Структурные и функциональные исследования вирусных родопсинов тема диссертации и автореферата по ВАК РФ 03.01.02, кандидат наук Забельский Дмитрий Витальевич

  • Забельский Дмитрий Витальевич
  • кандидат науккандидат наук
  • 2022, ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)»
  • Специальность ВАК РФ03.01.02
  • Количество страниц 104
Забельский Дмитрий Витальевич. Структурные и функциональные исследования вирусных родопсинов: дис. кандидат наук: 03.01.02 - Биофизика. ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)». 2022. 104 с.

Оглавление диссертации кандидат наук Забельский Дмитрий Витальевич

Summary

Publications

1. Literature review

1.1 Introduction

1.2 Short history of microbial rhodopsins research

1.3 Structural motifs of microbial rhodopsins

1.4 Giant viruses' diversity and importance

1.5 Viral rhodopsins

1.6 Rhodopsin-based optogenetics

1.7 Applications of optogenetics

2. Materials and Methods

2.1 Genetic constructs cloning

2.2 Expression and purification of microbial rhodopsins in Escherichia coli

2.3 Reconstitution of the protein into lipid-based systems

2.4 Crosslinking

2.5 Ion-trafficking assay with protein-containing liposomes

2.6 Time-resolved absorption spectroscopy

2.7 Crystallization

2.8 Structure determination and refinement

3 Results

3.1 Phylogenetic and functional characterization of viral rhodopsins

3.1.1 Viral rhodopsins protein selection

3.1.2 Phylogenetic analysis of viral rhodopsins (VR)

3.1.3 VR expression and purification

3.1.4 Spectroscopic characterization

3.1.5 Photocycle kinetics

3.1.6 Ion trafficking tests

3.1.7 Electrophysiological characterization

3.1.8 Optogenetical applications with VirChR1

3.1.9 Kinetic mechanism of VirChR1 calcium inhibition

3.2 Structural characterization of viral rhodopsin OLPVR1

3.2.1 Crystallization of viral rhodopsins

3.2.2 Overall structure of the OLPVR1

3.2.3 Lipid-protein interaction in OLPVR1 structure

3.2.4 Ion conducting pathway in OLPVR1

3.2.5 Conservativity analysis of viral rhodopsins

3.2.6 Retinal binding pocket and the Schiff base region of OLPVR1

3.2.7 Putative dimer form of OLPVR1

3.3 Structural characterization of OLPVRII

3.3.1 Overall structure of OLPVRII

3.3.2 Putative ion channeling properties of OLPVRII

3.3.3 Extracellular part of OLPVRII and its retinal binding pocket

4 Discussion

4.1 Structure of viral rhodopsins

4.2 Function of viral rhodopsins

4.3 Biological role of viral rhodopsins

Conclusions

Main results and the outlook

List of Abbreviations

Acknowledgments

References

Рекомендованный список диссертаций по специальности «Биофизика», 03.01.02 шифр ВАК

Введение диссертации (часть автореферата) на тему «Структурные и функциональные исследования вирусных родопсинов»

Summary

Giant viruses are cell-size infecting agents that infect algae and encode hundreds of proteins. The unprecedented genomic complexity of giant viruses has raised questions about their role in ecological balance. Among numerous proteins encoded by giant viruses, there are two groups of viral rhodopsins, light-harvesting proteins that were never observed in other species before. In the thesis, we present a comprehensive functional and structural study of both viral rhodopsins groups. We expressed and purified protein representatives from viral rhodopsins groups and studied them using a combination of steady state and transient absorption spectroscopy, ion trafficking experiments, patch-clamp method, and X-ray crystallography.

We successfully resolved high-resolution structures of two proteins: OLPVR1 and OLPVRII from VR1 and VR2 groups respectively, that revealed unique features of viral rhodopsins, that were not previously observed in any other microbial rhodopsin structures. Functional characterization of viral rhodopsins revealed that another protein from the VR1 group, VirChR1 is a calcium-inhibited cation-conducting channelrhodopsin. We determined the kinetic mechanism of calcium inhibition that can be potentially important for fine-tuning this effect.

Besides that, we demonstrated that VirChR1 can be used for activation of neurons and therefore has potential in optogenetics, an area of neuroscience that employs light-activated protein for precise control of excitable cells. Our results suggest that viral rhodopsins are likely to be auxiliary metabolic genes that are involved in photoreception in infected host cells, and would drastically improve virus efficiency under light-accessible conditions.

Publications

1. D. Zabelskii, A. Alekseev, K. Kovalev, V. Rankovic, T. Balandin, D. Soloviov, D. Bratanov, E. Savelyeva, E. Podolyak, D. Volkov, S. Vaganova, R. Astashkin, I. Chizhov, N. Yutin, M. Rulev, A. Popov, A.-S. Eria-Oliveira, T. Rokitskaya, T. Mager, Y. Antonenko, R. Rosselli, G. Armeev, K. Shaitan, M. Vivaudou, G. Büldt, A. Rogachev, F. Rodriguez-Valera, M. Kirpichnikov, T. Moser, A. Offenhäusser, D. Willbold, E. Koonin, E. Bamberg, V. Gordeliy, Viral rhodopsins 1 are an unique family of light-gated cation channels. Nat. Commun. 11, 5707 (2020).

2. D. Zabelskii, N. Dmitrieva, O. Volkov, V. Shevchenko, K. Kovalev, T. Balandin, D. Soloviov, R. Astashkin, E. Zinovev, A. Alekseev, E. Round, V. Polovinkin, I. Chizhov, A. Rogachev, I. Okhrimenko, V. Borshchevskiy, V. Chupin, G. Büldt, N. Yutin, E. Bamberg, E. Koonin, V. Gordeliy, Structure-based insights into evolution of rhodopsins. Commun. Biol. 4, 821 (2021).

3. A. Kuklin, D. Zabelskii, I. Gordeliy, J. Teixeira, A. Brûlet, V. Chupin, V. Cherezov, V. Gordeliy, On the Origin of the Anomalous Behavior of Lipid Membrane Properties in the Vicinity of the Chain-Melting Phase Transition. Sci. Rep. 10, 5749 (2020).

4. K. Kovalev, R. Astashkin, I. Gushchin, P. Orekhov, D. Volkov, E. Zinovev, E. Marin, M. Rulev, A. Alekseev, A. Royant, P. Carpentier, S. Vaganova, D. Zabelskii, C. Baeken, I. Sergeev, T. Balandin, G. Bourenkov, X. Carpena, R. Boer, N. Maliar, V. Borshchevskiy, G. Büldt, E. Bamberg, V. Gordeliy, Molecular mechanism of light-driven sodium pumping. Nat. Commun. 11, 2137 (2020).

5. D. Bratanov, K. Kovalev, J.-P. Machtens, R. Astashkin, I. Chizhov, D. Soloviov, D. Volkov, V. Polovinkin, D. Zabelskii, T. Mager, I. Gushchin, T. Rokitskaya, Y. Antonenko, A. Alekseev, V. Shevchenko, N. Yutin, R. Rosselli, C. Baeken, V. Borshchevskiy, G. Bourenkov, A. Popov, T. Balandin, G. Büldt, D. J. Manstein, F. Rodriguez-Valera, C. Fahlke, E. Bamberg, E. Koonin, V. Gordeliy, Unique structure and function of viral rhodopsins. Nat. Commun. 10, 4939 (2019).

6. Y. L. Ryzhykau, P. S. Orekhov, M. I. Rulev, A. V. Vlasov, I. A. Melnikov, D. A. Volkov, M. Yu. Nikolaev, D. V. Zabelskii, T. N. Murugova, V. V. Chupin, A. V. Rogachev, A. Yu. Gruzinov, D. I. Svergun, M. E. Brennich, I. Yu. Gushchin, M. Soler-Lopez, A. Bothe, G. Büldt, G. Leonard, M. Engelhard, A. I. Kuklin, V. I. Gordeliy, Molecular model of a sensor of two-component signaling system. Sci. Rep. 11, 10774 (2021).

7. T. Varaksa, S. Bukhdruker, I. Grabovec, E. Marin, A. Kavaleuski, A. Gusach, K. Kovalev, I. Maslov, A. Luginina, D. Zabelskii, R. Astashkin, M. Shevtsov, S. Smolskaya, A.

