Разработка новых электрон-транспортных материалов для высокоэффективных и стабильных перовскитных солнечных батарей тема диссертации и автореферата по ВАК РФ 01.04.17, кандидат наук Элнаггар Мохамед Мохамед Рагаб

  • Элнаггар Мохамед Мохамед Рагаб
  • кандидат науккандидат наук
  • 2021, ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)»
  • Специальность ВАК РФ01.04.17
  • Количество страниц 112
Элнаггар Мохамед Мохамед Рагаб. Разработка новых электрон-транспортных материалов для высокоэффективных и стабильных перовскитных солнечных батарей: дис. кандидат наук: 01.04.17 - Химическая физика, в том числе физика горения и взрыва. ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)». 2021. 112 с.

Введение диссертации (часть автореферата) на тему «Разработка новых электрон-транспортных материалов для высокоэффективных и стабильных перовскитных солнечных батарей»

Abstract

Hybrid perovskite solar cells (PSCs) have shown a rapid increase in the solar light power conversion efficiency (PCE) within the last few years surpassing recently 25.5 % threshold and coming close to crystalline silicon. However, the progress in improving the stability of PSCs is far from being satisfactory, and therefore, short operation lifetimes represent the main obstacle for the successful commercialization of perovskite photovoltaic technology. Decay in the efficiency of completed p-i-n or n-i-p PSC architectures under light exposure can be caused by tens of different factors. Even when the experiments are performed under an inert atmosphere, which excludes the impact of extrinsic factors, such as oxygen and moisture, the device failure can be induced by degradation of the absorber layer, HTL or ETL materials, absorber/HTL and absorber/ETL interfaces, and interfaces between the chargetransport materials and the electrodes. As such, this thesis is dedicated to the development of advanced electron transport layers (ETLs) for p-i-n perovskite solar cells. ETL is an essential component of PSCs and is responsible for the collection of photogenerated electrons. Optimal ETLs should be chemically inert with respect to the complex lead halides, have minimized LUMO energy level offsets with the conduction band of the absorber material, enable efficient and selective extraction of charge carriers, and provide good isolation of perovskite layer, thus preventing its decomposition. Therefore, we tried to fill this gap by exploring a family of new fullerene derivatives, conjugated polymers, and metal oxides as promising ETL materials for p-i-n PSCs.

In the initial part of the thesis, we discuss the growing evidence that the stability of perovskite solar cells (PSCs) is strongly dependent on the interface chemistry between the absorber films and adjacent charge-transport layers, whereas the exact mechanistic pathways remain poorly understood. A straightforward approach is presented for decoupling the degradation effects induced by the top fullerene-based electron transport layer (ETL) and various bottom hole-transport layer (HTL) materials assembled in p-i-n PSCs. It is shown that the chemical interaction of MAPbb absorber with ETL comprised of the fullerene derivative most aggressively affects the device operational stability. However, washing away the degraded fullerene derivative and depositing fresh ETL leads to the restoration of the initial photovoltaic performance when the bottom perovskite/HTL interface is not degraded. Following this approach, it is possible to compare the photostability of stacks with various HTLs. It is shown that poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)

and NiOx induce significant degradation of the adjacent perovskite layer under light exposure, whereas poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) provides the most stable perovskite/HTL interface.

The second part of the thesis is dedicated to the study of a series of functional fullerene derivatives as suitable ETLs for p-i-n PSCs to enable a stable interface and also improve the device ambient stability (i.e. resistance to moisture). We carried out a systematic study of a family of structurally similar fullerene derivatives as electron transport layer (ETL) materials for p-i-n perovskite solar cells. It is shown that even minor modifications of the molecular structure of the fullerene derivatives have a strong impact on their electrical performance and, particularly, ambient stability of the devices. Indeed, an optimally functionalized fullerene derivative applied as an ETL enables stable operation of perovskite solar cells when exposed to air for >800 h, which is manifested in retention of 90% of the original photovoltaic performance. In contrast, the reference devices with phenyl-C61-butyric acid methyl ester as the ETL degraded-almost completely within less than 100 h of air exposure. Most probably, the side chains of the best-performing fullerene ETL materials are filling the gaps between the carbon spheres, thus preventing the diffusion of oxygen and moisture inside the device.

We also present and discuss the results of a systematic study of other series of fullerene derivatives as promising ETL materials for p-i-n perovskite solar cells. The devices fabricated using new fullerene derivatives demonstrated power conversion efficiencies approaching 17.2%, which is higher than the reference cells assembled using PC61BM, which is a benchmark ETL material (15.9%). The improved photovoltaic performance of the devices incorporating new fullerenes derivatives originated from the decreased nonradiative recombination at the MAPbb/ETLs interface, efficient electron extraction, and full coverage of the perovskite absorber layer. These obtained results feature new functionalized fullerene derivatives as promising ETLs for efficient and potentially stable perovskite solar cells.

The third part of the thesis is dedicated to the exploration of a promising strategy to improve the performance and stability of PSCs by blending two materials to form a composite electron transport layer, which has been successfully implemented in p-i-n PSCs. We introduce a novel pyrrolo[3,4-c]pyrrole-1,4-dione based n-type copolymer as an electron transport material for perovskite solar cells. Using a composite of this polymer with the fullerene derivative PC61BM, we achieved PCE of 16.4% for p-i-n perovskite solar cells using methylammonium-free Cs0.12FA0.88PbI3 absorber and demonstrated long-term operational

stability of these devices. Thus, designing composite organic electron transport materials might facilitate the development and commercialization of efficient and stable perovskite photovoltaics.

Furthermore, we also investigated alternating oligomeric compounds TBTBT and F4TBTBT ("T" - thiophene, "B" - benzothiadiazole) as electron transport materials for p-i-n PSCs. The fabricated devices based on individual (F4)TBTBT and TBTBT as ETL material demonstrated encouraging PCE of 11.7% and 10.5%, which was limited mostly by low FF due to recombination losses. The device performance was largely improved by inserting a thin PC61BM interlayer between the perovskite absorber layer and TBTBT-based ETL. Such modification resulted in spectacular improvement in the device fill factor (FF) from 52% to 82%, which also boosted PCE from 10.5% to 17.8%. Most importantly, using TBTBT as ETL material improved the operational stability of perovskite solar cells under continuous light illumination as compared to the reference devices assembled with the conventional PC61BM-based ETL.

The last part of the thesis is devoted to the use of tungsten oxide WOx as electron transport material in perovskite solar cells. UsingWOX as ETL in p-i-n PSCs delivered the efficiency of 15.5% without using any interlayers and dopants. Furthermore, we improved the device performance by using hybrid C60/WOX as ETL and WOx/PTAA as HTL (hole transport layer) in the same device configuration, which provided PCE of 17.32 % with significantly improved Voc and FF. Thus, we have shown that WOx can play two roles and perform well as a component of both advanced HTL and ETL in p-i-n PSCs. Furthermore, the device performance was improved by using a hybrid C60/WOx/BPhen triple-layer ETL providing the PCE of 18.4 % with negligible hysteresis. Most importantly, using WO3 ETL enabled long-term operational stability of p-i-n PSCs for 4600 h under continuous illumination, which is the record result for MAPbI3-based solar cells. We show that WOx layer blocks the diffusion of ions from the top electrode to the absorber layer and vice versa. On the contrary, using PC61BM as ETL under the same aging conditions resulted in a complete device degradation within just a few hours. Thus, using the advanced WO3-based ETL materials paves a way to reaching long operational lifetimes of PSCs, which are required for the successful commercialization of this promising PV technology.

In conclusion, we have developed an efficient methodology for the investigation of interface degradation effects in p-i-n PSCs and decoupling the contributions of ETL/perovskite

and perovskite/ HTL junctions to the overall device aging kinetics. Also, we performed a systematic study of a big series of new fullerene derivatives, conjugated polymers, and metal oxides as ETL materials for p-i-n PSCs, leading to substantial improvements in the device efficiency and operational stability. The results presented in this thesis are expected to facilitate the transition of perovskite solar cells towards commercial production.

