Development of vectors based on herpesvirus and poliovirus for oncolytic biotherapy/Разработка векторов на основе герпесвируса и полиовируса для онколитической биотерапии тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Хамад Аззам Нассерович

  • Хамад Аззам Нассерович
  • кандидат науккандидат наук
  • 2023, ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)»
  • Специальность ВАК РФ00.00.00
  • Количество страниц 119
Хамад Аззам Нассерович. Development of vectors based on herpesvirus and poliovirus for oncolytic biotherapy/Разработка векторов на основе герпесвируса и полиовируса для онколитической биотерапии: дис. кандидат наук: 00.00.00 - Другие cпециальности. ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)». 2023. 119 с.

Оглавление диссертации кандидат наук Хамад Аззам Нассерович

Table of Contents

Relevance of the research

Primary goals and objectives of the study

Scientific novelty

Theoretical and practical significance

Author's contribution

Statements to be defended

Structure and scope of the dissertation

Approbation of the results' work

Publications

Chapter 1. Literature review

1.1 Introduction

1.2 Oncolytic viruses in glioblastoma

1.3 Current Standard care for gliomas

1.4 Oncolytic Virotherapy for glioblastoma

1.5 DNA viruses

1.6 RNA Viruses

1.7 Immunotherapy approaches

1.8 Novel Potential Oncolytic viruses

1.9 Combined therapies

1.10 Novel approaches in glioblastoma

1.10.1 Nanoparticles in glioblastoma

1.10.2 Multiomics in glioblastoma

1.10.3 3D Organoid models in glioblastoma

1.11 Epidermal growth factor receptor (EGFR) targeting with oncolytic viruses

1.12 General information about herpesvirus Saimiri

1.12.1 Genomic structure and replication

1.12.2 General functions of HVS genes

1.12.3 Transforming functions of HVS

1.12.4 Human T cells transformation

1.13 Future perspectives and conclusion

Chapter 2. Materials and Methods

2.1 Materials and reagents used in the work

2.2 Virus strains

2.3 Cell Culture

2.4 Plasmid construction

2.5 Plasmid propagation in Escherichia Coli

2.6 DNA restriction

2.7 DNA extraction

2.8 DNA ligation

2.9 PCR

2.10 Gel electrophoresis

2.11 Transfection

2.12 Recombination

2.13 Virus propagation

2.14 Virus titration

2.15 Viral Cytotoxicity and Sensitivity of tumor cell lines to viral strains

2.16 Establishment of tumor xenografts in immunodeficient mice

2.17 Viral injection into the mice

2.18 Caliper volumetric measurements of subcutaneous xenografts

2.19 Cryopreservation of tumor cell cultures

2.20 Production of anti-PV3 sheep antiserum and virus neutralization micro tests

2.21 Treatment of cell cultures with interferon and gefitinib

2.22 VSV cytotoxicity

2.23 Western Blotting

2.24 PBMC isolation

2.25 Virus reproduction in the suspension of T cells and PBMCs in vitro

2.26 Statistical analysis

Chapter 3. Results

3.1 Development of two recombinant strains (RVP3 and Russo) of type 3 poliovirus vaccine strain Sabin with altered cellular tropism

3.1.1 RVP3 propagation in cell cultures

3.1.2 RVP3 retains the serotype of poliovirus type

3.1.3 Sensitivity of different cell lines to the recombinant RVP3

3.1.4 Replication efficiency of the recombinant RVP3 in different cell lines

3.1.5 Sensitivity of different cell lines to the recombinant strain Russo

3.1.6 Replication efficiency of the recombinant Russo in different cell lines

3.1.7 Sensitivity of different cell lines to oncolytic viruses

3.1.8 Replication efficiency of several viruses in different cell lines

3.2 In vitro relevance assessment of recombinant Russo and PV3

3.2.1 Sensitivity and replication efficiency of recombinant RVP3 and Russo in conditionally-hypoxic conditions

3.2.2 Evaluation of Replication efficiency of Russo on HeLa cell line cultured in human plasma-like medium (HPLM)

3.3 In vivo experiment of Russo in glioblastoma xenograft model

3.4 Combination therapy of epidermal growth factor receptor inhibitor (gefitinib) with oncolytic viruses

3.4.1 Type I Interferon Treatment Protects the DBTRG-05MG Cell Line but Not HOS Cell Line from VSV Infection

3.4.2 Levels of HER2 Protein Are Higher in Cell Lines with Attenuated Type I Interferon Response to VSV Infection

3.4.3 Combination effect of anti-EGFR therapy on the sensitivity to VSV

3.4.4 Gefitinib enhances the effect of oncolytic polioviruses in HER2-positive cells

3.5 Developing a cell-carrier delivery method of immortalized T cells by herpesvirus Saimiri

3.5.1 Immortalization of T cells using herpesvirus Saimiri (HVS)

3.5.2 Characterization of HVS-immortalized T cells

3.5.3 Virus replication in HVS-immortalized T cells and PBMCs

3.5.4 Developing a recombinant HVS variant expressing OFP

Chapter 4 Discussion

Conclusion

Main results and the outlook

List of Abbreviations

Acknowledgment References

101

Введение диссертации (часть автореферата) на тему «Development of vectors based on herpesvirus and poliovirus for oncolytic biotherapy/Разработка векторов на основе герпесвируса и полиовируса для онколитической биотерапии»

Relevance of the research

The advancements in understanding tumor immunology led to several discoveries in immunotherapy rather than traditional therapies such as chemotherapy and radiotherapy. Oncolytic viruses represent a novel type of cancer therapy using natural or recombinant variants that can selectively kill cancer cells without harming normal cells.

The history of using viruses in clinical use goes back to the nineteenth century when studying natural infections [1]. Traditional approaches to treating cancer include surgery, chemotherapy, radiotherapy, targeted therapy, and other new immunotherapies. All these approaches seek to eliminate malignant cancerous cells and boost the immunological response of the organism toward destroying the cancer cells and prolonging the overall survival of the patients [2].

Introducing a novel treatment based on the oncolytic viruses (OVs) is a recent addition to these approaches that give rise to combating cancer cells. Oncolytic viruses are naturally occurring viruses that lead to cancer cell oncolysis by two main mechanisms: preferentially targeting cancer cells and initiating an immune response against malignant cells [3].

The discovery of OVs paved the way for the development of recombinant oncolytic viruses, which are genetically modified to enhance their effectiveness against cancer cells. Talimogene laherparepvec (T-VEC) - a herpes simplex virus (HSV) type 1 (HSV-1), is the first FDA-approved OV for melanoma treatment [4]. T-VEC is derived from a natural HSV strain, modified by adding granulocyte-macrophage colony-stimulating factor (GM-CSF) to its genomic structure to enhance the antitumor immune response [4].

Developing new recombinant oncolytic viruses represents an immense potential for this treatment to improve tropism towards cancer cells by strengthening the immune mechanisms and arming OVs with antitumor immune modulators and therapeutics.

Targeting is achieved by using viruses with natural tropisms for specific types of cells and improving this tropism by targeting special receptors on cancer cells, where viral entry is carried out, and by introducing immunological modulators into their genomes [5]. Targeting special extracellular receptors like integrins, ICAMs, laminin receptors, CD155,

and others, that are naturally expressed on some tumor cells allows for better effectiveness [6]. CD155 is an overexpressed cell surface marker in cancer cells that protects from innate immunity by limiting Natural killer (NKs) response [7]. Also, OVs utilize some of the cancer cells' receptors, such as laminin receptors, to achieve metastasis potentials and invasions to other cells [8].

Recombinant OVs also use some cancer mechanism pathways to improve their tropism toward cancers. One of these mechanisms is manipulating the viral genome to be under the control of modified promoters that allow for permanent viral replication in the infected cells [9]. Another mechanism is using upregulated transcription factors in the cancer cells, like in a hypoxic environment, which is abundant for cancer cells [10]. Using suicide genes under the control of promoters that have increased activity in cancer cells is a strategy for engineered OVs to enrich the tissue-specific permissiveness [11]. Other mechanisms use cancer cells' same pathways to elevate cell proliferation and disrupt the immune response. That gives OVs an advantage from the disabled antiviral response, preferentially infecting the cancer cells [12].

The bi-lateral mechanism of OVs led to the use of combinations of OVs, immunotherapy, chemotherapy, and radiotherapy to target immune-mediated and nonimmune pathways to increase the tumor antigen presentation and, as a result, simultaneously strengthen the immune response against cancer cells [13].

Neutralizing antibodies remains one of the main obstacles in implementing OVs, as many humans are exposed to such viruses during their lifetime [14]. That leads to the importance of the development of new recombinant viruses that will be less immunogenic based on less commonly occurring natural OVs. Using several natural serotypes of OVs gives an advantage to them not being neutralized by the immune system [15]. Another way is using polymer coatings to the OVs or, most recently, delivering OVs in carrier cells like dendritic cells [16].

Developing new recombinant oncolytic viruses based on polioviruses represents a promising mechanism for several cancer types, especially glioblastoma, for several reasons: poliovirus receptor nectin-like molecule 5 (Necl-5, also called CD155) is broadly upregulated in glioblastoma, the release of antigens and pro-inflammatory signaling,

immunogenic response, well-studied biology, ability to infect a wide range of model and primary cell cultures in vitro. Recently, a recombinant Poliovirus-Rhinovirus Chimera (PVSRIPO) showed promise in developing glioblastoma in clinical trials [17]. All that led us to create two new recombinant polioviruses based on poliovirus type 3 vaccine strain Sabin, named Russo and RVP3, to increase the effectiveness and lessen the harmful effects and tropism towards neural cells.

Epidermal growth factor receptor (EGFR) is the most amplified receptor in glioblastoma and is noted in the classical glioma subtype [18]. EGFR gene amplification is detected in 57.4% of primary glioblastoma patients, leading to high levels of EGFR protein, contributing to the progress of tumorigenesis [19]. Epidermal growth factor receptor (EGFR), also HER1/ErbB1, belongs to a more prominent family of ErbB receptors with tyrosine kinase activity. Other HER family members include ErbB2/HER2, ErbB3/HER3, and ErbB4/HER4 [20]. EGFR is frequently overexpressed and hyper-activated in human malignancies, including glioblastoma; therefore, EGFR-directed therapeutic strategies are often utilized. In addition, around 50% of patients with EGFR amplification harbor a specific mutation - EGFRvIII - resulting in an in-frame deletion of exons 2-7 [21]. Due to the frequency of EGFR aberrations, many EGFR-targeted therapies are in development or clinical trials [22]. Although EGFR kinase inhibitor therapy has shown initial success in other cancers, such as non-small cell lung cancer [23], previous trials in glioblastoma have been unsuccessful to date [24].