Kavaleuskaya, P. Shabunya, A. Baranovsky, V. Dolgopalets, Y. Charnou, A. Savachka, R. Litvinovskaya, A. Hurski, E. Shevchenko, A. Rogachev, A. Mishin, V. Gordeliy, A. Gabrielian, D. E. Hurt, B. Nikonenko, K. Majorov, A. Apt, A. Rosenthal, A. Gilep, V. Borshchevskiy, N. Strushkevich, Metabolic Fate of Human Immunoactive Sterols in Mycobacterium tuberculosis. J. Mol. Biol. 433, 166763 (2021).

8. D. V. Zabelskii, A. V. Vlasov, Y. L. Ryzhykau, T. N. Murugova, M. Brennich, D. V. Soloviov, O. I. Ivankov, V. I. Borshchevskiy, A. V. Mishin, A. V. Rogachev, A. Round, N. A. Dencher, G. Büldt, V. I. Gordeliy, A. I. Kuklin, Ambiguities and completeness of SAS data analysis: investigations of apoferritin by SAXS/SANS EID and SEC-SAXS methods. J. Phys. Conf. Ser. 994, 012017 (2018).

Похожие диссертационные работы по специальности «Биофизика», 03.01.02 шифр ВАК

Заключение диссертации по теме «Биофизика», Забельский Дмитрий Витальевич

Conclusions

In this thesis, we present a comprehensive analysis of viral rhodopsins, a distinct clade of microbial rhodopsins superfamily that consists of two groups, VR1 and VR2. Our group analyzed available metagenomic assemblies, constructed a phylogenetic tree of viral rhodopsins, and further selected multiple proteins for functional and structural characterization. Expression tests allowed us to successfully produce and optimize viral rhodopsins proteins, namely, OLPVR1, OLPVRII, and VirChR1. We tested all proteins for their expression and localization in mammalian cell lines that allowed us to electrophysiologically characterize VirChR1 rhodopsin from the VR1 group. Purified proteins were used for functional and structural characterization that allowed us to obtain photocycle kinetics of the proteins and their absorption spectra. Besides that, we tested proteins for active transport properties using pH change ion trafficking experiments. The proteins were also used crystallization in meso trials, all crystals obtained were tested for diffraction at synchrotron facilities.

All mentioned work resulted in full structural characterization of viral rhodopsins family, with structures of two proteins: OLPVR1 and OLPVRII from VR1 and VR2 groups respectively. OLPVR1 is a proteorhodopsin-like channelrhodopsin with unusual lipid molecules in the cytoplasmic part of the protein and a comprehensive hydrogen bond network inside the protein that facilitates ion transport after illumination with light. OLPVRII is a pentamer protein with a highly unusual pore assembled by highly conservative residues in the cytoplasmic part of the pentamer. This pore is highly reminiscent of a similar pore in ligand-gated ion channels that allow the assumption that proteins from the VR2 group are also ion-conducting rhodopsins.

Functional analysis of viral rhodopsins resulted in the full electrophysiological characterization of VirChR1 protein, a cation-conducting channelrhodopsin with unusual ion permeability and unique calcium inhibition. We demonstrated that VirChR1 can potentially be used for optogenetic needs as a calcium-impermeable activation tool. Further effort will be aimed to optimize the localization of viral rhodopsins in the plasma membrane of mammalian cells and to improve their closing kinetics. We used transient absorption spectra measurements to identify the kinetics mechanism of VirChR1 calcium inhibition.

Taken together, our data demonstrate that viral rhodopsins are likely to be involved in photoreception in infected host cells. Phylogeny of viral rhodopsins indicates that both

groups should have complementary functions, which is likely an ion channeling function also for OLPVRII and VR2 group.

Main results and the outlook

1) Development of an expression and purification protocol for viral rhodopsins that have reliable production of required proteins.

2) Full characterization of steady-state and transient absorption spectra of viral rhodopsins OLPVR1 and OLPVRII under different conditions.

3) Full electrophysiological characterization of VirChR1 from the VR1 group, that revealed ion channeling functions of VR1 rhodopsins. The ion selectivity tests showed that VirChR1 conducts only monovalent ions and is inhibited by divalent calcium ions.

4) VirChR1 was successfully expressed in neurons and has shown to be capable of activation of neural spike trains.

5) The transient absorbance experiments with different calcium concentrations revealed the kinetic mechanism of VirChR1 inhibition by calcium.

6) Both OLPVR1 and OLPVRII were successfully crystallized using in meso approach. The high-resolution structures of both proteins were obtained in X-ray diffraction experiments.

7) The analysis of conservativity of different amino acids among the VR family allowed us to determine key structural elements of viral rhodopsins that are involved in protein function.

Список литературы диссертационного исследования кандидат наук Забельский Дмитрий Витальевич, 2022 год

References

1. A. Rozenberg, K. Inoue, H. Kandori, O. Béjá, Annu. Rev. Microbiol., in press, doi: 10.1146/annurev-micro-031721-020452.

2. H. Kandori, Biophysics of rhodopsins and optogenetics. Biophys. Rev. 12, 355-361 (2020).

3. E. G. Govorunova, O. A. Sineshchekov, H. Li, J. L. Spudich, Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications. Annu. Rev. Biochem. 86, 845-872 (2017).

4. O. P. Ernst, D. T. Lodowski, M. Elstner, P. Hegemann, L. S. Brown, H. Kandori, Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms. Chem. Rev. 114, 126-163 (2014).

5. J. P. Klare, I. Chizhov, M. Engelhard, in Bioenergetics: Energy Conservation and Conversion, G. Schäfer, H. S. Penefsky, Eds. (Springer, Berlin, Heidelberg, 2008; https://doi.org/10.1007/400_2007_041), Results and Problems in Cell Differentiation, pp. 73-122.

6. J. Pinhassi, E. F. DeLong, O. Béjá, J. M. González, C. Pedrós-Alió, Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology. Microbiol. Mol. Biol. Rev. 80, 929-954 (2016).

7. M. Grote, M. A. O'Malley, Enlightening the life sciences: the history of halobacterial and microbial rhodopsin research. FEMS Microbiol. Rev. 35, 1082-1099 (2011).

8. R. M. Eglen, Emerging concepts in GPCR function--the influence of cell phenotype on GPCR pharmacology. Proc. West. Pharmacol. Soc. 48, 31-34 (2005).

9. V. Katritch, V. Cherezov, R. C. Stevens, Diversity and modularity of G proteincoupled receptor structures. Trends Pharmacol. Sci. 33, 17-27 (2012).

10. S. Mukherjee, P. Hegemann, M. Broser, Enzymerhodopsins: novel photoregulated catalysts for optogenetics. Curr. Opin. Struct. Biol. 57, 118-126 (2019).

11. A. Kaneko, K. Inoue, K. Kojima, H. Kandori, Y. Sudo, Conversion of microbial rhodopsins: insights into functionally essential elements and rational protein engineering. Biophys. Rev. 9, 861-876 (2017).

12. A. K. Sharma, J. L. Spudich, W. F. Doolittle, Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol. 14, 463-469 (2006).

13. W. Shihoya, K. Inoue, M. Singh, M. Konno, S. Hososhima, K. Yamashita, K. Ikeda, A. Higuchi, T. Izume, S. Okazaki, M. Hashimoto, R. Mizutori, S. Tomida, Y. Yamauchi, R. Abe-Yoshizumi, K. Katayama, S. P. Tsunoda, M. Shibata, Y. Furutani, A. Pushkarev, O. Béjà, T. Uchihashi, H. Kandori, O. Nureki, Crystal structure of heliorhodopsin. Nature. 574, 132-136 (2019).

14. K. Kovalev, D. Volkov, R. Astashkin, A. Alekseev, I. Gushchin, J. M. Haro-Moreno, I. Chizhov, S. Siletsky, M. Mamedov, A. Rogachev, T. Balandin, V. Borshchevskiy, A. Popov, G. Bourenkov, E. Bamberg, F. Rodriguez-Valera, G. Büldt, V. Gordeliy, High-resolution structural insights into the heliorhodopsin family. Proc. Natl. Acad. Sci., 201915888 (2020).

