Разработка параметрических методов исследования нестационарных систем с медленно меняющимися параметрами тема диссертации и автореферата по ВАК РФ 01.04.03, кандидат физико-математических наук Юшанов, Сергей Владимирович
- Специальность ВАК РФ01.04.03
- Количество страниц 175
Оглавление диссертации кандидат физико-математических наук Юшанов, Сергей Владимирович
Введение
1. Определение параметров нестационарных систем
1.1. Оценивание параметров систем при отсутствии априорной информации
1.2. Оценивание параметров систем при наличии априорной информации
1.3. Параметрический анализ и мгновенная частота
1.4. Методы оценивания мгновенной частоты
1.5. Аппроксимация сигналов по методу Прони
1.6. Асимптотическое решение дифференциального уравнения второго порядка
1.7. Постановка задачи
2. Измерение мгновенной частоты квазигармонических колебаний с использованием метода Прони
2.1. Единственность квазигармонического представления сигнала
2.2. Применение модифицированного метода Прони
2.3. Применение классического метода Прони
2.4. Сравнительный анализ методов оценивания мгновенной частоты по короткой реализации сигнала
2.5. Анализ результатов и выводы
3. Решение обратной задачи определения параметров нестационарных систем
3.1. Параметрический метод измерения мгновенной частоты и огибающей с применением регуляризации
3.2. Численное моделирование статистических характеристик предложенного метода
3.3. Решение обратной задачи для нестационарной системы
3.4. Анализ результатов и выводы
4. Применение методов измерения параметров нестационарных систем на практике
4.1. Динамический метод сличения частот
4.2. Усовершенствование метода анализа нестационарных систем для реализации в цифровых измерительных системах
4.3. Сравнение методов определения мгновенной частоты и огибающей в реальном времени
4.4. Применение динамического метода сличения частот для определения стабильности частоты генераторов
4.5. Экспериментальная нестационарная система
4.6. Анализ результатов и выводы 130 Заключение 133 Литература 136 Приложение 1. Функции для расчета оценок мгновенной частоты разными методами 148 Приложение 2. Фрагменты программ для расчета огибающей и мгновенной частоты методом с регуляризацией 154 Приложение 3. Функции оценивания частоты, огибающей и начальной фазы сигналов с медленно меняющимися огибающей и частотой методом МНК с прореживанием 169 Приложение 4. Функции для расчета оценок мгновенной частоты разными методами с применением МНК с прореживанием
Рекомендованный список диссертаций по специальности «Радиофизика», 01.04.03 шифр ВАК
Исследование спектральных методов оценивания параметров колебательных процессов2001 год, кандидат физико-математических наук Гринев, Сергей Николаевич
Исследование оперативных методов решения обратных задач дистанционной диагностики2014 год, кандидат наук Станкевич, Дмитрий Александрович
Повышение эффективности оценки частотно-временных параметров сигналов2003 год, доктор технических наук Патюков, Виктор Георгиевич
Рекуррентные алгоритмы обработки данных в оптической когерентной томографии2011 год, кандидат технических наук Волынский, Максим Александрович
Применение теории рекуррентной фильтрации в задачах спектрального анализа на фоне шумов2000 год, кандидат технических наук Павлов, Константин Николаевич
Введение диссертации (часть автореферата) на тему «Разработка параметрических методов исследования нестационарных систем с медленно меняющимися параметрами»
Многие физические задачи сводятся к косвенному оцениванию динамических параметров физических объектов по данным измерений, например, изучение закона движения с помощью эффекта Доплера, различные дистанционные измерения (температуры, химического состава вещества) и другие. Объект наблюдения можно рассматривать как нестационарную систему, а результаты измерений представляют собой электрическую величину, зависящую от времени (процесс), которая допускает дальнейшую обработку как аналоговыми, так и цифровыми методами.
Основные результаты по оцениванию динамических параметров систем получены в теории автоматического управления и известны как теория идентификации, литература по которой со всеми её разделами весьма обширна. К теории идентификации можно отнести первые работы Найквиста [1] и Боде [2] по частотным свойствам, в которых показано, как получить частотную характеристику системы по измерениям входного и выходного сигналов, и как эта характеристика связана с характеристическим уравнением системы и его корнями. В работах Зиглера и Николса [3] рассматриваются методы идентификации с помощью ступенчатого воздействия. Н. Винер предложил при рассмотрении сложных динамических объектов, априорные сведения о которых либо отсутствуют, либо незначительны, теорию, основанную на вероятностных моделях [4]. Р. Ли рассмотрел важные вопросы последовательного оценивания состояний и параметров [5]. Стоит отметить работу Сейджа [6], посвященную важным разделам идентификации и оценивания параметров. Методы, описанные в монографиях Дойча [7] и Ван Триса [8], применимы к последовательной идентификации параметров. В работе Менделя и Фу [9] рассматривается вопрос стохастической аппроксимации и градиентной идентификации. Бокс и Дженкинс [10] рассмотрели идентификацию смешанных авторегрессионных моделей. Важное значение имеет книга Ли, Адамса и Гейнза [11], в которой обсуждаются непоследовательные регрессионные методы, а также книга Сейджа и Мелса [12].