Похожие диссертационные работы по специальности «Химическая физика, в том числе физика горения и взрыва», 01.04.17 шифр ВАК

Заключение диссертации по теме «Химическая физика, в том числе физика горения и взрыва», Элнаггар Мохамед Мохамед Рагаб

The main results:

1. An efficient methodology was developed for the investigation of interface degradation effects in p-i-n perovskite solar cells (PSCs). The proposed approach allows one to decouple the contributions of ETL/perovskite and perovskite/HTL interfaces to the overall device aging kinetics.

2. A series of structurally similar fullerene derivatives were systematically studied as ETL materials in p-i-n PSCs. It was shown that even minor modifications of the molecular structure of the fullerene derivative have a strong impact on their electrical performance and, particularly, the ambient stability of the devices. Indeed, an optimally functionalized fullerene derivative applied as an ETL enables stable operation of perovskite solar cells when exposed to air for >800 h, which is manifested in retention of 90% of the original photovoltaic performance.

3. A novel pyrrolo[3,4-c]pyrrole-1,4-dione-based n-type conjugated polymer was investigated as an electron transport material for perovskite solar cells. By blending this polymer with the fullerene derivative PC61BM we achieved a decent power conversion efficiency of 16.4% in p-i-n perovskite solar cells using methylammonium-free Cs0.12FA0.88PbI3 absorber in combination with the substantially improved operational stability of the devices.

4. Conjugated oligomeric compounds TBTBT and F4TBTBT ("T" - thiophene, "B" -benzothiadiazole) were studied as electron transport materials for p-i-n PSCs. The fabricated devices demonstrated a decent power conversion efficiency (PCE) of 10.5%, which was improved to 17.8% by inserting a thin PC61BM interlayer between the perovskite absorber layer and TBTBT-based ETL. The use of TBTBT as ETL enhanced the operational stability of

perovskite solar cells as compared to the reference devices using the conventional fullerene derivative PC61BM.

5. Tungsten oxide (WOx) was integrated for the first time as electron-transport material for p-i-n PSCs. A high photovoltaic efficiency of up to 18.4% was achieved in combination with the record-breaking operational stability of the devices under continuous light soaking at a high temperature of 60 oC. Indeed, the MAPbb-based PSCs with WOx electron-transport layer retained ~70% of their initial performance after 4600 h of aging under such harsh conditions, whereas the reference cell assembled with PC61BM degraded completely within 50 h.

Список литературы диссертационного исследования кандидат наук Элнаггар Мохамед Мохамед Рагаб, 2021 год

Bibliography

[1] NREL, Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL, Best Res. Effic. Chart | Photovolt. Res. | NREL. (2019) https://www.nrel.gov/pv/cell-efficiency.html. https://www.nrel.gov/pv/cell-efficiency.html (accessed September 30, 2020).

[2] X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan, Z. Huang, K. Song, J. Liu, J. Troughton, N. Gasparini, C. Zhou, Y. Lin, D.J. Xue, B. Chen, A.K. Johnston, N. Wei, M.N. Hedhili, M. Wei, A.Y. Alsalloum, P. Maity, B. Turedi, C. Yang, D. Baran, T.D. Anthopoulos, Y. Han, Z.H. Lu, O.F. Mohammed, F. Gao, E.H. Sargent, O.M. Bakr, Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells, Nat. Energy. 5 (2020) 131-140. https://doi.org/10.1038/s41560-019-0538-4.

[3] Annual Energy Outlook 2020, (n.d.). https://www.eia.gov/outlooks/aeo/ (accessed July 9, 2020).

[4] S. Das, Development of a Low-cost, Portable, and Programmable Solar Module to Facilitate Hands-on Experiments and Improve Student Learning, 2016. https://digitalcommons.kennesaw.edu/facpubs/4163 (accessed July 9, 2020).

[5] D.B. Mitzi, C.A. Feild, W.T.A. Harrison, A.M. Guloy, Conducting tin halides with a layered organic-based perovskite structure, Nature. 369 (1994) 467-469. https://doi.org/10.1038/369467a0.

[6] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, Formability of ABX 3 (X = F, Cl, Br, I) halide perovskites, Acta Crystallogr. Sect. B Struct. Sci. 64 (2008) 702-707. https://doi.org/10.1107/S0108768108032734.

[7] W.J. Yin, J.H. Yang, J. Kang, Y. Yan, S.H. Wei, Halide perovskite materials for solar cells: A theoretical review, J. Mater. Chem. A. 3 (2015) 8926-8942. https://doi.org/10.1039/c4ta05033a.

[8] X. Liu, W. Zhao, H. Cui, Y. Xie, Y. Wang, T. Xu, F. Huang, Organic-inorganic halide perovskite based solar cells-revolutionary progress in photovoltaics, Inorg. Chem. Front. 2 (2015) 315-335. https://doi.org/10.1039/c4qi00163j.

[9] L. Etgar, Hole Conductor Free Perovskite-based Solar Cells, 2016. https://doi.org/10.1007/978-3-319-32991-8.

[10] D.B. Mitzi, Templating and structural engineering in organic-inorganic perovskites, J. Chem. Soc. Dalt. Trans. (2001) 1-12. https://doi.org/10.1039/b007070j.

[11] J.L. Knutson, J.D. Martin, D.B. Mitzi, Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating, Inorg. Chem. 44 (2005) 46994705. https://doi.org/10.1021/ic050244q.

[12] H S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Grätzel, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep. 2 (2012) 1-7. https://doi.org/10.1038/srep00591.

[13] P. Schulz, E. Edri, S. Kirmayer, G. Hodes, D. Cahen, A. Kahn, Interface energetics in organo-metal halide perovskite-based photovoltaic cells, in: Energy Environ. Sci., Royal

Society of Chemistry, 2014: pp. 1377-1381. https://doi.org/10.1039/c4ee00168k.

[14] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S. Il Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells, Nano Lett. 13 (2013) 1764-1769. https://doi.org/10.1021/nl400349b.

[15] N. Kitazawa, Y. Watanabe, Y. Nakamura, Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals, J. Mater. Sci. 37 (2002) 3585-3587. https://doi.org/10.1023/A:1016584519829.

[16] F. Hao, C.C. Stoumpos, R.P.H. Chang, M.G. Kanatzidis, Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells, J. Am. Chem. Soc. 136 (2014) 8094-8099. https://doi.org/10.1021/ja5033259.

[17] J.H. Im, J. Chung, S.J. Kim, N.G. Park, Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3, Nanoscale Res. Lett. 7 (2012) 353. https://doi.org/10.1186/1556-276X-7-353.

[18] S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, G. Cui, NH2CH=NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells, Chem. Mater. 26 (2014) 1485-1491. https://doi.org/10.1021/cm404006p.

[19] A. Kojima, M. Ikegami, K. Teshima, T. Miyasaka, Highly Luminescent Lead Bromide Perovskite Nanoparticles Synthesized with Porous Alumina Media, Chem. Lett. 41 (2012) 397-399. https://doi.org/10.1246/cl.2012.397.

[20] G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3, Science (80-. ). 342 (2013) 344-347. https://doi.org/10.1126/science.1243167.

[21] J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale. 3 (2011) 4088-4093. https://doi.org/10.1039/c1nr10867k.

[22] S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science (80-. ). 342 (2013) 341-344. https://doi.org/10.1126/science.1243982.

[23] H.S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E.J. Juarez-Perez, N.G. Park, J. Bisquert, Mechanism of carrier accumulation in perovskite thin-absorber solar cells, Nat. Commun. 4 (2013) 1-7. https://doi.org/10.1038/ncomms3242.

[24] L. Meng, J. You, Y. Yang, Addressing the stability issue of perovskite solar cells for commercial applications, (n.d.). https://doi.org/10.1038/s41467-018-07255-1.

[25] B. Jo Kim, S. Lee, H. Suk Jung, Recent progressive efforts in perovskite solar cells toward commercialization, (2018). https://doi.org/10.1039/c8ta02159g.

[26] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 60506051. https://doi .org/10.1021/j a809598r.

[27] H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z. Hong, J. You, Y. Liu, Y.