15. A. Pushkarev, K. Inoue, S. Larom, J. Flores-Uribe, M. Singh, M. Konno, S. Tomida, S. Ito, R. Nakamura, S. P. Tsunoda, A. Philosof, I. Sharon, N. Yutin, E. V. Koonin, H. Kandori, O. Béjà, A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature. 558, 595-599 (2018).

16. V. I. Gordeliy, J. Labahn, R. Moukhametzianov, R. Efremov, J. Granzin, R. Schlesinger, G. Büldt, T. Savopol, A. J. Scheidig, J. P. Klare, M. Engelhard, Molecular

basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature. 419, 484-487 (2002).

17. R. Moukhametzianov, J. P. Klare, R. Efremov, C. Baeken, A. Goppner, J. Labahn, M. Engelhard, G. Büldt, V. I. Gordeliy, Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature. 440, 115-119 (2006).

18. K.-H. Jung, V. D. Trivedi, J. L. Spudich, Demonstration of a sensory rhodopsin in eubacteria: Sensory rhodopsin in eubacteria. Mol. Microbiol. 47, 1513-1522 (2003).

19. J. Heberle, J. Fitter, H. J. Sass, G. Büldt, Bacteriorhodopsin: the functional details of a molecular machine are being resolved. Biophys. Chem. 85, 229-248 (2000).

20. K. Inoue, H. Ono, R. Abe-Yoshizumi, S. Yoshizawa, H. Ito, K. Kogure, H. Kandori, A light-driven sodium ion pump in marine bacteria. Nat. Commun. 4, 1678 (2013).

21. V. Shevchenko, T. Mager, K. Kovalev, V. Polovinkin, A. Alekseev, J. Juettner, I. Chizhov, C. Bamann, C. Vavourakis, R. Ghai, I. Gushchin, V. Borshchevskiy, A. Rogachev, I. Melnikov, A. Popov, T. Balandin, F. Rodriguez-Valera, D. J. Manstein, G. Bueldt, E. Bamberg, V. Gordeliy, Inward H + pump xenorhodopsin: Mechanism and alternative optogenetic approach. Sci. Adv. 3, e1603187 (2017).

22. B. Schobert, J. K. Lanyi, Halorhodopsin is a light-driven chloride pump. J. Biol. Chem. 257, 10306-10313 (1982).

23. D. Zabelskii, N. Dmitrieva, O. Volkov, V. Shevchenko, K. Kovalev, T. Balandin, D. Soloviov, R. Astashkin, E. Zinovev, A. Alekseev, E. Round, V. Polovinkin, I. Chizhov, A. Rogachev, I. Okhrimenko, V. Borshchevskiy, V. Chupin, G. Büldt, N. Yutin, E. Bamberg, E. Koonin, V. Gordeliy, Structure-based insights into evolution of rhodopsins. Commun. Biol. 4, 821 (2021).

24. G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, E. Bamberg, Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. 100, 13940-13945 (2003).

25. O. A. Sineshchekov, E. G. Govorunova, H. Li, J. L. Spudich, Bacteriorhodopsin-like channelrhodopsins: Alternative mechanism for control of cation conductance. Proc. Natl. Acad. Sci. 114, E9512-E9519 (2017).

26. E. G. Govorunova, O. A. Sineshchekov, R. Janz, X. Liu, J. L. Spudich, Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics. Science. 349, 647-650 (2015).

27. D. Zabelskii, A. Alekseev, K. Kovalev, V. Rankovic, T. Balandin, D. Soloviov, D. Bratanov, E. Savelyeva, E. Podolyak, D. Volkov, S. Vaganova, R. Astashkin, I. Chizhov, N. Yutin, M. Rulev, A. Popov, A.-S. Eria-Oliveira, T. Rokitskaya, T. Mager, Y. Antonenko, R. Rosselli, G. Armeev, K. Shaitan, M. Vivaudou, G. Büldt, A. Rogachev, F. Rodriguez-Valera, M. Kirpichnikov, T. Moser, A. Offenhäusser, D. Willbold, E. Koonin, E. Bamberg, V. Gordeliy, Viral rhodopsins 1 are an unique family of light-gated cation channels. Nat. Commun. 11, 5707 (2020).

28. M. Luck, T. Mathes, S. Bruun, R. Fudim, R. Hagedorn, T. M. Tran Nguyen, S. Kateriya, J. T. M. Kennis, P. Hildebrandt, P. Hegemann, A Photochromic Histidine Kinase Rhodopsin (HKR1) That Is Bimodally Switched by Ultraviolet and Blue Light. J. Biol. Chem. 287, 40083-40090 (2012).

29. L. S. Brown, Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochem. Photobiol. Sci. 3, 555 (2004).

30. O. Beja, Bacterial Rhodopsin: Evidence for a New Type of Phototrophy in the Sea. Science. 289, 1902-1906 (2000).

31. T. Friedrich, S. Geibel, R. Kalmbach, I. Chizhov, K. Ataka, J. Heberle, M. Engelhard, E. Bamberg, Proteorhodopsin is a Light-driven Proton Pump with Variable Vectoriality. J. Mol. Biol. 321, 821-838 (2002).

32. C. Bamann, E. Bamberg, J. Wachtveitl, C. Glaubitz, Proteorhodopsin. Biochim. Biophys. Acta BBA - Bioenerg. 1837, 614-625 (2014).

33. K. A. Hunt, J. M. Flynn, B. Naranjo, I. D. Shikhare, J. A. Gralnick, Substrate-Level Phosphorylation Is the Primary Source of Energy Conservation during Anaerobic Respiration of Shewanella oneidensis Strain MR-1. J. Bacteriol. 192, 3345-3351 (2010).

34. L. Gómez-Consarnau, N. Akram, K. Lindell, A. Pedersen, R. Neutze, D. L. Milton, J. M. González, J. Pinhassi, Proteorhodopsin Phototrophy Promotes Survival of Marine Bacteria during Starvation. PLoS Biol. 8, e1000358 (2010).

35. O. A. Sineshchekov, K.-H. Jung, J. L. Spudich, Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. 99, 8689-8694 (2002).

36. O. A. Sineshchekov, E. G. Govorunova, J. L. Spudich, Photosensory Functions of Channelrhodopsins in Native Algal Cells. Photochem. Photobiol. 85, 556-563 (2009).

37. A. Möglich, X. Yang, R. A. Ayers, K. Moffat, Structure and Function of Plant Photoreceptors. Annu. Rev. Plant Biol. 61, 21-47 (2010).

38. U. Scheib, M. Broser, O. M. Constantin, S. Yang, S. Gao, S. Mukherjee, K. Stehfest, G. Nagel, C. E. Gee, P. Hegemann, Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 Á structure of the adenylyl cyclase domain. Nat. Commun. 9, 2046 (2018).

39. U. Scheib, K. Stehfest, C. E. Gee, H. G. Körschen, R. Fudim, T. G. Oertner, P. Hegemann, The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling. Sci. Signal. 8, rs8-rs8 (2015).

40. L. Gómez-Consarnau, J. A. Raven, N. M. Levine, L. S. Cutter, D. Wang, B. Seegers, J. Arístegui, J. A. Fuhrman, J. M. Gasol, S. A. Sañudo-Wilhelmy, Microbial rhodopsins are major contributors to the solar energy captured in the sea. Sci. Adv. 5, eaaw8855 (2019).

41. A. Courties, T. Riedel, A. Rapaport, P. Lebaron, M. T. Suzuki, Light-driven increase in carbon yield is linked to maintenance in the proteorhodopsin-containing Photobacterium angustum S14. Front. Microbiol. 6 (2015), doi:10.3389/fmicb.2015.00688.

42. N. Atamna-Ismaeel, G. Sabehi, I. Sharon, K.-P. Witzel, M. Labrenz, K. Jürgens, T. Barkay, M. Stomp, J. Huisman, O. Beja, Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems. ISME J. 2, 656-662 (2008).

43. R. H. Lozier, R. A. Bogomolni, W. Stoeckenius, Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophys. J. 15, 955-962 (1975).

44. Y. Sugiyama, M. Maeda, M. Futai, Y. Mukohata, Isolation of a Gene That Encodes a New Retinal Protein, Archaerhodopsin, from Halobacterium sp. aus-1. J. Biol. Chem. 264, 20859-20862 (1989).