Epidermal growth factor receptor TKIs gefitinib and erlotinib have been found to significantly increase progression-free survival in non-small cell lung carcinoma (NSCLC) patients, with one meta-analysis reporting 42.9% of patients receiving TKI therapy reaching at least one year of progression-free survival compared to 9.7% with chemotherapy [25]. A study of Gefitinib as palliative therapy for patients with brain metastases from NSCLC found that 45% of patients experienced symptom improvement, with the experimental group maintaining progression-free survival for six months longer than the control group [26].

Safety considerations related to OVs are mainly divided into two aspects. Firstly the common side effects of all-natural viral infections, like fever and fatigue, are simple

compared to their therapeutic effects. Secondly, the transmissibility of the live OVs in the organism is mainly attenuated by extensive passaging and the fact that most humans have neutralizing antibodies. Nevertheless, precautions should always be a matter of issue to remember here.

Alongside, attempts to improve gene therapy approaches by using new and effective gene delivery vectors are crucial to the long-term success of several diseases, including cancer therapy. Herpesvirus saimiri (HVS) is a DNA virus and the prototype of gamma-2 herpesvirus, or rhadinovirus, originally isolated from its natural host, the squirrel monkey [27]. HVS can infect several human cancer cell lines without integrating with their genomes and persist as circular non-integrated episomes that replicate upon cell division. That allows it to infect dividing cell populations and ensures transgene expression stably. A novel new approach to immortalizing human T cells was observed for the first time [28]. HVS C488 can transform human T cells into stable antigen-independent growth in cell culture while retaining many essential T-cell functions, including the MHC complexes and T-cell-receptor specificity [29]. This approach opened a whole new research area that moved the oncogenic HVS to an immunological tool and linked the T-cell function mechanism to the transforming capabilities of HVS. Our work represents for the first time the idea of using these immortalized T-cells by a new recombinant HVS to enhance the effect of other oncolytic viruses in cancer cells by increasing the infiltration of T-cells.

Overall, OVs have an enormous potential to be an effective method against cancer cells by direct oncolysis and triggering the antitumor immune response. With OVs already in practice and clinical trials, with significant results in tumor regression and promising ones for many others, OVs represent an excellent approach to implement it thoroughly in the future.

In this dissertation, we aimed to identify new recombinant viruses based on herpesvirus saimiri and poliovirus to enhance the therapeutic effect of oncolytic virotherapy. We have developed new recombinant enteroviruses based on poliovirus type 3 strain Sabin to target better glioblastoma, one of the most aggressive brain tumors. Next, use EGFR inhibitors such as Gefitinib to increase the therapeutic effect of oncolytic viruses, as EGFR is overexpressed in several cancer cell types. Finally, we studied the possibility

of employing herpesvirus saimiri as an oncolytic virus carrier using its unique characteristic of immortalizing T-cells. All these concepts put forward the novelty of this dissertation work to better understand the molecular mechanism of oncolytic viruses and enhance their therapeutic results.

Primary goals and objectives of the study

The study's primary goal is developing and characterizing vectors based on herpesvirus and poliovirus for oncolytic virotherapy. We set the following objectives according to the goal:

1. Characterization of the new recombinant strains (RVP3 and Russo) in primary human glioblastoma cell cultures.

2. Assessment of the oncolytic properties of Russo strain on a model of subcutaneous xenografts in nude mice.

3. Evaluation of combining EGFR inhibitor (Gefitinib) with oncolytic viruses in different cell models in vitro.

4. Developing a protocol for T-cells immortalization by herpesvirus Saimiri (HVS).

Scientific novelty

1. A new recombinant non-pathogenic strain of human enterovirus Russo and RVP3, created based on a vaccine strain of type 3 poliovirus (Sabin), has been characterized for the first time.

2. The oncolytic properties of the isolated strain have been demonstrated with a wide range of model and primary tumor cell lines and in combination with an EGFR inhibitor (Gefitinib).

3. After infection with the herpesvirus Saimiri, a new cell-carrier delivery method was optimized using immortalized human T cells.

Theoretical and practical significance

Two new non-pathogenic strains (Russo and RVP3) were obtained and characterized. These strains have demonstrated high oncolytic potential in various cultures of primary models of glioblastoma in vitro and in vivo on a model of subcutaneous xenografts in T cells immunodeficient mice. These strains would be further tested in pre-clinical studies to validate them in clinical trials and used as therapeutic agents on cancer patients, especially glioblastoma. Using oncolytic viruses with other combination therapies is an important aspect to be studied. Our study showed that an inhibitor of the epidermal growth factor receptor (Gefitinib) has a controversial effect on oncolytic viruses depending on their types and the expression of HER2 receptors in cancer cells. These results could be used to consider the optimal oncolytic virus in parallel with targeted therapy. New carrier-cell delivery methods are necessary to avoid the neutralizing antibodies of oncolytic viruses. Our study investigated the role of immortalized T cells after infection with herpesvirus saimiris (HVS) to deliver different oncolytic viruses. Those immortalized human T cells preserved the functional markers of T cells.

Author's contribution

The results presented in this thesis were obtained from 4 years-long scientific work as a PhD student of Moscow Institute of Physics and Technology (MIPT) and a junior researcher at the cell proliferation laboratory of Engelhardt Institute of Molecular Biology. The author developed and corrected the complete study. The analysis of special modern domestic and foreign literature in the field of the stated problem was carried out independently. The author participated in all experimental studies in vitro and in vivo. The applicant worked as a part of a scientific group under the supervision of a Ph.D. Anastasia Lipatova and Prof. Peter Chumakov. Data analysis, preparation of manuscripts, and conference posters were done by the applicant or with active cooperation with the applicant. In vivo experiments were conducted at the laboratory of cell proliferation, Engelhardt Institute of Molecular Biology.

Statements to be defended

1. The ability of the recombinant viruses (PV3-Russo and PV3-RVP3) strains to infect and multiply on a panel of conditionally normal and human tumor cells were tested. Significant differences in the virus production, independent of the tissue type of tumor cells, have been established.

2. The replication efficiency of the original strains and the new recombinants was determined.

3. Determination of the effect of targeted anti-EGFR therapy (Gefitinib) on the replication efficiency of oncolytic viruses.

4. A new recombinant herpesvirus saimiri (HVS) was developed as a vector carrier to deliver oncolytic viruses to the tumor by immortalizing the patient's T-cells.

Structure and scope of the dissertation

The dissertation work is presented on 119 pages of typewritten text and includes the following parts: Relevance, Literature Review, Materials and Methods, Results, Discussion, Conclusions and Outlook, and References. The work includes 8 tables and 37 figures. The references include 267 publications.

Approbation of the results' work

Results from this thesis were presented at the following conferences:

1. Poster Presentation in 4th ISFMS—Biochemistry, Molecular Biology and Druggability of Proteins, Florence, Italy, 2022. Title thesis: Epidermal growth factor receptor (EGFR) signaling inhibits type I interferon response in models of oncolytic therapy by vesicular stomatitis virus.

2. Oral Presentation. Annual conference of the Syrian Association of Pathology, Syrian Molecular Pathology Assembly (2nd SMGA), 2022, Damascus, Syria. Title thesis: Development of vectors based on Saimiri herpesvirus and Poliovirus for oncolytic biotherapy.

3. Poster participation in All-Russian conference "synthetic biology and biopharmaceuticals" - Novosibirsk 2022, Title thesis: Assessment of oncolytic polioviruses in different cell models in vitro and in vivo.

4. Poster Presentation. 20th FEBS Young Scientists' Forum ('YSF20') and 45th FEBS 2020 Congress, Slovenia & Croatia, 2021. Title thesis: Herpesvirus-based vectors for oncolytic biotherapy.

5. Poster Presentation. Lomonosov 2021 conference, Moscow, Russia. Title thesis: EGFR inhibition triggers an adaptive response against vesicular stomatitis virus (VSV) by activating antiviral signaling pathways in human osteosarcoma and glioblastoma.

6. Participation in the 64th All-Russian Scientific Conference of MIPT, 2021. Thesis title: Development of new recombinant oncolytic poliovirus for glioblastoma treatment.

7. Poster Presentation. Annual Summit of Young Scientists and Engineers "Big Challenges for Society, State, and Science," Sochi, Russia. 2019. Thesis title: vector based on recombinant primate herpesvirus as a potential tool for cancer immunotherapy.

8. Thesis: 2020 - "Herpesvirus-based vectors for oncolytic biotherapy," XV International (XXIV All-Russian) Pirogov Scientific Medical Conference of Students and Young Scientists

Publications

1. A. Hamad, G.M. Yusubalieva, V.P. Baklaushev, P.M. Chumakov, A.V. Lipatova, Recent developments in oncolytic viruses for glioblastoma: emerging therapies and future perspectives, 2022, Viruses. doi: 10.3390/v15020547.

2. A. Hamad; A.V Soboleva; P.O. Vorobyev; M. Mahmoud; K.V. Vasilenko; P.M. Chumakov; A.V. Lipatova, Development of a recombinant oncolytic poliovirus type 3 strain with altered cell tropism, Bulletin of Russian State Medical University, 2022, doi: 10.24075/brsmu.2022.023.

3. A. Hamad, S. Chumakov, Obtaining a recombinant strain of Herpesvirus saimiri by co-cultivation of transfected and permissive cell culture, 2019 es, Bulletin of Russian State Medical University, doi: 10.24075/brsmu.2019.079.

