Development and investigation of the oncolytic activity of genetically engineered vaccinia virus strains expressing immunomodulatory agents/Разработка и исследование рекомбинантных онколитических штаммов осповакцины, экспрессирующих иммуномодулирующие агенты тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Шакиба Йасмин

  • Шакиба Йасмин
  • кандидат науккандидат наук
  • 2023, ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)»
  • Специальность ВАК РФ00.00.00
  • Количество страниц 126
Шакиба Йасмин. Development and investigation of the oncolytic activity of genetically engineered vaccinia virus strains expressing immunomodulatory agents/Разработка и исследование рекомбинантных онколитических штаммов осповакцины, экспрессирующих иммуномодулирующие агенты: дис. кандидат наук: 00.00.00 - Другие cпециальности. ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)». 2023. 126 с.

Оглавление диссертации кандидат наук Шакиба Йасмин

TABLE OF CONTENTS

Introduction

CHAPTER 1. LITERATURE REVIEW

1.1 General information about oncolytic viruses and oncolytic viral immunotherapy

1.2 Biology of vaccinia virus

1.2.1 Genome structure, replication, and transcription

1.2.2 Phylogenetic analysis of the virus

1.2.3 Vaccinia virus life cycle

1.2.4 Spread

1.3 Vaccinia virus oncolytic properties

1.3.1 Cancer-selective oncolytic vaccinia viruses

1.3.2 Armed oncolytic vaccinia viruses

1.3.3 Arming vaccinia virus with interleukin15 and its receptor

1.3.4 Arming vaccinia virus with bacterial flagellin as an immunostimulatory molecule

1.4 Preclinical data on oncolytic vaccinia virus

1.5 Clinical data on oncolytic vaccinia virus

1.5.1 Clinical data on wild-type vaccinia virus

1.5.2 Clinical data on recombinant oncolytic vaccinia viruses

1.6 Oncolysates

1.6.1 Clinical data about oncolysates

1.7 Cell carriers for oncolytic vaccinia virus

1.8 Oncolytic vaccinia virus in combination with other therapies

1.8.1 Vaccinia virus in combination with chemotherapy

1.8.2 Vaccinia virus in combination with radiotherapy

1.8.3 Vaccinia virus in combination with other oncolytic viruses

1.8.4 Vaccinia virus in combination with hyperthermia

1.9 Safety concerns

CHAPTER 2. MATERIALS AND METHODS

2.1 Materials and reagents used in the work

2.1.1 Reagents:

2.1.2 Buffer solutions:

2.1.3 Oligonucleotide primers:

2.1.4 Bacterial culture media:

2.1.5 Strain of Escherichia coli and plasmids used in this work:

2.2 Cell culture

2.3 Cell freezing

2.4 Preparations and construction of the recombinant vaccinia virus strains used in this work

2.4.1 Production of DNA plasmid in Escherichia Coli strain 10 beta

2.4.2 DNA cutting with restriction endonucleases

2.4.3 Fractionation of DNA plasmid by agarose gel electrophoresis

2.4.4 Elution of DNA fragments from agarose gel

2.4.5 Obtaining the insertions

2.4.6 PCR

2.4.7 Ligation of the vector plasmid with DNA fragments

2.4.8 Isolation of plasmid DNA

2.4.9 Transfection of the plasmid DNA, optimizing TK-deficient strains, and

obtaining pure recombinant virus clones

2.5 Western blotting

2.6 Sequencing/ Isolation of genomic DNA

2.7 Production of recombinant viruses and sucrose purification

2.8 Virus titration

2.9 Determination of the sensitivity of tumor cell lines to the recombinant strains of vaccinia virus by MTT-assay

2.10 Determining the viral infection efficacy in the tumor cell lines by titration using the Reed and Muench method

2.11 Viral kinetics by the Flow cytometry

2.12 Bioluminescence assay in vitro

2.13 Evaluation of LIVP-FlaB-RFP induced cytotoxicity in the presence of macrophages in vitro

2.14 Obtaining allografts of tumor models in immunocompetent mice

2.15 Introduction of vaccinia virus recombinant strains into the body of immunocompetent mice to induce viral oncolysis

2.16 Cytokine analysis

2.17 Real-time quantitative PCR

2.18 Analysis of the tumor infiltrating lymphocytes

2.19 Enzyme-linked Immunosorbent Assay

2.20 Statistical analysis

CHAPTER 3. RESULTS

3.1 A comparative study of the oncolytic activities of two strains of vaccinia virus

3.1.1 Cytotoxicity assessment of the LIVP-RFP and MVA-RFP

5

3.1.2 Flow cytometric assessment of the viral kinetics

3.1.3 Oncolytic efficacy of the recombinant vaccinia viruses in vivo

3.2 Oncolytic activity of the LIVP-FlaB-RFP

3.2.1 Construction of the recombinant viruses and confirmation of the transgene expression

3.2.2 Assessment of the recombinant virus's replication efficiency, kinetics, and cytotoxicity

3.2.3 Flagellin expression increases macrophage's cytolytic activity in vitro

3.2.4 The administration of the LIVP results in significant viral deposition within the tumor but not in normal organs

3.2.5 Flagellin expression augments the oncolytic activity of the LIVP in the murine melanoma models

3.2.6. Vaccinia virus expressing flagellin modulates the tumor microenvironment

3.3 Experiment with LIVP-IL15-RFP and LIVP-IL15Ra-RFP

3.3.1 Construction and characteristics of the recombinant viruses

3.3.2 Recombinant strains efficiently replicate and lyse tumor cells in vitro

3.3.3 Detection of IL15/IL15Receptor alpha complex in vitro

3.3.4 The combination of the LIVP-IL15-RFP and LIVP-IL 15Ra-RFP strains cause a synergetic oncolytic effect in vivo

3.3.5 Recombinant strains modulate the tumor microenvironment

3.3.6 Cytokine analysis of the Sera and tumor tissue

Chapter 4. DISCUSSION

4.1 LIVP strain has an excellent oncolytic property compared with MVA

4.2 Recombinant strain LIVP-FlaB-RFP elicits significant tumor regression in melanoma models

4.3. Simultaneous injection of LIVP-IL15-RFP with LIVP-IL15Ra-RFP exhibits

significant oncolytic activity in breast cancer models

Conclusion

Findings and outlook

Ethics

List of abbreviations

Acknowledgment

References

Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Введение диссертации (часть автореферата) на тему «Development and investigation of the oncolytic activity of genetically engineered vaccinia virus strains expressing immunomodulatory agents/Разработка и исследование рекомбинантных онколитических штаммов осповакцины, экспрессирующих иммуномодулирующие агенты»

Introduction

Metastatic cancer still remains an incurable disease. When cancer cells begin to spread in the form of metastases, it is necessary to provide systemic therapy that selectively kills malignant cells. Unfortunately, for over a half of century, the primary agents for systemic cancer therapy have been chemotherapy drugs which are often accompanied by numerous adverse side effects that worsen patient's quality of life, suppress natural antitumor immunity, promote therapy-resistant variants of tumor cells, and has a low contribution to 5-years survival of the patients [1, 2]. Thus, prerequisites have emerged for developing targeted biotherapy approaches based on modulating the natural mechanisms of rejection and destruction of malignant cells to treat cancer [3, 4]. This includes various immunotherapeutic strategies that use the host's innate and adaptive antitumor immunity or the creation of recombinant vectors carrying specific features directed explicitly against tumor cells [5]. Amongst all methods, live oncolytic viruses for cancer therapy have recently gained enormous attention [6].

Oncolytic viruses can predominantly replicate in tumor cells causing their death. In addition to the direct cytolytic effect, viruses can significantly enhance antitumor immunity. They attract immune system components to recognize and destroy cancer cells [7, 8]. Several clinical trials have demonstrated the high efficiency of these methods, especially when applied to metastatic cancer. Unlike chemotherapy, such virotherapy has minimal adverse side effects [9, 10].

Vaccinia Virus (VV) has been shown to hold promising oncolytic properties. Since the 1980s, VV strains have been used as vectors for active immunization of cancer and infectious disease [11]. Several advantages make VV a promising agent for oncolytic therapy. First, VV was used as a live vaccine in the World Health Organization (WHO) smallpox eradication program in which over 200 million people were vaccinated, this makes VV an exceptionally safe oncolytic agent and gene vector [12], even in case of emergency related to VV infection vaccinia immunoglobulins,

and antiviral medications are widely available [13]. Second, VV has a large genome of approximately 190 kb making it suitable for genetic manipulation. It enables large amounts of foreign DNA to be inserted into its genome without severely reducing the virus replication efficiency [14]. Third, replication of the virus within the cytoplasm minimizes the chance of integration of viral DNA into the host's genome, and its DNA-based genome makes it more stable than RNA viruses [15]. Finally, VV naturally has a tropism to infect tumor cells while it can evade the host's antiviral immune responses [7]. Numerous genetic engineering approaches have been employed to develop VV recombinant strains with enhanced oncolytic activities; for instance, recombinant VV with the deletion of the thymidine kinase (TK) gene, that is involved in the viral genome synthesis, improves tumor selectivity of the VV by limiting replication to nucleotide rich fast-proliferating cancerous tissues [16], or expression of immune-modulatory molecules such as cytokines or chemokines by VV drastically fortifies its oncolytic properties [17].