Yang, Interface engineering of highly efficient perovskite solar cells, Science (80-. ). 345 (2014) 542-546. https://doi.org/10.1126/science.1254050.

[28] Z. Song, S.C. Watthage, A.B. Phillips, M.J. Heben, Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications, J. Photonics Energy. 6 (2016) 022001. https://doi.org/10.1117/1.jpe.6.022001.

[29] J. Wei, Y. Zhao, H. Li, G. Li, J. Pan, D. Xu, Q. Zhao, D. Yu, Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells, J. Phys. Chem. Lett. 5 (2014) 3937-3945. https://doi.org/10.1021/jz502111u.

[30] H S. Kim, N.G. Park, Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: Effects of perovskite crystal size and mesoporous TiO2 layer, J. Phys. Chem. Lett. 5 (2014) 2927-2934. https://doi.org/10.1021/jz501392m.

[31] H S. Kim, I.H. Jang, N. Ahn, M. Choi, A. Guerrero, J. Bisquert, N.G. Park, Control of I-V Hysteresis in CH3NH3PbI3 Perovskite Solar Cell, J. Phys. Chem. Lett. 6 (2015) 4633-4639. https://doi.org/10.1021/acs.jpclett.5b02273.

[32] B. Chen, M. Yang, S. Priya, K. Zhu, Origin of J-V Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett. 7 (2016) 905-917. https://doi.org/10.1021/acs.jpclett.6b00215.

[33] W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S. Il Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science (80. ). 348 (2015) 1234-1237. https://doi.org/10.1126/science.aaa9272.

[34] M. Kim, GH. Kim, T.K. Lee, I.W. Choi, H.W. Choi, Y. Jo, Y.J. Yoon, J.W. Kim, J. Lee, D. Huh, H. Lee, S.K. Kwak, J.Y. Kim, D.S. Kim, Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells, Joule. 3 (2019) 2179-2192. https://doi.org/10.1016/jjoule.2019.06.014.

[35] Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Surface passivation of perovskite film for efficient solar cells, Nat. Photonics. 13 (2019) 460-466. https://doi.org/10.1038/s41566-019-0398-2.

[36] Z. Shi, A. Jayatissa, Perovskites-Based Solar Cells: A Review of Recent Progress, Materials and Processing Methods, Materials (Basel). 11 (2018) 729. https://doi.org/10.3390/ma11050729.

[37] X. Lin, D. Cui, X. Luo, C. Zhang, Q. Han, Y. Wang, L. Han, Efficiency progress of inverted perovskite solar cells, Energy Environ. Sci. (2020). https://doi.org/10.1039/D0EE02017F.

[38] M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency, Energy Environ. Sci. 9 (2016) 1989-1997. https://doi.org/10.1039/c5ee03874j.

[39] W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S. Il Seok, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells, Science (80-. ). 356 (2017) 1376-1379. https://doi.org/ 10.1126/science. aan2301.

[40] S.S. Shin, E.J. Yeom, W.S. Yang, S. Hur, M.G. Kim, J. Im, J. Seo, J.H. Noh, S. Il Seok,

Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells, Science (80-. ). 356 (2017) 167-171. https://doi.org/10.1126/science.aam6620.

[41] N.G. Park, M. Grätzel, T. Miyasaka, K. Zhu, K. Emery, Towards stable and commercially available perovskite solar cells, Nat. Energy. 1 (2016) 1-8. https://doi.org/10.1038/nenergy.2016.152.

[42] A Comprehensive Guide to Solar Energy Systems - 1st Edition, (n.d.). https://www.elsevier.com/books/a-comprehensive-guide-to-solar-energy-systems/letcher/978-0-12-811479-7 (accessed July 17, 2020).

[43] Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, J. Huang, Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene, Nat. Commun. 7 (2016) 1-9. https://doi.org/10.1038/ncomms12806.

[44] S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J.T.W. Wang, S. Huettner, S. Buecheler, M. Fahlman, F. Gao, H.J. Snaith, Planar perovskite solar cells with long-term stability using ionic liquid additives, Nature. 571 (2019) 245250. https://doi.org/10.1038/s41586-019-1357-2.

[45] J. You, L. Meng, T. Bin Song, T.F. Guo, W.H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, Y. Yang, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers, Nat. Nanotechnol. 11 (2016) 75-81. https://doi.org/10.1038/nnano.2015.230.

[46] E.H. Anaraki, A. Kermanpur, L. Steier, K. Domanski, T. Matsui, W. Tress, M. Saliba, A. Abate, M. Grätzel, A. Hagfeldt, J.P. Correa-Baena, Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide, Energy Environ. Sci. 9 (2016) 3128-3134. https://doi.org/10.1039/c6ee02390h.

[47] D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, J.R. Durrant, S.A. Haque, Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells, Energy Environ. Sci. 9 (2016) 1655-1660. https://doi.org/10.1039/c6ee00409a.

[48] A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber, P. Azarhoosh, M. Van Schilfgaarde, M.T. Weller, T. Bein, J. Nelson, P. Docampo, P.R.F. Barnes, Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells, Chem. Mater. 27 (2015) 3397-3407. https://doi.org/10.1021/acs.chemmater.5b00660.

[49] A. Ciccioli, A. Latini, Thermodynamics and the Intrinsic Stability of Lead Halide Perovskites CH3NH3PbX3, J. Phys. Chem. Lett. 9 (2018) 3756-3765. https://doi.org/10.1021/acs.jpclett.8b00463.

[50] S. Wang, Y. Jiang, E.J. Juarez-Perez, L.K. Ono, Y. Qi, Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour, Nat. Energy. 2 (2017) 16195. https://doi.org/10.1038/nenergy.2016.195.

[51] F. Fu, S. Pisoni, Q. Jeangros, J. Sastre-Pellicer, M. Kawecki, A. Paracchino, T. Moser, J. Werner, C. Andres, L. Duchene, P. Fiala, M. Rawlence, S. Nicolay, C. Ballif, A.N. Tiwari, S. Buecheler, I2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat-light soaking conditions, Energy Environ. Sci. 12 (2019) 3074-3088. https://doi.org/10.1039/c9ee02043h.

[52] A.F. Akbulatov, S.Y. Luchkin, L.A. Frolova, N.N. Dremova, K.L. Gerasimov, I.S. Zhidkov, D. V. Anokhin, E.Z. Kurmaev, K.J. Stevenson, P.A. Troshin, Probing the Intrinsic Thermal and Photochemical Stability of Hybrid and Inorganic Lead Halide Perovskites, J. Phys. Chem. Lett. 8 (2017) 1211-1218. https://doi.org/10.1021/acs.jpclett.6b03026.

[53] P. Schulz, D. Cahen, A. Kahn, Halide Perovskites: Is It All about the Interfaces?, Chem. Rev. 119 (2019) 3349-3417. https://doi.org/10.1021/acs.chemrev.8b00558.

[54] A.K. Jena, A. Kulkarni, T. Miyasaka, Halide Perovskite Photovoltaics: Background, Status, and Future Prospects, Chem. Rev. 119 (2019) 3036-3103. https://doi.org/10.1021/acs.chemrev.8b00539.

[55] Y. Zhou, Y. Zhao, Chemical stability and instability of inorganic halide perovskites, Energy Environ. Sci. 12 (2019) 1495-1511. https://doi.org/10.1039/c8ee03559h.

[56] H. Lee, C. Lee, Analysis of Ion-Diffusion-Induced Interface Degradation in Inverted Perovskite Solar Cells via Restoration of the Ag Electrode, Adv. Energy Mater. 8 (2018) 1702197. https://doi.org/10.1002/aenm.201702197.

[57] A. Guerrero, J. You, C. Aranda, Y.S. Kang, G. Garcia-Belmonte, H. Zhou, J. Bisquert, Y. Yang, Interfacial degradation of planar lead halide perovskite solar cells, ACS Nano. 10 (2016) 218-224. https://doi.org/10.1021/acsnano.5b03687.

[58] K. Domanski, J.P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate, M. Saliba, W. Tress, A. Hagfeldt, M. Grätzel, Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells, ACS Nano. 10 (2016) 6306-6314. https://doi.org/10.1021/acsnano.6b02613.