4. A. S. Nikitina, A. V. Lipatova, A. O. Goncharov, A. A. Kliuchnikova, M. A. Pyatnitskiy, K. G. Kuznetsova, P. O. Vorobyev, A. Hamad, M. V. Ivanov, I. A. Tarasova, M. V. Gorshkov, P. M. Chumakov, S. A. Moshkovskii, Multiomic profiling identified EGF receptor signaling as a potential inhibitor of type I interferon response in models of oncolytic therapy by vesicular stomatitis virus", international journal of Molecular Science. Int. J. Mol. Sci. 2021. doi: 10.3390/ijms23095244.

5. Y. Shakiba, P.O. Vorobyev, M. Mahmoud, A.Hamad, D.V. Kochetkov A.V. Lipatova, Recombinant strains of oncolytic vaccinia virus for cancer immunotherapy, Biochemistry (Moscow), doi: 10.31857/S0320972523060106.

Patent

O. Zheltykhin, A. Hamad, Y. Shakiba, 2020 - Patent: Number 2020612286 titled "a program for searching for a specific repertoire of codon use in stem tumor cells of various tissue origins

Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Заключение диссертации по теме «Другие cпециальности», Хамад Аззам Нассерович

Conclusion

The comparative study represents an insight into characterizing more specific tumor-targeted oncolytic viruses for biotherapy, especially for glioblastoma. The present research suggests that polioviruses are a promising platform for further developing viral oncolytic agents with excellent oncolytic potency and reduced side effects of viral off-target replication, especially in highly aggressive glioblastoma. We showed that IRES substitution leads to an altered tropism in the poliovirus type 3 vaccine strain Sabin. Next, recombinant Russo demonstrated a therapeutic effect in glioblastoma xenografts in nude mice. The epidermal growth factor receptor inhibitor (gefitinib), in combination with oncolytic polioviruses, revealed an enhanced effect in HER2-overexpressed cells. In contrast, this effect was not observed in other cells with low expression of HER2. In addition, the combination of gefitinib with vesicular stomatitis virus (VSV) strain Indiana indicated a decreased cytopathic effect in cell lines with overexpression of HER2. Finally, immortalized T cells with herpesvirus Saimiri may be considered a delivery approach for oncolytic viruses. This study represents a step in developing a promising platform for further clinical trials of oncolytic therapy of glioblastoma therapy. All the effects are oriented to transform the immune-deprived microenvironment of glioblastoma into an immune-responsive one by using promising oncolytic viruses with other combinations and enhancing the delivering methods. Future studies in this direction will be followed up and should concentrate on testing these viruses on new panels of cell lines in different tumors and optimizing the in vivo models in order to reach the clinical steps of testing these viruses on patients.

Main results and the outlook

I. Recombinant oncolytic strain Russo and RVP3 effectively lyse tumor cells (p<. 001) in vitro and in vivo. In contrast, the sensitivity of conditionally normal cell lines is reduced (p<.01) compared to the original strain of type 3 poliovirus.

II. The recombinant strain Russo demonstrated oncolytic activity and enhanced survival rate in vivo (p<.001) on a model of subcutaneous xenografts of glioblastoma DBTRG-05MG in Balb/c nude mice.

III. The combination of targeted anti-EGFR therapy (gefitinib) reduces the efficiency of VSV (p < .01) while enhancing (p < .01) poliovirus efficiency in HER2+ cell lines in vitro.

IV. Optimized a protocol for HVS-immortalized T cells as a possible delivery method of OVs with preserving the functional markers of T cells.

Список литературы диссертационного исследования кандидат наук Хамад Аззам Нассерович, 2023 год

References

1. Bifulco M. et al. History of how viruses can fight cancer: From the miraculous healings to the approval of oncolytic viruses // Biochimie. Biochimie, 2022.

2. Daniel M.D., Melendez L. v. Long Term Maintenance of Cell Cultures under Agar Overlay and Development of Herpes T Plaques // Exp Biol Med. 1968. Vol. 127, № 3. P. 919-925.

3. Fleckenstein, B. & Desrosiers R.C. The Herpesviruses // Plenum. 1982.

4. Wright J. et al. Mononuclear Cell Fraction Carrying Herpesvirus saimiri in Persistently Infected Squirrel Monkeys // JNCI: Journal of the National Cancer Institute. Oxford Academic, 1976. Vol. 57, № 4. P. 959-962.

5. Jahn G. et al. The two major structural phosphoproteins (pp65 and pp150) of human cytomegalovirus and their antigenic properties // Journal of General Virology. Microbiology Society, 1987. Vol. 68, № 5. P. 1327-1337.

6. Lednicky J.A., Wong C., Butel J.S. Artificial modification of the viral regulatory region improves tissue culture growth of SV40 strain 776 // Virus Res. Elsevier, 1995. Vol. 35, № 2. P. 143-153.

7. Gardella T. et al. Detection of circular and linear herpesvirus DNA molecules in mammalian cells by gel electrophoresis // J Virol. American Society for Microbiology, 1984. Vol. 50, № 1. P. 248-254.

8. Falk L.A., Wolfe L.G., Deinhard F. Isolation of Herpesvirus saimiri From Blood of Squirrel Monkeys (Saimiri sciureus) // JNCI: Journal of the National Cancer Institute. Oxford Academic, 1972. Vol. 48, № 5. P. 1499-1505.

9. Alexander L. et al. The Primary Sequence of Rhesus Monkey Rhadinovirus Isolate 26-95: Sequence Similarities to Kaposi's Sarcoma-Associated Herpesvirus and Rhesus Monkey Rhadinovirus Isolate 17577 // J Virol. American Society for Microbiology, 2000. Vol. 74, № 7. P. 3388-3398.

10. Knappe A. et al. Induction of a Novel Cellular Homolog of Interleukin-10, AK155, by Transformation of T Lymphocytes with Herpesvirus Saimiri // J Virol. American Society for Microbiology, 2000. Vol. 74, № 8. P. 3881-3887.

11. Kaschka-Dierich C. et al. Structure of nonintegrated, circular Herpesvirus saimiri and Herpesvirus ateles genomes in tumor cell lines and in vitro-transformed cells // J Virol. American Society for Microbiology, 1982. Vol. 44, № 1. P. 295-310.

12. Marczynska B. et al. Transplantation and Cytogenetic Studies of Herpesvirus saimiri-Induced Disease in Marmoset Monkeys // JNCI: Journal of the National Cancer Institute. Oxford Academic, 1973. Vol. 50, № 2. P. 331-337.

13. Desrosiers R.C. et al. Nononcogenic deletion mutants of herpesvirus saimiri are defective for in vitro immortalization // J Virol. American Society for Microbiology, 1986. Vol. 57, № 2. P. 701-705.

14. Albercht J.C., Fleckenstein B. Nucleotide sequence of HSUR 6 and HSUR 7, two small RNAs of herpesvirus saimiri. // Nucleic Acids Res. Oxford University Press, 1992. Vol. 20, № 7. P. 1810.

15. Chou J., Roizman B. The y134.5 gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

characteristic of programed cell death in neuronal cells // Proc Natl Acad Sci U S A. National Academy of Sciences, 1992. Vol. 89, № 8. P. 3266-3270. Hoyle J., Honess R.W., Randall R.E. Differential expression of two immediate early genes of herpesvirus saimiri as detected by in situ hybridization // Journal of General Virology. Microbiology Society, 1990. Vol. 71, № 12. P. 3005-3008. Denniston E. et al. The Practical Consideration of Poliovirus as an Oncolytic Virotherapy // Am J Virol. NIH Public Access, 2016. Vol. 5, № 1. P. 1. An Z. et al. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies // Oncogene 2018 37:12. Nature Publishing Group, 2018. Vol. 37, № 12. P. 1561-1575. Brennan C.W. et al. The somatic genomic landscape of glioblastoma // Cell. Elsevier B.V., 2013. Vol. 155, № 2. P. 462.

Xu H. et al. Epidermal growth factor receptor in glioblastoma // Oncol Lett. Spandidos Publications, 2017. Vol. 14, № 1. P. 512.

Padfield E., Ellis H.P., Kurian K.M. Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma // Front Oncol. Frontiers Media S.A., 2015. Vol. 5. P. 5.

Karpel-Massler G. et al. Therapeutic inhibition of the epidermal growth factor receptor in high-grade gliomas: Where do we stand? // Molecular Cancer Research. American Association for Cancer Research, 2009. Vol. 7, № 7. P. 1000-1012.

Yang X.W., Yang K., Kuang K.Y. The efficacy and safety of EGFR inhibitor monotherapy in non-small cell lung cancer: A systematic review // Curr Oncol Rep. Current Science Inc., 2014. Vol. 16, № 6. P. 1-10. Wykosky J. et al. Escape from targeted inhibition: The dark side of kinase inhibitor therapy // https://doi.org/10.4161/cc.9.9.11592. Taylor & Francis, 2010. Vol. 9, № 9. P. 1661-1662.

Liang W. et al. Network Meta-Analysis of Erlotinib, Gefitinib, Afatinib and Icotinib in Patients with Advanced Non-Small-Cell Lung Cancer Harboring EGFR Mutations // PLoS One. Public Library of Science, 2014. Vol. 9, № 2. P. e85245.

Wu C. et al. Gefitinib as palliative therapy for lung adenocarcinoma metastatic to

the brain // Lung Cancer. Elsevier, 2007. Vol. 57, № 3. P. 359-364.

Whitehouse A. Herpesvirus saimiri: a potential gene delivery vector (review) // Int

J Mol Med. Int J Mol Med, 2003. Vol. 11, № 2. P. 139-148.

Biesinger B. et al. Stable growth transformation of human T lymphocytes by

Herpesvirus saimiri // Proc Natl Acad Sci U S A. National Academy of Sciences,

1992. Vol. 89, № 7. P. 3116-3119.

Bröker B.M. et al. Immortalization of human T cell clones by Herpesvirus saimiri. Signal transduction analysis reveals functional CD3, CD4, and IL-2 receptors. // The Journal of Immunology. 1993. Vol. 151, № 3.

Hamad A. et al. Recent Developments in Glioblastoma Therapy: Oncolytic Viruses and Emerging Future Strategies // Viruses 2023, Vol. 15, Page 547. Multidisciplinary Digital Publishing Institute, 2023. Vol. 15, № 2. P. 547.