Кашьяп и Pao [13] подчеркивают, что в их толковании теории центральное место занимают процедуры подтверждения и выбора моделей, а Седестрем и Стойка [14] особое внимание уделяют методам инструментальных переменных. Среди работ по рекуррентным методам идентификации следует отметить работы Льюнга и Седестрема [15] и Янга [16]. К предмету идентификации систем следует отнести статистические исследования моделей временных рядов, описанные в монографиях Андерсона [17], Хэннана [18] и Бриллингера [19]. Проблеме преодоления априорной неопределенности на основе адаптивной обработки сигналов посвящены работы Уидроу и Стирнза [20] и других авторов [21, 22]. По этой же тематике разрабатывал свою теорию и Р. Калман [23]. Идеи адаптации получили развитие в направлении, связанным с нейронными сетями и генетическими алгоритмами [24-26], которые оказались универсальным средством эффективного построения моделей практически любых структур. Информационную теорию идентификации рассмотрел Цыпкин [27], а Райбман [28] - дисперсионную теорию. Перечисленные теории имеют широкий спектр практического применения, но для анализа параметров нестационарных систем в режиме реального времени малоприменимы, так как требуют значительных вычислительных затрат. Поэтому параллельно перечисленным развивались методы параметрического оценивания, основанные на априорной информации о том, что структуру системы можно задать небольшим числом динамических параметров, например, переменных коэффициентов дифференциального уравнения.
Оценивание динамических параметров систем по данным наблюдений представляет собой обратную задачу, которая является некорректной в классическом смысле, но допускает построение корректного решения на некоторых компактных множествах при наличии априорной информации. В такой постановке идентификация динамической параметров системы сводится к коэффициентным обратным задачам, основы теории которых заложил А. Н. Тихонов [29, 30], с их помощью решены многие практические задачи в астрофизике, геофизике и других областях [31-34]. Однако в этих методах практически не используется параметрическое представление исследуемого процесса, поэтому построить на этой основе измерительный комплекс, работающий в режиме реального времени с высокой точностью, не удается, если процесс в сравнении с параметрами исследуемой системы является быстроменяющейся функцией.
Параметрический анализ развивается параллельно с теорией идентификации, начиная с введения Габором [35] понятия мгновенной частоты как производной полной фазы аналитического сигнала. Введенная таким образом мгновенная частота не является каузальной функцией сигнала, так как преобразование Гильберта, использующееся в определении аналитического сигнала, использует не только прошлые, но и будущие значения сигнала. Поэтому мгновенная частота по Габору не может быть точно связана с измеряемой физической величиной, например, скоростью. В дальнейшем были предложены другие определения полной фазы и методы измерения мгновенной частоты, которая понимается как производная полной фазы независимо от способа ее определения [36-39]. Существующие в настоящее время различные определения частоты колебаний построены исходя из свойств исследуемого процесса и никак не привязаны к характеристикам породившей этот процесс системы. Несмотря на это, существует множество методов оценивания частоты, которые успешно применяются для анализа параметров систем. Их недостатком, помимо отсутствия связи с физическими характеристиками системы, является то, что они основаны на принципе замороженных на интервале измерения коэффициентов, что позволяет судить лишь о некотором среднем значении параметра на интервале.
В настоящее время всё большее распространение приобретают радиоволновые методы измерений, в которых объект наблюдения зондируется волной, а изменение динамических параметров объекта переносится на изменение частоты и огибающей отраженной волны. Радиоволновые методы обладают высокой информативностью и оперативностью в получении необходимой информации о состоянии и свойствах зондируемых объектов. В этих задачах широко используется представление исследуемого процесса в виде квазигармонического колебания. В этом случае немаловажным является вопрос об однозначности определения частоты и огибающей колебаний. Вопрос о единственности представления колебания существенен, если огибающей и (или) мгновенной частоте сопоставляются измеряемые физические величины, например, огибающая определяет энергию процесса, а мгновенная частота связана со скоростью объекта, как в задаче доплеровской локации.
Цель работы
Разработка и исследование прецизионных быстродействующих методов измерения медленно меняющихся параметров нестационарных систем путем оценивания мгновенной частоты и огибающей их квазигармонических колебаний, а также создание аппаратно-программного измерительного комплекса, реализующего разработанные методы. Для достижения поставленной цели в работе были решены следующие задачи:
1. Определены физические условия единственности квачигармоническо-го представления колебаний.
2. Разработаны методы оценивания мгновенной частоты и огибающей квазигармонических колебаний:
- основанные на модификации метода Прони;
- основанный на сопоставлении отсчетам сигнала двух временных рядов с медленно меняющимися членами ряда, взаимно однозначно связанных с отсчетами огибающей и мгновенной частоты.
3. Проведен анализ точности и быстродействия разработанных методов по сравнению с существующими.
4. Создан аппаратно-программный измерительный комплекс для анализа сигналов разработанными методами.
5. Проведена проверка работоспособности методов на данных, полученных при проведении физического эксперимента.
Предмет исследования
- Методы оценивания динамических параметров нестационарных систем.
- Условия существования и единственности квазигармонического представления колебаний.
- Метрологические характеристики параметрических методов анализа нестационарных физических систем.
Научная новизна
1. Впервые получено условие единственности квазигармонического представления колебаний с медленно меняющимися огибающей и частотой.
2. Разработаны два новых метода оценки мгновенной частоты и огибающей квазигармонических сигналов, основанные на модификации метода Прони.
3. Разработан метод оценивания мгновенной частоты и огибающей квазигармонических сигналов, основанный на сопоставлении отсчетам сигнала временных рядов с медленно меняющимися членами ряда, рассчитываемыми с использованием регуляризации Тихонова.
4. Разработан новый метод компарирования медленно меняющихся частот.