[59] J. Li, Q. Dong, N. Li, L. Wang, Direct Evidence of Ion Diffusion for the Silver-Electrode-Induced Thermal Degradation of Inverted Perovskite Solar Cells, Adv. Energy Mater. 7 (2017). https://doi.org/10.1002/aenm.201602922.

[60] X. Liu, Z. Liu, B. Sun, X. Tan, H. Ye, Y. Tu, T. Shi, Z. Tang, G. Liao, 17.46% efficient and highly stable carbon-based planar perovskite solar cells employing Ni-doped rutile TiO2 as electron transport layer, Nano Energy. 50 (2018) 201-211. https://doi.org/10.1016Zj.nanoen.2018.05.031.

[61] X. Wu, L. Xie, K. Lin, J. Lu, K. Wang, W. Feng, B. Fan, P. Yin, Z. Wei, Efficient and stable carbon-based perovskite solar cells enabled by the inorganic interface of CuSCN and carbon nanotubes, J. Mater. Chem. A. 7 (2019) 12236-12243. https://doi.org/10.1039/c9ta02014d.

[62] Z. Wei, X. Zheng, H. Chen, X. Long, Z. Wang, S. Yang, A multifunctional C + epoxy/Ag-paint cathode enables efficient and stable operation of perovskite solar cells in watery environments, J. Mater. Chem. A. 3 (2015) 16430-16434. https://doi.org/10.1039/c5ta03802b.

[63] H. Chen, S. Yang, Carbon-Based Perovskite Solar Cells without Hole Transport Materials: The Front Runner to the Market?, Adv. Mater. 29 (2017). https://doi.org/10.1002/adma.201603994.

[64] G. Grancini, C. Roldan-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, M.K. Nazeeruddin, One-Year stable perovskite solar cells by 2D/3D interface engineering, Nat. Commun. 8 (2017) 1-8.

https://doi.org/10.1038/ncomms15684.

[65] R.A. Kerner, B.P. Rand, Electrochemical and Thermal Etching of Indium Tin Oxide by Solid-State Hybrid Organic-Inorganic Perovskites, ACS Appl. Energy Mater. 2 (2019) 6097-6101. https://doi.org/10.1021/acsaem.9b01356.

[66] S.Y. Luchkin, A.F. Akbulatov, L A. Frolova, M P. Griffin, A. Dolocan, R. Gearba, D.A.V. Bout, P.A. Troshin, K.J. Stevenson, Reversible and irreversible electric field induced morphological and interfacial transformations of hybrid lead iodide perovskites, ACS Appl. Mater. Interfaces. 9 (2017) 33478-33483. https://doi.org/10.1021/acsami.7b01960.

[67] J. Xie, X. Yu, J. Huang, X. Sun, Y. Zhang, Z. Yang, M. Lei, L. Xu, Z. Tang, C. Cui, P. Wang, D. Yang, Self-Organized Fullerene Interfacial Layer for Efficient and Low-Temperature Processed Planar Perovskite Solar Cells with High UV-Light Stability, Adv. Sci. 4 (2017) 1700018. https://doi.org/10.1002/advs.201700018.

[68] J. Xie, V. Arivazhagan, K. Xiao, K. Yan, Z. Yang, Y. Qiang, P. Hang, G. Li, C. Cui, X. Yu, D. Yang, A ternary organic electron transport layer for efficient and photostable perovskite solar cells under full spectrum illumination, J. Mater. Chem. A. 6 (2018) 5566-5573. https://doi.org/10.1039/c8ta00816g.

[69] D. Li, C. Sun, H. Li, H. Shi, X. Shai, Q. Sun, J. Han, Y. Shen, H.L. Yip, F. Huang, M. Wang, Amino-functionalized conjugated polymer electron transport layers enhance the UV-photostability of planar heterojunction perovskite solar cells, Chem. Sci. 8 (2017) 4587-4594. https://doi.org/10.1039/c7sc00077d.

[70] H.J. Jung, D. Kim, S. Kim, J. Park, VP. Dravid, B. Shin, Stability of Halide Perovskite Solar Cell Devices: In Situ Observation of Oxygen Diffusion under Biasing, Adv. Mater. 30 (2018) 1802769. https://doi.org/10.1002/adma.201802769.

[71] W. Liu, L. Chu, N. Liu, Y. Cheng, F. Wu, Y. Li, Y. Pu, J. Zhang, X. Li, W. Huang, Simultaneously Enhanced Efficiency and Stability of Perovskite Solar Cells with TiO 2 @CdS Core-Shell Nanorods Electron Transport Layer, Adv. Mater. Interfaces. 6 (2019) 1801976. https://doi.org/10.1002/admi.201801976.

[72] E. Hendry, M. Koeberg, B. O'Regan, M. Bonn, Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy, Nano Lett. 6 (2006) 755759. https://doi.org/10.1021/nl0600225.

[73] AG. Boldyreva, A.F. Akbulatov, M. Elnaggar, S.Y. Luchkin, A. V. Danilov, I S. Zhidkov, O.R. Yamilova, Y.S. Fedotov, S.I. Bredikhin, E.Z. Kurmaev, K.J. Stevenson, P.A. Troshin, Impact of charge transport layers on the photochemical stability of MAPbI3 in thin films and perovskite solar cells, Sustain. Energy Fuels. 3 (2019) 27052716. https://doi .org/10.1039/c9se00493a.

[74] A.K. Jena, Y. Numata, M. Ikegami, T. Miyasaka, Role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-waste, J. Mater. Chem. A. 6 (2018) 2219-2230. https://doi.org/10.1039/c7ta07674f.

[75] L. Xiong, Y. Guo, J. Wen, H. Liu, G. Yang, P. Qin, G. Fang, Review on the Application of SnO2 in Perovskite Solar Cells, Adv. Funct. Mater. 28 (2018). https://doi.org/10.1002/adfm.201802757.

[76] J. Song, E. Zheng, J. Bian, X.F. Wang, W. Tian, Y. Sanehira, T. Miyasaka, Lowerature SnO2-based electron selective contact for efficient and stable perovskite solar cells, J. Mater. Chem. A. 3 (2015) 10837-10844. https://doi.org/10.1039/c5ta01207d.

[77] M. Stolterfoht, C.M. Wolff, Y. Amir, A. Paulke, L. Perdigón-Toro, P. Caprioglio, D. Neher, Approaching the fill factor Shockley-Queisser limit in stable, dopant-free triple cation perovskite solar cells, Energy Environ. Sci. 10 (2017) 1530-1539. https://doi.org/10.1039/c7ee00899f.

[78] Q. Wang, C. Bi, J. Huang, Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells, Nano Energy. 15 (2015) 275-280. https://doi.org/10.1016Zj.nanoen.2015.04.029.

[79] P. Chen, X. Yin, M. Que, X. Liu, W. Que, Low temperature solution processed indium oxide thin films with reliable photoelectrochemical stability for efficient and stable planar perovskite solar cells, J. Mater. Chem. A. 5 (2017) 9641-9648. https://doi.org/10.1039/c7ta00183e.

[80] T. Hu, S. Xiao, H. Yang, L. Chen, Y. Chen, Cerium oxide as an efficient electron extraction layer for p-i-n structured perovskite solar cells, Chem. Commun. 54 (2018) 471-474. https://doi.org/10.1039/c7cc08657a.

[81] J. Dong, J. Wu, J. Jia, L. Fan, Y. Lin, J. Lin, M. Huang, Efficient perovskite solar cells employing a simply-processed CdS electron transport layer, J. Mater. Chem. C. 5 (2017) 10023-10028. https://doi.org/10.1039/c7tc03343e.

[82] Y. Okamoto, Y. Suzuki, Mesoporous BaTiO3/TiO2 Double Layer for Electron Transport in Perovskite Solar Cells, J. Phys. Chem. C. 120 (2016) 13995-14000. https://doi.org/10.1021/acs.jpcc.6b04642.