31. The global challenge of cancer // Nature Cancer 2020 1:1. Nature Publishing Group, 2020. Vol. 1, № 1. P. 1-2.

32. Daniel M.D., S.D., & M.N. ESTABLISHMENT OF OWL MONKEY KIDNEY-210-CELL LINE FOR VIROLOGICAL STUDIES.

33. Biesinger B. et al. The divergence between two oncogenic herpesvirus saimiri strains in a genomic region related to the transforming phenotype // Elsevier.

34. Bröker B., ... A.T.-T.J. of, 1993 undefined. Immortalization of human T cell clones by Herpesvirus saimiri. Signal transduction analysis reveals functional CD3, CD4, and IL-2 receptors. // Am Assoc Immnol.

35. Fickenscher H. et al. Regulation of the herpesvirus saimiri oncogene stpC, similar to that of T-cell activation genes, in growth-transformed human T lymphocytes // J Virol. American Society for Microbiology, 1996. Vol. 70, № 9. P. 6012-6019.

36. Desrosiers R.C., Mulder C., Fleckenstein B. Methylation of Herpesvirus saimiri DNA in lymphoid tumor cell lines // Proc Natl Acad Sci U S A. 1979. Vol. 76, №

8. P. 3839-3843.

37. Chou J. et al. Association of a Mr 90,000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF-2a and premature shutoff of protein synthesis after infection with y134.5- mutants of herpes simplex virus // Proc Natl Acad Sci U S A. National Academy of Sciences, 1995. Vol. 92, № 23. P. 10516-10520.

38. Kiyotaki M., Desrosiers R.C., Letvin N.L. Herpesvirus saimiri strain 11 immortalizes a restricted marmoset T8 lymphocyte subpopulation in vitro. // Journal of Experimental Medicine. 1986. Vol. 164, № 3. P. 926-931.

39. Schirm S. et al. Herpesvirus saimiri DNA in a lymphoid cell line established by in vitro transformation // J Virol. American Society for Microbiology, 1984. Vol. 49, № 3. P. 938-946.

40. Szomolanyi E., Medveczky,' P., Mulderi2 C. In vitro immortalization of marmoset cells with three subgroups of herpesvirus saimiri // J Virol. American Society for Microbiology, 1987. Vol. 61, № 11. P. 3485-3490.

41. Goodwin D.J. et al. The carboxy terminus of the herpesvirus saimiri ORF 57 gene contains domains that are required for transactivation and transrepression // Journal of General Virology. Society for General Microbiology, 2000. Vol. 81, №

9. P. 2253-2265.

42. Cooper M. et al. The gene product encoded by ORF 57 of herpesvirus regulates the redistribution of the splicing factor SC-35 // Journal of General Virology. Society for General Microbiology, 1999. Vol. 80, № 5. P. 1311-1316.

43. Goodwin A.E., Merry G.E., Sadler J. Detection of the herpesviral hematopoietic necrosis disease agent (Cyprinid herpesvirus 2) in moribund and healthy goldfish: validation of a quantitative PCR diagnostic method // Dis Aquat Organ. Inter-Research, 2006. Vol. 69, № 2-3. P. 137-143.

44. Simmer B. et al. Persistence of selectable herpesvirus saimiri in various human haematopoietic and epithelial cell lines // Journal of General Virology. Microbiology Society, 1991. Vol. 72, № 8. P. 1953-1958.

45. Kanai R. et al. Oncolytic Virus-Mediated Manipulation of DNA Damage Responses: Synergy With Chemotherapy in Killing Glioblastoma Stem Cells //

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

JNCI: Journal of the National Cancer Institute. Oxford Academic, 2012. Vol. 104, № 1. P. 42-55.

Louis D.N. et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary // Neuro Oncol. Neuro Oncol, 2021. Vol. 23, № 8. P. 12311251.

Barnholtz-Sloan J.S., Ostrom Q.T., Cote D. Epidemiology of Brain Tumors // Neurol Clin. Neurol Clin, 2018. Vol. 36, № 3. P. 395-419. Rong L., Li N., Zhang Z. Emerging therapies for glioblastoma: current state and future directions // J Exp Clin Cancer Res. J Exp Clin Cancer Res, 2022. Vol. 41, № 1.

Tan A.C. et al. Management of glioblastoma: State of the art and future directions // CA Cancer J Clin. CA Cancer J Clin, 2020. Vol. 70, № 4. P. 299-312. Chinot O.L. et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma // N Engl J Med. N Engl J Med, 2014. Vol. 370, № 8. P. 709-722.

Gilbert M.R. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma // N Engl J Med. N Engl J Med, 2014. Vol. 370, № 8. P. 699-708. Stupp R. et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial // JAMA. JAMA, 2017. Vol. 318, № 23. P. 23062316.

Alexander B.M., Cloughesy T.F. Adult Glioblastoma // J Clin Oncol. J Clin Oncol, 2017. Vol. 35, № 21. P. 2402-2409.

Moore S.C. et al. Height, body mass index, and physical activity in relation to

glioma risk // Cancer Res. Cancer Res, 2009. Vol. 69, № 21. P. 8349-8355.

Joseph G.P. et al. Cytomegalovirus as an oncomodulatory agent in the progression

of glioma // Cancer Lett. Cancer Lett, 2017. Vol. 384. P. 79-85.

Rice T. et al. Understanding inherited genetic risk of adult glioma - a review //

Neurooncol Pract. Neurooncol Pract, 2016. Vol. 3, № 1. P. 1-16.

Razavi S.M. et al. Immune Evasion Strategies of Glioblastoma // Front Surg.

Front Surg, 2016. Vol. 3.

Patel A.P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma // Science. Science, 2014. Vol. 344, № 6190. P. 1396-1401. Liu G. et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma // Mol Cancer. Mol Cancer, 2006. Vol. 5. Hodges T.R. et al. Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy // Neuro Oncol. Oxford Academic, 2017. Vol. 19, № 8. P. 1047-1057. Harder B.G. et al. Developments in Blood-Brain Barrier Penetrance and Drug Repurposing for Improved Treatment of Glioblastoma // Front Oncol. Frontiers, 2018. Vol. 0. P. 462.

Dutoit V. et al. Immunotherapy of malignant tumors in the brain: How Different from other sites? // Front Oncol. Frontiers Media S.A., 2016. Vol. 6, № DEC. P. 256.

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

de Sostoa J., Dutoit V., Migliorini D. Oncolytic Viruses as a Platform for the Treatment of Malignant Brain Tumors // Int J Mol Sci. Multidisciplinary Digital Publishing Institute (MDPI), 2020. Vol. 21, № 20. P. 1-22. Terrivel M., Gromicho C., Matos A.M. Oncolytic viruses: what to expect from their use in cancer treatment // Microbiol Immunol. Microbiol Immunol, 2020. Vol. 64, № 7. P. 477-492.

Kelly E., Russell S.J. History of Oncolytic Viruses: Genesis to Genetic Engineering // Molecular Therapy. 2007. Vol. 15, № 4. P. 651-659. Martuza R.L. et al. Experimental therapy of human glioma by means of a genetically engineered virus mutant // Science. Science, 1991. Vol. 252, № 5007. P. 854-856.

Cloughesy T.F. et al. Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma // Sci Transl Med. Sci Transl Med, 2016. Vol. 8, № 341.

Thomas A.A. et al. Emerging therapies for glioblastoma // JAMA Neurol. JAMA Neurol, 2014. Vol. 71, № 11. P. 1437-1444.

Saxena M. et al. Therapeutic cancer vaccines // Nat Rev Cancer. Nat Rev Cancer, 2021. Vol. 21, № 6. P. 360-378.

McGranahan T. et al. Current State of Immunotherapy for Treatment of Glioblastoma // Curr Treat Options Oncol. Curr Treat Options Oncol, 2019. Vol. 20, № 3.

Mathios D. et al. Anti-PD-1 antitumor immunity is enhanced by local and abrogated by systemic chemotherapy in GBM // Sci Transl Med. Sci Transl Med, 2016. Vol. 8, № 370.

Fekrirad Z. et al. Immunology Meets Bioengineering: Improving the Effectiveness of Glioblastoma Immunotherapy // Cancers (Basel). Cancers (Basel), 2022. Vol. 14, № 15.

Idbaih A. et al. Safety and Feasibility of Repeated and Transient Blood-Brain Barrier Disruption by Pulsed Ultrasound in Patients with Recurrent Glioblastoma // Clin Cancer Res. Clin Cancer Res, 2019. Vol. 25, № 13. P. 3793-3801. Perry A., Wesseling P. Histologic classification of gliomas // Handb Clin Neurol. Handb Clin Neurol, 2016. Vol. 134. P. 71-95.

Louis D.N. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary // Acta Neuropathol. Springer Verlag, 2016. Vol. 131, № 6. P. 803-820.

Louis D.N. et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary // Neuro Oncol. Neuro Oncol, 2021. Vol. 23, № 8. P. 12311251.

Berger T.R. et al. World Health Organization 2021 Classification of Central

Nervous System Tumors and Implications for Therapy for Adult-Type Gliomas: A

Review // JAMA Oncol. JAMA Oncol, 2022. Vol. 8, № 10.

Torp S.H., Solheim O., Skjulsvik A.J. The WHO 2021 Classification of Central

Nervous System tumours: a practical update on what neurosurgeons need to

know—a minireview // Acta Neurochir (Wien). Springer, 2022. Vol. 164, № 9. P.

2453-2464.

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

Osborn A.G. et al. The 2021 World Health Organization Classification of Tumors of the Central Nervous System: What Neuroradiologists Need to Know // American Journal of Neuroradiology. American Journal of Neuroradiology, 2022. Vol. 43, № 7. P. 928-937.

Neftel C. et al. An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma // Cell. Cell, 2019. Vol. 178, № 4. P. 835-849.e21. Stupp R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial // Lancet Oncol. Lancet Oncol, 2009. Vol. 10, № 5. P. 459-466.

Goenka A. et al. The Many Facets of Therapy Resistance and Tumor Recurrence in Glioblastoma // Cells. Cells, 2021. Vol. 10, № 3. P. 1-21. Mellman I., Coukos G., Dranoff G. Cancer immunotherapy comes of age // Nature 2011 480:7378. Nature Publishing Group, 2011. Vol. 480, № 7378. P. 480-489. Topalian S.L., Drake C.G., Pardoll D.M. Immune checkpoint blockade: a common denominator approach to cancer therapy // Cancer Cell. Cancer Cell, 2015. Vol. 27, № 4. P. 450-461.