Interleukin (IL)-15 is a pleiotropic cytokine that plays an essential role in the development, activation, and survival of T, natural killer (NK), and NK-T cells [18]. IL-15 receptor subunit alpha (IL-15Ra) is one of the primary receptors required to mediate the IL-15 signaling pathway. It can bind to IL-15 independently from other subunits with high affinity forming an IL-15/IL-15Ra complex on the surface of the activated monocytes. This complex promotes the survival of T cells [19]. IL-15 and IL-15Ra are actively being tested in Phase I and II clinical trials with evidence of immune modulation in cancer patients [20-22].

Another interesting immunostimulatory molecule is bacterial flagellin. Flagellin is a ligand for the toll-like receptor- 5 (TLR-5). TLR-5 activation has been shown to effectively increases necrosis and causes tumor regression [23, 24]. In addition, bacterial flagellins strongly stimulate the innate immune response in mammalian cells. Exposure to flagellin promotes virus attachment to epithelial cells, increasing virus entry via TLR5-dependent activation of NF-kB (Nuclear factor kappa-light-chain) [25].

The current study used the vaccinia virus Lister strain from the Institute of Virus Preparations, Moscow, Russia (LIVP) to develop genetically engineered strains. This strain is an attenuated variant that has not been extensively studied yet, but there have been reports that it holds promising oncolytic properties [26-28]. First, we compared the oncolytic activity of this strain with the modified vaccinia Ankara (MVA) strain, a well-established oncolytic strain. Results indicated excellent oncolytic activity of LIVP with fewer inflammatory reactions. Then, to enhance the oncolytic property of LIVP recombinant strains which express interleukin-15 or interleukin-15 receptor subunit alpha or bacterial flagellin subunit B were developed. Also, all developed strains have TK gene deletion to enhance tumor selectivity. Afterward, we assessed these strain's oncolytic potential in vitro and in vivo in different tumor cell line models, including 4T1breast carcinoma, B16 melanoma, and CT26 colon carcinoma. Moreover, for in vivo imaging, we constructed LIVP expressing firefly luciferase to detect the biodistribution of the virus after administration to the tumor-bearing mice models. After treatment, analysis of tumor-infiltrated lymphocytes and cytokines were conducted. Our results revealed that simultaneous injection of viruses expressing IL-15 with the strain expresses IL-15-receptor alpha can form IL15/IL15Ra complex, which is the bioactive form of IL-15, and has a promising anti-tumor potential in 4T1 breast cancer models leading to regression of tumors up to 80%. Analysis indicated tumor regression in this group is associated with enhanced level of CD8+cells at the tumor. LIVP strain expressing bacterial flagellin has shown excellent anti-tumor activity in B16 melanoma models with tumor regression rate of 50%, and treatment enhanced recruitment of the macrophages at the tumor. Besides, in both groups significant elevation of the cytokines TNF-a and GM-CSF were detected at tumor microenvironment. Moreover, by in vivo imaging it has been revealed that recombinant viruses have favorable onco-selectivity and biodistribution in the tumor foci.

PURPOSE OF THE WORK AND TASKS

The primary goal of this study was to develop recombinant strains of VV expressing immunomodulatory agents for the treatment of various malignant neoplasm, and evaluate the safety and impact of viral therapy on the immune system. According to the goal of the study, we set the following objectives:

- Compare the efficacy of two VV strains, LIVP and MVA deficient in TK gene expression in vitro and in vivo.

- Developing LIVP strain expressing murine IL-15 and IL-15Ra and evaluating their oncolytic properties in combination with each other or alone in 4T1breast carcinoma, B16 melanoma, and CT26 colon carcinoma in vitro and in vivo.

- Developing LIVP strain expressing B subunit of flagellin from Vibrio vulnificus (FlaB) and evaluating its oncolytic properties in 4T1breast carcinoma, B16 melanoma, and CT26 colon carcinoma in vitro and in vivo.

- Investigation of the immune response modulation by the recombinant variants via analyzing the level of thirteen different cytokines in tumor-infiltrated fluids and sera of the treated mice, and by examination of the tumor-infiltrated lymphocytes.

- Developing LIVP strain expressing firefly luciferase (Fluc) for in vivo bioluminescence imaging.

SCIENTIFIC NOVELTY

All the results presented in this Thesis are original. In this study, we offer facile and versatile approaches for cancer treatment based on the LIVP strain of VV for the first time. We demonstrated this strain has the potential for further genetic modifications. We showed a simultaneous injection of two recombinant variants, one expressing IL-15 and another expressing IL-15Ra can form the bioactive complex of IL15/IL15Ra to treat a highly invasive breast cancer model. Moreover, another strain encoding

bacterial flagellin is an excellent variant for the melanoma treatment.

11

PRACTICAL SIGNIFICANCE

Vaccinia virus Lister strain from the Institute of Virus Preparations, Moscow, Russia (LIVP) expressing bacterial flagellin, causes significant tumor regression, up to 50%, in B16 melanoma syngeneic mice models. In addition, the same strain (LIVP) expressing interleukin-15 in combination with the strain expressing interleukin-15 receptor alpha resulted in significant tumor regression, up to 80%, in 4T1 breast cancer mice models. In both cases survival rate of treated mice significantly prolonged.

STRUCTURE AND SCOPE OF THE DISSERTATION

The Thesis includes the following parts: Abstract, Literature Review, Materials and Methods, Results, Discussion, Conclusion, Outlook, and References. The Thesis has three independent sets of experiments, and the results are shown in three sections. The work includes 126 pages and 35 figures. The references include 192 publications.

AUTHOR'S CONTRIBUTION

The results presented in this Thesis were obtained by the applicant from 4 years-long

scientific work as a Ph.D. student of Moscow Institute of Physics & Technology in

collaboration with the Engelhardt Institute of Molecular Biology, Russian Academy

of Science (EIMB, RAS). The applicant worked in a scientific group supervised by

Dr. Anastasia Lipatova and Prof. Peter Chumakov. Laboratory experiments, data

analysis, preparation of manuscripts, and conference posters were done by the

applicant or with active cooperation with the applicant. In vivo imaging was

conducted at the Department of Neurobiology, V. Serbsky Federal Medical Research

Centre of Psychiatry and Narcology of the Ministry of Health of the Russian

Federation, with assistance of Dr. Victor Naumenko. Histological analysis was

12

conducted at the Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies FMBA of Russia with assistance of Dr. Vladimir Baklaushev. Sequencing was carried out at the Genome Center, EIMB RAN.

APPROBATION OF THE WORK

The main provisions of the Thesis were reported at the Interlaboratory Colloquium of the Institute of Molecular Biology named after Engelhardt RAS (2023) and at the following conference:

- Y. Shakiba, "Simultaneous injection of recombinant vaccinia virus expressing interleukin-15 with interleukin-15 receptor alpha has synergistic effects on solid tumors", LOMONOSOV international conference, April 2022. (Selected as the best poster presentation in a Virology section).

- Y. Shakiba, "Monitoring of the oncolytic recombinant vaccinia virus infection in different tumor cell lines in vitro and in vivo," LOMONOSOV international conference, April 2021.

- Y. Shakiba. "Recombinant oncolytic Vaccinia Virus strains for treatment of malignant neoplasms" FEBS CONGRESS, July 2021.

PUBLICATIONS

1. Y Shakiba, P. Vorobyev, V Naumenko, D Kochetkov, K Zajtseva, M Valikhov, G. Yusubalieva, Y Gumennaya, E Emelyanov, A Semkina, V Baklaushev, P Chumakov, A Lipatova. Oncolytic Efficacy of a Recombinant Vaccinia Virus Strain Expressing Bacterial Flagellin in Solid Tumor Models. Viruses, 2023, 15(4), 828. DOI: 10.3390/v15040828.

2. Y Shakiba, M Volskaya, O Tikhonova, P Vorobyov, A Lipatova. Oncolytic Vaccinia Virus Strains for The Immunotherapy of Malignant Diseases. OHKorHHeKonoraa, 2020, T. 3. C. 4. DOI: 10.52313/22278710_2020_2_4.

3. Y. Shakiba, E Naberezhnaya, D Kochetkov, G Yusubalieva, V Baklaushev, P

13

Chumakov, A Lipatova A comparative study of oncolytic efficacy of thymidine kinase deficient LIVP-RFP and MVA-RFP strains of vaccinia virus in solid tumors. Bulletin of Russian State Medical University. 2023 (2). DOI: 10.24075/brsmu.2023.010.

4. A Nikitina, A Lipatova, A Goncharov, P Vorobyev, O Alekseeva, M Mahmoud, Y Shakiba, K Anufrieva, G Arapidi, M Ivanov, I Tarasova, M Gorshkov, P Chumakov, S Moshkovskii. Multiomic Profiling Identified EGF Receptor Signaling as a Potential Inhibitor of Type I Interferon Response in Models of Oncolytic Therapy by Vesicular Stomatitis Virus. International journal of molecular sciences. - 2022. - T. 23. - №. 9. - C. 5244. DOI: 10.3390/ijms23095244

In press:

5. Y. Shakiba, P Vorobyev, D Kochetkov, K Zajtseva, M Valikhov, G Yusubalieva, V Kalsin, F Zabozlaev, A Semkina, A Troitskiy, P Chumakov, V Baklaushev, A Lipatova.Oncolytic therapy with recombinant vaccinia viruses targeting the interleukin-15 pathway elicits a synergistic response. Molecular therapy (Oncolytics) - (Accepted, May 2023). DOI: 10.1016/j.omto.2023.05.002.