[83] P.-L. Qin, H.-W. Lei, X.-L. Zheng, Q. Liu, H. Tao, G. Yang, W.-J. Ke, L.-B. Xiong, M -C. Qin, X.-Z. Zhao, G.-J. Fang, Copper-Doped Chromium Oxide Hole-Transporting Layer for Perovskite Solar Cells: Interface Engineering and Performance Improvement, Adv. Mater. Interfaces. 3 (2016) 1500799. https://doi.org/10.1002/admi.201500799.

[84] Q. Luo, H. Chen, Y. Lin, H. Du, Q. Hou, F. Hao, N. Wang, Z. Guo, J. Huang, Discrete Iron(III) Oxide Nanoislands for Efficient and Photostable Perovskite Solar Cells, Adv. Funct. Mater. 27 (2017) 1702090. https://doi.org/10.1002/adfm.201702090.

[85] A.F. Akbulatov, L A. Frolova, M P. Griffin, I.R. Gearba, A. Dolocan, D A. Vanden Bout, S. Tsarev, E.A. Katz, A.F. Shestakov, K.J. Stevenson, P.A. Troshin, Effect of Electron-Transport Material on Light-Induced Degradation of Inverted Planar Junction Perovskite Solar Cells, Adv. Energy Mater. 7 (2017) 1700476. https://doi.org/10.1002/aenm.201700476.

[86] H. Back, G. Kim, H. Kim, C.Y. Nam, J. Kim, Y.R. Kim, T. Kim, B. Park, J R. Durrant, K. Lee, Highly stable inverted methylammonium lead tri-iodide perovskite solar cells achieved by surface re-crystallization, Energy Environ. Sci. 13 (2020) 840-847. https://doi.org/10.1039/c9ee03736e.

[87] N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, M. Grätzel, Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%, Science (80-. ). 358 (2017) 768-771. https://doi.org/10.1126/science.aam5655.

[88] H. Rao, S. Ye, W. Sun, W. Yan, Y. Li, H. Peng, Z. Liu, Z. Bian, Y. Li, C. Huang, A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3-xClx solar cells by an effective Cl doping method, Nano Energy. 27 (2016) 51-57. https://doi.org/10.1016Zj.nanoen.2016.06.044.

[89] W. Yu, F. Li, H. Wang, E. Alarousu, Y. Chen, B. Lin, L. Wang, M.N. Hedhili, Y. Li, K. Wu, X. Wang, O.F. Mohammed, T. Wu, Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells, Nanoscale. 8 (2016) 6173-6179. https://doi.org/10.1039/c5nr07758c.

[90] H. Choi, C.K. Mai, H.B. Kim, J. Jeong, S. Song, G.C. Bazan, J.Y. Kim, A.J. Heeger, Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells, Nat. Commun. 6 (2015) 1-6. https://doi.org/10.1038/ncomms8348.

[91] KG. Lim, H.B. Kim, J. Jeong, H. Kim, J.Y. Kim, T.W. Lee, Boosting the power conversion effi ciency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function, Adv. Mater. 26 (2014) 6461-6466. https://doi.org/10.1002/adma.201401775.

[92] MB. Islam, M. Yanagida, Y. Shirai, Y. Nabetani, K. Miyano, NiOx Hole Transport Layer for Perovskite Solar Cells with Improved Stability and Reproducibility, ACS Omega. 2 (2017) 2291-2299. https://doi.org/10.1021/acsomega.7b00538.

[93] W. Sun, S. Ye, H. Rao, Y. Li, Z. Liu, L. Xiao, Z. Chen, Z. Bian, C. Huang, Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells, Nanoscale. 8 (2016) 15954-15960. https://doi.org/ 10.1039/c6nr04288k.

[94] S. Jung, J.H. Heo, D.W. Lee, S. Lee, S. Lee, W. Yoon, H. Yun, D. Kim, J.H. Kim, S.H. Im, O. Kwon, Homochiral Asymmetric-Shaped Electron-Transporting Materials for Efficient Non-Fullerene Perovskite Solar Cells, ChemSusChem. 12 (2019) 224-230. https://doi.org/10.1002/cssc.201802234.

[95] S. Yang, L. Jia, M. Chen, Functionalization of Fullerene Materials toward Applications in Perovskite Solar Cells, Mater. Chem. Front. (2020). https://doi.org/10.1039/d0qm00295j.

[96] L.-L. Deng, S.-Y. Xie, F. Gao, Fullerene-Based Materials for Photovoltaic Applications: Toward Efficient, Hysteresis-Free, and Stable Perovskite Solar Cells, Adv. Electron. Mater. 4 (2018) 1700435. https://doi.org/10.1002/aelm.201700435.

[97] E. Castro, J. Murillo, O. Fernandez-Delgado, L. Echegoyen, Progress in fullerene-based hybrid perovskite solar cells, J. Mater. Chem. C. 6 (2018) 2635-2651. https://doi.org/10.1039/c7tc04302c.

[98] Y. Shao, Y. Yuan, J. Huang, Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells, 1 (2016). https://doi.org/10.1038/NENERGY.2015.!.

[99] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells, Nat. Commun. 5 (2014) 1-7. https://doi.org/10.1038/ncomms6784.

[100] C. Bi, Y. Yuan, Y. Fang, J. Huang, Low-temperature fabrication of efficient wide-bandgap organolead trihalide perovskite solar cells, Adv. Energy Mater. 5 (2015). https://doi.org/10.1002/aenm.201401616.

[101] Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, J. Huang, Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process, Energy Environ. Sci. 7 (2014) 2359-2365. https://doi.org/10.1039/c4ee00233d.

[102] C.H. Chiang, Z.L. Tseng, C.G. Wu, Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process, J. Mater. Chem. A. 2 (2014) 15897-15903. https://doi.org/10.1039/c4ta03674c.

[103] C.G. Wu, C.H. Chiang, Z.L. Tseng, M.K. Nazeeruddin, A. Hagfeldt, M. Grätzel, High efficiency stable inverted perovskite solar cells without current hysteresis, Energy Environ. Sci. 8 (2015) 2725-2733. https://doi.org/10.1039/c5ee00645g.

[104] F. Xia, Q. Wu, P. Zhou, Y. Li, X. Chen, Q. Liu, J. Zhu, S. Dai, Y. Lu, S. Yang, Efficiency Enhancement of Inverted Structure Perovskite Solar Cells via Oleamide Doping of PCBM Electron Transport Layer, ACS Appl. Mater. Interfaces. 7 (2015) 13659-13665. https://doi.org/10.1021/acsami.5b03525.

[105] Y. Bai, H. Yu, Z. Zhu, K. Jiang, T. Zhang, N. Zhao, S. Yang, H. Yan, High performance inverted structure perovskite solar cells based on a PCBM: Polystyrene blend electron transport layer, J. Mater. Chem. A. 3 (2015) 9098-9102. https://doi.org/10.1039/c4ta05309e.

[106] C. Kuang, G. Tang, T. Jiu, H. Yang, H. Liu, B. Li, W. Luo, X. Li, W. Zhang, F. Lu, J. Fang, Y. Li, Highly Efficient Electron Transport Obtained by Doping PCBM with Graphdiyne in Planar-Heterojunction Perovskite Solar Cells, Nano Lett. 15 (2015) 2756-2762. https://doi.org/10.1021/acs.nanolett.5b00787.

[107] Z. Zhu, Q. Xue, H. He, K. Jiang, Z. Hu, Y. Bai, T. Zhang, S. Xiao, K. Gundogdu, B.R. Gautam, H. Ade, F. Huang, K.S. Wong, H.-L. Yip, S. Yang, H. Yan, A PCBM Electron Transport Layer Containing Small Amounts of Dual Polymer Additives that Enables Enhanced Perovskite Solar Cell Performance, Adv. Sci. 3 (2016) 1500353. https://doi.org/10.1002/advs.201500353.

[108] C.Y. Chang, W.K. Huang, Y.C. Chang, K T. Lee, C.T. Chen, A solution-processed n-doped fullerene cathode interfacial layer for efficient and stable large-area perovskite solar cells, J. Mater. Chem. A. 4 (2015) 640-648. https://doi.org/10.1039/c5ta09080f.