Queirolo P. et al. Efficacy and safety of ipilimumab in patients with advanced melanoma and brain metastases // J Neurooncol. J Neurooncol, 2014. Vol. 118, № 1. P. 109-116.

Jain K.K. A critical overview of targeted therapies for glioblastoma // Front

Oncol. Frontiers Media S.A., 2018. Vol. 8, № OCT. P. 419.

Nduom E.K., Weller M., Heimberger A.B. Immunosuppressive mechanisms in

glioblastoma // Neuro Oncol. Neuro Oncol, 2015. Vol. 17 Suppl 7, № Suppl 7. P.

vii9-vii14.

Louveau A. et al. Structural and functional features of central nervous system lymphatic vessels // Nature 2015 523:7560. Nature Publishing Group, 2015. Vol. 523, № 7560. P. 337-341.

Magee D.E. et al. Adverse event profile for immunotherapy agents compared with chemotherapy in solid organ tumors: a systematic review and meta-analysis of randomized clinical trials // Ann Oncol. Ann Oncol, 2020. Vol. 31, № 1. P. 50-60. Markert J.M. et al. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses // Mol Ther. Mol Ther, 2014. Vol. 22, № 5. P. 1048-1055. Wollmann G., Ozduman K., van den Pol A.N. Oncolytic virus therapy for glioblastoma multiforme: concepts and candidates // Cancer J. Cancer J, 2012. Vol. 18, № 1. P. 69-81.

Raja J. et al. Oncolytic virus immunotherapy: future prospects for oncology // J Immunother Cancer. BMJ Specialist Journals, 2018. Vol. 6, № 1. P. 140. Marelli G. et al. Oncolytic viral therapy and the immune system: A double-edged sword against cancer // Front Immunol. Frontiers Media S.A., 2018. Vol. 9, № APR. P. 866.

Markert J.M. et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial // Gene Ther. Gene Ther, 2000. Vol. 7, № 10. P. 867-874.

95. Chiocca E.A. et al. A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting // Mol Ther. Mol Ther, 2004. Vol. 10, № 5. P. 958-966.

96. Kicielinski K.P. et al. Phase 1 Clinical Trial of Intratumoral Reovirus Infusion for the Treatment of Recurrent Malignant Gliomas in Adults // Molecular Therapy. American Society of Gene & Cell Therapy, 2014. Vol. 22, № 5. P. 1056.

97. Allen C. et al. Interleukin-13 Displaying Retargeted Oncolytic Measles Virus Strains Have Significant Activity Against Gliomas With Improved Specificity // Mol Ther. NIH Public Access, 2008. Vol. 16, № 9. P. 1556.

98. Allen C. et al. Oncolytic measles virus strains have significant antitumor activity against glioma stem cells // Gene Ther. Gene Ther, 2013. Vol. 20, № 4. P. 444449.

99. Freeman A.I. et al. Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme // Mol Ther. Mol Ther, 2006. Vol. 13, № 1. P. 221-228.

100. Gromeier M. et al. Intergeneric poliovirus recombinants for the treatment of malignant glioma // Proc Natl Acad Sci U S A. Proc Natl Acad Sci U S A, 2000. Vol. 97, № 12. P. 6803-6808.

101. Desjardins A. et al. IMMU-26. SAFETY AND EFFICACY OF PVSRIPO IN RECURRENT GLIOBLASTOMA: LONG-TERM FOLLOW-UP AND INITIAL MULTICENTER RESULTS // Neuro Oncol. Oxford University Press, 2021. Vol. 23, № Suppl 6. P. vi97.

102. Gromeier M., Alexander L., Wimmer E. Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. // Proc Natl Acad Sci U S A. National Academy of Sciences, 1996. Vol. 93, № 6. P. 2370.

103. Gromeier M., Nair S.K. Annual Review of Medicine Recombinant Poliovirus for Cancer Immunotherapy. 2017.

104. Martuza R.L. et al. Experimental therapy of human glioma by means of a genetically engineered virus mutant // Science. Science, 1991. Vol. 252, № 5007. P. 854-856.

105. Krummenacher C. et al. Herpes Simplex Virus Glycoprotein D Can Bind to Poliovirus Receptor-Related Protein 1 or Herpesvirus Entry Mediator, Two Structurally Unrelated Mediators of Virus Entry // J Virol. American Society for Microbiology, 1998. Vol. 72, № 9. P. 7064-7074.

106. Bommareddy P.K. et al. Talimogene Laherparepvec (T-VEC) and Other Oncolytic Viruses for the Treatment of Melanoma // Am J Clin Dermatol. Springer International Publishing, 2017. Vol. 18, № 1. P. 1-15.

107. Orvedahl A. et al. HSV-1 ICP34.5 Confers Neurovirulence by Targeting the Beclin 1 Autophagy Protein // Cell Host Microbe. Elsevier, 2007. Vol. 1, № 1. P. 23-35.

108. Holman H.A., MacLean A.R. Neurovirulent factor ICP34.5 uniquely expressed in the herpes simplex virus type 1 Ay134.5 mutant 1716 // Journal of NeuroVirology 2008 14:1. Springer, 2008. Vol. 14, № 1. P. 28-40.

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Mineta T. et al. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas // Nature Medicine 1995 1:9. Nature Publishing Group, 1995. Vol. 1, № 9. P. 938-943.

Taguchi S., Fukuhara H., Todo T. Oncolytic virus therapy in Japan: progress in clinical trials and future perspectives // Jpn J Clin Oncol. Jpn J Clin Oncol, 2019. Vol. 49, № 3. P. 201-209.

Todo T. et al. Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing // Proc Natl Acad Sci U S A. The National Academy of Sciences , 2001. Vol. 98, № 11. P. 6396-6401. Kambara H. et al. An Oncolytic HSV-1 Mutant Expressing ICP34.5 under Control of a Nestin Promoter Increases Survival of Animals even when Symptomatic from a Brain Tumor // Cancer Res. American Association for Cancer Research, 2005. Vol. 65, № 7. P. 2832-2839.

Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity // Nature Reviews Immunology 2003 3:2. Nature Publishing Group, 2003. Vol. 3, № 2. P. 133-146.

Roth J.C. et al. Evaluation of the Safety and Biodistribution of M032, an Attenuated Herpes Simplex Virus Type 1 Expressing hIL-12, After Intracerebral Administration to Aotus Nonhuman Primates //

https://home.liebertpub.com/humc. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA , 2014. Vol. 25, № 1. P. 16-27. Sharma A. et al. Adenovirus receptors and their implications in gene delivery // Virus Res. Elsevier, 2009. Vol. 143, № 2. P. 184-194. Virotherapy O., Kiyokawa J., Wakimoto H. <p>Preclinical And Clinical Development Of Oncolytic Adenovirus For The Treatment Of Malignant Glioma</p> // Oncolytic Virother. Dove Press, 2019. Vol. 8. P. 27-37. Wheeler L.A. et al. Phase II multicenter study of gene-mediated cytotoxic immunotherapy as adjuvant to surgical resection for newly diagnosed malignant glioma // Neuro Oncol. Neuro Oncol, 2016. Vol. 18, № 8. P. 1137-1145. Garber K. China approves world's first oncolytic virus therapy for cancer treatment // J Natl Cancer Inst. J Natl Cancer Inst, 2006. Vol. 98, № 5. P. 298300.

Blackford A.N., Grand R.J.A. Adenovirus E1B 55-Kilodalton Protein: Multiple Roles in Viral Infection and Cell Transformation // J Virol. American Society for Microbiology, 2009. Vol. 83, № 9. P. 4000-4012.

Jiang H. et al. Examination of the Therapeutic Potential of Delta-24-RGD in Brain Tumor Stem Cells: Role of Autophagic Cell Death // JNCI: Journal of the National Cancer Institute. Oxford Academic, 2007. Vol. 99, № 18. P. 1410-1414. avß3 and avß5 Integrin Expression in Glioma Periphery : Neurosurgery [Electronic resource]. URL:

https://journals.lww.com/neurosurgery/Abstract/2001/08000/ v 3 and v 5 Inte grin_Expression_in_Glioma.22.aspx (accessed: 15.11.2022). Asaoka K. et al. Dependence of efficient adenoviral gene delivery in malignant glioma cells on the expression levels of the Coxsackievirus and adenovirus

123

124

125

126

127

128

129

130

131

132

133

134

135

136

receptor // J Neurosurg. Journal of Neurosurgery Publishing Group, 2000. Vol. 92, № 6. P. 1002-1008.

Martinez-Velez N. et al. The oncolytic virus Delta-24-RGD elicits an antitumor effect in pediatric glioma and DIPG mouse models // Nature Communications 2019 10:1. Nature Publishing Group, 2019. Vol. 10, № 1. P. 1-10. Jiang H. et al. Localized treatment with oncolytic adenovirus delta-24-RGDOX induces systemic immunity against disseminated subcutaneous and intracranial melanomas // Clinical Cancer Research. American Association for Cancer Research Inc., 2019. Vol. 25, № 22. P. 6801-6814.

Shakiba Y. et al. Recombinant Strains of Oncolytic Vaccinia Virus for Cancer Immunotherapy // Biochemistry (Moscow) 2023 88:6. Springer, 2023. Vol. 88, № 6. P. 823-841.

Yaghchi C. al et al. Vaccinia virus, a promising new therapeutic agent for pancreatic cancer // Immunotherapy. Immunotherapy, 2015. Vol. 7, № 12. P. 1249-1258.

Idbaih A. et al. TG6002: A novel oncolytic and vectorized gene pro-drug therapy approach to treat glioblastoma. //

https://doi.org/10.1200/JC0.2017.35.15_suppl.e13510. American Society of Clinical Oncology, 2017. Vol. 35, № 15_suppl. P. e13510-e13510. Foloppe J. et al. The Enhanced Tumor Specificity of TG6002, an Armed Oncolytic Vaccinia Virus Deleted in Two Genes Involved in Nucleotide Metabolism // Mol Ther Oncolytics. Cell Press, 2019. Vol. 14. P. 1-14. Lun X. et al. Myxoma virus is a novel oncolytic virus with significant antitumor activity against experimental human gliomas // Cancer Res. Cancer Res, 2005. Vol. 65, № 21. P. 9982-9990.