6. Y. Shakiba, P.Vorobyev, M. Mahmoud, A. Hamad , D.Kochetkov, G. Yusubalieva, V.Baklaushev, P Chumakov, A.Lipatova. Recombinant strains of oncolytic vaccinia virus for cancer immunotherapy. Biochemistry (Moscow) -(Accepted, April 2023).

PATENT

- A program for searching the specific repertoire of codon usage in stem tumor cells of various tissue origins. Patent number: 2020612286. Andrei Zheltukhin, Azzam Hammad, Yasmin Shakiba. 2020.

Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Заключение диссертации по теме «Другие cпециальности», Шакиба Йасмин

Conclusion

This work aimed to evaluate the oncolytic activity of new promising recombinant oncolytic strains of the vaccinia virus. Our study represents simple approaches to exploiting immune-suppressive tumors and converting them into opportunities for targeted immunotherapy, and give insight to the more selective choice of oncolytic virus strain for specific tumor treatment. Our results support that the vaccinia virus LIVP strain is a prospective oncolytic agent. Arming it with immunomodulatory agents mediates its oncolytic efficacy via direct cytolysis and activation of the immune response at the TME. Administration of LIVP recombinant strains expressing IL-15 and IL-15Ra together elicits significant tumor regression in 4T1 models and LIVP strain expressing bacterial flagellin optimized treatment of B16 melanoma models by enhancing tumor infiltrated lymphocytes while inflammatory responses were minimized. These recombinant variants create optimistic platforms for further investigation of immune-virotherapy. We presume that immunization by these recombinant variants jointly with other anti-cancer medications would improve treatment outcomes.

Findings and outlook

- LIVP strain of the VV is a safe vector for developing the genetically modified oncolytic virus. Treatment of murine CT26, B16, and 4T1 tumor models with LIVP showed a better response than MVA associated with a longer survival rate. In addition, in 4T1, tumor regression was significantly higher than MVA.

- Combination of the recombinant LIVP strain expressing IL-15 with another variant expressing IL-15Ra results in significant tumor regression in the 4T1 breast adenocarcinoma syngeneic mice by promoting the formation of IL-1,5/IL-15Ra complex which is the stable bioactive form of IL-15 and enhance filtration of CD8+ T cells and the increased level of TNF-a, GM-CSF, and CXCL9-10.

- Treatment by the LIVP recombinant variant expressing bacterial flagellin results in significant tumor regression in B16 melanoma syngeneic mice by activating the macrophages and increasing the level of local TNF-a and GM-CSF.

- In vivo imaging showed favorable biodistribution and persistent virus replication in the host. Six hours post-infection, the virus was only detectable in the tumor up to 168 hours.

Ethics

The in vivo experiments were reviewed and approved by the local Ethical Committee of the Engelhardt Institute of Molecular Biology, Moscow, Russia. Experiments were conducted per directive 2010/63/EU on protecting animals used for scientific purposes by the European Parliament and the Council of European Union dated September 22, 2010. Mice were housed under standard conditions with controlled temperature and air ventilation and were given access to water and diet. All efforts were made to minimize the pain and reduce the number of mice in the experiments.

Список литературы диссертационного исследования кандидат наук Шакиба Йасмин, 2023 год

References

1. Emens L. A., Machiels J. P., Reilly R. T., Jaffee E. M. Chemotherapy: friend or foe to cancer vaccines? // Curr Opin Mol Ther. - 2001. - T. 3, № 1. - C. 77-84.

2. Le Bricon T., Gugins S., Cynober L., Baracos V. E. Negative impact of cancer chemotherapy on protein metabolism in healthy and tumor-bearing rats // Metabolism. - 1995. - T. 44, № 10. - C. 1340-8.

3. Thorne S. H., Negrin R. S., Contag C. H. Synergistic antitumor effects of immune cell-viral biotherapy // Science. - 2006. - T. 311, № 5768. - C. 1780-4.

4. Oldham R. K. Biotherapy: the fourth modality of cancer treatment // J Cell Physiol Suppl. - 1986. - T. 4. - C. 91-9.

5. Schirrmacher V. Biotherapy of cancer. Perspectives of immunotherapy and gene therapy // J Cancer Res Clin Oncol. - 1995. - T. 121, № 8. - C. 443-51.

6. Ylosmaki E., Cerullo V. Design and application of oncolytic viruses for cancer immunotherapy // Curr Opin Biotechnol. - 2020. - T. 65. - C. 25-36.

7. Thorne S. H., Hwang T. H., Kirn D. H. Vaccinia virus and oncolytic virotherapy of cancer // Curr Opin Mol Ther. - 2005. - T. 7, № 4. - C. 359-65.

8. Allan K. J., Stojdl D. F., Swift S. L. High-throughput screening to enhance oncolytic virus immunotherapy // Oncolytic Virother. - 2016. - T. 5. - C. 15-25.

9. Hwang T. H., Moon A., Burke J., Ribas A., Stephenson J., Breitbach C. J., Daneshmand M., De Silva N., Parato K., Diallo J. S., Lee Y. S., Liu T. C., Bell J. C., Kirn D. H. A mechanistic proof-of-concept clinical trial with JX-594, a targeted multi-mechanistic oncolytic poxvirus, in patients with metastatic melanoma // Mol Ther. - 2011. - T. 19, № 10. - C. 1913-22.

10. Malhotra S., Kim T., Zager J., Bennett J., Ebright M., D'Angelica M., Fong Y. Use of an oncolytic virus secreting GM-CSF as combined oncolytic and immunotherapy for treatment of colorectal and hepatic adenocarcinomas // Surgery. - 2007. - T. 141, № 4. - C. 520-9.

11. Schlom J. Therapeutic cancer vaccines: current status and moving forward // J Natl Cancer Inst. - 2012. - T. 104, № 8. - C. 599-613.

12. Fenner F. Risks and benefits of vaccinia vaccine use in the worldwide smallpox eradication campaign // Res Virol. - 1989. - T. 140, № 5. - C. 465-6; discussion 48791.

13. Fenner F. Smallpox: emergence, global spread, and eradication // Hist Philos Life Sci. - 1993. - T. 15, № 3. - C. 397-420.

14. Thorne S. H., Bartlett D. L., Kirn D. H. The use of oncolytic vaccinia viruses in the treatment of cancer: a new role for an old ally? // Curr Gene Ther. - 2005. - T. 5, № 4. - C. 429-43.

15. Hermiston T. Gene delivery from replication-selective viruses: arming guided missiles in the war against cancer // J Clin Invest. - 2000. - T. 105, № 9. - C. 116972.

16. Guse K., Cerullo V., Hemminki A. Oncolytic vaccinia virus for the treatment of cancer // Expert Opin Biol Ther. - 2011. - T. 11, № 5. - C. 595-608.

17. Thorne S. H. Next-generation oncolytic vaccinia vectors // Methods Mol Biol. -2012. - T. 797. - C. 205-15.

18. Rhode P. R., Egan J. O., Xu W., Hong H., Webb G. M., Chen X., Liu B., Zhu X., Wen J., You L., Kong L., Edwards A. C., Han K., Shi S., Alter S., Sacha J. B., Jeng E. K., Cai W., Wong H. C. Comparison of the Superagonist Complex, ALT-803, to IL15 as Cancer Immunotherapeutics in Animal Models // Cancer Immunol Res. -2016. - T. 4, № 1. - C. 49-60.

19. Dubois S., Mariner J., Waldmann T. A., Tagaya Y. IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells // Immunity. - 2002. - T. 17, № 5. - C. 537-47.

20. Epardaud M., Elpek K. G., Rubinstein M. P., Yonekura A. R., Bellemare-Pelletier A., Bronson R., Hamerman J. A., Goldrath A. W., Turley S. J. Interleukin-15/interleukin-15R alpha complexes promote destruction of established tumors by reviving tumor-resident CD8+ T cells // Cancer Res. - 2008. - T. 68, № 8. - C. 297283.

21. Berger C., Berger M., Hackman R. C., Gough M., Elliott C., Jensen M. C., Riddell S. R. Safety and immunologic effects of IL-15 administration in nonhuman primates // Blood. - 2009. - T. 114, № 12. - C. 2417-26.

22. Van den Bergh J. M., Lion E., Van Tendeloo V. F., Smits E. L. IL-15 receptor alpha as the magic wand to boost the success of IL-15 antitumor therapies: The upswing of IL-15 transpresentation // Pharmacol Ther. - 2017. - T. 170. - C. 73-79.

23. de Melo F. M., Braga C. J., Pereira F. V., Maricato J. T., Origassa C. S., Souza M. F., Melo A. C., Silva P., Tomaz S. L., Gimenes K. P., Scutti J. A., Juliano M. A., Zamboni D. S., Camara N. O., Travassos L. R., Ferreira L. C., Rodrigues E. G. Anti-metastatic immunotherapy based on mucosal administration of flagellin and immunomodulatory P10 // Immunol Cell Biol. - 2015. - T. 93, № 1. - C. 86-98.

24. Hayashi F., Smith K. D., Ozinsky A., Hawn T. R., Yi E. C., Goodlett D. R., Eng J. K., Akira S., Underhill D. M., Aderem A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5 // Nature. - 2001. - T. 410, № 6832. - C. 1099-103.