5. Получены оценки точности и быстродействия разработанных методов при анализе частотно и амплитудно-модулированных сигналов с аддитивным и мультипликативным шумом.
Научно-практическое значение работы
1. Разработанные методы оценивания мгновенной частоты и огибающей квазигармонического сигнала являются оптимальными при реализации измерений в режиме реального времени, требуют сравнительно малых вычислительных затрат и позволяют реализовать цифровые системы оценивания частоты в диапазоне до сотен мегагерц.
2. Для разработанных методов, основанных на методе Прони, аналитически получены соотношения для дисперсии отклонения частоты при наличии аддитивного белого шума с нулевым средним, которые подтверждены численным моделированием.
3. Предложенный алгоритм сличения частот может использоваться в системах радиолокации и радионавигации, а также для модернизации стандартов частоты, которые непрерывно адаптивно корректируются по частоте государственного эталона.
4. Создан аппаратно-программный измерительный комплекс для анализа сигналов разработанными методами, который может использоваться при радиоволновых измерениях.
5. Создан и зарегистрирован программный продукт, в котором реализованы разработанные методы оценивания мгновенной частоты и огибающей и ряд известных методов, позволяющий обрабатывать как модельные, так и реальные сигналы.
Работа состоит из введения, четырех глав, заключения и приложений.
Первый раздел посвящен обзору существующих подходов к оцениванию динамических параметров нестационарных систем. Рассматриваются непараметрические методы оценивания, такие как подход Н. Винера, который заключается в нахождении набора ядер Вольтерра исследуемой системы, подход Р. Калмана с использованием априорной информации для адаптивной подстройки системы измерения, а также регуляризация А. Н. Тихонова, в которой используется априорная информация для построения решения обратной задачи в области корректности. Рассматриваются параметрические методы оценивания, основанные на понятии мгновенной частоты, а также отдельно излагаются основные принципы метода Прони как одного из параметрических методов оценивания. Здесь же рассматривается асимптотическое решение дифференциального уравнения второго порядка с медленно меняющимися коэффициентами для последующего нахождения связи между параметрами системы и квазигармоническим представлением исследуемого сигнала. Помимо этого описаны постановка задачи и выбор методов исследования.
Во втором разделе работы рассматривается вопрос единственности квазигармонического представления исследуемого сигнала. Предложены методы оценивания мгновенной частоты сигналов с медленно меняющимися огибающей и частотой, основанные на использовании метода Прони, а также проанализирована их устойчивость к малому аддитивному шуму. Представлена структура цифрового устройства, позволяющая получать оценки мгновенной частоты в режиме реального времени. Произведено сравнение с известными методами оценивания мгновенной частоты.
В третьем разделе предложен метод оценивания медленно меняющихся параметров нестационарных систем с применением регуляризации и рассмотрены статистические свойства этого метода. Приведены результаты численного моделирования применения разработанного методов для оценивания параметров нестационарной системы, описываемой уравнением Матье.
В четвертом разделе предложен подход для решения задач компарирова-ния частот. Усовершенствован предложенный ранее метод выделения огибающей и полной фазы квазигармонического сигнала с медленно меняющейся частотой. Произведено численное моделирование и исследование статистических свойств предлагаемого метода в рамках задачи оперативного и непрерывного оценивания частоты и огибающей сигналов с медленно меняющейся амплитудой и фазой при наличии аддитивного шума. С помощью цифрового параметрического анализатора и метода выделения огибающей и мгновенной частоты квазигармонического сигнала произведена оценка динамики частоты нескольких лабораторных генераторов. Описана созданная нестационарная система на основе колебательного контура с емкостью, изменяемой по известному закону. По отклику данной системы на гармонический сигнал восстановлен закон изменения емкости и произведено его сравнение с заданным.
В заключении перечислены основные результаты работы и сделаны краткие выводы. Тексты программ и некоторые выкладки вынесены в приложения.
Похожие диссертационные работы по специальности «Радиофизика», 01.04.03 шифр ВАК
Нелинейный анализ стохастических параметров интерференционных систем2005 год, кандидат технических наук Захаров, Алексей Сергеевич
Алгоритмы оценки частоты сигнала биений на основе методов параметрического спектрального анализа для дальномеров с частотной модуляцией зондирующего сигнала2007 год, кандидат технических наук Багдагюлян, Александр Альбертович
Радиолокационные методы измерений экспериментальной баллистики2000 год, доктор технических наук Поршнев, Сергей Владимирович
Анализ переходных процессов в узкополосных линейных системах при скачках фазы и амплитуды гармонического колебания2012 год, кандидат физико-математических наук Лернер, Илья Михайлович
Линейно-параметрические дискретные модели в форме разностных уравнений в задачах идентификации диссипативных механических систем2009 год, доктор технических наук Зотеев, Владимир Евгеньевич
Заключение диссертации по теме «Радиофизика», Юшанов, Сергей Владимирович
Заключение
В данной диссертационной работе предложены несколько оперативных прецизионных методов измерения медленно меняющихся параметров нестационарных систем. Эти методы сводятся к задаче измерения огибающей и мгновенной частоты колебательного процесса, источником которого является исследуемая нестационарная система. Подводя краткий итог проделанной работы, отметим ее основные результаты.
1. Показано, что если найденная мгновенная частота измеренного сигнала является медленно меняющейся функцией на квазипериоде колебаний, то она единственна, а, следовательно, алгоритмы и методы по выделению медленно меняющихся огибающей и мгновенной частоты однозначно определяют медленно меняющиеся физические параметры нестационарной системы.