Marchini A. et al. Oncolytic parvoviruses: from basic virology to clinical applications // Virol J. Virol J, 2015. Vol. 12, № 1.

Angelova A.L. et al. Immunotherapeutic Potential of Oncolytic H-1 Parvovirus: Hints of Glioblastoma Microenvironment Conversion towards Immunogenicity // Viruses. Multidisciplinary Digital Publishing Institute (MDPI), 2017. Vol. 9, № 12.

di Piazza M. et al. Cytosolic Activation of Cathepsins Mediates Parvovirus H-1-Induced Killing of Cisplatin and TRAIL-Resistant Glioma Cells // J Virol. American Society for Microbiology, 2007. Vol. 81, № 8. P. 4186-4198. Goetz C. et al. Oncolytic poliovirus against malignant glioma // Future Virol. NIH Public Access, 2011. Vol. 6, № 9. P. 1045.

Sloan K.E. et al. CD155/PVR Enhances Glioma Cell Dispersal by Regulating Adhesion Signaling and Focal Adhesion Dynamics // Cancer Res. American Association for Cancer Research, 2005. Vol. 65, № 23. P. 10930-10937. Gromeier M., Alexander L., Wimmer E. Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants // Proc Natl Acad Sci U S A. Proc Natl Acad Sci U S A, 1996. Vol. 93, № 6. P. 2370-2375. Gromeier M. et al. Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence // J Virol. J Virol, 1999. Vol. 73, № 2. P. 958-964.

137

138

139

140

141

142

143

144

145

146

147

148

149

150

PVSRIPO in Recurrent Malignant Glioma - Full Text View - ClinicalTrials.gov [Electronic resource]. URL: https://clinicaltrials.gov/ct2/show/NCT02986178 (accessed: 09.11.2022).

Hamad A. et al. DEVELOPMENT OF A RECOMBINANT ONCOLYTIC POLIOVIRUS TYPE 3 STRAIN WITH ALTERED CELL TROPISM // Bulletin of Russian State Medical University. Pirogov Russian National Research Medical University, 2022. № 2. P. 5-10.

Nikolic J. et al. Structural basis for the recognition of LDL-receptor family members by VSV glycoprotein // Nature Communications 2018 9:1. Nature Publishing Group, 2018. Vol. 9, № 1. P. 1-12.

Zhang X., Mao G., van den Pol A.N. Chikungunya-vesicular stomatitis chimeric virus targets and eliminates brain tumors // Virology. Academic Press, 2018. Vol. 522. P. 244-259.

Anderson B.D. et al. High CD46 Receptor Density Determines Preferential Killing of Tumor Cells by Oncolytic Measles Virus // Cancer Res. American Association for Cancer Research, 2004. Vol. 64, № 14. P. 4919-4926. McDonald C.J. et al. A measles virus vaccine strain derivative as a novel oncolytic agent against breast cancer // Breast Cancer Res Treat. 2006. Vol. 99, № 2. P. 177-184.

Blechacz B. et al. Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma // Hepatology. 2006. Vol. 44, № 6. P. 14651477.

Liu C. et al. Combination of measles virus virotherapy and radiation therapy has synergistic activity in the treatment of glioblastoma multiforme // Clinical Cancer Research. 2007. Vol. 13, № 23. P. 7155-7165.

Opyrchal M. et al. Effective Radiovirotherapy for Malignant Gliomas by Using Oncolytic Measles Virus Strains Encoding the Sodium Iodide Symporter (MV-NIS) // https://home.liebertpub.com/hum. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA , 2011. Vol. 23, № 4. P. 419427.

Msaouel P. et al. Noninvasive imaging and radiovirotherapy of prostate cancer using an oncolytic measles virus expressing the sodium iodide symporter // Molecular Therapy. Nature Publishing Group, 2009. Vol. 17, № 12. P. 20412048.

Wilcox M.E. et al. Reovirus as an Oncolytic Agent Against Experimental Human Malignant Gliomas // JNCI: Journal of the National Cancer Institute. Oxford Academic, 2001. Vol. 93, № 12. P. 903-912.

Ganar K. et al. Newcastle disease virus: Current status and our understanding // Virus Res. Elsevier, 2014. Vol. 184. P. 71.

Bai Y. et al. Newcastle disease virus enhances the growth-inhibiting and proapoptotic effects of temozolomide on glioblastoma cells in vitro and in vivo // Sci Rep. Nature Publishing Group, 2018. Vol. 8, № 1. P. 11470. García-Romero N. et al. Newcastle Disease Virus (NDV) Oncolytic Activity in Human Glioma Tumors Is Dependent on CDKN2A-Type I IFN Gene Cluster

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

Codeletion // Cells. Multidisciplinary Digital Publishing Institute (MDPI), 2020. Vol. 9, № 6.

Abdullah J.M., Mustafa Z., Ideris A. Newcastle Disease Virus Interaction in Targeted Therapy against Proliferation and Invasion Pathways of Glioblastoma Multiforme // Biomed Res Int. Hindawi Publishing Corporation, 2014. Vol. 2014. Wainwright D.A. et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors // Clin Cancer Res. Clin Cancer Res, 2014. Vol. 20, № 20. P. 5290-5301. Omuro A. et al. Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase I cohorts of CheckMate 143 // Neuro Oncol. 2018. Vol. 20, № 5. P. 674-686.

Maxwell R., Jackson C.M., Lim M. Clinical Trials Investigating Immune Checkpoint Blockade in Glioblastoma // Curr Treat Options Oncol. Curr Treat Options Oncol, 2017. Vol. 18, № 8.

Schalper K.A. et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma // Nat Med. 2019. Vol. 25, № 3. P. 470-476.

Zhao J. et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma // Nat Med. 2019. Vol. 25, № 3. P. 462-469. Bouffet E. et al. Immune Checkpoint Inhibition for Hypermutant Glioblastoma Multiforme Resulting From Germline Biallelic Mismatch Repair Deficiency // Journal of Clinical Oncology. 2016. Vol. 34, № 19. P. 2206-2211. Rizvi N.A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer // Science. Science, 2015. Vol. 348, № 6230. P. 124-128.

Guedan S., Ruella M., June C.H. Emerging Cellular Therapies for Cancer // Annu Rev Immunol. Annu Rev Immunol, 2019. Vol. 37. P. 145-171. Sadelain M., Rivière I., Riddell S. Therapeutic T cell engineering // Nature. Nature, 2017. Vol. 545, № 7655. P. 423-431.

Batlevi C.L. et al. Novel immunotherapies in lymphoid malignancies // Nat Rev Clin Oncol. Nat Rev Clin Oncol, 2016. Vol. 13, № 1. P. 25-40. Brown C.E. et al. Bioactivity and Safety of IL13Ra2-Redirected Chimeric Antigen Receptor CD8+ T Cells in Patients with Recurrent Glioblastoma // Clin Cancer Res. Clin Cancer Res, 2015. Vol. 21, № 18. P. 4062-4072. Brown C.E. et al. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy // N Engl J Med. N Engl J Med, 2016. Vol. 375, № 26. P. 25612569.

Ahmed N. et al. HER2-Specific Chimeric Antigen Receptor-Modified Virus-

Specific T Cells for Progressive Glioblastoma: A Phase 1 Dose-Escalation Trial //

JAMA Oncol. JAMA Oncol, 2017. Vol. 3, № 8. P. 1094-1101.

Choi B.D. et al. Immunotherapy for Glioblastoma: Adoptive T-cell Strategies //

Clin Cancer Res. Clin Cancer Res, 2019. Vol. 25, № 7. P. 2042-2048.

Choi B.D. et al. CAR-T cells secreting BiTEs circumvent antigen escape without

detectable toxicity // Nat Biotechnol. Nat Biotechnol, 2019. Vol. 37, № 9. P.

1049-1058.

167

168

169

170

171

172

173

174

175

176

177

178

179

180

Choi B.D. et al. Immunotherapy for Glioblastoma: Adoptive T-cell Strategies // Clin Cancer Res. Clin Cancer Res, 2019. Vol. 25, № 7. P. 2042-2048. Nakashima H. et al. Toxicity and efficacy of a novel gadd34-expressing oncolytic hsv-1 for the treatment of experimental glioblastoma // Clinical Cancer Research. American Association for Cancer Research Inc., 2018. Vol. 24, № 11. P. 25742584.

Studebaker A.W. et al. Oncolytic Herpes Virus rRp450 Shows Efficacy in Orthotopic Xenograft Group 3/4 Medulloblastomas and Atypical Teratoid/Rhabdoid Tumors // Mol Ther Oncolytics. American Society of Gene and Cell Therapy, 2017. Vol. 6. P. 22-30.

Xu B. et al. An oncolytic herpesvirus expressing E-cadherin improves survival in mouse models of glioblastoma // Nature Biotechnology 2018 37:1. Nature Publishing Group, 2018. Vol. 37, № 1. P. 45-54.

Sette P. et al. GBM-Targeted oHSV Armed with Matrix Metalloproteinase 9 Enhances Anti-tumor Activity and Animal Survival // Mol Ther Oncolytics. Cell Press, 2019. Vol. 15. P. 214-222.

Puigdelloses M. et al. CD137 and PD-L1 targeting with immunovirotherapy induces a potent and durable antitumor immune response in glioblastoma models // J Immunother Cancer. BMJ Specialist Journals, 2021. Vol. 9, № 7. P. e002644. Rivera-Molina Y. et al. GITRL-armed Delta-24-RGD oncolytic adenovirus prolongs survival and induces anti-glioma immune memory // Neurooncol Adv. Oxford Academic, 2019. Vol. 1, № 1. P. 1-11.

Jiang H. et al. Oncolytic adenovirus and tumor-targeting immune modulatory therapy improve autologous cancer vaccination // Cancer Res. American Association for Cancer Research Inc., 2017. Vol. 77, № 14. P. 3894-3907. Pisklakova A. et al. M011L-deficient oncolytic myxoma virus induces apoptosis in brain tumor-initiating cells and enhances survival in a novel immunocompetent mouse model of glioblastoma // Neuro Oncol. Oxford Academic, 2016. Vol. 18, № 8. P. 1088-1098.

