts: 12 // Antioxidants. Multidisciplinary Digital Publishing Institute, 2021. Vol. 10, № 12. P. 1951.

247. Kim S. et al. The antioxidant enzyme Peroxiredoxin-1 controls stroke-associated microglia against acute ischemic stroke // Redox Biol. 2022. Vol. 54. P. 102347.

248. Sadowska-Bartosz I., Bartosz G. Peroxiredoxin 2: An important element of the antioxidant defense of the erythrocyte // Antioxidants (Basel). 2023. Vol. 12, № 5. P. 1012.

249. Verdura S. et al. Silibinin is a suppressor of the metastasis-promoting transcription factor ID3 // Phytomedicine. 2024. Vol. 128. P. 155493.

250. Abenavoli L. et al. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases // Phytotherapy Research. 2018. Vol. 32, № 11. P. 2202-2213.

251. Sharapov M.G., Gudkov S.V. Peroxiredoxin 1 - Multifunctional antioxidant enzyme, protects from oxidative damages and increases the survival rate of mice exposed to total body irradiation // Archives of Biochemistry and Biophysics. 2021. Vol. 697. P. 108671.

252. Sokolova A. I. et al. Imaging human keratinocytes grown on electrospun mats by scanning electron microscopy // Microscopy Research and Technique. 2019. Vol. 82, № 5. P. 544-549.

253. Menon D. et al. Glutathione transferase Omega 1 is required for the lipopolysaccharide-stimulated induction of NADPH oxidase 1 and the production of reactive oxygen species in macrophages // Free Radical Biology and Medicine. 2014. Vol. 73. P. 318-327.

254. Nicolete R., Santos D.F. dos, Faccioli L.H. The uptake of PLGA micro or nanoparticles by macrophages provokes distinct in vitro inflammatory response // International Immunopharmacology. 2011. Vol. 11, № 10. P. 1557-1563.

255. Li Z. et al. Transforming growth factor-ß and substrate stiffness regulate

portal fibroblast activation in culture // Hepatology. 2007. Vol. 46, № 4. P. 12461256.

256. Zhao Z. et al. Erythrocyte leveraged chemotherapy (ELeCt): Nanoparticle assembly on erythrocyte surface to combat lung metastasis // Sci. Adv. 2019. Vol. 5, № 11. P. eaax9250.

257. Sharapov M.G. et al. The role of TLR4/NF-kB signaling in the radioprotective effects of exogenous Prdx6 // Archives of Biochemistry and Biophysics. 2021. Vol. 702. P. 108830.

258. Wang X.-J. et al. Role of TGFp-Mediated inflammation in cutaneous wound healing // Journal of Investigative Dermatology Symposium Proceedings. 2006. Vol. 11, № 1. P. 112-117.

259. Horwitz E.M. et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement // Cytotherapy. 2005. Vol. 7, № 5. P. 393-395.

260. Sharma Y. et al. Inhibitory effect of silibinin on ligand binding to erbB1 and associated mitogenic signaling, growth, and DNA synthesis in advanced human prostate carcinoma cells // Molecular Carcinogenesis. 2001. Vol. 30, № 4. P. 224236.

261. Durymanov M.O. et al. Subcellular trafficking and transfection efficacy of polyethylenimine-polyethylene glycol polyplex nanoparticles with a ligand to melanocortin receptor-1 // Journal of Controlled Release. 2012. Vol. 163, № 2. P. 211-219.

262. Guo A. et al. Metal Organic Framework (MOF) Particles as Potential Bacteria-Mimicking Delivery Systems for Infectious Diseases: Characterization and Cellular Internalization in Alveolar Macrophages // Pharm Res. 2019. Vol. 36, № 4. P. 53.

263. Cruz-Gregorio A., Ana K. A.-R., and José P.-C. Nuclear factor erythroid 2-related factor 2 in human papillomavirus-related cancers // Reviews in Medical Virology. 2022. Vol. 32, № 3. P. e2308.

264. Sharapov M.G. et al. Protective and adaptogenic role of peroxiredoxin 2 (Prx2) in neutralization of oxidative stress induced by ionizing radiation // Free Radical Biology and Medicine. 2019. Vol. 134. P. 76-86.

265. Powis G., Svingen B.A., Appel P. Quinone-stimulated superoxide formation by subcellular fractions, isolated hepatocytes, and other cells // Mol Pharmacol. 1981. Vol. 20, № 2. P. 387-394.