25. Benedikz E. K., Bailey D., Cook C. N. L., Gonfalves-Carneiro D., Buckner M. M. C., Blair J. M. A., Wells T. J., Fletcher N. F., Goodall M., Flores-Langarica A., Kingsley R. A., Madsen J., Teeling J., Johnston S. L., MacLennan C. A., Balfe P., Henderson I. R., Piddock L. J. V., Cunningham A. F., McKeating J. A. Bacterial flagellin promotes viral entry via an NF-kB and Toll Like Receptor 5 dependent pathway // Sci Rep. - 2019. - T. 9, № 1. - C. 7903.

26. Yakubitskiy S. N., Kolosova I. V., Maksyutov R. A., Shchelkunov S. N. Attenuation of Vaccinia Virus // Acta Naturae. - 2015. - T. 7, № 4. - C. 113-21.

27. Shvalov A. N., Sivolobova G. F., Kuligina E. V., Kochneva G. V. Complete Genome Sequence of Vaccinia Virus Strain L-IVP // Genome Announc. - 2016. - T. 4, № 3.

28. Gentschev I., Adelfinger M., Josupeit R., Rudolph S., Ehrig K., Donat U., Weibel S., Chen N. G., Yu Y. A., Zhang Q., Heisig M., Thamm D., Stritzker J., Macneill A.,

Szalay A. A. Preclinical evaluation of oncolytic vaccinia virus for therapy of canine soft tissue sarcoma // PLoS One. - 2012. - T. 7, № 5. - C. e37239.

29. Russell S. J., Peng K. W. Oncolytic Virotherapy: A Contest between Apples and Oranges // Mol Ther. - 2017. - T. 25, № 5. - C. 1107-1116.

30. Moore A. E. The destructive effect of the virus of Russian Far East encephalitis on the transplantable mouse sarcoma 180 // Cancer. - 1949. - T. 2, № 3. - C. 525-34.

31. Galluzzi L., Buqué A., Kepp O., Zitvogel L., Kroemer G. Immunogenic cell death in cancer and infectious disease // Nat Rev Immunol. - 2017. - T. 17, № 2. - C. 97 -111.

32. Chhabra N., Kennedy J. A Review of Cancer Immunotherapy Toxicity II: Adoptive Cellular Therapies, Kinase Inhibitors, Monoclonal Antibodies, and Oncolytic Viruses // J Med Toxicol. - 2022. - T. 18, № 1. - C. 43-55.

33. Kudo-Saito C., Hodge J. W., Kwak H., Kim-Schulze S., Schlom J., Kaufman H. L. 4-1BB ligand enhances tumor-specific immunity of poxvirus vaccines // Vaccine.

- 2006. - T. 24, № 23. - C. 4975-86.

34. Cattaneo R., Russell S. J. How to develop viruses into anticancer weapons // PLoS Pathog. - 2017. - T. 13, № 3. - C. e1006190.

35. Pelin A., Huh M., Tang M., LeBouef F., Keller B., Duong J., Knowles K., Petryk J., Jennings V., Melcher A., Singaravelu R., Crupi M., Pikor L., Breitbach C., Bernstein S., Burgess M., Bell J. C. Utilizing novel oncolytic vaccinia virus for selective expression of immunotherapeutic payloads in metastatic tumors // Cancer Immunology Research. - 2020. - T. 8, № 4. - C. 36-37.

36. Singh P. K., Doley J., Kumar G. R., Sahoo A. P., Tiwari A. K. Oncolytic viruses & their specific targeting to tumour cells // Indian J Med Res. - 2012. - T. 136, № 4.

- C. 571-84.

37. Kelly E., Russell S. J. History of oncolytic viruses: genesis to genetic engineering // Mol Ther. - 2007. - T. 15, № 4. - C. 651-9.

38. Naik S., Russell S. J. Engineering oncolytic viruses to exploit tumor specific defects in innate immune signaling pathways // Expert Opin Biol Ther. - 2009. - T. 9, № 9. - C. 1163-76.

39. Sumner R. P. Vaccinia virus protein C6 modulates innate immunity and contributes to virulence; Imperial College London, 2012.

40. Martuza R. L., Malick A., Markert J. M., Ruffner K. L., Coen D. M. Experimental therapy of human glioma by means of a genetically engineered virus mutant // Science. - 1991. - T. 252, № 5007. - C. 854-6.

41. Andtbacka R. H., Kaufman H. L., Collichio F., Amatruda T., Senzer N., Chesney J., Delman K. A., Spitler L. E., Puzanov I., Agarwala S. S., Milhem M., Cranmer L., Curti B., Lewis K., Ross M., Guthrie T., Linette G. P., Daniels G. A., Harrington K., Middleton M. R., Miller W. H., Jr., Zager J. S., Ye Y., Yao B., Li A., Doleman S., VanderWalde A., Gansert J., Coffin R. S. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma // J Clin Oncol. - 2015.

- T. 33, № 25. - C. 2780-8.

42. Garber K. China approves world's first oncolytic virus therapy for cancer treatment // J Natl Cancer Inst. - 2006. - T. 98, № 5. - C. 298-300.

43. Donina S., Strele I., Proboka G., Auzins J., Alberts P., Jonsson B., Venskus D., Muceniece A. Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study // Melanoma Res. - 2015. - T. 25, № 5. - C. 421-6.

44. Fenner F. The eradication of smallpox // Prog Med Virol. - 1977. - T. 23. - C. 121.

45. Parker S., Handley L., Buller R. M. Therapeutic and prophylactic drugs to treat orthopoxvirus infections // Future Virol. - 2008. - T. 3, № 6. - C. 595-612.

46. Rheinbaben F. v., Gebel J., Exner M., Schmidt A. Environmental resistance, disinfection, and sterilization of poxviruses // Poxviruses / Mercer A. A. h gp. - Basel: Birkhauser Basel, 2007. - C. 397-405.

47. Baroudy B. M., Moss B. Sequence homologies of diverse length tandem repetitions near ends of vaccinia virus genome suggest unequal crossing over // Nucleic Acids Res. - 1982. - T. 10, № 18. - C. 5673-9.

48. Li G., Chen N., Feng Z., Buller R. M., Osborne J., Harms T., Damon I., Upton C., Esteban D. J. Genomic sequence and analysis of a vaccinia virus isolate from a patient with a smallpox vaccine-related complication // Virol J. - 2006. - T. 3. - C. 88.

49. Salzman N. P. The rate of formation of vaccinia deoxyribonucleic acid and vaccinia virus // Virology. - 1960. - T. 10. - C. 150-2.

50. Parrish S., Moss B. Characterization of a second vaccinia virus mRNA-decapping enzyme conserved in poxviruses // J Virol. - 2007. - T. 81, № 23. - C. 12973-8.

51. Baroudy B. M., Venkatesan S., Moss B. Structure and replication of vaccinia virus telomeres // Cold Spring Harb Symp Quant Biol. - 1983. - T. 47 Pt 2. - C. 723-9.

52. Hamilton M. D., Evans D. H. Enzymatic processing of replication and recombination intermediates by the vaccinia virus DNA polymerase // Nucleic Acids Res. - 2005. - T. 33, № 7. - C. 2259-68.

53. Broyles S. S. Vaccinia virus transcription // J Gen Virol. - 2003. - T. 84, № Pt 9.

- C. 2293-2303.

54. Assarsson E., Greenbaum J. A., Sundstrom M., Schaffer L., Hammond J. A., Pasquetto V., Oseroff C., Hendrickson R. C., Lefkowitz E. J., Tscharke D. C., Sidney J., Grey H. M., Head S. R., Peters B., Sette A. Kinetic analysis of a complete poxvirus transcriptome reveals an immediate-early class of genes // Proc Natl Acad Sci U S A.

- 2008. - T. 105, № 6. - C. 2140-5.

55. Prideaux C. T., Kumar S., Boyle D. B. Comparative analysis of vaccinia virus promoter activity in fowlpox and vaccinia virus recombinants // Virus Res. - 1990. -T. 16, № 1. - C. 43-57.

56. Prescott D. M., Kates J., Kirkpatrick J. B. Replication of vaccinia virus DNA in enucleated L-cells // J Mol Biol. - 1971. - T. 59, № 3. - C. 505-8.

57. Baldick C. J., Jr., Moss B. Characterization and temporal regulation of mRNAs encoded by vaccinia virus intermediate-stage genes // J Virol. - 1993. - T. 67, № 6.

- C. 3515-27.

58. Lefkowitz E. J., Wang C., Upton C. Poxviruses: past, present and future // Virus Res. - 2006. - T. 117, № 1. - C. 105-18.

59. Fahy A. S., Clark R. H., Glyde E. F., Smith G. L. Vaccinia virus protein C16 acts intracellularly to modulate the host response and promote virulence // J Gen Virol. -2008. - T. 89, № Pt 10. - C. 2377-2387.

60. Smith G. L., Murphy B. R., Moss B. Construction and characterization of an infectious vaccinia virus recombinant that expresses the influenza hemagglutinin gene and induces resistance to influenza virus infection in hamsters // Proc Natl Acad Sci U S A. - 1983. - T. 80, № 23. - C. 7155-9.

61. Boulter E. A., Appleyard G. Differences between extracellular and intracellular forms of poxvirus and their implications // Prog Med Virol. - 1973. - T. 16. - C. 86 -108.

62. Morgan C. Vaccinia virus reexamined: development and release // Virology. -1976. - T. 73, № 1. - C. 43-58.

63. Hirt P., Hiller G., Wittek R. Localization and fine structure of a vaccinia virus gene encoding an envelope antigen // J Virol. - 1986. - T. 58, № 3. - C. 757-64.