2. Предложены методы оценивания мгновенной частоты сигналов с медленно меняющимися огибающей и мгновенной частотой, основанные на использовании метода Прони, а также проанализирована их устойчивость к малому аддитивному шуму. Представлена структура цифрового устройства, позволяющая получать оценки мгновенной частоты в режиме реального времени. Предлагаемые методы на основе алгоритма Прони являются оптимальными при реализации измерений в режиме реального времени, требуют сравнительно малых вычислительных затрат и позволяют реализовать цифровые системы оценивания частоты в диапазоне до сотен мегагерц. Их можно рекомендовать для оперативного оценивания мгновенной частоты широкополосных сигналов с малыми уровнями шума. Несомненным достоинством данных методов является независимость количества необходимых для их реализации операций от количества отсчетов сигнала на интервале измерения ЫЬЛ . Для этих методов аналитически получены соотношения для дисперсии отклонения частоты при наличии в исследуемом сигнале аддитивного белого шума с нулевым средним, которые подтверждены численным моделированием.
3. Предложен метод оценивания мгновенной частоты и огибающей квазигармонических сигналов, основанный на сопоставлении отсчетам сигнала временных рядов с медленно меняющимися членами, рассчитываемыми с использованием регуляризации Тихонова, и описано его применение для нахождения переменных параметров нестационарной системы. Проведено численное моделирование для проверки и оптимизации работы метода. Полученные результаты исследований позволяют говорить, что для предложенного метода систематическая погрешность практически не зависит от малых уровней аддитивного и мультипликативного шумов.
4. Разработан динамический метод сличения частот, который позволяет осуществлять сличение частот исследуемого сигнала с эталонным, а также автоматическую синхронизацию частоты кварцевых и квантовых (рубидиевых) генераторов. Это дает возможность создать новый тип стандартов частоты, которые могут непрерывно адаптивно корректироваться частотой государственного эталона, что позволит существенно снизить их нестабильность и уменьшить погрешность по частоте их выходных сигналов.
5. Усовершенствован предложенный метод выделения огибающей и полной фазы квазигармонического сигнала с медленно меняющейся частотой с использованием регуляризации Тихонова, что позволило полностью восстанавливать обрабатываемый сигнал и контролировать качество выделения огибающей и полной фазы по энергии отклонения исходного сигнала от восстановленного. Введен параметр прореживания отсчетов сигнала и количества усреднений при получении динамики частоты и огибающей. Реализована возможность цифровой фильтрации с помощью КИХ-фильтров с линейной ФЧХ как исходного сигнала, так и промежуточных последовательностей, используемых в данном методе. Произведено численное моделирование и исследование статистических свойств усовершенствованного метода в рамках задачи оперативного и непрерывного оценивания частоты и огибающей сигналов с медленно меняющейся амплитудой и фазой при наличии аддитивного шума.
6. Сравнение разработанных методов показало, что для оценивания изменяющихся на интервале измерения величин лучше подходит метод с использованием регуляризации Тихонова, а, методы оценивания на основе метода Про-ни позволяют проводить измерения более оперативно, но с большей статистической погрешностью. Численное моделирование показало, что модернизация методов вычисления мгновенной частоты, основанных на методе Прони, путем введения коэффициента прореживания позволила получить точность вычислений, сравнимую с методом на основе регуляризации Тихонова, а в некоторых случаях даже выше.
7. С помощью созданного аппаратно-программного измерительного комплекса и разработанного метода сличения частот произведена оценка динамики частоты нескольких лабораторных генераторов и созданного генератора стабильной частоты 100 кГц. Проведен анализ полученных зависимостей.
8. Создана реальная нестационарная система на основе колебательного контура с емкостью, изменяемой по известному закону, сигнал которой аналогичен сигналам ЯМР-спектроанализаторов. С помощью цифрового параметрического анализатора динамических систем, генератора стабильной частоты 100 кГц и разработанного метода выделения огибающей и полной фазы по отклику данной системы на гармонический сигнал восстановлен ее динамический параметр. Произведено сравнение заданного и восстановленного законов, которое принципиально доказало правильность работы метода и его точность.
Часть результатов работы получены в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009 - 2013 годы (проект № НК-423П/14), а также в рамках гранта РФФИ 10-07-9713 ра.
Автор выражает глубокую благодарность научному руководителю к.ф.-м.н., доценту A.B. Никитину за постоянное и внимательное руководство и д.ф.-м.н., профессору В.К. Игнатьеву за помощь в работе и критические замечания.
Список литературы диссертационного исследования кандидат физико-математических наук Юшанов, Сергей Владимирович, 2012 год
1. Nyquist Н. Regeneration Theory // Bell System Technical J. 1932. V. 11. P. 126-147.
2. Bode H.W. Network Analysis and Feedback Amplifier Design. New York: Van Nostrand Reinhold. 1945. 551 p.
3. Ziegler J.G., Nichols N.B. Process Lags in Automatic Control Circuits // Transactions of the ASME. 1943. V. 65. P. 433 444.
4. Винер H. Нелинейные задачи в теории случайных процессов. М.: ИЛ. 1961. 158 с.
5. Ли Р. Оптимальные оценки, определение характеристик и управление. М.: Мир. 1963. 176 с.