[109] L. Jia, B. Li, Y. Shang, M. Chen, G.W. Wang, S. Yang, Double fullerene cathode buffer layers afford highly efficient and stable inverted planar perovskite solar cells, Org. Electron. 82 (2020) 105726. https://doi.org/10.1016/j.orgel.2020.105726.

[110] X. Liu, Z. Liu, H. Ye, Y. Tu, B. Sun, X. Tan, T. Shi, Z. Tang, G. Liao, Novel efficient C60-based inverted perovskite solar cells with negligible hysteresis, Electrochim. Acta. 288 (2018) 115-125. https://doi.org/10.1016/j.electacta.2018.09.004.

[111] D. Liu, Q. Wang, C.J. Traverse, C. Yang, M. Young, P.S. Kuttipillai, S.Y. Lunt, T.W. Hamann, R.R. Lunt, Impact of Ultrathin C60 on Perovskite Photovoltaic Devices, ACS Nano. 12 (2018) 876-883. https://doi.org/10.1021/acsnano.7b08561.

[112] G. Namkoong, A.A. Mamun, T.T. Ava, Impact of PCBM/C60 electron transfer layer on charge transports on ordered and disordered perovskite phases and hysteresis-free perovskite solar cells, Org. Electron. 56 (2018) 163-169. https://doi.org/10.1016/j.orgel.2018.02.010.

[113] C. Chen, S. Zhang, S. Wu, W. Zhang, H. Zhu, Z. Xiong, Y. Zhang, W. Chen, Effect of

BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells f, (2017). https://doi.org/10.1039/c7ra06365b.

[114] D.X. Yuan, X.D. Yuan, Q.Y. Xu, M F. Xu, X.B. Shi, Z.K. Wang, L.S. Liao, A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells, Phys. Chem. Chem. Phys. 17 (2015) 26653-26658. https://doi.org/10.1039/c5cp03995a.

[115] D. Li, W. Kong, H. Zhang, D. Wang, W. Li, C. Liu, H. Chen, W. Song, F. Gao, A. Amini, B. Xu, S. Li, C. Cheng, Bifunctional Ultrathin PCBM Enables Passivated Trap States and Cascaded Energy Level toward Efficient Inverted Perovskite Solar Cells, ACS Appl. Mater. Interfaces. 12 (2020) 20103-20109. https://doi.org/10.1021/acsami.0c02837.

[116] S. Bai, Z. Wu, X. Wu, Y. Jin, N. Zhao, Z. Chen, Q. Mei, X. Wang, Z. Ye, T. Song, R. Liu, S. tong Lee, B. Sun, High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering, Nano Res. 7 (2014) 1749-1758. https://doi.org/10.1007/s12274-014-0534-8.

[117] O. Malinkiewicz, C. Roldan-Carmona, A. Soriano, E. Bandiello, L. Camacho, M.K. Nazeeruddin, H.J. Bolink, Metal-Oxide-Free Methylammonium Lead Iodide Perovskite-Based Solar Cells: The Influence of Organic Charge Transport Layers, Adv. Energy Mater. 4 (2014). https://doi.org/10.1002/aenm.201400345.

[118] J. Seo, S. Park, Y. Chan Kim, N.J. Jeon, J.H. Noh, S C. Yoon, S. Il Seok, Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells, Energy Environ. Sci. 7 (2014) 2642-2646. https://doi.org/10.1039/c4ee01216j.

[119] D. Tan, X. Zhang, X. Liu, H. Zhang, D. Ma, Stability enhancement of inverted perovskite solar cells using LiF in electron transport layer, Org. Electron. 80 (2020) 105613. https://doi.org/10.1016Zj.orgel.2019.105613.

[120] W. Tan, C. Xie, Y. Liu, Y. Zhao, L. Li, X. Liu, Y. Yuan, Y. Li, Y. Gao, Initial photochemical stability in perovskite solar cells based on the Cu electrode and the appropriate charge transport layers, Synth. Met. 246 (2018) 101-107. https://doi.org/ 10.1016/j.synthmet.2018.10.004.

[121] C.Y. Chang, Y.C. Chang, W.K. Huang, K T. Lee, A.C. Cho, C.C. Hsu, Enhanced Performance and Stability of Semitransparent Perovskite Solar Cells Using Solution-Processed Thiol-Functionalized Cationic Surfactant as Cathode Buffer Layer, Chem. Mater. 27 (2015) 7119-7127. https://doi.org/10.1021/acs.chemmater.5b03137.

[122] Q. Xue, Z. Hu, J. Liu, J. Lin, C. Sun, Z. Chen, C. Duan, J. Wang, C. Liao, W.M. Lau, F. Huang, H.L. Yip, Y. Cao, Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer, J. Mater. Chem. A. 2 (2014) 19598-19603. https://doi.org/10.1039/c4ta05352d.

[123] J. You, Z. Hong, T. Bin Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.H. Chang, G. Li, Y. Yang, Moisture assisted perovskite film growth for high performance solar cells, Appl. Phys. Lett. 105 (2014) 183902. https://doi.org/10.1063/L4901510.

[124] H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf, C.J. Brabec, Improved high-efficiency perovskite planar heterojunction solar cells via incorporation of a polyelectrolyte interlayer, Chem. Mater. 26 (2014) 5190-5193. https://doi.org/10.1021/cm502864s.

[125] L.Q. Zhang, X.W. Zhang, Z.G. Yin, Q. Jiang, X. Liu, J.H. Meng, Y.J. Zhao, H.L. Wang, Highly efficient and stable planar heterojunction perovskite solar cells via a low temperature solution process, J. Mater. Chem. A. 3 (2015) 12133-12138. https://doi.org/10.1039/c5ta01898f.

[126] Z. Xing, S.H. Li, B.S. Wu, X. Wang, L.Y. Wang, T. Wang, H.R. Liu, M L. Zhang, D.Q. Yun, L.L. Deng, S.Y. Xie, R. Bin Huang, L.S. Zheng, Photovoltaic performance and stability of fullerene/cerium oxide double electron transport layer superior to single one in p-i-n perovskite solar cells, J. Power Sources. 389 (2018) 13-19. https://doi.org/ 10.1016/j .jpowsour.2018.03.079.

[127] C. Sun, Z. Wu, H.L. Yip, H. Zhang, X.F. Jiang, Q. Xue, Z. Hu, Z. Hu, Y. Shen, M. Wang, F. Huang, Y. Cao, Amino-Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for High-Performance Planar-Heterojunction Perovskite Solar Cells, Adv. Energy Mater. 6 (2016). https://doi.org/10.1002/aenm.201501534.

[128] A.A. Said, J. Xie, Y. Wang, Z. Wang, Y. Zhou, K. Zhao, W. Gao, T. Michinobu, Q. Zhang, Efficient Inverted Perovskite Solar Cells by Employing N-Type (D-A 1 -D-A 2 ) Polymers as Electron Transporting Layer, Small. 15 (2019) 1803339. https://doi.org/10.1002/smll.201803339.

[129] S. Li, W. Zhao, J. Zhang, X. Liu, Z. Zheng, C. He, B. Xu, Z. Wei, J. Hou, Influence of Covalent and Noncovalent Backbone Rigidification Strategies on the Aggregation Structures of a Wide-Band-Gap Polymer for Photovoltaic Cells, Chem. Mater. 32 (2020) 1993-2003. https://doi.org/10.1021/acs.chemmater.9b04971.

[130] D. Yang, X. Zhang, K. Wang, C. Wu, R. Yang, Y. Hou, Y. Jiang, S. Liu, S. Priya, Stable Efficiency Exceeding 20.6% for Inverted Perovskite Solar Cells through Polymer-Optimized PCBM Electron-Transport Layers, Nano Lett. 19 (2019) 3313-3320. https://doi.org/10.1021/acs.nanolett.9b00936.