266. A. Crawford L., Weerapana E. A tyrosine-reactive irreversible inhibitor for glutathione S -transferase Pi (GSTP1) // Molecular BioSystems. Royal Society of Chemistry, 2016. Vol. 12, № 6. P. 1768-1771.

267. Townsend D.M., Tew K.D. The role of glutathione-S-transferase in anticancer drug resistance: 47 // Oncogene. Nature Publishing Group, 2003. Vol. 22, № 47. P. 7369-7375.

268. Yu D. et al. Improved detection of reactive oxygen species by DCFH-DA: New insight into self-amplification of fluorescence signal by light irradiation // Sensors and Actuators B: Chemical. 2021. Vol. 339. P. 129878.

269. Gomzikova M. O., Victoria J., and Albert A. R. Therapeutic application of mesenchymal stem cells derived extracellular vesicles for immunomodulation // Frontiers in immunology. 2019. Vol. 10. P. 470676.

270. Badillo A. T. et al. Treatment of diabetic wounds with fetal murine mesenchymal stromal cells enhances wound closure // Cell and tissue research. 2007. Vol. 329. P. 301-311.

271. Hu L. et al. Neutrophil-mediated delivery of dexamethasone palmitate-loaded liposomes decorated with a sialic acid conjugate for rheumatoid arthritis treatment // Pharm Res. 2019. Vol. 36, № 7. P. 97.

272. Mulder P.P.G. et al. Full skin equivalent models for simulation of burn wound healing, exploring skin regeneration and cytokine response: 1 // Journal of Functional Biomaterials. Multidisciplinary Digital Publishing Institute, 2023. Vol. 14, № 1. P. 29.

273. Wanitphakdeedecha, R. et al. A pilot study comparing the efficacy of autologous cultured fibroblast injections with hyaluronic acid fillers for treating nasolabial folds // Scientific Reports. 2023. Vol. 13, № 1. P. 6616.

274. Nilforoushzadeh M.A. et al. Soft tissue augmentation by autologous cultured fibroblasts transplantation for treatment of wrinkles and scars: a case series of 20 patients // J Res Med Sci. 2010. Vol. 15, № 3. P. 167-171.

275. Nilforoushzadeh M. A. et al. Clinical, biometric, and ultrasound assessment of the effects of the autologous fibroblast cells transplantation on nasolabial fold wrinkles // Journal of Cosmetic Dermatology. 2021. Vol. 20, № 10. P. 3315-3323.

276. Bagnaninchi P. et al. Tissue engineering for tendon repair // Br J Sports Med. 2007. Vol. 41, № 8. P. e1-e5.

277. Ruiz-Alonso S. et al. Tendon tissue engineering: Cells, growth factors, scaffolds and production techniques // Journal of Controlled Release. 2021. Vol. 333. P. 448-486.

278. Claeys L. et al. Human fibroblasts as a model for the study of bone disorders // Front Endocrinol (Lausanne). 2020. Vol. 11. P. 394.

279. Wang M. et al. Mesenchymal stem cell-based therapy for burn wound healing // Burns Trauma. 2021. Vol. 9. P. tkab002.

280. Bian D. et al. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: a comprehensive review // Stem Cell Research & Therapy. Vol. 13, № 1. P. 24.

281. Schwendeman S.P. et al. Injectable controlled release depots for large molecules // Journal of Controlled Release. 2014. Vol. 190. P. 240-253.

282. Durymanov M. et al. Role of endocytosis in nanoparticle penetration of 3d pancreatic cancer spheroids // Mol. Pharmaceutics. 2019. Vol. 16, № 3. P. 10741082.

283. Cheng H. et al. Stem cell membrane engineering for cell rolling using peptide conjugation and tuning of cell-selectin interaction kinetics // ScienceDirect. 2012. Vol. 33, № 20. P. 5004-5012.

284. Lutterotti A. et al. Antigen-specific tolerance by autologous myelin peptide-coupled cells: a phase 1 trial in multiple sclerosis // Science Translational Medicine. Vol. 5, № 188. P. 188ra75-188ra75.

285. Miller S.D., Wetzig R.P., Claman H.N. The induction of cell-mediated immunity and tolerance with protein antigens coupled to syngeneic lymphoid cells // J Exp Med. 1979. Vol. 149, № 3. P. 758-773.