6. Sage А.Р. Optimum Systems Control. N.J.: Prentice-Hall, Englewood Cliffs. 1968. 562 p.
7. Deutsch R. Estimation Theory. N.J.: Prentice-Hall, Englewood Cliffs. 1965.269 p.
8. Ван Трис Теория обнаружения оценок и модуляции. М.: Советское радио. 1972.
9. Mendel J.M., Fu K.S. (editors) Adaptive, Learning and Pattern Recognition Systems. New York: Academic Press, 1970. 444 p.
10. Бокс Дж., Дженкинс Г. Анализ временных рядов. Прогноз и управление. М.: Мир. 1974. 405 с.
11. Lee Т.Н., Adams G.E., Gaines W.M. Computer Process Control Modeling and Optimization. New York: Willey. 1968. 368 p.
12. Сейдж А., Мелса Дж. Идентификация систем. М.: Наука. 1974. 248 с.
13. Kashyap R.L., Rao A.R. Dynamic Stochastic Models from Empirical Data. New York: Academic Press. 1976. 334 p.
14. Soderstrom Т., Stoica P. Instrumental variable methods for system identification. New-York: Springer-Verlag. 1983. 243 p.
15. Ljung L., Soderstrom T. Theory and Practice of recursive identification. Mass: MIT Press. 1983. 529 p.
16. Young P.C. Parameter estimation for continuous-time models A survey // Automatica. 1981. V. 17. P. 23 - 39.
17. Anderson T.W. The Statistical Analysis of time series. New York: Wiley-Interscience. 1994. 720 p.
18. Hannan E.J. The identification of vector mixed autoregressive moving average systems // Biometrica. 1969. V. 56. № 1. P. 223 225.
19. Brillinger D.R. Time series: data analysis and theory. San Francisco: Hol-den-Day. 1981. 540 p.
20. Уидроу Б., Стирнз С. Адаптивная обработка сигналов. М.: Радио и связь. 1989. 440 с.
21. Адаптивные фильтры: Пер. с англ./ Под. ред. К.Ф. Коуэна и П.М. Гранта. М.: Мир. 1988. 392 с.
22. Фомин В.Н. Рекуррентное оценивание и адаптивная фильтрация. М.: Наука. 1984. 288 с.
23. Kalman R. Е. A new approach to linear filtering and prediction problems // Transaction of the ASME, Ser. D, Journal of Basic Engineering. 1960. V. 82. P. 34 -45.
24. Хайкин С. Нейронные сети: полный курс. М.: ООО «И.Д. Вильяме». 2006. 1104 с.
25. Haykin S. Kalman Filtering and Neural Networks. New York: Wiley. 2001.284 р.
26. Holland J.H. Adaptation in natural and artificial systems. Ann Arbor: MIT Press. 1992. 228 p.
27. Цыпкин Я.З. Информационная теории идентификации. М.: Наука. 1995. 336 с.
28. Райбман Н.С. и др. Дисперсионная идентификация. М.: Наука. 1981.320 с.
29. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука. 1979. 286 с.
30. Денисов A.M. Введение в теорию обратных задач. М.: Изд-во МГУ. 1994. 208 с.
31. Тихонов А.Н., Арсенин В.Я., Тимонов А. А. Математические задачи компьютерной томографии. М.: Наука. 1987. 160 с.
32. Гончарский А.В., Черепашук A.M., Ягола А.Г. Численные методы решения обратных задач астрофизики. М.: Наука. 1978. 336 с.
33. Яновская Т.Б., Порохова JI.H. Обратные задачи геофизики. Л.: ЛГУ. 1983.210 с.
34. Иванов В.К., Васин В.В., Танана В.П. Теория линейных некорректных задач и её приложения. М.: Наука. 1978. 206 с.
35. Gabor D. Theory of communication // ЛЕЕ. 1946. V. 93. P. 429 457.
36. Вакман Д.Е. Измерение частоты аналитического сигнала // Радиотехника и электроника. 1979. Т. 24. № 5. С. 982 989.
37. Boashash В. Estimating and interpreting the instantaneous frequency of a signal part 1: Fundamentals // Proc. IEEE. 1992. V. 80. № 4. P. 520 - 538.
38. Boashash B. Estimating and interpreting the instantaneous frequency of a signal part 2: Algorithms and applications // Proc. IEEE. 1992. V. 80. № 4. P. 539 -568.
39. Saliu S. Definition of instantaneous frequency on real signals // Proceedings of the X European Signal Processing Conference, EUSIPCO. Tampere. Finland. 2000.
40. Музыкин C.H., Родионова Ю.М. Моделирование динамических систем. Ярославль: Верх.-Волж. кн. изд-во. 1984. 304 с.
41. Volterra V. Theory of Functionals and Integral and Integro-Differential Equations. Dover Publications. New York, 1959. 280 p.
42. Кудрявцев Л.Д. Курс математического анализа. М.: Высшая школа, 1981. т. И:-584 с.
43. Рудин У. Основы математического анализа. М.: Мир, 1976. 320 с.
44. Mehra R.K. On-line identification of linear dynamic systems with applications to Kalman filtering // IEEE Trans. Automat. Control. 1971. V. 16. № 1. P. 12 -21.
45. Вайнштейн JI.А., Вакман Д.Е. Разделение частот в теории колебаний и волн. М.: Наука. 1983. 288 с.
46. Финк JI. М. Сигналы, помехи, ошибки. М.: Связь. 1978. 256 с.
47. Гоноровский И.С. Радиотехнические цепи и сигналы. М.: Советское радио. 1971. 672 с.