64. Roberts K. L., Smith G. L. Vaccinia virus morphogenesis and dissemination // Trends Microbiol. - 2008. - T. 16, № 10. - C. 472-9.

65. Ward B. M., Moss B. Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails // J Virol. - 2001. - T. 75, № 23. - C. 11651-63.

66. Smith G. L., Law M. The exit of vaccinia virus from infected cells // Virus Res. -2004. - T. 106, № 2. - C. 189-97.

67. Chiu W. L., Lin C. L., Yang M. H., Tzou D. L., Chang W. Vaccinia virus 4c (A26L) protein on intracellular mature virus binds to the extracellular cellular matrix laminin // J Virol. - 2007. - T. 81, № 5. - C. 2149-57.

68. Bengali Z., Townsley A. C., Moss B. Vaccinia virus strain differences in cell attachment and entry // Virology. - 2009. - T. 389, № 1-2. - C. 132-40.

69. Roberts K. L., Breiman A., Carter G. C., Ewles H. A., Hollinshead M., Law M., Smith G. L. Acidic residues in the membrane-proximal stalk region of vaccinia virus protein B5 are required for glycosaminoglycan-mediated disruption of the extracellular enveloped virus outer membrane // J Gen Virol. - 2009. - T. 90, № Pt 7. - C. 1582-1591.

70. Schmidt F. I., Bleck C. K., Reh L., Novy K., Wollscheid B., Helenius A., Stahlberg H., Mercer J. Vaccinia virus entry is followed by core activation and proteasome-mediated release of the immunomodulatory effector VH1 from lateral bodies // Cell Rep. - 2013. - T. 4, № 3. - C. 464-76.

71. Vanderplasschen A., Mathew E., Hollinshead M., Sim R. B., Smith G. L. Extracellular enveloped vaccinia virus is resistant to complement because of incorporation of host complement control proteins into its envelope // Proc Natl Acad Sci U S A. - 1998. - T. 95, № 13. - C. 7544-9.

72. Doceul V., Hollinshead M., van der Linden L., Smith G. L. Repulsion of superinfecting virions: a mechanism for rapid virus spread // Science. - 2010. - T. 327, № 5967. - C. 873-876.

73. Lee S. S., Eisenlohr L. C., McCue P. A., Mastrangelo M. J., Lattime E. C. Intravesical gene therapy: in vivo gene transfer using recombinant vaccinia virus vectors // Cancer Res. - 1994. - T. 54, № 13. - C. 3325-8.

74. Miller J. D., van der Most R. G., Akondy R. S., Glidewell J. T., Albott S., Masopust D., Murali-Krishna K., Mahar P. L., Edupuganti S., Lalor S., Germon S., Del Rio C., Mulligan M. J., Staprans S. I., Altman J. D., Feinberg M. B., Ahmed R. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines // Immunity. - 2008. - T. 28, № 5. - C. 710-22.

75. McFadden G. Poxvirus tropism // Nat Rev Microbiol. - 2005. - T. 3, № 3. - C. 201-13.

76. Moss B. Poxvirus DNA replication // Cold Spring Harb Perspect Biol. - 2013. -T. 5, № 9.

77. Erbs P., Findeli A., Kintz J., Cordier P., Hoffmann C., Geist M., Balloul J. M. Modified vaccinia virus Ankara as a vector for suicide gene therapy // Cancer Gene Ther. - 2008. - T. 15, № 1. - C. 18-28.

78. Timiryasova T. M., Chen B., Haghighat P., Fodor I. Vaccinia virus-mediated expression of wild-type p53 suppresses glioma cell growth and induces apoptosis // Int J Oncol. - 1999. - T. 14, № 5. - C. 845-54.

79. Amara R. R., Villinger F., Altman J. D., Lydy S. L., O'Neil S. P., Staprans S. I., Montefiori D. C., Xu Y., Herndon J. G., Wyatt L. S., Candido M. A., Kozyr N. L., Earl P. L., Smith J. M., Ma H. L., Grimm B. D., Hulsey M. L., Miller J., McClure H. M., McNicholl J. M., Moss B., Robinson H. L. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine // Science. - 2001. - T. 292, № 5514. - C. 69-74.

80. Kirn D. H., Thorne S. H. Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer // Nat Rev Cancer. - 2009. - T. 9, № 1. - C. 64-71.

81. Rubartelli A., Lotze M. T. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox // Trends Immunol. - 2007. - T. 28, № 10. - C. 429-36.

82. Zhu J., Martinez J., Huang X., Yang Y. Innate immunity against vaccinia virus is mediated by TLR2 and requires TLR-independent production of IFN-beta // Blood. -2007. - T. 109, № 2. - C. 619-25.

83. Breitbach C. J., Paterson J. M., Lemay C. G., Falls T. J., McGuire A., Parato K. A., Stojdl D. F., Daneshmand M., Speth K., Kirn D., McCart J. A., Atkins H., Bell J. C. Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow // Mol Ther. - 2007. - T. 15, № 9. - C. 1686-93.

84. Liu T. C., Hwang T., Park B. H., Bell J., Kirn D. H. The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma // Mol Ther. - 2008. - T. 16, № 9. - C. 163742.

85. Whitman E. D., Tsung K., Paxson J., Norton J. A. In vitro and in vivo kinetics of recombinant vaccinia virus cancer-gene therapy // Surgery. - 1994. - T. 116, № 2. -C. 183-8.

86. Puhlmann M., Brown C. K., Gnant M., Huang J., Libutti S. K., Alexander H. R., Bartlett D. L. Vaccinia as a vector for tumor-directed gene therapy: biodistribution of a thymidine kinase-deleted mutant // Cancer Gene Ther. - 2000. - T. 7, № 1. - C. 6673.

87. Parviainen S. Developing genetically engineered oncolytic viruses for cancer gene therapy / Hemminki A.; University of Helsinki 2015.

88. Gnant M. F., Noll L. A., Irvine K. R., Puhlmann M., Terrill R. E., Alexander H. R., Jr., Bartlett D. L. Tumor-specific gene delivery using recombinant vaccinia virus in a rabbit model of liver metastases // J Natl Cancer Inst. - 1999. - T. 91, № 20. - C. 1744-50.

89. Buller R. M., Smith G. L., Cremer K., Notkins A. L., Moss B. Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype // Nature. - 1985. - T. 317, № 6040. - C. 813-5.

90. McCart J. A., Ward J. M., Lee J., Hu Y., Alexander H. R., Libutti S. K., Moss B., Bartlett D. L. Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes // Cancer Res. - 2001. -T. 61, № 24. - C. 8751-7.

91. de Magalhaes J. C., Andrade A. A., Silva P. N., Sousa L. P., Ropert C., Ferreira P. C., Kroon E. G., Gazzinelli R. T., Bonjardim C. A. A mitogenic signal triggered at an early stage of vaccinia virus infection: implication of MEK/ERK and protein kinase A in virus multiplication // J Biol Chem. - 2001. - T. 276, № 42. - C. 38353 -60.

92. Thorne S. H., Hwang T. H., O'Gorman W. E., Bartlett D. L., Sei S., Kanji F., Brown C., Werier J., Cho J. H., Lee D. E., Wang Y., Bell J., Kirn D. H. Rational strain selection and engineering creates a broad-spectrum, systemically effective oncolytic poxvirus, JX-963 // J Clin Invest. - 2007. - T. 117, № 11. - C. 3350-8.

93. Taylor J. M., Quilty D., Banadyga L., Barry M. The vaccinia virus protein F1L interacts with Bim and inhibits activation of the pro-apoptotic protein Bax // J Biol Chem. - 2006. - T. 281, № 51. - C. 39728-39.

94. Zhang Q., Yu Y. A., Wang E., Chen N., Danner R. L., Munson P. J., Marincola F. M., Szalay A. A. Eradication of solid human breast tumors in nude mice with an intravenously injected light-emitting oncolytic vaccinia virus // Cancer Res. - 2007.

- T. 67, № 20. - C. 10038-46.

95. Zeh H. J., Bartlett D. L. Development of a replication-selective, oncolytic poxvirus for the treatment of human cancers // Cancer Gene Ther. - 2002. - T. 9, № 12. - C. 1001-12.

96. Nichols A. C., Yoo J., Um S., Mundi N., Palma D. A., Fung K., Macneil S. D., Koropatnick J., Mymryk J. S., Barrett J. W. Vaccinia virus outperforms a panel of other poxviruses as a potent oncolytic agent for the control of head and neck squamous cell carcinoma cell lines // Intervirology. - 2014. - T. 57, № 1. - C. 17-22.

97. McCart J. A., Puhlmann M., Lee J., Hu Y., Libutti S. K., Alexander H. R., Bartlett D. L. Complex interactions between the replicating oncolytic effect and the enzyme/prodrug effect of vaccinia-mediated tumor regression // Gene Ther. - 2000.

- T. 7, № 14. - C. 1217-23.

98. Foloppe J., Kintz J., Futin N., Findeli A., Cordier P., Schlesinger Y., Hoffmann C., Tosch C., Balloul J. M., Erbs P. Targeted delivery of a suicide gene to human colorectal tumors by a conditionally replicating vaccinia virus // Gene Ther. - 2008.

- T. 15, № 20. - C. 1361-71.

