Полностью волоконные лазеры с синхронизацией мод на основе однослойных углеродных нанотрубок, синтезированных аэрозольным методом тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Мкртчян Арам Арсенович
- Специальность ВАК РФ00.00.00
- Количество страниц 130
Оглавление диссертации кандидат наук Мкртчян Арам Арсенович
Contents
Abstract
Acknowledgements
1. Introduction
1.1 Topic of relevance
1. 2 Aims and obj ectives
1.3 Key aspects to be defended
1.4 Publications and approbation of research
1.4.1 Publications
1.4.2 Reports at conferences
2. SWCNTs as a saturable absorber
2.1 SWCNT-SA on a side polished fiber
2.1.1 Sample fabrication
2.1.2 Characterization of the sample
2.1.3 Pulsed laser with SWCNT-SA on the D-shape fiber
2.2 Tunable nonlinearity of SWCNT-SA for switchable pulse generation
2.2.1 Ionic liquid gated SWCNTs fabrication
2.2.2 Sample characterization
2.2.3 Switchable pulse generation with SWCNT-SA tuning
2.2.4 Discussions
2.3 Conclusions
3. SWCNT-SA stability analysis
3.1 SWCNT-SA on fiber ferrule degradation mechanism
3.1.1 Sample preparation and characterization
3.1.2 Laser operation with different SWCNTs
3.1.3 Thermogravimetric analysis of SWCNT-SAs
3.1.4 SWCNT temperature measurements
3.2 Stability of SWCNT-SA on side-polished fiber
3.2.1 Experimental setup for Raman spectrum measurement of the SWCNT-SA on side-polished fiber
3.2.2 Temperature measurement of the SWCNT-SA
3.3 Conclusions
4. 900 nm band all-fiber polarization maintaining ultrafast pulse lasers
4.1 Dissipative soliton resonance mode-locking at 905 nm wavelength
4.1.1 All-fiber laser experimental setup
4.1.2 Numerical simulations
4.1.3 Results and discussions
4.2 Dispersion managed solitons in all-fiber laser at 920 nm wavelength
4.2.1 Linear laser experimental setup
4.2.2 Laser pulse generation measurements and discussions
4.2.3 Numerical simulation and discussions
4.3 Conclusions
5. Thesis conclusions
6. List of Symbols, Abbreviations
7. Bibliography
Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Плазмонные наноструктуры для оптических метаматериалов2022 год, доктор наук Драчев Владимир Прокопьевич
Extraordinary optical transmission in holographic and polycrystalline structures/Усиленное оптическое пропускание в голографических и поликристаллических наноструктурах2021 год, кандидат наук Ушков Андрей Александрович
Применение акустической микроскопии для изучения упругих свойств и микроструктуры композитных материалов, армированных углеродными волокнами2004 год, кандидат физико-математических наук Лю Сунпин
Введение диссертации (часть автореферата) на тему «Полностью волоконные лазеры с синхронизацией мод на основе однослойных углеродных нанотрубок, синтезированных аэрозольным методом»
1. Introduction
1.1 Topic of relevance
Since last decades pulse fiber lasers have proven to be a reliable source for many applications in medicine (eye surgery, cosmetology, dental treatment, etc.), material processing (cutting, marking and engraving), two-photon microscopy, optical coherent tomography, laser spectroscopy, precision metrology, LIDAR, quantum communications and etc. Saturable absorbers (SA) play a crucial role in the fiber lasers for passive pulse generation. Single-walled carbon nanotubes (SWCNTs) are an excellent optical nanomaterial applicable in nowadays photonics because of their large nonlinear response, spectral selectivity and ultrafast response. Thin films of the SWCNTs synthesized by aerosol (floating catalyst) chemical vapor deposition method can be collected on a nitrocellulose filter with a given thickness and position of resonance transitions without additional purification and can be transferred to any surfaces by a simple dry transfer technique, thus making them extremely promising for a wide variety of applications.
In Chapter 2 of this thesis work we fabricated saturable absorber based on
aerosol synthesized SWCNTs (SWCNT-SA) deposited on a side-polished fiber by
dry transfer technique. Using this method Q-switched, mode-locked pulses as well
as the harmonic mode-lock regime with the 79th order are successfully demonstrated
in all-fiber laser. In the second part we developed original electrochemical cell to
control the modulation depth of the SWCNT-SA using Fermi level gating, which allowed to generate and reversible switch laser pulse state between mode-lock and Q-switch regimes by gate voltage below 2 V.