Zhu Z. et al. Zika virus has oncolytic activity against glioblastoma stem cells // Journal of Experimental Medicine. The Rockefeller University Press, 2017. Vol. 214, № 10. P. 2843-2857.

Chen Q. et al. Treatment of human glioblastoma with a live attenuated Zika virus vaccine candidate // mBio. American Society for Microbiology, 2018. Vol. 9, № 5.

Trus I. et al. Zika Virus with Increased CpG Dinucleotide Frequencies Shows Oncolytic Activity in Glioblastoma Stem Cells // Viruses 2020, Vol. 12, Page 579. Multidisciplinary Digital Publishing Institute, 2020. Vol. 12, № 5. P. 579. Twumasi-Boateng K. et al. Oncolytic viruses as engineering platforms for combination immunotherapy // Nat Rev Cancer. Nat Rev Cancer, 2018. Vol. 18, № 7. P. 419-432.

Zhu Z. et al. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways // Molecular Cancer 2022 21:1. BioMed Central, 2022. Vol. 21, № 1. P. 1-29.

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

Ribas A. et al. Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy // Cell. Cell Press, 2017. Vol. 170, № 6. P. 1109-1119.e10.

Hardcastle J. et al. Immunovirotherapy with measles virus strains in combination with anti-PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment // Neuro Oncol. Oxford Academic, 2017. Vol. 19, № 4. P. 493-502. Samson A. et al. Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade // Sci Transl Med. American Association for the Advancement of Science, 2018. Vol. 10, № 422. Fukuhara H., Ino Y., Todo T. Oncolytic virus therapy: A new era of cancer treatment at dawn // Cancer Sci. Blackwell Publishing Ltd, 2016. Vol. 107, № 10. P.1373-1379.

Martinez-Velez N. et al. Delta-24-RGD combined with radiotherapy exerts a potent antitumor effect in diffuse intrinsic pontine glioma and pediatric high grade glioma models // Acta Neuropathol Commun. NLM (Medline), 2019. Vol. 7, № 1. P. 64.

Rajaraman S. et al. Measles Virus-Based Treatments Trigger a Pro-inflammatory Cascade and a Distinctive Immunopeptidome in Glioblastoma // Mol Ther Oncolytics. Cell Press, 2019. Vol. 12. P. 147-161.

Liu Q. et al. Nano-immunotherapy: Unique mechanisms of nanomaterials in synergizing cancer immunotherapy // Nano Today. Elsevier, 2021. Vol. 36. P. 101023.

Nakamura T. et al. Combined nano cancer immunotherapy based on immune status in a tumor microenvironment // Journal of Controlled Release. Elsevier, 2022. Vol. 345. P. 200-213.

Abdou P. et al. Advances in engineering local drug delivery systems for cancer immunotherapy // Wiley Interdiscip Rev Nanomed Nanobiotechnol. Wiley-Blackwell, 2020. Vol. 12, № 5. P. e1632.

Lin Y.X. et al. RNA Nanotechnology-Mediated Cancer Immunotherapy // Theranostics. Ivyspring International Publisher, 2020. Vol. 10, № 1. P. 281-299. Pinton L. et al. Targeting of immunosuppressive myeloid cells from glioblastoma patients by modulation of size and surface charge of lipid nanocapsules // J Nanobiotechnology. BioMed Central Ltd., 2020. Vol. 18, № 1. P. 1-12. Petersen T.R. et al. Potent anti-tumor responses to immunization with dendritic cells loaded with tumor tissue and an NKT cell ligand // Immunol Cell Biol. John Wiley & Sons, Ltd, 2010. Vol. 88, № 5. P. 596-604.

Adamus T. et al. Glioma-targeted delivery of exosome-encapsulated antisense oligonucleotides using neural stem cells // Mol Ther Nucleic Acids. Cell Press, 2022. Vol. 27. P. 611-620.

Oraee-Yazdani S. et al. Intracerebral Administration of Autologous Mesenchymal Stem Cells as HSV-TK Gene Vehicle for Treatment of Glioblastoma Multiform: Safety and Feasibility Assessment // Mol Neurobiol. Springer, 2021. Vol. 58, № 9. P.4425-4436.

Mur P. et al. Impact on prognosis of the regional distribution of MGMT methylation with respect to the CpG island methylator phenotype and age in

196

197

198

199

200

201

202

203

204

205

206

207

208

209

glioma patients // J Neurooncol. Springer New York LLC, 2015. Vol. 122, № 3. P. 441-450.

Zhang C. et al. High level of miR-221/222 confers increased cell invasion and poor prognosis in glioma // J Transl Med. BioMed Central, 2012. Vol. 10, № 1. P. 1-11.

Silantyev A.S. et al. Current and Future Trends on Diagnosis and Prognosis of

Glioblastoma: From Molecular Biology to Proteomics // Cells. Multidisciplinary

Digital Publishing Institute (MDPI), 2019. Vol. 8, № 8. P. 863.

Lam K.H.B. et al. Topographic mapping of the glioblastoma proteome reveals a

triple-axis model of intra-tumoral heterogeneity // Nature Communications 2022

13:1. Nature Publishing Group, 2022. Vol. 13, № 1. P. 1-14.

Ghantasala S. et al. Glioma tumor proteomics: clinically useful protein biomarkers

and future perspectives // https://doi.org/10.1080/14789450.2020.1731310. Taylor

& Francis, 2020. Vol. 17, № 3. P. 221-232.

Lipatova A. v. et al. Multi-Omics Analysis of Glioblastoma Cells' Sensitivity to Oncolytic Viruses // Cancers (Basel). Cancers (Basel), 2021. Vol. 13, № 21. Tarasova I.A. et al. Comparative proteomics as a tool for identifying specific alterations within interferon response pathways in human glioblastoma multiforme cells // Oncotarget. Oncotarget, 2017. Vol. 9, № 2. P. 1785-1802. Monie D.D. et al. Synthetic and systems biology principles in the design of programmable oncolytic virus immunotherapies for glioblastoma // Neurosurg Focus. 2021. Vol. 50, № 2.

Mariappan A. et al. Trends and challenges in modeling glioma using 3D human brain organoids // Cell Death & Differentiation 2020 28:1. Nature Publishing Group, 2020. Vol. 28, № 1. P. 15-23.

Hubert C.G. et al. A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found In Vivo // Cancer Res. Cancer Res, 2016. Vol. 76, № 8. P. 2465-2477.

Bian S. et al. Author Correction: Genetically engineered cerebral organoids model brain tumor formation // Nat Methods. Nat Methods, 2018. Vol. 15, № 9. P. 748. da Silva B. et al. Spontaneous Glioblastoma Spheroid Infiltration of Early-Stage Cerebral Organoids Models Brain Tumor Invasion // SLAS Discovery. SAGE Publications Inc., 2018. Vol. 23, № 8. P. 862-868.

Yi H.G. et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy // Nat Biomed Eng. Nat Biomed Eng, 2019. Vol. 3, № 7. P. 509-519.

Azzarelli R. et al. Three-dimensional model of glioblastoma by co-culturing tumor stem cells with human brain organoids // Biol Open. Biol Open, 2021. Vol. 10, № 2.

Xu X. et al. Opportunities and challenges of glioma organoids // Cell Communication and Signaling 2021 19:1. BioMed Central, 2021. Vol. 19, № 1. P. 1-13.

210

211

212

213

214

215

216

217

218

219

220

221

222

223

Kloker L.D., Yurttas C., Lauer U.M. Three-dimensional tumor cell cultures employed in virotherapy research // Oncolytic Virother. Dove Press, 2018. Vol. 7. P. 79-93.

Spiesschaert B. et al. Combining Oncolytic Viruses and Small Molecule Therapeutics: Mutual Benefits // Cancers 2021, Vol. 13, Page 3386. Multidisciplinary Digital Publishing Institute, 2021. Vol. 13, № 14. P. 3386. Stojdl D.F. et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus // Nature Medicine 2000 6:7. Nature Publishing Group, 2000. Vol. 6, № 7. P. 821-825.

Tarasova I.A. et al. Comparative proteomics as a tool for identifying specific alterations within interferon response pathways in human glioblastoma multiforme cells // Oncotarget. Impact Journals, 2017. Vol. 9, № 2. P. 1785-1802. Grünvogel O. et al. Type I and type II interferon responses in two human liver cell lines (Huh-7 and HuH6) // Genom Data. Elsevier, 2016. Vol. 7. P. 166-170. Hadjadj J. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients // Science (1979). American Association for the Advancement of Science, 2020. Vol. 369, № 6504. P. 718-724. Lupberger J. et al. Epidermal growth factor receptor signaling impairs the antiviral activity of interferon-alpha // Hepatology. John Wiley & Sons, Ltd, 2013. Vol. 58, № 4. P. 1225-1235.

Zhang Y.G. et al. EGFR Activation Impairs Antiviral Activity of Interferon Signaling in Brain Microvascular Endothelial Cells During Japanese Encephalitis Virus Infection // Front Microbiol. Frontiers Media S.A., 2022. Vol. 13. P. 2194. Daniel M.D., Melendez L. V. Long Term Maintenance of Cell Cultures under Agar Overlay and Development of Herpes T Plaques // https://doi.org/10.3181/00379727-127-32835. SAGE PublicationsSage UK: London, England, 1968. Vol. 127, № 3. P. 919-925.

Volume 1: The Herpesviruses | New York; Plenum Press; 1982. 445 p. graf, tab, ilus.(The Viruses, 1). | LILACS | SES-SP | SESSP-IALACERVO [Electronic resource]. URL: https://pesquisa.bvsalud.org/portal/resource/pt/biblio-1399578 (accessed: 05.06.2023).

Gozalo A.S., Montoya E.J., Weller R.E. Dyscoria Associated with Herpesvirus Infection in Owl Monkeys (Aotus nancymae) // J Am Assoc Lab Anim Sci. American Association for Laboratory Animal Science, 2008. Vol. 47, № 4. P. 68. Fickenscher H., Fleckenstein B. Herpesvirus saimiri. // Philosophical Transactions of the Royal Society of London. Series B. The Royal Society, 2001. Vol. 356, № 1408. P. 545.