[131] Y. Shi, W. CHEN, Z. Wu, Y. Wang, W. Sun, K. Yang, Y. Tang, H.Y. Woo, M. Zhou, A. Djurisic, Z. He, X. Guo, Imide-Functionalized Acceptor-Acceptor Copolymers as Efficient Electron Transport Layers for High-Performance Perovskite Solar Cells, J. Mater. Chem. A. 8 (2020) 13754-13762. https://doi.org/10.1039/d0ta03548c.

[132] W. Chen, L. Xu, X. Feng, J. Jie, Z. He, Metal Acetylacetonate Series in Interface Engineering for Full Low-Temperature-Processed, High-Performance, and Stable Planar Perovskite Solar Cells with Conversion Efficiency over 16% on 1 cm2 Scale, Adv. Mater. 29 (2017). https://doi.org/10.1002/adma.201603923.

[133] Y.H. Chiang, C.K. Shih, A.S. Sie, M.H. Li, C.C. Peng, P S. Shen, Y.P. Wang, T.F. Guo, P. Chen, Highly stable perovskite solar cells with all-inorganic selective contacts from microwave-synthesized oxide nanoparticles, J. Mater. Chem. A. 5 (2017) 25485-25493. https://doi.org/10.1039/c7ta07775k.

[134] Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi, A. Islam, L. Han, Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering, Nat. Energy. 1 (2016) 1-7. https://doi.org/10.1038/nenergy.2016.148.

[135] H. Nakayama, Y. Zheng, J.A. Schneider, H. Wang, N. Ninomiya, T. Momose, J. Read De Alaniz, F. Wudl, M.L. Chabinyc, Sulfur-fused perylene diimide electron transport layers allow >400 h operational lifetime of methylammonium lead iodide photovoltaics, J. Mater. Chem. C. 7 (2019) 11126-11133. https://doi.org/10.1039/c9tc03877a.

[136] F. Jiang, W.C.H. Choy, X. Li, D. Zhang, J. Cheng, Post-treatment-free solution-processed Non-stoichiometric NiOx nanoparticles for efficient hole-transport layers of organic optoelectronic devices, Adv. Mater. 27 (2015) 2930-2937. https://doi .org/10.1002/adma.201405391.

[137] H. Zhang, J. Cheng, F. Lin, H. He, J. Mao, K.S. Wong, A.K.Y. Jen, W.C.H. Choy, Pinhole-free and surface-nanostructured niox film by room-Temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility, ACS Nano. 10 (2016) 1503-1511. https://doi.org/10.1021/acsnano.5b07043.

[138] O R. Yamilova, A. V. Danilov, M. Mangrulkar, Y.S. Fedotov, S.Y. Luchkin, S.D. Babenko, S.I. Bredikhin, S.M. Aldoshin, K.J. Stevenson, P.A. Troshin, Reduction of Methylammonium Cations as a Major Electrochemical Degradation Pathway in MAPbI3 Perovskite Solar Cells, J. Phys. Chem. Lett. 11 (2020) 221-228. https://doi.org/10.1021/acs.jpclett.9b03161.

[139] S. Wu, R. Chen, S. Zhang, B.H. Babu, Y. Yue, H. Zhu, Z. Yang, C. Chen, W. Chen, Y. Huang, S. Fang, T. Liu, L. Han, W. Chen, A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells, Nat. Commun. 10 (2019) 1-11. https://doi.org/10.1038/s41467-019-09167-0.

[140] J. Zhao, K.O. Brinkmann, T. Hu, N. Pourdavoud, T. Becker, T. Gahlmann, R. Heiderhoff, A. Polywka, P. Görrn, Y. Chen, B. Cheng, T. Riedl, Self-Encapsulating Thermostable and Air-Resilient Semitransparent Perovskite Solar Cells, Adv. Energy Mater. 7 (2017) 1602599. https://doi.org/10.1002/aenm.201602599.

[141] K.O. Brinkmann, J. Zhao, N. Pourdavoud, T. Becker, T. Hu, S. Olthof, K. Meerholz, L. Hoffmann, T. Gahlmann, R. Heiderhoff, M.F. Oszajca, N.A. Luechinger, D. Rogalla, Y. Chen, B. Cheng, T. Riedl, Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells, Nat. Commun. 8 (2017) 1-9. https://doi.org/10.1038/ncomms13938.

[142] E.L. Unger, L. Kegelmann, K. Suchan, D. Sörell, L. Korte, S. Albrecht, Roadmap and roadblocks for the band gap tunability of metal halide perovskites, J. Mater. Chem. A. 5 (2017) 11401-11409. https://doi.org/10.1039/c7ta00404d.

[143] H. Zhang, X. Fu, Y. Tang, H. Wang, C. Zhang, W.W. Yu, X. Wang, Y. Zhang, M. Xiao, Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals, Nat. Commun. 10 (2019) 1-8. https://doi.org/10.1038/s41467-019-09047-7.

[144] A.J. Knight, A.D. Wright, J.B. Patel, D P. McMeekin, H.J. Snaith, M B. Johnston, L.M. Herz, Electronic Traps and Phase Segregation in Lead Mixed-Halide Perovskite, ACS Energy Lett. 4 (2019) 75-84. https://doi.org/10.1021/acsenergylett.8b02002.

[145] T. Liu, F. Jiang, F. Qin, W. Meng, Y. Jiang, S. Xiong, J. Tong, Z. Li, Y. Liu, Y. Zhou, Nonreduction-Active Hole-Transporting Layers Enhancing Open-Circuit Voltage and Efficiency of Planar Perovskite Solar Cells, ACS Appl. Mater. Interfaces. 8 (2016) 33899-33906. https://doi.org/10.1021/acsami.6b13324.

[146] S.P. Harvey, F. Zhang, A. Palmstrom, J.M. Luther, K. Zhu, J.J. Berry, Mitigating Measurement Artifacts in TOF-SIMS Analysis of Perovskite Solar Cells, ACS Appl. Mater. Interfaces. 11 (2019) 30911-30918. https://doi.org/10.1021/acsami.9b09445.

[147] W.A. Dunlap-Shohl, T. Li, D.B. Mitzi, Interfacial Effects during Rapid Lamination within MAPbI3 Thin Films and Solar Cells, ACS Appl. Energy Mater. 2 (2019) 50835093. https://doi.org/10.1021/acsaem.9b00747.

[148] N.S. Sisombath, F. Jalilehvand, A C. Schell, Q. Wu, Lead(II) binding to the chelating agent d -penicillamine in aqueous solution, Inorg. Chem. 53 (2014) 12459-12468. https://doi.org/10.1021/ic5018714.

[149] J.C. Hummelen, B.W. Knight, F. Lepeq, F. Wudl, J. Yao, C.L. Wilkins, Preparation and Characterization of Fulleroid and Methanofullerene Derivatives, J. Org. Chem. 60 (1995) 532-538. https://doi.org/10.1021/jo00108a012.

[150] G.E. Eperon, S.N. Habisreutinger, T. Leijtens, B.J. Bruijnaers, J.J. Van Franeker, D.W. Dequilettes, S. Pathak, R.J. Sutton, G. Grancini, D.S. Ginger, R.A.J. Janssen, A. Petrozza, H.J. Snaith, The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication, ACS Nano. 9 (2015) 9380-9393. https://doi.org/10.1021/acsnano.5b03626.

[151] Y. Li, P. Sonar, L. Murphy, W. Hong, High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics, Energy Environ. Sci. 6 (2013) 1684-1710. https://doi.org/10.1039/c3ee00015j.

[152] Y. Li, B. Sun, P. Sonar, S.P. Singh, Solution processable poly(2,5-dialkyl-2,5-dihydro-3,6-di-2-thienyl- pyrrolo[3,4-c]pyrrole-1,4-dione) for ambipolar organic thin film transistors, Org. Electron. 13 (2012) 1606-1613. https://doi.org/10.1016Zj.orgel.2012.04.023.

[153] W. Chen, Y. Shi, Y. Wang, X. Feng, A.B. Djurisic, H.Y. Woo, X. Guo, Z. He, N-type conjugated polymer as efficient electron transport layer for planar inverted perovskite solar cells with power conversion efficiency of 20.86%, Nano Energy. 68 (2020) 104363. https://doi.org/10.10167j.nanoen.2019.104363.