286. Lee D.E., Ayoub N., Agrawal D.K. Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy // Stem Cell Research & Therapy. 2016. Vol. 7, № 1. P. 37.

287. Ocansey D.K.W. et al. Improved therapeutics of modified mesenchymal stem cells: an update // J Transl Med. 2020. Vol. 18, № 1. P. 42.

288. Shojaei F., Shima R., and Mehdi B. D. A review on different methods to increase the efficiency of mesenchymal stem cell-based wound therapy // Wound Repair and Regeneration. 2019. Vol. 27, № 6. P. 661-671.

289. Zeng B. et al. ILK regulates MSCs survival and angiogenesis partially through AKT and mTOR signaling pathways // Acta Histochemica. 2017. Vol. 119, № 4. P. 400-406.

290. Zhao L. et al. Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction // Experimental Cell Research. 2016. Vol. 344, № 1. P. 30-39.

291. Huang B., et al. Myocardial transfection of hypoxia-inducible factor-1a and co-transplantation of mesenchymal stem cells enhance cardiac repair in rats with experimental myocardial infarction // Stem Cell Research & Therapy. 2014. Vol. 5, P. 1-16.

292. Sylakowski K., Bradshaw A., Wells A. Mesenchymal stem cell/multipotent stromal cell augmentation of wound healing: lessons from the physiology of matrix and hypoxia support // The American Journal of Pathology.

2020. Vol. 190, № 7. P. 1370-1381.

293. Hu X. et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis // The Journal of Thoracic and Cardiovascular Surgery. 2008. Vol. 135, № 4. P. 799-808.

294. Lee P.-Y. et al. Induced pluripotent stem cells without c-myc attenuate acute kidney injury via downregulating the signaling of oxidative stress and inflammation in ischemia-reperfusion rats // Cell transplantation. 2012. Vol. 21, № 12. P. 2569-2585.

295. Mehrbani A, Yashar, C. U. N., and Mari van de V. Ex vivo antioxidant preconditioning improves the survival rate of bone marrow stem cells in the presence of wound flui // Wound Repair and Regeneration. 2020. Vol. 28, № 4. P. 506-516.

296. Ding H. et al. Mesenchymal stem cells encapsulated in a reactive oxygen species-scavenging and O2-generating injectable hydrogel for myocardial infarction treatment // Chemical Engineering Journal. 2022. Vol. 433. P. 133511.

297. Pathak S., et al. Mesenchymal stem cell capping on ECM-anchored caspase inhibitor-loaded PLGA microspheres for intraperitoneal injection in DSS-induced murine colitis // Small. 2019. Vol. 15. P. 1901269.

298. Durymanov M., Permyakova A., Reineke J. Pre-treatment with PLGA/silibinin nanoparticles mitigates dacarbazine-induced hepatotoxicity // Front Bioeng Biotechnol. 2020. Vol. 8. P. 495.

299. Malinovskaya Y. et al. Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells // Int J Pharm. 2017. Vol. 524, № 1-2. P. 77-90.

300. Wu Q. et al. Native PLGA nanoparticles regulate APP metabolism and protect neurons against ß-amyloid toxicity: Potential significance in Alzheimer's disease pathology // International Journal of Biological Macromolecules. 2022. Vol. 219. P. 1180-1196.

301. Weng X. et al. The membrane receptor CD44: novel insights into metabolism // Trends in Endocrinology & Metabolism. 2022. Vol. 33, № 5. P. 318332.

302. Volkova M.V. et al. Tissue-oxygen-adaptation of bone marrow-derived mesenchymal stromal cells enhances their immunomodulatory and pro-angiogenic capacity, resulting in accelerated healing of chemical burns: 4 // International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute, 2023. Vol. 24, № 4. P. 4102.

303. Chen S. et al. Mesenchymal stem cell-laden anti-inflammatory hydrogel enhances diabetic wound healing // Scientific Report. 2015. Vol. 5, № 1. P. 18104.

304. Hu C. et al. CXCL12/CXCR4 axis promotes mesenchymal stem cell mobilization to burn wounds and contributes to wound repair // Journal of Surgical Research. 2013. Vol. 183, № 1. P. 427-434.

305. Barkholt L. et al. Risk of tumorigenicity in mesenchymal stromal cell-based therapies—Bridging scientific observations and regulatory viewpoints // Cytotherapy. 2013. Vol. 15, № 7. P. 753-759.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.