Wright J. et al. Mononuclear Cell Fraction Carrying Herpesvirus saimiri in Persistently Infected Squirrel Monkeys // JNCI: Journal of the National Cancer Institute. Oxford Academic, 1976. Vol. 57, № 4. P. 959-962. T G. et al. Detection of circular and linear herpesvirus DNA molecules in mammalian cells by gel electrophoresis // J Virol. J Virol, 1984. Vol. 50, № 1. P. 248-254.

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

Daniel M.D. et al. Isolation of Herpes-T virus from a spontaneous disease in squirrel monkeys (Saimiri sciureus) // Arch Gesamte Virusforsch. SpringerVerlag, 1967. Vol. 22, № 3-4. P. 324-331.

Biesinger B. et al. Stable growth transformation of human T lymphocytes by herpesvirus saimiri. // Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences, 1992. Vol. 89, № 7. P. 31163119.

E S., P M., C M. In vitro immortalization of marmoset cells with three subgroups of herpesvirus saimiri // J Virol. J Virol, 1987. Vol. 61, № 11. P. 3485-3490. Knappe A. et al. Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri // J Virol. J Virol, 2000. Vol. 74, № 8. P. 3881-3887.

Hoyle J., Honess R.W., Randall R.E. Differential expression of two immediate early genes of herpesvirus saimiri as detected by in situ hybridization // J Gen Virol. J Gen Virol, 1990. Vol. 71 ( Pt 12), № 12. P. 3005-3008. Knappe A. et al. The superantigen-homologous viral immediate-early gene ie14/vsag in herpesvirus saimiri-transformed human T cells // J Virol. American Society for Microbiology, 1997. Vol. 71, № 12. P. 9124-9133. Fickenscher H. et al. Regulation of the herpesvirus saimiri oncogene stpC, similar to that of T-cell activation genes, in growth-transformed human T lymphocytes // J Virol. 1996. Vol. 70, № 9. P. 6012-6019.

Ensser A. et al. The URNA Genes of Herpesvirus Saimiri (Strain C488) Are Dispensable for Transformation of Human T Cells In Vitro // J Virol. 1999. Vol. 73, № 12. P. 10551-10555.

Jung J.U., Desrosiers R.C. Distinct Functional Domains of STP-C488 of Herpesvirus Saimiri // Virology. Academic Press, 1994. Vol. 204, № 2. P. 751758.

Hör S. et al. Herpesvirus saimiri protein StpB associates with cellular Src // Journal of General Virology. Society for General Microbiology, 2001. Vol. 82, № 2. P. 339-344.

Rother R.P. et al. Inhibition of complement-mediated cytolysis by the terminal complement inhibitor of herpesvirus saimiri // J Virol. American Society for Microbiology, 1994. Vol. 68, № 2. P. 730-737.

Rother R. et al. Expression of recombinant transmembrane CD59 in paroxysmal nocturnal hemoglobinuria B cells confers resistance to human complement // Blood. American Society of Hematology, 1994. Vol. 84, № 8. P. 2604-2611. Thome M. et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors // Nature 1997 386:6624. Nature Publishing Group, 1997. Vol. 386, № 6624. P. 517-521.

Glykofrydes D. et al. Herpesvirus Saimiri vFLIP Provides an Antiapoptotic Function but Is Not Essential for Viral Replication, Transformation, or Pathogenicity // J Virol. American Society for Microbiology, 2000. Vol. 74, № 24. P.11919-11927.

Derfuss T. et al. Antiapoptotic Activity of the Herpesvirus Saimiri-Encoded Bcl-2 Homolog: Stabilization of Mitochondria and Inhibition of Caspase-3-Like

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

Activity // J Virol. American Society for Microbiology, 1998. Vol. 72, № 7. P. 5897-5904.

Fossiez F. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. // Journal of Experimental Medicine. The Rockefeller University Press, 1996. Vol. 183, № 6. P. 2593-2603. Ahuja S.K., Murphy P.M. Molecular piracy of mammalian interleukin-8 receptor type B by herpesvirus saimiri. // Journal of Biological Chemistry. Elsevier, 1993. Vol. 268, № 28. P. 20691-20694.

Duboise S.M. et al. STP and Tip Are Essential for Herpesvirus Saimiri Oncogenicity // J Virol. 1998. Vol. 72, № 2. P. 1308-1313. Murthy S.C., Trimble J.J., Desrosiers R.C. Deletion mutants of herpesvirus saimiri define an open reading frame necessary for transformation // J Virol. 1989. Vol. 63, № 8. P. 3307-3314.

Biesinger B. et al. The divergence between two oncogenic Herpesvirus saimiri strains in a genomic region related to the transforming phenotype // Virology. Academic Press, 1990. Vol. 176, № 2. P. 505-514.

Hör S. et al. Herpesvirus saimiri protein StpB associates with cellular Src // Journal of General Virology. Society for General Microbiology, 2001. Vol. 82, № 2. P. 339-344.

Jung J.U. et al. Downregulation of Lck-mediated signal transduction by tip of herpesvirus saimiri // J Virol. 1995. Vol. 69, № 12. P. 7814-7822. Lee H. et al. Role of Cellular Tumor Necrosis Factor Receptor-Associated Factors in NF-kB Activation and Lymphocyte Transformation by Herpesvirus Saimiri STP // J Virol. 1999. Vol. 73, № 5. P. 3913-3919.

Jung J.U. et al. Identification of Lck-binding Elements in Tip of Herpesvirus Saimiri // Journal of Biological Chemistry. 1995. Vol. 270, № 35. P. 2066020667.

Kjellen P. et al. The Herpesvirus Saimiri Tip484 and Tip488 Proteins Both Stimulate Lck Tyrosine Protein Kinase Activity in Vivo and in Vitro // Virology. Academic Press, 2002. Vol. 297, № 2. P. 281-288. Lund T.C. et al. The Lck Binding Domain of Herpesvirus Saimiri Tip-484 Constitutively Activates Lck and STAT3 in T Cells // J Virol. 1999. Vol. 73, № 2. P.1689-1694.

Damania B., Jung J.U. Comparative analysis of the transforming mechanisms of Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, and herpesvirus saimiri // Adv Cancer Res. Academic Press, 2001. Vol. 80. P. 51-82. Harada M.L. et al. DNA Evidence on the Phylogenetic Systematics of New World Monkeys: Support for the Sister-Grouping of Cebus and Saimiri from Two Unlinked Nuclear Genes // Mol Phylogenet Evol. Academic Press, 1995. Vol. 4, № 3. P. 331-349.

Trimble J.J., Desrosiers R.C. Transformation by Herpesvirus Saimiri // Adv Cancer Res. Academic Press, 1991. Vol. 56, № C. P. 335-355. Falk L. et al. Epstein-barr virus: Transformation of non-human primate lymphocytes in vitro // Int J Cancer. John Wiley & Sons, Ltd, 1974. Vol. 13, № 3. P. 363-376.

254

255

256

257

258

259

260

261

262

263

264

265

266

267

Meinl E., Hohlfeld R. T cell transformation with Herpesvirus saimiri: a tool for neuroimmunological research // J Neuroimmunol. Elsevier, 2000. Vol. 103, № 1. P. 1-7.

Ensser A., Fleckenstein B. T-Cell Transformation and Oncogenesis by y2-Herpesviruses // Adv Cancer Res. Academic Press, 2005. Vol. 93. P. 91-128. Troidl B. et al. Karyotypic characterization of human T-cell lines immortalized by Herpesvirus saimiri // Int J Cancer. John Wiley & Sons, Ltd, 1994. Vol. 56, № 3. P. 433-438.

Cabanillas J.A. et al. Characterization of Herpesvirus saimiri-transformed T lymphocytes from common variable immunodeficiency patients // Clin Exp Immunol. Oxford Academic, 2002. Vol. 127, № 2. P. 366-373. Mittrücker H.W. et al. CD2-mediated autocrine growth of herpes virus saimiri-transformed human T lymphocytes. // Journal of Experimental Medicine. 1992. Vol. 176, № 3. P. 909-913.

Schäfer A. et al. The Latency-Associated Nuclear Antigen Homolog of Herpesvirus Saimiri Inhibits Lytic Virus Replication // J Virol. American Society for Microbiology, 2003. Vol. 77, № 10. P. 5911-5925. Smith P.G. et al. In vivo episomal maintenance of a herpesvirus saimiri-based gene delivery vector // Gene Therapy 2001 8:23. Nature Publishing Group, 2002. Vol. 8, № 23. P. 1762-1769.

Hall K.T. et al. The Herpesvirus Saimiri Open Reading Frame 73 Gene Product

Interacts with the Cellular Protein p32 // J Virol. American Society for

Microbiology, 2002. Vol. 76, № 22. P. 11612-11622.

Ensser A. et al. The genome of herpesvirus saimiri C488 which is capable of

transforming human T cells // Virology. Academic Press, 2003. Vol. 314, № 2. P.

471-487.

Horton R.M. et al. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension // Gene. Gene, 1989. Vol. 77, № 1. P. 61-68.

Ramakrishnan M.A. Determination of 50% endpoint titer using a simple formula. // World J Virol. Baishideng Publishing Group Inc., 2016. Vol. 5, № 2. P. 85-86. Bewley K.R. et al. Quantification of SARS-CoV-2 neutralizing antibody by wildtype plaque reduction neutralization, microneutralization and pseudotyped virus neutralization assays // Nature Protocols 2021 16:6. Nature Publishing Group, 2021. Vol. 16, № 6. P. 3114-3140.

Nikitina A.S. et al. Multiomic Profiling Identified EGF Receptor Signaling as a Potential Inhibitor of Type I Interferon Response in Models of Oncolytic Therapy by Vesicular Stomatitis Virus // Int J Mol Sci. MDPI, 2022. Vol. 23, № 9. P. 5244. Hamad A., Chumakov S.P. Engineering a recombinant herpesvirus saimiri strain by co-culturing transfected and permissive cells // Bulletin of Russian State Medical University. Pirogov Russian National Research Medical University, 2019. Vol. 9, № 6. P. 37-44.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.