99. Guse K., Sloniecka M., Diaconu I., Ottolino-Perry K., Tang N., Ng C., Le Boeuf F., Bell J. C., McCart J. A., Ristimaki A., Pesonen S., Cerullo V., Hemminki A. Antiangiogenic arming of an oncolytic vaccinia virus enhances antitumor efficacy in renal cell cancer models // J Virol. - 2010. - T. 84, № 2. - C. 856-66.

100. Frentzen A., Yu Y. A., Chen N., Zhang Q., Weibel S., Raab V., Szalay A. A. Anti-VEGF single-chain antibody GLAF-1 encoded by oncolytic vaccinia virus significantly enhances antitumor therapy // Proc Natl Acad Sci U S A. - 2009. - T. 106, № 31. - C. 12915-20.

101. Perera L. P., Goldman C. K., Waldmann T. A. Comparative assessment of virulence of recombinant vaccinia viruses expressing IL-2 and IL-15 in immunodeficient mice // Proc Natl Acad Sci U S A. - 2001. - T. 98, № 9. - C. 514651.

102. Ruby J., Bluethmann H., Aguet M., Ramshaw I. A. CD40 ligand has potent antiviral activity // Nat Med. - 1995. - T. 1, № 5. - C. 437-41.

103. Sambhi S. K., Kohonen-Corish M. R., Ramshaw I. A. Local production of tumor necrosis factor encoded by recombinant vaccinia virus is effective in controlling viral replication in vivo // Proc Natl Acad Sci U S A. - 1991. - T. 88, № 9. - C. 4025-9.

104. Lee J. H., Roh M. S., Lee Y. K., Kim M. K., Han J. Y., Park B. H., Trown P., Kirn D. H., Hwang T. H. Oncolytic and immunostimulatory efficacy of a targeted oncolytic poxvirus expressing human GM-CSF following intravenous administration in a rabbit tumor model // Cancer Gene Ther. - 2010. - T. 17, № 2. - C. 73-9.

105. Zhang Q., Liang C., Yu Y. A., Chen N., Dandekar T., Szalay A. A. The highly attenuated oncolytic recombinant vaccinia virus GLV-1h68: comparative genomic features and the contribution of F14.5L inactivation // Mol Genet Genomics. - 2009.

- T. 282, № 4. - C. 417-35.

106. Kelly K. J., Woo Y., Brader P., Yu Z., Riedl C., Lin S. F., Chen N., Yu Y. A., Rusch V. W., Szalay A. A., Fong Y. Novel oncolytic agent GLV-1h68 is effective against malignant pleural mesothelioma // Hum Gene Ther. - 2008. - T. 19, № 8. -C. 774-82.

107. Lin S. F., Yu Z., Riedl C., Woo Y., Zhang Q., Yu Y. A., Timiryasova T., Chen N., Shah J. P., Szalay A. A., Fong Y., Wong R. J. Treatment of anaplastic thyroid carcinoma in vitro with a mutant vaccinia virus // Surgery. - 2007. - T. 142, № 6. -C. 976-83; discussion 976-83.

108. Yu Y. A., Galanis C., Woo Y., Chen N., Zhang Q., Fong Y., Szalay A. A. Regression of human pancreatic tumor xenografts in mice after a single systemic injection of recombinant vaccinia virus GLV-1h68 // Mol Cancer Ther. - 2009. - T. 8, № 1. - C. 141-51.

109. Gentschev I., Donat U., Hofmann E., Weibel S., Adelfinger M., Raab V., Heisig M., Chen N., Yu Y. A., Stritzker J., Szalay A. A. Regression of human prostate tumors

and metastases in nude mice following treatment with the recombinant oncolytic vaccinia virus GLV-1h68 // J Biomed Biotechnol. - 2010. - T. 2010. - C. 489759.

110. Chen N., Zhang Q., Yu Y. A., Stritzker J., Brader P., Schirbel A., Samnick S., Serganova I., Blasberg R., Fong Y., Szalay A. A. A novel recombinant vaccinia virus expressing the human norepinephrine transporter retains oncolytic potential and facilitates deep-tissue imaging // Mol Med. - 2009. - T. 15, № 5-6. - C. 144-51.

111. Sharma P., Hu-Lieskovan S., Wargo J. A., Ribas A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy // Cell. - 2017. - T. 168, № 4. - C. 707-723.

112. Pearl T. M., Markert J. M., Cassady K. A., Ghonime M. G. Oncolytic Virus-Based Cytokine Expression to Improve Immune Activity in Brain and Solid Tumors // Mol Ther Oncolytics. - 2019. - T. 13. - C. 14-21.

113. Waldmann T. A. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy // Cancer Immunol Res. - 2015. - T. 3, № 3. - C. 219-27.

114. Kowalsky S. J., Liu Z., Feist M., Berkey S. E., Ma C., Ravindranathan R., Dai E., Roy E. J., Guo Z. S., Bartlett D. L. Superagonist IL-15-Armed Oncolytic Virus Elicits Potent Antitumor Immunity and Therapy That Are Enhanced with PD-1 Blockade // Mol Ther. - 2018. - T. 26, № 10. - C. 2476-2486.

115. Kinter A. L., Godbout E. J., McNally J. P., Sereti I., Roby G. A., O'Shea M. A., Fauci A. S. The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands // J Immunol. - 2008. - T. 181, № 10. - C. 6738-46.

116. Ma R., Lu T., Li Z., Teng K. Y., Mansour A. G., Yu M., Tian L., Xu B., Ma S., Zhang J., Barr T., Peng Y., Caligiuri M. A., Yu J. An Oncolytic Virus Expressing IL15/IL15Ralpha Combined with Off-the-Shelf EGFR-CAR NK Cells Targets Glioblastoma // Cancer Res. - 2021. - T. 81, № 13. - C. 3635-3648.

117. Nishio N., Dotti G. Oncolytic virus expressing RANTES and IL-15 enhances function of CAR-modified T cells in solid tumors // Oncoimmunology. - 2015. - T.

4, № 2. - C. e988098.

118. von Krempelhuber A., Vollmar J., Pokorny R., Rapp P., Wulff N., Petzold B., Handley A., Mateo L., Siersbol H., Kollaritsch H., Chaplin P. A randomized, doubleblind, dose-finding Phase II study to evaluate immunogenicity and safety of the third generation smallpox vaccine candidate IMVAMUNE // Vaccine. - 2010. - T. 28, №

5. - C. 1209-16.

119. Verardi P. H., Titong A., Hagen C. J. A vaccinia virus renaissance: new vaccine and immunotherapeutic uses after smallpox eradication // Hum Vaccin Immunother. - 2012. - T. 8, № 7. - C. 961-70.

120. Lehmann M. H., Kastenmuller W., Kandemir J. D., Brandt F., Suezer Y., Sutter G. Modified vaccinia virus ankara triggers chemotaxis of monocytes and early respiratory immigration of leukocytes by induction of CCL2 expression // J Virol. -2009. - T. 83, № 6. - C. 2540-52.

121. Weimer E. T., Lu H., Kock N. D., Wozniak D. J., Mizel S. B. A fusion protein vaccine containing OprF epitope 8, OprI, and type A and B flagellins promotes

enhanced clearance of nonmucoid Pseudomonas aeruginosa // Infect Immun. - 2009.

- T. 77, № 6. - C. 2356-66.

122. Mizel S. B., Bates J. T. Flagellin as an adjuvant: cellular mechanisms and potential // J Immunol. - 2010. - T. 185, № 10. - C. 5677-82.

123. Schroder K., Tschopp J. The inflammasomes // Cell. - 2010. - T. 140, № 6. - C. 821-32.

124. Kofoed E. M., Vance R. E. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity // Nature. - 2011. - T. 477, № 7366. -C. 592-5.

125. Sanos S. L., Kassub R., Testori M., Geiger M., Patzold J., Giessel R., Knallinger J., Bathke B., Grabnitz F., Brinkmann K., Chaplin P., Suter M., Hochrein H., Lauterbach H. NLRC4 Inflammasome-Driven Immunogenicity of a Recombinant MVA Mucosal Vaccine Encoding Flagellin // Front Immunol. - 2017. - T. 8. - C. 1988.

126. Chen W., Zheng R., Zhang S., Zhao P., Li G., Wu L., He J. The incidences and mortalities of major cancers in China, 2009 // Chin J Cancer. - 2013. - T. 32, № 3. -C. 106-12.

127. Strong V. E., Wu A. W., Selby L. V., Gonen M., Hsu M., Song K. Y., Park C. H., Coit D. G., Ji J. F., Brennan M. F. Differences in gastric cancer survival between the U.S. and China // J Surg Oncol. - 2015. - T. 112, № 1. - C. 31-7.

128. Conrad S. J., El-Aswad M., Kurban E., Jeng D., Tripp B. C., Nutting C., Eversole R., Mackenzie C., Essani K. Oncolytic tanapoxvirus expressing FliC causes regression of human colorectal cancer xenografts in nude mice // J Exp Clin Cancer Res. - 2015. - T. 34. - C. 19.

129. Wang M., Luo Y., Sun T., Mao C., Jiang Y., Yu X., Li Z., Xie T., Wu F., Yan H., Teng L. The Ectopic Expression of SurvivinT34A and FilC Can Enhance the Oncolytic Effects of Vaccinia Virus in Murine Gastric Cancer // Onco Targets Ther.