[154] S. Shao, M. Abdu-Aguye, L. Qiu, L.H. Lai, J. Liu, S. Adjokatse, F. Jahani, M.E. Kamminga, G.H. Ten Brink, T.T.M. Palstra, B.J. Kooi, J.C. Hummelen, M. Antonietta Loi, Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative, Energy Environ. Sci. 9 (2016) 2444-2452. https://doi.org/10.1039/c6ee01337f.

[155] Y. Bai, X. Meng, S. Yang, Interface Engineering for Highly Efficient and Stable Planar p-i-n Perovskite Solar Cells, Adv. Energy Mater. 8 (2018) 1701883. https://doi.org/10.1002/aenm.201701883.

[156] Y. Jiang, MR. Leyden, L. Qiu, S. Wang, L.K. Ono, Z. Wu, E.J. Juarez-Perez, Y. Qi, Combination of Hybrid CVD and Cation Exchange for Upscaling Cs-Substituted Mixed Cation Perovskite Solar Cells with High Efficiency and Stability, Adv. Funct. Mater. 28 (2018) 1703835. https://doi.org/10.1002/adfm.201703835.

[157] L A. Frolova, A.I. Davlethanov, N.N. Dremova, I. Zhidkov, A.F. Akbulatov, E.Z. Kurmaev, S.M. Aldoshin, K.J. Stevenson, P A. Troshin, Efficient and Stable MAPbI3-Based Perovskite Solar Cells Using Polyvinylcarbazole Passivation, J. Phys. Chem. Lett. 11 (2020) 6772-6778. https://doi.org/10.1021/acs.jpclett.0c01776.

[158] M. Zhang, Q. Chen, R. Xue, Y. Zhan, C. Wang, J. Lai, J. Yang, H. Lin, J. Yao, Y. Li, L. Chen, Y. Li, Reconfiguration of interfacial energy band structure for highperformance inverted structure perovskite solar cells, Nat. Commun. 10 (2019) 1-9.

https://doi.org/10.1038/s41467-019-12613-8.

[159] D.K. Sagdullina, I.E. Kuznetsov, A. V. Akkuratov, L.I. Kuznetsova, S.I. Troyanov, P.A. Troshin, New alternating thiophene-benzothiadiazole electron donor material for small-molecule organic solar cells and field-effect transistors, Synth. Met. 250 (2019) 7-11. https://doi.org/10.1016/j.synthmet.2019.01.019.

[160] M. Zhang, X. Zhan, Nonfullerene n-Type Organic Semiconductors for Perovskite Solar Cells, Adv. Energy Mater. 9 (2019) 1900860. https://doi.org/10.1002/aenm.201900860.

[161] J. Xu, A. Buin, AH. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J.J. McDowell, P. Kanjanaboos, J.P. Sun, X. Lan, L.N. Quan, D.H. Kim, I.G. Hill, P. Maksymovych, E.H. Sargent, Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes, Nat. Commun. 6 (2015) 1-8. https://doi.org/10.1038/ncomms8081.

[162] M.M. Tavakoli, P. Yadav, R. Tavakoli, J. Kong, Surface Engineering of TiO 2 ETL for Highly Efficient and Hysteresis-Less Planar Perovskite Solar Cell (21.4%) with Enhanced Open-Circuit Voltage and Stability, Adv. Energy Mater. 8 (2018) 1800794. https://doi.org/10.1002/aenm.201800794.

[163] Q. Jiang, X. Zhang, J. You, SnO 2 : A Wonderful Electron Transport Layer for Perovskite Solar Cells, Small. 14 (2018) 1801154. https://doi.org/10.1002/smll.201801154.

[164] X. Ye, H. Ling, R. Zhang, Z. Wen, S. Hu, T. Akasaka, J. Xia, X. Lu, Low-temperature solution-combustion-processed Zn-Doped Nb2O5 as an electron transport layer for efficient and stable perovskite solar cells, J. Power Sources. 448 (2020) 227419. https://doi.org/10.1016/jjpowsour.2019.227419.

[165] Q. Guo, C. Wang, J. Li, Y. Bai, F. Wang, L. Liu, B. Zhang, T. Hayat, A. Alsaedi, Z. Tan, Low-temperature solution-processed vanadium oxide as hole transport layer for efficient and stable perovskite solar cells, Phys. Chem. Chem. Phys. 20 (2018) 2174621754. https://doi.org/10.1039/c8cp03223h.

[166] D. Perez-Del-Rey, L. Gil-Escrig, K.P.S. Zanoni, C. Dreessen, M. Sessolo, P.P. Boix, H.J. Bolink, Molecular Passivation of MoO3: Band Alignment and Protection of Charge Transport Layers in Vacuum-Deposited Perovskite Solar Cells, Chem. Mater. 31 (2019) 6945-6949. https://doi.org/10.1021/acs.chemmater.9b01396.

[167] M. Gillet, K. Aguir, C. Lemire, E. Gillet, K. Schierbaum, The structure and electrical conductivity of vacuum-annealed WO3 thin films, Thin Solid Films. 467 (2004) 239246. https://doi.org/10.1016/j.tsf.2004.04.018.

[168] J.M. Berak, M.J. Sienko, Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals, J. Solid State Chem. 2 (1970) 109-133. https://doi.org/10.1016/0022-4596(70)90040-X.

[169] S.M. Yong, T. Nikolay, B.T. Ahn, D.K. Kim, One-dimensional WO3 nanorods as photoelectrodes for dye-sensitized solar cells, J. Alloys Compd. 547 (2013) 113-117. https://doi.org/10.1016/jjallcom.2012.08.124.

[170] H. Zheng, Y. Tachibana, K. Kalantar-Zadeh, Dye-sensitized solar cells based on WO3, Langmuir. 26 (2010) 19148-19152. https://doi.org/10.1021/la103692y.

[171] Z.L. Tseng, L.C. Chen, C.H. Chiang, S.H. Chang, C.C. Chen, C.G. Wu, Efficient inverted-type perovskite solar cells using UV-ozone treated MoOx and WOx as hole

transporting layers, Sol. Energy. 139 (2016) 484-488. https://doi.org/10.1016/j.solener.2016.10.005.

[172] S. Masi, R. Mastria, R. Scafiello, S. Carallo, C. Nobile, S. Gambino, T. Sibillano, C. Giannini, S. Colella, A. Listorti, P.D. Cozzoli, A. Rizzo, Room-temperature processed films of colloidal carved rod-shaped nanocrystals of reduced tungsten oxide as interlayers for perovskite solar cells, Phys. Chem. Chem. Phys. 20 (2018) 11396-11404. https://doi.org/10.1039/c8cp00645h.

[173] C. Chen, Y. Jiang, Y. Wu, J. Guo, X. Kong, X. Wu, Y. Li, D. Zheng, S. Wu, X. Gao, Z. Hou, G. Zhou, Y. Chen, J.-M. Liu, K. Kempa, J. Gao, Low-Temperature-Processed WO x as Electron Transfer Layer for Planar Perovskite Solar Cells Exceeding 20% Efficiency, Sol. RRL. 4 (2020) 1900499. https://doi.org/10.1002/solr.201900499.

[174] F. Wang, Y. Zhang, M. Yang, J. Du, L. Yang, L. Fan, Y. Sui, X. Liu, J. Yang, Achieving efficient flexible perovskite solar cells with room-temperature processed tungsten oxide electron transport layer, J. Power Sources. 440 (2019) 227157. https://doi.org/ 10.1016/j .jpowsour.2019.227157.

[175] K. Wang, Y. Shi, Q. Dong, Y. Li, S. Wang, X. Yu, M. Wu, T. Ma, Low-temperature and solution-processed amorphous WOX as electron-selective layer for perovskite solar cells, J. Phys. Chem. Lett. 6 (2015) 755-759. https://doi.org/10.1021/acs.jpclett.5b00010.

[176] J. Cui, H. Yuan, J. Li, cite this article: Meidan Ye et al, J. Phys. D Appl. Phys. To. 50 (2017) 373002. https://doi.org/10.1088/1361-6463/aa7cb0.