Notwithstanding many cutting edge results obtained with SWCNT-SA in fiber lasers, its degradation under laser illumination is limiting nanotubes widespread use. In Chapter 3 we investigated degradation mechanisms of the polyvinyl alcohol (PVA)/SWCNT composite and aerosol synthesized SWCNT-SAs sandwiched between fiber ferrules and deposited on a side-polished fiber. The heating temperature and degradation mechanisms we revealed by measuring SWCNTs Raman spectrum G-peak position shift in an operating laser cavity.
It is worth noting that pulsed fiber lasers are actively developing in the submicron region. Traditionally Titanium:Sapphire laser sources are used at this region for high power ultrashort pulse generation with great output beam quality as well as for broad wavelength tuning. However, due to a number of significant drawbacks such as bulkiness, sensitivity to mechanical perturbations and extremely high cost their practical applications are significantly limited outside laboratories. Nevertheless, they remain the "golden standard" because of the absence of fiber based alternatives. In Chapter 4 we developed first ultrafast neodymium-doped polarization-maintaining all-fiber lasers at 900 nm wavelength band using artificial or semiconducting saturable absorbers.
1.2 Aims and objectives
1. To investigate polymer-free single-walled carbon nanotubes as a saturable absorber on a side-polished fiber deposited by the dry-transfer technique to generate various pulse regimes in a fiber laser.
2. To develop a technique for tuning the nonlinear optical absorption of SWCNTs by electrochemical gating and investigate the influence of tunable nonlinearity of SWCNT-SA on a pulse generation regime inside the polarization-maintaining all-fiber laser.
3. To investigate the mechanism of the SWCNT-SA degradation by measuring the temperature of the SWCNT saturable absorber clamped between two connectors and on the side polish fiber.
4. To develop ultrafast neodymium-doped stable and robust all-fiber laser operating at 900 nm wavelength band.
5. To fabricate short pulse all-fiber laser with dispersion compensation at 900 nm wavelength band and investigate pulse regimes for different net dispersions.
1.3 Key aspects to be defended
1. We demonstrate an easy and robust method to implement aerosol CVD synthesized single-walled carbon nanotubes as a saturable absorber on a side-polished fiber by the dry transfer technique. Q-switch, mode-lock as well
as the 79th order harmonic mode-locking regimes are obtained in a fiber laser with this approach [A1].
2. We find out that the nonlinear optical absorption of SWCNT films can be significantly tuned by means of electrochemical gating. We show that under an applied voltage below 2 V the photobleaching of the material can be gradually reduced and even turned to photoinduced absorption. Furthermore, we integrate a carbon nanotube electrochemical cell on a side-polished fiber to tune the modulation depth and implement it into a fully polarization-maintaining fiber laser. We demonstrate that the pulse generation regime can be reversibly switched between femtosecond mode-locking and microsecond Q-switching by changing the gate voltage [A2].
3. We identify the process behind the degradation of the polyvinyl alcohol (PVA) composite and polymer free carbon nanotube saturable absorbers by measuring the heating temperature of the sample in accordance with the G-band position of Raman spectrum. We demonstrate that the samples on fiber ferrule undergo different degradation mechanisms, while the parameters of the pulse generation depend weakly on the sample preparation technique. We show that with an incident power of 20 mW the temperature can exceed 100oC in a 30% absorbing sample. Under illumination PVA polymer composites demonstrate the gradual deterioration of the optical properties governed by thermal decomposition of the polymer matrix. In contrast, polymer-free SWCNT-SA shows no change in optical properties under
illumination below the threshold defined by the 1 kW peak power, which corresponds to 25 mW average power. In case of SWCNTs on side-polished fiber the average power for the sample degradation exceeds 3 W. The developed techniques allow to optimize the parameters of the saturable absorber and maximize the stability for a required pulse regime [A1, A3].
4. We demonstrate polarization-maintaining neodymium doped all-fiber laser at a 905 nm wavelength with rectangular shape dissipative soliton resonance mode-lock pulses having 1 nJ energy, 30 pm spectral and 80 ^ 430 ps temporal widths. The laser works in nonlinear amplifying loop mirror (NALM) cavity configuration with large net-normal dispersion. To suppress dominant parasitic emission of Nd atoms at 1064 nm band we utilize an active fiber -920/1064 wavelength division multiplexer - active fiber sandwich-like sequence in the NALM loop. Excellent agreement with numerical simulation is achieved with proper selection of the net-dispersion and nonlinearity parameter of the cavity. The simulation is used to recover pulse width for the pulses out of autocorrelation window [A4].