45. A. K. Sharma, O. Zhaxybayeva, R. T. Papke, W. F. Doolittle, Actinorhodopsins: proteorhodopsin-like gene sequences found predominantly in non-marine environments. Environ. Microbiol. 10, 1039-1056 (2008).

46. C. H. Slamovits, N. Okamoto, L. Burri, E. R. James, P. J. Keeling, A bacterial proteorhodopsin proton pump in marine eukaryotes. Nat. Commun. 2, 183 (2011).

47. S. A. Waschuk, A. G. Bezerra, L. Shi, L. S. Brown, Leptosphaeria rhodopsin: Bacteriorhodopsin-like proton pump from a eukaryote. Proc. Natl. Acad. Sci. 102, 68796883 (2005).

48. N. Yutin, E. V. Koonin, Proteorhodopsin genes in giant viruses. Biol. Direct. 7, 34 (2012).

49. D. Bratanov, K. Kovalev, J.-P. Machtens, R. Astashkin, I. Chizhov, D. Soloviov, D. Volkov, V. Polovinkin, D. Zabelskii, T. Mager, I. Gushchin, T. Rokitskaya, Y. Antonenko, A. Alekseev, V. Shevchenko, N. Yutin, R. Rosselli, C. Baeken, V. Borshchevskiy, G. Bourenkov, A. Popov, T. Balandin, G. Büldt, D. J. Manstein, F. Rodriguez-Valera, C. Fahlke, E. Bamberg, E. Koonin, V. Gordeliy, Unique structure and function of viral rhodopsins. Nat. Commun. 10, 4939 (2019).

50. D. Oesterhelt, W. Stoeckenius, Rhodopsin-like Protein from the Purple Membrane of Halobacterium halobium. Nature. New Biol. 233, 149-152 (1971).

51. J. K. Lanyi, Halorhodopsin — a second retinal pigment in Halobacterium halobium.

Trends Biochem. Sci. 6, 60-62 (1981).

52. R. A. Bogomolni, J. L. Spudich, Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc. Natl. Acad. Sci. 79, 6250-6254 (1982).

53. H. Tomioka, T. Takahashi, N. Kamo, Y. Kobatake, Flash spectrophotometric identification of a fourth rhodopsin-like pigment in Halobacterium halobium. Biochem. Biophys. Res. Commun. 139, 389-395 (1986).

54. R. Henderson, The Purple Membrane from Halobacterium Halobium. Annu. Rev. Biophys. Bioeng. 6, 87-109 (1977).

55. E. N. Spudich, T. Takahashi, J. L. Spudich, Sensory rhodopsins I and II modulate a methylation/demethylation system in Halobacterium halobium phototaxis. Proc. Natl. Acad. Sci. 86, 7746-7750 (1989).

56. Y. L. Ryzhykau, P. S. Orekhov, M. I. Rulev, A. V. Vlasov, I. A. Melnikov, D. A. Volkov, M. Yu. Nikolaev, D. V. Zabelskii, T. N. Murugova, V. V. Chupin, A. V. Rogachev, A. Yu. Gruzinov, D. I. Svergun, M. E. Brennich, I. Yu. Gushchin, M. Soler-Lopez, A. Bothe, G. Büldt, G. Leonard, M. Engelhard, A. I. Kuklin, V. I. Gordeliy,

Molecular model of a sensor of two-component signaling system. Sci. Rep. 11, 10774 (2021).

57. A. Idnurm, B. J. Howlett, Characterization of an opsin gene from the ascomycete Leptosphaeria maculans. Genome. 44, 167-171 (2001).

58. O. A. Sineshchekov, E. G. Govorunova, Rhodopsin-mediated photosensing in green flagellated algae. Trends Plant Sci. 4, 58-63 (1999).

59. G. Nagel, Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae. Science. 296, 2395-2398 (2002).

60. E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth, Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 12631268 (2005).

61. T. Ikuta, W. Shihoya, M. Sugiura, K. Yoshida, M. Watari, T. Tokano, K. Yamashita, K. Katayama, S. P. Tsunoda, T. Uchihashi, H. Kandori, O. Nureki, Structural insights into the mechanism of rhodopsin phosphodiesterase. Nat. Commun. 11, 5605 (2020).

62. K. Inoue, S. Ito, Y. Kato, Y. Nomura, M. Shibata, T. Uchihashi, S. P. Tsunoda, H. Kandori, A natural light-driven inward proton pump. Nat. Commun. 7, 13415 (2016).

63. A. Niho, S. Yoshizawa, T. Tsukamoto, M. Kurihara, S. Tahara, Y. Nakajima, M. Mizuno, H. Kuramochi, T. Tahara, Y. Mizutani, Y. Sudo, Demonstration of a Light-Driven SO 4 2- Transporter and Its Spectroscopic Characteristics. J. Am. Chem. Soc. 139, 43764389 (2017).

64. B. A. Curtis, G. Tanifuji, F. Burki, A. Gruber, M. Irimia, S. Maruyama, M. C. Arias, S. G. Ball, G. H. Gile, Y. Hirakawa, J. F. Hopkins, A. Kuo, S. A. Rensing, J. Schmutz, A. Symeonidi, M. Elias, R. J. M. Eveleigh, E. K. Herman, M. J. Klute, T. Nakayama, M. Obornik, A. Reyes-Prieto, E. V. Armbrust, S. J. Aves, R. G. Beiko, P. Coutinho, J. B. Dacks, D. G. Durnford, N. M. Fast, B. R. Green, C. J. Grisdale, F. Hempel, B. Henrissat,

M. P. Höppner, K.-I. Ishida, E. Kim, L. Koreny, P. G. Kroth, Y. Liu, S.-B. Malik, U. G. Maier, D. McRose, T. Mock, J. A. D. Neilson, N. T. Onodera, A. M. Poole, E. J. Pritham, T. A. Richards, G. Rocap, S. W. Roy, C. Sarai, S. Schaack, S. Shirato, C. H. Slamovits, D. F. Spencer, S. Suzuki, A. Z. Worden, S. Zauner, K. Barry, C. Bell, A. K. Bharti, J. A. Crow, J. Grimwood, R. Kramer, E. Lindquist, S. Lucas, A. Salamov, G. I. McFadden, C. E. Lane, P. J. Keeling, M. W. Gray, I. V. Grigoriev, J. M. Archibald, Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature. 492, 59-65 (2012).

65. E. G. Govorunova, O. A. Sineshchekov, E. M. Rodarte, R. Janz, O. Morelle, M. Melkonian, G. K.-S. Wong, J. L. Spudich, The Expanding Family of Natural Anion Channelrhodopsins Reveals Large Variations in Kinetics, Conductance, and Spectral Sensitivity. Sci. Rep. 7, 43358 (2017).

66. Y. S. Kim, H. E. Kato, K. Yamashita, S. Ito, K. Inoue, C. Ramakrishnan, L. E. Fenno, K. E. Evans, J. M. Paggi, R. O. Dror, H. Kandori, B. K. Kobilka, K. Deisseroth, Crystal structure of the natural anion-conducting channelrhodopsin GtACR1. Nature. 561, 343-348 (2018).

67. H. E. Kato, Y. S. Kim, J. M. Paggi, K. E. Evans, W. E. Allen, C. Richardson, K. Inoue, S. Ito, C. Ramakrishnan, L. E. Fenno, K. Yamashita, D. Hilger, S. Y. Lee, A. Berndt, K. Shen, H. Kandori, R. O. Dror, B. K. Kobilka, K. Deisseroth, Structural mechanisms of selectivity and gating in anion channelrhodopsins. Nature. 561, 349-354 (2018).

68. E. G. Govorunova, O. A. Sineshchekov, J. L. Spudich, Structurally Distinct Cation Channelrhodopsins from Cryptophyte Algae. Biophys. J. 110, 2302-2304 (2016).

69. J. Oppermann, P. Fischer, A. Silapetere, B. Liepe, S. Rodriguez-Rozada, J. Flores-Uribe, E. Peter, A. Keidel, J. Vierock, J. Kaufmann, M. Broser, M. Luck, F. Bartl, P. Hildebrandt, J. Simon Wiegert, O. Beja, P. Hegemann, J. Wietek, MerMAIDs: a family of

metagenomically discovered marine anion-conducting and intensely desensitizing channelrhodopsins. Nat. Commun. 10, 3315 (2019).