- 2020. - T. 13. - C. 1011-1025.

130. Andersen M. H., Svane I. M., Becker J. C., Straten P. T. The universal character of the tumor-associated antigen survivin // Clin Cancer Res. - 2007. - T. 13, № 20. -C. 5991-4.

131. Degli-Esposti M. A., Smyth M. J. Close encounters of different kinds: dendritic cells and NK cells take centre stage // Nat Rev Immunol. - 2005. - T. 5, № 2. - C. 112-24.

132. Shanafelt A. B., Johnson K. E., Kastelein R. A. Identification of critical amino acid residues in human and mouse granulocyte-macrophage colony-stimulating factor and their involvement in species specificity // J Biol Chem. - 1991. - T. 266, № 21.

- C. 13804-10.

133. Kim J. H., Oh J. Y., Park B. H., Lee D. E., Kim J. S., Park H. E., Roh M. S., Je J. E., Yoon J. H., Thorne S. H., Kirn D., Hwang T. H. Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF // Mol Ther. - 2006. - T. 14, № 3. - C. 361-70.

134. Kirn D. H., Wang Y., Le Boeuf F., Bell J., Thorne S. H. Targeting of interferonbeta to produce a specific, multi-mechanistic oncolytic vaccinia virus // PLoS Med. -2007. - T. 4, № 12. - C. e353.

135. Chalikonda S., Kivlen M. H., O'Malley M. E., Eric Dong X. D., McCart J. A., Gorry M. C., Yin X. Y., Brown C. K., Zeh H. J., Guo Z. S., Bartlett D. L. Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene // Cancer Gene Ther. - 2008. - T. 15, № 2. - C. 115-25.

136. Burdick K. H., Hawk W. A. Vitiligo in a Case of Vaccinia Virus-Treated Melanoma // Cancer. - 1964. - T. 17. - C. 708-12.

137. Hunter-Craig I., Newton K. A., Westbury G., Lacey B. W. Use of vaccinia virus in the treatment of metastatic malignant melanoma // Br Med J. - 1970. - T. 2, № 5708. - C. 512-5.

138. Roenigk H. H., Jr., Deodhar S., St Jacques R., Burdick K. Immunotherapy of malignant melanoma with vaccinia virus // Arch Dermatol. - 1974. - T. 109, № 5. -C. 668-73.

139. Mastrangelo M. J., Eisenlohr L. C., Gomella L., Lattime E. C. Poxvirus vectors: orphaned and underappreciated // J Clin Invest. - 2000. - T. 105, № 8. - C. 1031-4.

140. Mastrangelo M. J., Maguire H. C., Eisenlohr L. C., Laughlin C. E., Monken C. E., McCue P. A., Kovatich A. J., Lattime E. C. Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma // Cancer Gene Ther. - 1999. - T. 6, № 5. - C. 409-22.

141. Park B. H., Hwang T., Liu T. C., Sze D. Y., Kim J. S., Kwon H. C., Oh S. Y., Han S. Y., Yoon J. H., Hong S. H., Moon A., Speth K., Park C., Ahn Y. J., Daneshmand M., Rhee B. G., Pinedo H. M., Bell J. C., Kirn D. H. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial // Lancet Oncol. - 2008. - T. 9, № 6. - C. 533-42.

142. Breitbach C. J., Burke J., Jonker D., Stephenson J., Haas A. R., Chow L. Q., Nieva J., Hwang T. H., Moon A., Patt R., Pelusio A., Le Boeuf F., Burns J., Evgin L., De Silva N., Cvancic S., Robertson T., Je J. E., Lee Y. S., Parato K., Diallo J. S., Fenster A., Daneshmand M., Bell J. C., Kirn D. H. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans // Nature. - 2011. - T. 477, № 7362. - C. 99-102.

143. Heo J., Reid T., Ruo L., Breitbach C. J., Rose S., Bloomston M., Cho M., Lim H. Y., Chung H. C., Kim C. W., Burke J., Lencioni R., Hickman T., Moon A., Lee Y. S., Kim M. K., Daneshmand M., Dubois K., Longpre L., Ngo M., Rooney C., Bell J. C., Rhee B. G., Patt R., Hwang T. H., Kirn D. H. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer // Nat Med. -2013. - T. 19, № 3. - C. 329-36.

144. Heo J., Breitbach C. J., Moon A., Kim C. W., Patt R., Kim M. K., Lee Y. K., Oh S. Y., Woo H. Y., Parato K., Rintoul J., Falls T., Hickman T., Rhee B. G., Bell J. C., Kirn D. H., Hwang T. H. Sequential therapy with JX-594, a targeted oncolytic poxvirus, followed by sorafenib in hepatocellular carcinoma: preclinical and clinical

demonstration of combination efficacy // Mol Ther. - 2011. - T. 19, № 6. - C. 11709.

145. Lauer U. M., Schell M., Beil J., Berchtold S., Koppenhofer U., Glatzle J., Konigsrainer A., Mohle R., Nann D., Fend F., Pfannenberg C., Bitzer M., Malek N. P. Phase I Study of Oncolytic Vaccinia Virus GL-ONC1 in Patients with Peritoneal Carcinomatosis // Clin Cancer Res. - 2018. - T. 24, № 18. - C. 4388-4398.

146. Downs-Canner S., Guo Z. S., Ravindranathan R., Breitbach C. J., O'Malley M. E., Jones H. L., Moon A., McCart J. A., Shuai Y., Zeh H. J., Bartlett D. L. Phase 1 Study of Intravenous Oncolytic Poxvirus (vvDD) in Patients With Advanced Solid Cancers // Mol Ther. - 2016. - T. 24, № 8. - C. 1492-501.

147. Vasileva N., Ageenko A., Dmitrieva M., Nushtaeva A., Mishinov S., Kochneva

G., Richter V., Kuligina E. Double Recombinant Vaccinia Virus: A Candidate Drug against Human Glioblastoma // Life (Basel). - 2021. - T. 11, № 10.

148. Wallack M. K., Steplewski Z., Koprowski H., Rosato E., George J., Hulihan B., Johnson J. A new approach in specific, active immunotherapy // Cancer. - 1977. - T. 39, № 2. - C. 560-4.

149. Iwaki H., Barnavon Y., Bash J. A., Wallack M. K. Vaccinia virus-infected C-C36 colon tumor cell lysates stimulate cellular responses in vitro and protect syngeneic Balb/c mice from tumor cell challenge // J Surg Oncol. - 1989. - T. 40, № 2. - C. 90-6.

150. Sivanandham M., Scoggin S. D., Tanaka N., Wallack M. K. Therapeutic effect of a vaccinia colon oncolysate prepared with interleukin-2-gene encoded vaccinia virus studied in a syngeneic CC-36 murine colon hepatic metastasis model // Cancer Immunol Immunother. - 1994. - T. 38, № 4. - C. 259-64.

151. Ju D. W., Cao X., Acres B. Active specific immunotherapy of pulmonary metastasis with vaccinia melanoma oncolysate prepared from granulocyte/macrophage-colony-stimulating-factor-gene-encoded vaccinia virus // J Cancer Res Clin Oncol. - 1996. - T. 122, № 12. - C. 716-22.

152. Kim E. M., Sivanandham M., Stavropoulos C. I., Bartolucci A. A., Wallack M. K. Overview analysis of adjuvant therapies for melanoma--a special reference to results from vaccinia melanoma oncolysate adjuvant therapy trials // Surg Oncol. -2001. - T. 10, № 1-2. - C. 53-9.

153. Wallack M. K., Michaelides M. Serologic response to human melanoma lines from patients with melanoma undergoing treatment with vaccinia melanoma oncolysates // Surgery. - 1984. - T. 96, № 4. - C. 791-800.

154. Wallack M. K., McNally K. R., Leftheriotis E., Seigler H., Balch C., Wanebo

H., Bartolucci A. A., Bash J. A. A Southeastern Cancer Study Group phase I/II trial with vaccinia melanoma oncolysates // Cancer. - 1986. - T. 57, № 3. - C. 649-55.

155. Wallack M. K., Sivanandham M., Balch C. M., Urist M. M., Bland K. I., Murray D., Robinson W. A., Flaherty L. E., Richards J. M., Bartolucci A. A., et al. A phase III randomized, double-blind multiinstitutional trial of vaccinia melanoma oncolysate-active specific immunotherapy for patients with stage II melanoma // Cancer. - 1995. - T. 75, № 1. - C. 34-42.

156. Willmon C., Harrington K., Kottke T., Prestwich R., Melcher A., Vile R. Cell carriers for oncolytic viruses: Fed Ex for cancer therapy // Mol Ther. - 2009. - T. 17, № 10. - C. 1667-76.

157. Lyons M., Onion D., Green N. K., Aslan K., Rajaratnam R., Bazan-Peregrino M., Phipps S., Hale S., Mautner V., Seymour L. W., Fisher K. D. Adenovirus type 5 interactions with human blood cells may compromise systemic delivery // Mol Ther.

- 2006. - T. 14, № 1. - C. 118-28.

158. Huang B., Sikorski R., Kirn D. H., Thorne S. H. Synergistic anti-tumor effects between oncolytic vaccinia virus and paclitaxel are mediated by the IFN response and HMGB1 // Gene Ther. - 2011. - T. 18, № 2. - C. 164-72.

159. Ottolino-Perry K., Diallo J. S., Lichty B. D., Bell J. C., McCart J. A. Intelligent design: combination therapy with oncolytic viruses // Mol Ther. - 2010. - T. 18, № 2. - C. 251-63.