5. We describe dispersion managed ultrashort pulse generation at a 920 nm wavelength in a Nd-doped polarization maintaining all-fiber laser. Linear laser scheme is developed with chirped fiber Bragg grating as a semitransparent output coupling mirror and SESAM as a second fully reflecting mirror. Chirped fiber Bragg grating also serves as a fiber dispersion compensator and select the laser emission wavelength. Self-starting pulse
generation regimes observed with 10 ^ 317 pJ energy, 50 ^ 2 ps width, and 17 ^ 51 MHz repetition rate at the 0.24 ps2 ^ -0.03 ps2 net dispersion range. Besides, harmonic mode-locking up to 12th order with 0.43 GHz repetition rate is achieved by selecting 0.01 ps2 net cavity dispersion and by adjustment of the pump power. [A5].
All the experimental results are obtained by the author or with his direct participation. He developed most of the fiber laser setups, including the fabrication of the electrochemical cell with carbon nanotubes in inert atmosphere. He conducted all the measurements of the laser generation regimes including SWCNTs nonlinear absorption tuning measurement under electrochemical gating. Author also carried out numerical simulations used to optimize the laser resonator design and to investigate intracavity pulse evolution for 900 nm wavelength band lasers.
The author would like to acknowledge all the colleagues for their contribution, particularly to Dr. Dmitry Krasnikov and Eldar Khabushev for the single-walled carbon nanotubes synthesis, to Dr. Evgeniia Gilshtein for the scanning electron microscopy experiment, to Dr. Fedor Fedorov for the thermogravimetric analysis and differential scanning calorimetry and to Dr. Maria Burdanova, Prof. James Lloyd-Hughes, Michael Staniforth for the pump-probe measurement. The carbon nanotube Raman measurements on fiber ferrule and assembling of the 920 nm fiber laser are performed by M.Sc. students Diana Galiakhmetova and Mikhail Mishevsky respectively, with the direct participation and under guidance of the thesis author.
This work was performed by the author in the Laboratory of Nanomaterials, Skoltech in the period from 2018 to 2022.
1.4 Publications and approbation of research 1.4.1 Publications
The thesis related papers [A1-A4] are published in and [A5] is submitted to peer-reviewed scientific journals.
1.4.1.1 First-tier publications
A1. A. A. Mkrtchyan, Y. G. Gladush, D. Galiakhmetova, V. Yakovlev, V. T. Ahtyamov, A. G. Nasibulin. Dry-transfer technique for polymer-free single-walled carbon nanotube saturable absorber on a side polished fiber // Optical Materials Express, V. 9, Issue 4, P. 1551-1561, 2019. A2. Y. Gladush, A. A. Mkrtchyan, D. S. Kopylova, A. Ivanenko, B. Nyushkov, S. Kobtsev, A. Kokhanovskiy, A. Khegai, M. Melkumov, M. Burdanova, M. Staniforth, J. Lloyd-Hughes, and A. G. Nasibulin. Ionic Liquid Gated Carbon Nanotube Saturable Absorber for Switchable Pulse Generation // Nano Letters, V.19, Issue 9, P. 5836 - 5843, 2019. A3. D. Galiakhmetova, Y. Gladush, A. Mkrtchyan, F. S. Fedorov, E. M. Khabushev, D. V. Krasnikov, R. Chinnambedu-Murugesan, E. Manuylovich, V. Dvoyrin, A. Rozhin, M. Rummeli, S. Alyatkin, P. Lagoudakis, and A. G. Nasibulin. Direct measurement of carbon
nanotube temperature between fiber ferrules as a universal tool for saturable absorber stability investigation // Carbon, V. 184, P. 941 - 948, 2021.
A4. A. A. Mkrtchyan, Y. G. Gladush, M. A. Melkumov, A. M. Khegai, K. A. Sitnik, P. G. Lagoudakis, and A. G. Nasibulin. Nd-doped polarization maintaining all-fiber laser with dissipative soliton resonance mode-locking at 905 nm // Journal of Lightwave Technology, V. 39, Issue 17, P. 5582 -5588, 2021.
A5. A. A. Mkrtchyan, M.S. Mischevsky, Y. G. Gladush, M. A. Melkumov, A. M. Khegai, A. G. Nasibulin. Dispersion managed mode-locking in allfiber polarization maintaining Nd-doped laser at 920 nm // Optics letters (submitted).
1.4.1.2 Other publications
A6. D. M. Zhigunov, D. A. Shilkin, N. G. Kokareva, V. O. Bessonov, S. A. Dyakov, D. A. Chermoshentsev, A. A. Mkrtchyan, Y. G. Gladush, A. A. Fedyanin, and A. G. Nasibulin. Single-walled carbon nanotube membranes as non-reflective substrates for nanophotonic applications // Nanotechnology V. 32, Issue 9, 2021, Number 095206. A7. M. G. Burdanova, G. M. Katyba, R. Kashtiban, G. A. Komandin, E. Butler-Caddle, M. Staniforth, A. A. Mkrtchyan, D. V. Krasnikov, Y. G. Gladush, J. Sloan, A. G. Nasibulin, and J. Lloyd-Hughes. Ultrafast, high
modulation depth terahertz modulators based on carbon nanotube thin films // Carbon V. 173, P. 245-252, 2021.