48. Ye N. The handbook of data mining. New Jersey: LEA. 2003. 704 p.
49. Cohen L. Time-frequency distributions a review // Proc. IEEE. 1989. V. 77. №7. P. 941 -981.
50. Марпл-мл. C.JI. Цифровой спектральный анализ и его приложения. М.: Мир. 1990. 584 с.
51. Рабинер Л., Гоулд Б. Теория и применение цифровой обработки сигналов. М.: Мир. 1978. 848 с.
52. Уэбстер Р.Дж. Регулирование просачивания спектральных составляющих ДПФ // ТИИЭР. 1980. Т. 68. № 10. С. 203 205.
53. Картер Дж.К., Наттол А.Х. О методе взвешенного усреднения перекрывающихся сегментов для оценивания спектра // ТИИЭР. 1980. Т. 68. № 10. С. 216 218.
54. Xia X.-G., Cohen L. On analytic signals with nonnegative instantaneous frequency // Proceedings of the ICASSP-99. 1999. P. 1483.
55. Мирский Г.Я. Электронные измерения. M.: Радио и связь. 1986. 440с.
56. Kootsookos P.J. A Review of the Frequency Estimation and Tracking Problems // Technical Report by Cooperative Research Centre for Robust and Adaptive Systems. Salisbury. Australia. 1999. P. 38.
57. Лабутин C.A., Пугин M.B. Помехоустойчивость и быстродействие методов измерения частоты по короткой реализации гармонического сигнала // Измерительная техника. 1998. № 9. С. 34 36.
58. Lovell В., Williamson R. The statistical performance of some instantaneous frequency estimators. // Proc. IEEE. 1992. V. 40. № 7. P. 1708 1722.
59. Минц М.Я., Чинков B.H. Оптимальный по помехозащищенности метод измерения частоты гармонических сигналов // Измерительная техника. 1992. №4. С. 50-52.
60. Starer D., Nehorai A. Newton Algorithms for Conditional and Unconditional Maximum Likelihood Estimation of the Parameters of Exponential Signals in Noise // IEEE Transactions on Acoustics, Speech and Signal Processing. 1992. V. 40. №6. P. 1528- 1534.
61. Quinn B.G. Some New High-Accuracy Frequency Estimators // Proceedings of ISSPA. Gold Coast. 1992. P. 323 326.
62. Djurovic I., Katkovnik V., Stankovic L. Instantaneous frequency estimation based on the robust spectrogram // Proceedings of ICASSP. Salt Lake City. USA. 2001. V. 6. P. 3517 3520.
63. Borda M., Nafornita I., Isar D., Isar A. New instantaneous frequency estimation method based on image processing techniques // Journal of Electronic Imaging. 2005. V. 14. № 1. P. 000-1 -000-11.
64. Katkovnik V., Egiazarian K., Shmulevich I. Adaptive varying window size selection based on intersection of confidence intervals rule // Abstracts of IEEE -EURASIP Workshop on Nonlinear Signal and Image Processing. Baltimore. USA. 2001.
65. Emtiyaz Khan Md., Narayana Dutt D. Expectation-maximization algorithm for instantaneous frequency estimation with Kalman smoother // Proceedings of the XII European Signal Processing Conference, EUSIPCO. Vienna. Austria. 2004. P. 1797- 1800.
66. Li Y., Papandreou-Suppappola A., Morrell D. Instantaneous frequency estimation using sequential Bayesian techniques // Proceedings of Asilomar Conference on Signal, System, and Computers. Pacific Grove. 2006. P. 569 573.
67. Chandra Sekhar S., Sreenivas T.V. Adaptive Window Zero-Crossing-Based Instantaneous Frequency Estimation // EURASIP Journal on Applied Signal Processing. 2004. V. 12. P. 1791 1806.
68. Hermanowicz Е., Rojewski М. On digital estimation of the instantaneous frequency beyond the folding frequency // Proceedings of the X European Signal Processing Conference, EUSIPCO. Tampere. Finland. 2000.
69. Riedel K.S. Kernel estimation of the instantaneous frequency // IEEE Transactions on Signal Processing. 1994. V. 42. Issue 10. P. 2644 2649.
70. O'Shea P., Boashash B. Instantaneous frequency estimation using the cross Wigner-Ville distribution with application to non-stationary transient detection // IEEE. 1990. V. 2. P. 2887 2890.
71. Odegard J.E., Baraniuk R.G., Oehler K.L. Instantaneous frequency estimation using the reassignment method // Proceedings of Society of Exploration Geophysics 67th Annual Meeting. Dallas. US. 1997.
72. Ghofrani S., McLernon D.C., Ayatollahi A. Weighted average instantaneous frequency based on adaptive signal decomposition // Proceedings of the XIII European Signal Processing Conference, EUSIPCO. Antalya. Turkey. 2005.
73. Georgakis A., Stergioulas L.K. An automatic time-frequency algorithm for accurate recovery of signals with nonstationarities in noise // 3rd International Symposium on Communications and Digital Signal Processing, CSNDSP. Staffordshire. 2002.
74. Blaska J., Sedlacek M. Use of the integral transforms for estimation of instantaneous frequency // Measurement science review. 2001. V. 1. № 1. P. 169- 172.
75. Katkovnik V., Stankovic L. Instantaneous frequency estimation using the Wigner distribution with varying and data driven window length // Proc. IEEE. 1998. V. 46. №9. P. 2315-2325.