160. Lun X. Q., Jang J. H., Tang N., Deng H., Head R., Bell J. C., Stojdl D. F., Nutt C. L., Senger D. L., Forsyth P. A., McCart J. A. Efficacy of systemically administered oncolytic vaccinia virotherapy for malignant gliomas is enhanced by combination therapy with rapamycin or cyclophosphamide // Clin Cancer Res. - 2009. - T. 15, № 8. - C. 2777-88.

161. Gridley D. S., Andres M. L., Li J., Timiryasova T., Chen B., Fodor I. Evaluation of radiation effects against C6 glioma in combination with vaccinia virus-p53 gene therapy // Int J Oncol. - 1998. - T. 13, № 5. - C. 1093-8.

162. McCart J. A., Mehta N., Scollard D., Reilly R. M., Carrasquillo J. A., Tang N., Deng H., Miller M., Xu H., Libutti S. K., Alexander H. R., Bartlett D. L. Oncolytic vaccinia virus expressing the human somatostatin receptor SSTR2: molecular imaging after systemic delivery using 111In-pentetreotide // Mol Ther. - 2004. - T. 10, № 3. - C. 553-61.

163. Le Boeuf F., Diallo J. S., McCart J. A., Thorne S., Falls T., Stanford M., Kanji F., Auer R., Brown C. W., Lichty B. D., Parato K., Atkins H., Kirn D., Bell J. C. Synergistic interaction between oncolytic viruses augments tumor killing // Mol Ther.

- 2010. - T. 18, № 5. - C. 888-95.

164. Zhang Y. Q., Tsai Y. C., Monie A., Wu T. C., Hung C. F. Enhancing the therapeutic effect against ovarian cancer through a combination of viral oncolysis and antigen-specific immunotherapy // Mol Ther. - 2010. - T. 18, № 4. - C. 692-9.

165. Gaber M. H., Wu N. Z., Hong K., Huang S. K., Dewhirst M. W., Papahadjopoulos D. Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks // Int J Radiat Oncol Biol Phys. - 1996. -T. 36, № 5. - C. 1177-87.

166. Chang E., Chalikonda S., Friedl J., Xu H., Phan G. Q., Marincola F. M., Alexander H. R., Bartlett D. L. Targeting vaccinia to solid tumors with local hyperthermia // Hum Gene Ther. - 2005. - T. 16, № 4. - C. 435-44.

167. Poland G. A., Grabenstein J. D., Neff J. M. The US smallpox vaccination program: a review of a large modern era smallpox vaccination implementation program // Vaccine. - 2005. - T. 23, № 17-18. - C. 2078-81.

168. Sepkowitz K. A. How contagious is vaccinia? // N Engl J Med. - 2003. - T. 348, № 5. - C. 439-46.

169. Cotter C. A., Earl P. L., Wyatt L. S., Moss B. Preparation of Cell Cultures and Vaccinia Virus Stocks // Curr Protoc Protein Sci. - 2017. - T. 89. - C. 5.12.1-5.12.18.

170. Ramakrishnan M. A. Determination of 50% endpoint titer using a simple formula // World J Virol. - 2016. - T. 5, № 2. - C. 85-6.

171. Morgan D. M. Tetrazolium (MTT) assay for cellular viability and activity // Methods Mol Biol. - 1998. - T. 79. - C. 179-83.

172. Faustino-Rocha A., Oliveira P. A., Pinho-Oliveira J., Teixeira-Guedes C., Soares-Maia R., da Costa R. G., Colaco B., Pires M. J., Colaco J., Ferreira R., Ginja M. Estimation of rat mammary tumor volume using caliper and ultrasonography measurements // Lab Anim (NY). - 2013. - T. 42, № 6. - C. 217-24.

173. Hughes J., Wang P., Alusi G., Shi H., Chu Y., Wang J., Bhakta V., McNeish I., McCart A., Lemoine N. R., Wang Y. Lister strain vaccinia virus with thymidine kinase gene deletion is a tractable platform for development of a new generation of oncolytic virus // Gene Ther. - 2015. - T. 22, № 6. - C. 476-84.

174. Yang J., Zhang E., Liu F., Zhang Y., Zhong M., Li Y., Zhou D., Chen Y., Cao Y., Xiao Y., He B., Yang Y., Sun Y., Lu M., Yan H. Flagellins of Salmonella Typhi and nonpathogenic Escherichia coli are differentially recognized through the NLRC4 pathway in macrophages // J Innate Immun. - 2014. - T. 6, № 1. - C. 47-57.

175. Steel J. C., Waldmann T. A., Morris J. C. Interleukin-15 biology and its therapeutic implications in cancer // Trends Pharmacol Sci. - 2012. - T. 33, № 1. -C. 35-41.

176. Fukuhara H., Ino Y., Todo T. Oncolytic virus therapy: A new era of cancer treatment at dawn // Cancer Sci. - 2016. - T. 107, № 10. - C. 1373-1379.

177. Shakiba Y., Vorobyev P. O., Naumenko V. A., Kochetkov D. V., Zajtseva K. V., Valikhov M. P., Yusubalieva G. M., Gumennaya Y. D., Emelyanov E. A., Semkina A. S., Baklaushev V. P., Chumakov P. M., Lipatova A. V. Oncolytic Efficacy of a Recombinant Vaccinia Virus Strain Expressing Bacterial Flagellin in Solid Tumor Models // Viruses. - 2023. - T. 15, № 4. - C. 828.

178. Bleul T., Zhuang X., Hildebrand A., Lange C., Bohringer D., Schlunck G., Reinhard T., Lapp T. Different Innate Immune Responses in BALB/c and C57BL/6 Strains following Corneal Transplantation // J Innate Immun. - 2021. - T. 13, № 1. -C. 49-59.

179. van Horssen R., Ten Hagen T. L., Eggermont A. M. TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility // Oncologist. -2006. - T. 11, № 4. - C. 397-408.

180. Trnka J., Spacek M., Sirova V., Mitas P., Hodkova G., Kubinyi J., Spunda R., Lindner J. [Hyperthermic Isolated Limb Perfusion Combined with Tasonermin - a Perfusion Leakage Monitoring Technique] // Klin Onkol - T. 29, № 5. - C. 375-379.

181. Waks A. G., Winer E. P. Breast Cancer Treatment: A Review // JAMA. - 2019. - T. 321, № 3. - C. 288-300.

182. El Masri J., Phadke S. Breast Cancer Epidemiology and Contemporary Breast Cancer Care: A Review of the Literature and Clinical Applications // Clin Obstet Gynecol. - 2022. - T. 1, № 65(3). - C. 461-481.

183. Carson W. E., Fehniger T. A., Haldar S., Eckhert K., Lindemann M. J., Lai C. F., Croce C. M., Baumann H., Caligiuri M. A. A potential role for interleukin-15 in the regulation of human natural killer cell survival // J Clin Invest. - 1997. - T. 99, №2 5. - C. 937-43.

184. Stoklasek T. A., Schluns K. S., Lefrancois L. Combined IL-15/IL-15Ralpha immunotherapy maximizes IL-15 activity in vivo // J Immunol. - 2006. - T. 177, № 9. - C. 6072-80.

185. Gaston D. C., Odom C. I., Li L., Markert J. M., Roth J. C., Cassady K. A., Whitley R. J., Parker J. N. Production of bioactive soluble interleukin-15 in complex with interleukin-15 receptor alpha from a conditionally-replicating oncolytic HSV-1 // PLoS One. - 2013. - T. 8, № 11. - C. e81768.

186. Schrors B., Boegel S., Albrecht C., Bukur T., Bukur V., Holtstrater C., Ritzel C., Manninen K., Tadmor A. D., Vormehr M., Sahin U., Lower M. Multi-Omics Characterization of the 4T1 Murine Mammary Gland Tumor Model // Front Oncol. -2020. - T. 10. - C. 1195.

187. Pulaski B. A., Ostrand-Rosenberg S. Mouse 4T1 breast tumor model // Curr Protoc Immunol. - 2001. - T. Chapter 20. - C. Unit 20 2.

188. Li Z., Chen L., Qin Z. Paradoxical roles of IL-4 in tumor immunity // Cell Mol Immunol. - 2009. - T. 6, № 6. - C. 415-22.

189. Jin J., Lin J., Xu A., Lou J., Qian C., Li X., Wang Y., Yu W., Tao H. CCL2: An Important Mediator Between Tumor Cells and Host Cells in Tumor Microenvironment // Front Oncol. - 2021. - T. 11. - C. 722916.

190. Jin K., Shen Y., He K., Xu Z., Li G., Teng L. Aflibercept (VEGF Trap): one more double-edged sword of anti-VEGF therapy for cancer? // Clin Transl Oncol. -2010. - T. 12, № 8. - C. 526-32.

191. Chulpanova D. S., Kitaeva K. V., Green A. R., Rizvanov A. A., Solovyeva V. V. Molecular Aspects and Future Perspectives of Cytokine-Based Anti-cancer Immunotherapy // Front Cell Dev Biol. - 2020. - T. 8. - C. 402.

192. Tokunaga R., Zhang W., Naseem M., Puccini A., Berger M. D., Soni S., McSkane M., Baba H., Lenz H. J. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy // Cancer Treat Rev. - 2018. -T. 63. - C. 40-47.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.