70. M. Hashimoto, K. Katayama, Y. Furutani, H. Kandori, Zinc Binding to Heliorhodopsin. J. Phys. Chem. Lett., 8604-8609 (2020).

71. M. Shibata, K. Inoue, K. Ikeda, M. Konno, M. Singh, C. Kataoka, R. Abe-Yoshizumi, H. Kandori, T. Uchihashi, Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy. Sci. Rep. 8, 8262 (2018).

72. K. Kovalev, V. Polovinkin, I. Gushchin, A. Alekseev, V. Shevchenko, V. Borshchevskiy, R. Astashkin, T. Balandin, D. Bratanov, S. Vaganova, A. Popov, V. Chupin, G. Büldt, E. Bamberg, V. Gordeliy, Structure and mechanisms of sodium-pumping KR2 rhodopsin. Sci. Adv. 5, eaav2671 (2019).

73. T. Morizumi, W.-L. Ou, N. Van Eps, K. Inoue, H. Kandori, L. S. Brown, O. P. Ernst, X-ray Crystallographic Structure and Oligomerization of Gloeobacter Rhodopsin. Sci. Rep. 9, 11283 (2019).

74. M. Luck, F. Velazquez Escobar, K. Glass, M.-I. Sabotke, R. Hagedorn, F. Corellou, F. Siebert, P. Hildebrandt, P. Hegemann, Photoreactions of the Histidine Kinase Rhodopsin Ot-HKR from the Marine Picoalga Ostreococcus tauri. Biochemistry. 58, 1878-1891 (2019).

75. M. Broser, A. Spreen, P. E. Konold, E. Peter, S. Adam, V. Borin, I. Schapiro, R. Seifert, J. T. M. Kennis, Y. A. Bernal Sierra, P. Hegemann, NeoR, a near-infrared absorbing rhodopsin. Nat. Commun. 11, 5682 (2020).

76. J. Hofrichter, E. R. Henry, R. H. Lozier, Photocycles of bacteriorhodopsin in light-and dark-adapted purple membrane studied by time-resolved absorption spectroscopy. Biophys. J. 56, 693-706 (1989).

77. D. S. Chernavskii, I. V. Chizhov, R. H. Lozier, T. M. Murina, A. M. Prokhorov, B. V. Zubov, KINETIC MODEL OF BACTERIORHODOPSIN PHOTOCYCLE: PATHWAY FROM M STATE TO bR. Photochem. Photobiol. 49, 649-653 (1989).

78. I. Chizhov, D. S. Chernavskii, M. Engelhard, K. H. Mueller, B. V. Zubov, B. Hess, Spectrally silent transitions in the bacteriorhodopsin photocycle. Biophys. J. 71, 2329-2345 (1996).

79. I. Chizhov, G. Schmies, R. Seidel, J. R. Sydor, B. Lüttenberg, M. Engelhard, The Photophobic Receptor from Natronobacterium pharaonis: Temperature and pH Dependencies of the Photocycle of Sensory Rhodopsin II. Biophys. J. 75, 999-1009 (1998).

80. I. Chizhov, M. Engelhard, Temperature and Halide Dependence of the Photocycle of Halorhodopsin from Natronobacterium pharaonis. Biophys. J. 81, 1600-1612 (2001).

81. A. Berndt, O. Yizhar, L. A. Gunaydin, P. Hegemann, K. Deisseroth, Bi-stable neural state switches. Nat. Neurosci. 12, 229-234 (2009).

82. J. Kuhne, J. Vierock, S. A. Tennigkeit, M.-A. Dreier, J. Wietek, D. Petersen, K. Gavriljuk, S. F. El-Mashtoly, P. Hegemann, K. Gerwert, Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2. Proc. Natl. Acad. Sci., 201818707 (2019).

83. I. Gushchin, V. Gordeliy, in Membrane Protein Complexes: Structure and Function, J. R. Harris, E. J. Boekema, Eds. (Springer Singapore, Singapore, 2018; http://link.springer.com/10.1007/978-981-10-7757-9_2), vol. 87 of Subcellular Biochemistry, pp. 19-56.

84. J. Lanyi, Bacteriorhodopsin. Curr. Opin. Struct. Biol. 11, 415-419 (2001).

85. H. Luecke, B. Schobert, H.-T. Richter, J.-P. Cartailler, J. K. Lanyi, Structure of bacteriorhodopsin at 1.55 Ä resolution 11Edited by D. C. Rees. J. Mol. Biol. 291, 899-911 (1999).

86. H. J. Sass, G. Büldt, R. Gessenich, D. Hehn, D. Neff, R. Schlesinger, J. Berendzen, P. Ormos, Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature. 406, 649-653 (2000).

87. J. K. Lanyi, B. Schobert, Structural Changes in the L Photointermediate of Bacteriorhodopsin. J. Mol. Biol. 365, 1379-1392 (2007).

88. N. Hasegawa, H. Jonotsuka, K. Miki, K. Takeda, X-ray structure analysis of bacteriorhodopsin at 1.3 Ä resolution. Sci. Rep. 8, 13123 (2018).

89. T. Weinert, P. Skopintsev, D. James, F. Dworkowski, E. Panepucci, D. Kekilli, A. Furrer, S. Brünle, S. Mous, D. Ozerov, P. Nogly, M. Wang, J. Standfuss, Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography. Science. 365, 61-65 (2019).

90. S.-K. Kwon, S.-H. Jun, J. F. Kim, Omega Rhodopsins: A Versatile Class of Microbial Rhodopsins. J. Microbiol. Biotechnol. 30, 633-641 (2020).

91. E. V. Koonin, T. G. Senkevich, V. V. Dolja, The ancient Virus World and evolution of cells. Biol. Direct. 1, 29 (2006).

92. M. K. Parvez, S. Parveen, Evolution and Emergence of Pathogenic Viruses: Past, Present, and Future. Intervirology. 60, 1-7 (2017).

93. S. Modrow, D. Falke, U. Truyen, H. Schätzl, in Molecular Virology (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013; http://link.springer.com/10.1007/978-3-642-20718-1_2), pp. 17-30.

94. E. V. Koonin, V. V. Dolja, T. J. Morris, Evolution and Taxonomy of Positive-Strand RNA Viruses: Implications of Comparative Analysis of Amino Acid Sequences. Crit. Rev. Biochem. Mol. Biol. 28, 375-430 (1993).

95. D. Raoult, The 1.2-Megabase Genome Sequence of Mimivirus. Science. 306, 13441350 (2004).

96. M. G. Fischer, M. J. Allen, W. H. Wilson, C. A. Suttle, Giant virus with a remarkable complement of genes infects marine zooplankton. Proc. Natl. Acad. Sci. 107, 19508-19513 (2010).

97. J. Filée, Giant viruses and their mobile genetic elements: the molecular symbiosis hypothesis. Curr. Opin. Virol. 33, 81-88 (2018).

98. P. Colson, N. Yutin, S. A. Shabalina, C. Robert, G. Fournous, B. La Scola, D. Raoult, E. V. Koonin, Viruses with More Than 1,000 Genes: Mamavirus, a New Acanthamoeba polyphagamimivirus Strain, and Reannotation of Mimivirus Genes. Genome Biol. Evol. 3, 737-742 (2011).

99. F. Schulz, L. Alteio, D. Goudeau, E. M. Ryan, F. B. Yu, R. R. Malmstrom, J. Blanchard, T. Woyke, Hidden diversity of soil giant viruses. Nat. Commun. 9, 4881 (2018).

100. W. H. Wilson, J. L. Van Etten, M. J. Allen, in Lesser Known Large dsDNA Viruses, J. L. Van Etten, Ed. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2009; http://link.springer.com/10.1007/978-3-540-68618-7_1), vol. 328 of Current Topics in Microbiology and Immunology, pp. 1-42.

101. F. Schulz, S. Roux, D. Paez-Espino, S. Jungbluth, D. A. Walsh, V. J. Denef, K. D. McMahon, K. T. Konstantinidis, E. A. Eloe-Fadrosh, N. C. Kyrpides, T. Woyke, Giant virus diversity and host interactions through global metagenomics. Nature. 578, 432-436 (2020).