76. Игнатьев B.K., Гринев C.H., Никитин A.B. Оценивание мгновенной частоты радиосигналов по текущему спектру // Физика волновых процессов и радиотехнические системы. 2003. Т. 6. № 4. С. 63 72.
77. Игнатьев В.К., Гринев С.Н., Никитин А.В. Спектральное оценивание мгновенной частоты сигналов с медленно меняющейся амплитудой // Метрология. 2001. №8. С. 34-45.
78. Вакман Д.Е. Асимптотические методы в линейной радиотехнике. М.: Советское радио. 1962. 247 с.
79. Минц М.Я., Чинков В.Н. Оперативный метод измерения частоты гармонического сигнала при наличии помех // Измерительная техника. 1993. № 1.С. 49-51.
80. Katkovnik V. Discrete-time local polynomial approximation of instantaneous frequency // Proc. IEEE. 1998. V. 46. № 10. P. 2626 2637.
81. Дженкинс Г., Ватте Д. Спектральный анализ и его приложения. М.: Мир. 1971. Т.1. 316 с.
82. Егоров Е.А., Лабутин С.А. Расщепление класса сигналов с помощью линий задержки // Электронное моделирование. 1984. № 4. С. 113-116.
83. Лабутин С.А. Синтез широкополосных преобразователей гармонических сигналов на основе перемножителей и линий задержки // Теоретическая радиотехника. 1987. Вып. 42. С. 56 62.
84. Лабутин С.А., Пугин М.В. Статистические модели и методы в измерительных задачах. Нижний Новгород: НГТУ. 2000. 158 с.
85. Белодедов М.В., Игнатьев В.К., Никитин А.В. Точность аппроксимации сигналов по алгоритму Прони // Электронное моделирование. 1992. Т. 14. № 5. С. 43-48.
86. Никитин A.B. Спектральное оценивание периодических сигналов на основе алгоритма Прони // Сборник трудов молодых ученых и студентов ВолГУ. Волгоград: Издательство ВолГУ. 1995. С. 231 233.
87. Beatty L.G., George J.D., Robinson A.Z. Use of the complex exponential expansion as a signal presentation for univerwater acoustic calibration // J. Acoust. Soc. Am. 1978. V. 63. № 6. P. 1782 1794.
88. Гринев C.H., Никитин A.B. Цифровой параметрический спектроана-лизатор периодических сигналов по короткой выборке // Измерительная техника. 1996. №2. С. 16-18.
89. Митропольский Ю.А. Проблемы асимптотической теории нестационарных колебаний. М.: Наука. 1964. 432 с.
90. Горелик Г.С. Колебания и волны. Введение в акустику, радиофизику и оптику. М.: Гос. издат. ф.-м. лит-ры. 1959. 572 с.
91. Квантовая радиофизика / под ред. В.И. Чижика. СПб.: Изд-во СПбГУ. 2004. 689 с.
92. Найфэ А.Х. Методы возмущений. М.: Мир. 1976. 456 с.
93. Вазов В. Асимптотические разложения решений обыкновенных дифференциальных уравнений. М.: Мир. 1968. 464 с.
94. Трубецков Д.И., Рожнев А.Г. Линейные колебания и волны: Учеб. пособие. М.: Изд. физ.-мат. лит. 2001. 416 с.
95. Ван дер Поль Б. Нелинейная теория электрических колебаний. М.: Гос. издательство по технике и связи. 1935. 40 с.
96. Стокер Дж. Нелинейные колебания в механических и электрических системах. М.: ИИЛ. 1953. 256 с.
97. Боголюбов H.H., Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. М.: Наука. 1974. 408 с.
98. Островский Л.А., Потапов А.И. Введение в теорию модулированных волн. М.: Физматлит. 2003. 400 с.
99. Федорюк М.В. Асимптотические методы для линейных обыкновенных дифференциальных уравнений. М.: Наука. 1983. 352 с.
100. Ломов С.А. Введение в общую теорию сингулярных возмущений. М.: Наука. 1981.400 с.
101. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория. М.: Физматлит. 2004. 800 с.
102. Никитин A.B., Юшанов C.B. Оценивание мгновенной частоты широкополосных сигналов с медленно меняющимися амплитудой и фазой на основе метода Прони // Физика волновых процессов и радиотехнические системы.2006. Т. 9. № 2. С. 57 62.
103. Юшанов C.B. Цифровая система оценивания мгновенной частоты широкополосных сигналов на основе метода Прони // Тез. докл. XI Региональной конференции молодых исследователей Волгоградской области. Волгоград.2007. С. 237-238.
104. Никитин A.B., Юшанов C.B. Измерение мгновенной частоты широкополосных сигналов на коротком интервале наблюдения // Измерительная техника. 2008. № 2. С. 50 54.
105. Игнатьев В.К., Никитин A.B., Юшанов C.B. О единственности квазигармонического представления // Вестник ВолГУ. 2010. Серия 1. Вып. 13. С. 137- 150.
106. Игнатьев В.К., Никитин A.B., Юшанов C.B. Параметрический анализ колебаний с медленно меняющейся частотой // Изв. вузов. Радиофизика. 2010. Том LUI. №2. С. 149- 159.
107. Игнатьев В.К., Никитин A.B. Метод медленно меняющейся частоты в радиоволновых измерениях // Журнал радиоэлектроники. 2011. № И. С 1 -20. Электронный ресурс. Режим доступа: http://jre.cplire.ru/jre/nov 11/17/text.pdf
108. Бредов М.М., Румянцев В.В., Топтыгин И.Н. Классическая электродинамика. М.: Физматлит. 1985. 400 с.
109. Ш.Гельфонд А.О. Исчисление конечных разностей. М.: Физматгиз. 1959.212 с.
110. Хургин Я.И, Яковлев В.П. Финитные функции в физике и технике. М.: Наука. 1971.408 с.
111. Гельфанд И.М., Шилов Г.Е. Обобщенные функции.и действия над ними. М.: Физматгиз. 1958. 276 с.
112. Леонтьев А.Ф. Целые функции. Ряды экспонент. М.: Наука. 1983. 176с.
113. Polya G. On an Integral Function of an Integral Function // J. London Math. Soc. 1926. V. 1. P. 12 15.
114. Евграфов M.А. Асимптотические оценки и целые функции. М.: Наука. 1979. 320 с.
115. Левин Б.Я. Распределение корней целых функций. М.: Гостехтеориз-дат. 1956. 632 с.
116. Тихонов А. Н., Гончарский А. В., Степанов В. В., Ягола А. Г. Численные методы решения некорректных задач. М.: Наука. 1990. 232 с.
117. Игнатьев В.К, Никитин A.B., Юшанов C.B. Оценивание медленно меняющихся параметров электромеханических систем // Изв. вузов. Электромеханика. 2009. № 2. С. 28 32.
118. Юшанов C.B. Оценивание медленно меняющихся параметров динамических систем // Тез. докл. XIV Региональной конференции молодых исследователей Волгоградской области. Волгоград. 2009. С. 216 218.
119. Юшанов C.B. Применение регуляризации Тихонова к методу Прони // Тез. докл. 12 Международной конференции «Цифровая обработка сигналов и её применение». Москва. 2010. Выпуск XII-1. С. 148 151.
120. Натансон И.П. Теория функций вещественной переменной. М.: Наука. 1974. 480 с.
121. Абрамович М., Стиган И. Справочник по специальным функциям с формулами, графиками и математическими таблицами. М.: Наука. 1979. 832 с.
122. Альберг Дж., Нильсон Э., Уолш Дж. Теория сплайнов и ее приложения. М.: Мир, 1972. 320 с.
123. Юшанов C.B. Метод решения задачи сличения частот // Тез. докл. 12 Международной конференции «Цифровая обработка сигналов и её применение». Москва. 2010. Выпуск XII-2. С. 207 209.
124. Игнатьев В.К., Никитин A.B., Хоружий Д.Н., Юшанов C.B. Динамический метод сличения частот // Измерительная техника. 2011. № 1. С. 32 36.
125. Игнатьев В.К., Никитин A.B., Юшанов C.B. Определение электродинамических параметров нестационарных систем // Журнал радиоэлектроники. 2011. № 8. С. 1 14. Электронный ресурс. - Режим доступа: http://jre.cplire.ni/jre/augll/7/text.pdf.
126. Боровков В.И., Игнатьев В.К., Никитин A.B., Юшанов C.B. Однозначное определение огибающей и мгновенной частоты электромеханических колебаний // Изв. вузов. Электромеханика. 2012. № 1. С. 16 20.
127. ГОСТ 8-129-99. Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений времени и частоты.
128. Клаудер Дж., Сударшан Э. Основы квантовой оптики. Пер. с англ. М.: Мир, 1970.
129. Самарский А. А., Гулин А. В. Численные методы: Учеб. пособие для вузов. М.: Наука, 1989.
130. Техническое описание ADS5485 Электрон. ресурс. http://focus.ti.com/docs/prod/folders/print/ads5485.html.
131. Техническая документация процессора TMS320VC5509A Электронный ресурс. Режим доступа: http://focus.ti.com/lit/an/spraa37/spraa37.pdf.
132. Технические описания интерфейсов процессора TMS320VC5509A Электронный ресурс. Режим доступа: http://focus.ti.com/docs/prod/folders/print/tms320vc5509.html.
133. Техническое описание микросхемы ADS 1602 Электронный ресурс. Режим доступа: http://focus.ti.com/lit/ds/symlink/adsl602.pdf.
134. Стандарт частоты рубидиевый 41-1013. Руководство по эксплуатации. РУГА.411653.005 РЭ. ЗАО «Рукнар». -2010.-22 с.
135. Техническое описание генератора АНР-1012 Электронный ресурс.- Режим доступа: http://zrk.ru/generator/ahpl012.htm.
136. Техническое описание генератора ГЗ-122 Электронный ресурс. -Режим доступа: http://www.priborelektro.ru/price/G3-122.php4?deviceid=164.
137. Техническое описание тахометра АТТ-6002 Электронный ресурс. -Режим доступа:http://www.aktakom.ru/kio/index.php?SECTIONID=504&ELEMENTID=7241.
138. Техническое описание RLC измерителя Е7-8 Электронный ресурс.- Режим доступа: http://www.priborelektro.ru/price/E7-8.php4?deviceid=514.
139. Риле Ф. Стандарты частоты. Принципы и приложения / Пер. с англ. -М.: ФИЗМАТЛИТ. 2009. - 512 с.
140. Оценивание частоты, огибающей и начальной фазы сигналов с медленно меняющимися огибающей и частотой: свидетельство об офиц. регистрации программы для ЭВМ № 2011619483 Российская Федерация / C.B. Юшанов. -№2011617734; опубл. 14.12.2011.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.