102. J. S. Abrahao, F. P. Dornas, L. C. Silva, G. M. Almeida, P. V. Boratto, P. Colson, B. La Scola, E. G. Kroon, Acanthamoeba polyphaga mimivirus and other giant viruses: an open field to outstanding discoveries. Virol. J. 11, 120 (2014).

103. S. Yau, F. M. Lauro, M. Z. DeMaere, M. V. Brown, T. Thomas, M. J. Raftery, C. Andrews-Pfannkoch, M. Lewis, J. M. Hoffman, J. A. Gibson, R. Cavicchioli, Virophage control of antarctic algal host-virus dynamics. Proc. Natl. Acad. Sci. 108, 6163-6168 (2011).

104. P. Franzmann, P. Deprez, H. Burton, J. van den Hoff, Limnology of Organic Lake, Antarctica, a meromictic lake that contains high concentrations of dimethyl sulfide. Mar. Freshw. Res. 38, 409 (1987).

105. F. M. Lauro, M. Z. DeMaere, S. Yau, M. V. Brown, C. Ng, D. Wilkins, M. J. Raftery, J. A. Gibson, C. Andrews-Pfannkoch, M. Lewis, J. M. Hoffman, T. Thomas, R. Cavicchioli, An integrative study of a meromictic lake ecosystem in Antarctica. ISME J. 5, 879-895 (2011).

106. A. Monier, A. Chambouvet, D. S. Milner, V. Attah, R. Terrado, C. Lovejoy, H. Moreau, A. E. Santoro, E. Derelle, T. A. Richards, Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton. Proc. Natl. Acad. Sci. 114, E7489-E7498 (2017).

107. C. R. Schvarcz, G. F. Steward, A giant virus infecting green algae encodes key fermentation genes. Virology. 518, 423-433 (2018).

108. B. L. Hurwitz, S. J. Hallam, M. B. Sullivan, Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 14, R123 (2013).

109. D. M. Needham, S. Yoshizawa, T. Hosaka, C. Poirier, C. J. Choi, E. Hehenberger, N. A. T. Irwin, S. Wilken, C.-M. Yung, C. Bachy, R. Kurihara, Y. Nakajima, K. Kojima, T. Kimura-Someya, G. Leonard, R. R. Malmstrom, D. R. Mende, D. K. Olson, Y. Sudo, S.

Sudek, T. A. Richards, E. F. DeLong, P. J. Keeling, A. E. Santoro, M. Shirouzu, W. Iwasaki, A. Z. Worden, A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl. Acad. Sci. 116, 20574-20583 (2019).

110. S. Saikia, D. Oliveira, G. Hu, J. Kronstad, Role of Ferric Reductases in Iron Acquisition and Virulence in the Fungal Pathogen Cryptococcus neoformans. Infect. Immun. 82, 839-850 (2014).

111. A. Herbik, C. Bölling, T. J. Buckhout, The Involvement of a Multicopper Oxidase in Iron Uptake by the Green Algae Chlamydomonas reinhardtii. Plant Physiol. 130, 20392048 (2002).

112. D. Moreira, C. Brochier-Armanet, Giant viruses, giant chimeras: The multiple evolutionary histories of Mimivirus genes. BMC Evol. Biol. 8, 12 (2008).

113. J. Filée, M. Chandler, Gene Exchange and the Origin of Giant Viruses. Intervirology. 53, 354-361 (2010).

114. P. J. Keeling, J. D. Palmer, Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9, 605-618 (2008).

115. T. Yamada, Giant viruses in the environment: their origins and evolution. Curr. Opin. Virol. 1, 58-62 (2011).

116. J. Filee, Genomic comparison of closely related Giant Viruses supports an accordion-like model of evolution. Front. Microbiol. 6 (2015), doi:10.3389/fmicb.2015.00593.

117. A. Pushkarev, O. Béjà, Functional metagenomic screen reveals new and diverse microbial rhodopsins. ISME J. 10, 2331-2335 (2016).

118. D. M. Needham, C. Poirier, E. Hehenberger, V. Jiménez, J. E. Swalwell, A. E. Santoro, A. Z. Worden, Targeted metagenomic recovery of four divergent viruses reveals

shared and distinctive characteristics of giant viruses of marine eukaryotes. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190086 (2019).

119. Tara Oceans Coordinators, S. Sunagawa, S. G. Acinas, P. Bork, C. Bowler, D. Eveillard, G. Gorsky, L. Guidi, D. Iudicone, E. Karsenti, F. Lombard, H. Ogata, S. Pesant, M. B. Sullivan, P. Wincker, C. de Vargas, Tara Oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428-445 (2020).

120. P. Bork, C. Bowler, C. de Vargas, G. Gorsky, E. Karsenti, P. Wincker, Tara Oceans studies plankton at planetary scale. Science. 348, 873-873 (2015).

121. S. J. Biller, P. M. Berube, K. Dooley, M. Williams, B. M. Satinsky, T. Hackl, S. L. Hogle, A. Coe, K. Bergauer, H. A. Bouman, T. J. Browning, D. De Corte, C. Hassler, D. Hulston, J. E. Jacquot, E. W. Maas, T. Reinthaler, E. Sintes, T. Yokokawa, S. W. Chisholm, Marine microbial metagenomes sampled across space and time. Sci. Data. 5, 180176 (2018).

122. A. Rozenberg, J. Oppermann, J. Wietek, R. G. Fernandez Lahore, R.-A. Sandaa, G. Bratbak, P. Hegemann, O. Beja, Lateral Gene Transfer of Anion-Conducting Channelrhodopsins between Green Algae and Giant Viruses. Curr. Biol. 30, 4910-4920.e5 (2020).

123. D. T. M. Chan, X. L. Zhu, J. H. M. Yeung, V. C. T. Mok, E. Wong, C. Lau, R. Wong, C. Lau, W. S. Poon, Complications of Deep Brain Stimulation: A Collective Review. Asian J. Surg. 32, 258-263 (2009).

124. L. Fenno, O. Yizhar, K. Deisseroth, The Development and Application of Optogenetics. Annu. Rev. Neurosci. 34, 389-412 (2011).

125. A. Guru, R. J. Post, Y.-Y. Ho, M. R. Warden, Making Sense of Optogenetics. Int. J.

Neuropsychopharmacol. 18, pyv079 (2015).

126. E. G. Govorunova, O. A. Sineshchekov, J. L. Spudich, Three Families of Channelrhodopsins and Their Use in Optogenetics (review). Neurosci. Behav. Physiol. 49, 163-168 (2019).

127. E. A. C. Pama, L. S. Colzato, B. Hommel, Optogenetics as a neuromodulation tool in cognitive neuroscience. Front. Psychol. 4 (2013), doi:10.3389/fpsyg.2013.00610.

128. S. Zhao, C. Cunha, F. Zhang, Q. Liu, B. Gloss, K. Deisseroth, G. J. Augustine, G. Feng, Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol. 36, 141-154 (2008).

129. V. Gradinaru, K. R. Thompson, K. Deisseroth, eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 36, 129-139 (2008).

130. V. Gradinaru, F. Zhang, C. Ramakrishnan, J. Mattis, R. Prakash, I. Diester, I. Goshen, K. R. Thompson, K. Deisseroth, Molecular and Cellular Approaches for Diversifying and Extending Optogenetics. Cell. 141, 154-165 (2010).

131. H. E. Kato, F. Zhang, O. Yizhar, C. Ramakrishnan, T. Nishizawa, K. Hirata, J. Ito, Y. Aita, T. Tsukazaki, S. Hayashi, P. Hegemann, A. D. Maturana, R. Ishitani, K. Deisseroth, O. Nureki, Crystal structure of the channelrhodopsin light-gated cation channel. Nature. 482, 369-374 (2012).

132. F. Zhang, M. Prigge, F. Beyrière, S. P. Tsunoda, J. Mattis, O. Yizhar, P. Hegemann, K. Deisseroth, Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 11, 631-633 (2008).

133. N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K.-S. Wong, E. S. Boyden, Independent optical excitation of distinct neural populations. Nat. Methods. 11, 338-346 (2014).

134. T. Mager, D. L. de la Morena, V. Shevchenko, V. Senn, P. G. Wood, J. J. Letzkus, V. Gordeliy, T. Moser, E. Bamberg, Improved Microbial Rhodopsins for Ultrafast Red-Shifted Optogenetics. Biophys. J. 114, 669a (2018).

135. T. Mager, D. Lopez de la Morena, V. Senn, J. Schlotte, A. D'Errico, K. Feldbauer, C. Wrobel, S. Jung, K. Bodensiek, V. Rankovic, L. Browne, A. Huet, J. Jüttner, P. G. Wood, J. J. Letzkus, T. Moser, E. Bamberg, High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics. Nat. Commun. 9, 1750 (2018).

136. J. Wietek, J. S. Wiegert, N. Adeishvili, F. Schneider, H. Watanabe, S. P. Tsunoda, A. Vogt, M. Elstner, T. G. Oertner, P. Hegemann, Conversion of Channelrhodopsin into a Light-Gated Chloride Channel. Science. 344, 409-412 (2014).

137. A. Berndt, S. Y. Lee, C. Ramakrishnan, K. Deisseroth, Structure-Guided Transformation of Channelrhodopsin into a Light-Activated Chloride Channel. Science. 344, 420-424 (2014).

138. A. Berndt, K. Deisseroth, Expanding the optogenetics toolkit. Science. 349, 590-591 (2015).

139. A. Berndt, S. Y. Lee, J. Wietek, C. Ramakrishnan, E. E. Steinberg, A. J. Rashid, H. Kim, S. Park, A. Santoro, P. W. Frankland, S. M. Iyer, S. Pak, S. Ährlund-Richter, S. L. Delp, R. C. Malenka, S. A. Josselyn, M. Carlen, P. Hegemann, K. Deisseroth, Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity. Proc. Natl. Acad. Sci. 113, 822-829 (2016).

140. K. L. LeClair, J. E. Saunders, Meeting the educational needs of children with hearing loss. Bull. World Health Organ. 97, 722-724 (2019).

141. J. D. Steinmetz, R. R. A. Bourne, P. S. Briant, S. R. Flaxman, H. R. B. Taylor, J. B. Jonas, A. A. Abdoli, W. A. Abrha, A. Abualhasan, E. G. Abu-Gharbieh, T. G. Adal, A. Afshin, H. Ahmadieh, W. Alemayehu, S. A. S. Alemzadeh, A. S. Alfaar, V. Alipour, S.

Androudi, J. Arabloo, A. B. Arditi, B. B. Aregawi, A. Arrigo, C. Ashbaugh, E. D. Ashrafi, D. D. Atnafu, E. A. Bagli, A. A. W. Baig, T. W. Bärnighausen, M. Battaglia Parodi, M. S. Beheshti, A. S. Bhagavathula, N. Bhardwaj, P. Bhardwaj, K. Bhattacharyya, A. Bijani, M. Bikbov, M. Bottone, T. M. Braithwaite, A. M. Bron, S. A. Burugina Nagaraja, Z. A. Butt, F. L. L. Caetano dos Santos, V. L. J. Carneiro, R. J. Casson, C.-Y. J. Cheng, J.-Y. J. Choi, D.-T. Chu, M. V. M. Cicinelli, J. M. G. Coelho, N. G. A. Congdon, R. A. A. Couto, E. A. M. Cromwell, S. M. Dahlawi, X. Dai, R. Dana, L. Dandona, R. A. Dandona, M. A. Del Monte, M. Derbew Molla, N. A. Dervenis, A. A. P. Desta, J. P. Deva, D. Diaz, S. E. Djalalinia, J. R. Ehrlich, R. R. Elayedath, H. R. B. Elhabashy, L. B. Ellwein, M. H. Emamian, S. Eskandarieh, F. G. Farzadfar, A. G. Fernandes, F. S. Fischer, D. S. M. Friedman, J. M. Furtado, S. Gaidhane, G. Gazzard, B. Gebremichael, R. George, A. Ghashghaee, S. A. Gilani, M. Golechha, S. R. Hamidi, B. R. R. Hammond, M. E. R. K. Hartnett, R. K. Hartono, A. I. Hashi, S. I. Hay, K. Hayat, G. Heidari, H. C. Ho, R. Holla, M. J. Househ, J. J. E. Huang, S. E. M. Ibitoye, I. M. D. Ilic, M. D. D. Ilic, A. D. N. Ingram, S. S. N. Irvani, S. M. S. Islam, R. Itumalla, S. P. Jayaram, R. P. Jha, R. Kahloun, R. Kalhor, H. Kandel, A. S. Kasa, T. A. Kavetskyy, G. A. H. Kayode, J. H. Kempen, M. Khairallah, R. A. Khalilov, E. A. C. Khan, R. C. Khanna, M. N. A. Khatib, T. A. E. Khoja, J. E. Kim, Y. J. Kim, G. R. Kim, S. Kisa, A. Kisa, S. Kosen, A. Koyanagi, B. Kucuk Bicer, V. P. Kulkarni, O. P. Kurmi, I. C. Landires, V. C. L. Lansingh, J. L. E. Leasher, K. E. LeGrand, N. Leveziel, H. Limburg, X. Liu, S. Madhava Kunjathur, S. Maleki, N. Manafi, K. Mansouri, C. G. McAlinden, G. G. M. Meles, A. M. Mersha, I. M. R. Michalek, T. R. Miller, S. Misra, Y. Mohammad, S. F. A. Mohammadi, J. A. H. Mohammed, A. H. Mokdad, M. A. A. Moni, A. A. R. Montasir, A. R. F. Morse, G. F. C. Mulaw, M. Naderi, H. S. Naderifar, K. S. Naidoo, M. D. Naimzada, V. Nangia, S. M. Narasimha Swamy, D. M. Naveed, H. L. Negash, H. L. Nguyen, V. A. Nunez-Samudio, F. A. Ogbo, K. T. Ogundimu, A. T. E. Olagunju, O. E. Onwujekwe, N. O. Otstavnov, M. O. Owolabi, K. Pakshir, S. Panda-Jonas, U. Parekh, E.-C. Park, M. Pasovic, S. Pawar, K. Pesudovs, T. Q.

Peto, H. Q. Pham, M. Pinheiro, V. Podder, V. Rahimi-Movaghar, M. H. U. Y. Rahman, P. Y. Ramulu, P. Rathi, S. L. Rawaf, D. L. Rawaf, L. Rawal, N. M. Reinig, A. M. Renzaho, A. L. Rezapour, A. L. Robin, L. Rossetti, S. Sabour, S. Safi, A. Sahebkar, M. A. M. Sahraian, A. M. Samy, B. Sathian, G. K. Saya, M. A. Saylan, A. A. A. Shaheen, M. A. T. Shaikh, T. T. Shen, K. S. Shibuya, W. S. Shiferaw, M. Shigematsu, J. I. Shin, J. C. Silva, A. A. Silvester, J. A. Singh, D. S. Singhal, R. S. Sitorus, E. Y. Skiadaresi, V. Y. A. Skryabin, A. A. Skryabina, A. B. Soheili, M. B. A. R. C. Sorrie, R. A. R. C. T. Sousa, C. T. Sreeramareddy, D. G. Stambolian, E. G. Tadesse, N. I. Tahhan, M. I. Tareque, F. X. Topouzis, B. X. Tran, G. K. Tsegaye, M. K. Tsilimbaris, R. Varma, G. Virgili, A. T. Vongpradith, G. T. Vu, Y. X. Wang, N. H. Wang, A. H. K. Weldemariam, S. K. G. West, T. G. Y. Wondmeneh, T. Y. Wong, M. Yaseri, N. Yonemoto, C. S. Yu, M. S. Zastrozhin, Z.-J. R. Zhang, S. R. Zimsen, S. Resnikoff, T. Vos, Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob. Health. 9, e144-e160 (2021).

142. M. Jeschke, T. Moser, Considering optogenetic stimulation for cochlear implants. Hear. Res. 322, 224-234 (2015).

143. T. Dombrowski, V. Rankovic, T. Moser, Toward the Optical Cochlear Implant. Cold Spring Harb. Perspect. Med. 9, a033225 (2019).

144. S. Kleinlogel, C. Vogl, M. Jeschke, J. Neef, T. Moser, Physiol. Rev., in press, doi: 10.1152/physrev.00035.2019.

145. C. K. Baker, J. G. Flannery, Innovative Optogenetic Strategies for Vision Restoration. Front. Cell. Neurosci. 12, 316 (2018).

146. R. C. Challis, S. Ravindra Kumar, K. Y. Chan, C. Challis, K. Beadle, M. J. Jang, H. M. Kim, P. S. Rajendran, J. D. Tompkins, K. Shivkumar, B. E. Deverman, V. Gradinaru,

Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat. Protoc. 14, 379-414 (2019).

147. J.-A. Sahel, E. Boulanger-Scemama, C. Pagot, A. Arleo, F. Galluppi, J. N. Martel, S. D. Esposti, A. Delaux, J.-B. de Saint Aubert, C. de Montleau, E. Gutman, I. Audo, J. Duebel, S. Picaud, D. Dalkara, L. Blouin, M. Taiel, B. Roska, Partial recovery of visual function in a blind patient after optogenetic therapy. Nat. Med. 27, 1223-1229 (2021).

148. A. Amon, F. Alesch, Systems for deep brain stimulation: review of technical features. J. Neural Transm. 124, 1083-1091 (2017).

149. J. M. Bronstein, M. Tagliati, R. L. Alterman, A. M. Lozano, J. Volkmann, A. Stefani, F. B. Horak, M. S. Okun, K. D. Foote, P. Krack, R. Pahwa, J. M. Henderson, M. I. Hariz, R. A. Bakay, A. Rezai, W. J. Marks, E. Moro, J. L. Vitek, F. M. Weaver, R. E. Gross, M. R. DeLong, Deep Brain Stimulation for Parkinson Disease: An Expert Consensus and Review of Key Issues. Arch. Neurol. 68 (2011),

doi: 10.1001/archneurol.2010.260.

150. S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, T. J. McHugh, Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science. 359, 679-684 (2018).

151. R. Chen, F. Gore, Q.-A. Nguyen, C. Ramakrishnan, S. Patel, S. H. Kim, M. Raffiee, Y. S. Kim, B. Hsueh, E. Krook-Magnusson, I. Soltesz, K. Deisseroth, Deep brain optogenetics without intracranial surgery. Nat. Biotechnol. 39, 161-164 (2021).

152. Method of the Year 2010. Nat. Methods. 8, 1-1 (2011).

153. Y. Wang, F. Wang, R. Wang, P. Zhao, Q. Xia, 2A self-cleaving peptide-based multigene expression system in the silkworm Bombyx mori. Sci. Rep. 5, 16273 (2015).

154. D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova, E. A. Solovieva, K. A. Lukyanov, E. A. Bogdanova, A. G. Zaraisky, S. Lukyanov, D. M. Chudakov, Bright far-red fluorescent protein for whole-body imaging. Nat. Methods. 4, 741-746 (2007).

155. T. K. Ritchie, Y. V. Grinkova, T. H. Bayburt, I. G. Denisov, J. K. Zolnerciks, W. M. Atkins, S. G. Sligar, in Methods in Enzymology (Elsevier, 2009;

https://linkinghub.elsevier.com/retrieve/pii/S0076687909640118), vol. 464, pp. 211-231.

156. V. E. Fadouloglou, M. Kokkinidis, N. M. Glykos, Determination of protein oligomerization state: Two approaches based on glutaraldehyde crosslinking. Anal. Biochem. 373, 404-406 (2008).

157. O. Volkov, K. Kovalev, V. Polovinkin, V. Borshchevskiy, C. Bamann, R. Astashkin, E. Marin, A. Popov, T. Balandin, D. Willbold, G. Buldt, E. Bamberg, V. Gordeliy, Structural insights into ion conduction by channelrhodopsin 2. Science. 358, eaan8862 (2017).

158. W. Kabsch, XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125-132 (2010).

159. G. N. Murshudov, P. Skubak, A. A. Lebedev, N. S. Pannu, R. A. Steiner, R. A. Nicholls, M. D. Winn, F. Long, A. A. Vagin, REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355-367 (2011).

160. E. Chun, A. A. Thompson, W. Liu, C. B. Roth, M. T. Griffith, V. Katritch, J. Kunken, F. Xu, V. Cherezov, M. A. Hanson, R. C. Stevens, Fusion Partner Toolchest for the Stabilization and Crystallization of G Protein-Coupled Receptors. Structure. 20, 967976 (2012).

161. T. Tsukamoto, K. Inoue, H. Kandori, Y. Sudo, Thermal and Spectroscopic Characterization of a Proton Pumping Rhodopsin from an Extreme Thermophile. J. Biol. Chem. 288, 21581-21592 (2013).

162. M. Caffrey, Membrane protein crystallization. J. Struct. Biol. 142, 108-132 (2003).

163. M. Caffrey, A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr. Sect. F Struct. Biol. Commun. 71, 3-18 (2015).

164. T. Ran, G. Ozorowski, Y. Gao, O. A. Sineshchekov, W. Wang, J. L. Spudich, H. Luecke, Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Acta Crystallogr. D Biol. Crystallogr. 69, 1965-1980 (2013).

165. K. Oda, J. Vierock, S. Oishi, S. Rodriguez-Rozada, R. Taniguchi, K. Yamashita, J. S. Wiegert, T. Nishizawa, P. Hegemann, O. Nureki, Crystal structure of the red light-activated channelrhodopsin Chrimson. Nat. Commun. 9, 3949 (2018).

166. N. R. Latorraca, A. J. Venkatakrishnan, R. O. Dror, GPCR Dynamics: Structures in Motion. Chem. Rev. 117, 139-155 (2017).

167. S. Erdogmus, U. Storch, L. Danner, J. Becker, M. Winter, N. Ziegler, A. Wirth, S. Offermanns, C. Hoffmann, T. Gudermann, M. Mederos y Schnitzler, Helix 8 is the essential structural motif of mechanosensitive GPCRs. Nat. Commun. 10, 5784 (2019).

168. M. Baek, T. Park, L. Heo, C. Park, C. Seok, GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure. Nucleic Acids Res. 45, W320-W324 (2017).

169. K. Kovalev, R. Astashkin, I. Gushchin, P. Orekhov, D. Volkov, E. Zinovev, E. Marin, M. Rulev, A. Alekseev, A. Royant, P. Carpentier, S. Vaganova, D. Zabelskii, C. Baeken, I. Sergeev, T. Balandin, G. Bourenkov, X. Carpena, R. Boer, N. Maliar, V.

Borshchevskiy, G. Büldt, E. Bamberg, V. Gordeliy, Molecular mechanism of light-driven sodium pumping. Nat. Commun. 11, 2137 (2020).

170. S. Alexander, A. Mathie, J. Peters, LIGAND-GATED ION CHANNELS: Ligand-gated ion channels. Br. J. Pharmacol. 164, S115-S135 (2011).

171. C. J. B. daCosta, J. E. Baenziger, Gating of Pentameric Ligand-Gated Ion Channels: Structural Insights and Ambiguities. Structure. 21, 1271-1283 (2013).

172. L. Sauguet, F. Poitevin, S. Murail, C. Van Renterghem, G. Moraga-Cid, L. Malherbe, A. W. Thompson, P. Koehl, P.-J. Corringer, M. Baaden, M. Delarue, Structural basis for ion permeation mechanism in pentameric ligand-gated ion channels. EMBO J. 32, 728-741 (2013).

173. K. E. Kishi, Y. S. Kim, M. Fukuda, T. Kusakizako, E. Thadhani, E. F. X. Byrne, J. M. Paggi, C. Ramakrishnan, T. E. Matsui, K. Yamashita, T. Nagata, M. Konno, P. Y. Wang, M. Inoue, T. Benster, T. Uemura, K. Liu, M. Shibata, N. Nomura, S. Iwata, O. Nureki, R. O. Dror, K. Inoue, K. Deisseroth, H. E. Kato, "Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine" (preprint, Biophysics, 2021), , doi: 10.1101/2021.08.15.456392.

174. K. Feldbauer, D. Zimmermann, V. Pintschovius, J. Spitz, C. Bamann, E. Bamberg, Channelrhodopsin-2 is a leaky proton pump. Proc. Natl. Acad. Sci. 106, 12317-12322 (2009).

175. S. Shigemura, S. Hososhima, H. Kandori, S. P. Tsunoda, Ion Channel Properties of a Cation Channelrhodopsin, Gt_CCR4. Appl. Sci. 9, 3440 (2019).

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.