1.4.2 Reports at conferences
The thesis results were reported on the following conferences:
1. Poster presentation, V International Conference on Quantum Technologies, (ICQT 2019), "Multiregime pulse fiber laser based on electrochemically gated carbon nanotube saturable absorber", Moscow, Russia, July 15-19, 2019;
2. Invited talk, All-Russian Conference on Fiber Optics (RF0-2019), "Multiregime pulse fiber laser based on electrochemically gated single-walled carbon nanotube saturable absorber", Perm, Russia, October 8-11, 2019;
3. Oral talk, 14th International Conference on Advanced Carbon NanoStructures (ACNS'2019), "Multiregime pulse fiber laser based on electrochemically gated single-walled carbon nanotube saturable absorber", Saint-Petersburg, Russia, July 1-5, 2019;
4. Oral talk, 19th International conference Laser Optics (ICLO 2020), "Multiregime pulse fiber laser based on electrochemically gated single-walled carbon nanotube saturable absorber", online, November 2 - 6, 2020;
5. Poster presentation, VI International Conference on Quantum Technologies (ICQT-2021), "Neodymium-doped polarization maintaining all-fiber laser with dissipative soliton resonance mode-locking at 905 nm", online, July 12 - 16, 2021;
6. Oral talk, Russian Fiber Optics conference (RF0-2021), "Neodymium-doped polarization maintaining all-fiber laser with dissipative soliton resonance mode-locking at 905 nm", Perm, Russia, October 2021;
7. Poster presentation, V Summer School on Nonlinear photonics (SSNLP-2021), "Neodymium-doped polarization maintaining all-fiber laser with dissipative soliton resonance mode-locking at 905 nm", NSU, Novosibirsk, Russia, August 9 - 14, 2021;
8. Poster presentation, Conference on Lasers & Electro-Optics (CLEO/EUROPE-EQEC 2021), "Neodymium-doped polarization maintaining all-fiber laser with dissipative soliton resonance mode-locking at 905 nm", online, June 21- 25, 2021;
9. Oral talk, 20th International conference Laser Optics (ICLO 2022), "900 nm wavelength band all-fiber polarization maintaining mode-locked laser", Saint-Petersburg, June 20-24, 2022.
2. SWCNTs as a saturable absorber
This chapter is based on papers [A1], [A2].
Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Заключение диссертации по теме «Другие cпециальности», Мкртчян Арам Арсенович
5. Thesis conclusions
The main conclusions of the thesis work are the following:
1. We demonstrated dry transfer technique for the aerosol CVD synthesized single-walled carbon nanotube saturable absorber fabrication on a side-polished fiber. In the fiber laser stable pulse generation in mode-locked, Q-switched as well as the 79th harmonic mode-locked regimes are obtained using this approach, suggesting an easy and robust way for mass-production of single-walled carbon nanotube based saturable absorbers.
2. We found out that the nonlinear absorption modulation depth of the single-walled carbon nanotube films can be controlled by electrochemical gating. Under applied voltage below 2 V the saturable absorption of the carbon nanotubes gradually decreases and switches to photoinduced absorption. Furthermore, using this effect we fabricated fiber-coupled carbon nanotube based electrochemical cell with tunable saturable absorption on a side-polished fiber and utilized it into the polarization-maintaining fiber laser. By changing the gate voltage, we obtained reversible pulse switching between pure mode-locked regime with ultrashort pulses and high energy Q-witched pulses. This approach can be expanded on the other types of optical nonlinearities of single-walled carbon nanotubes, such as four-wave mixing, second and third harmonic generation and also opens up new prospects for
carbon nanotube based optical devices with tunable nonlinearity.
103
3. We identified the degradation mechanisms of the polyvinyl alcohol (PVA) composite and aerosol synthesized polymer-free single-walled carbon nanotube saturable absorbers by measuring the heating temperature of the nanotubes in accordance with the Raman spectrum G-peak position shift. We demonstrated that these nanotubes, transferred on the fiber ferrules, experience different degradation mechanisms, while the generated pulse parameters almost independent on the sample synthesis technique. Under the laser radiation, thermal decomposition of the polymer matrix took place in PVA composites, which lead to gradual degradation of optical properties. In contrast, the aerosol synthesized nanotubes did not change the optical properties under the illumination below the threshold peak power. Exceeding this threshold led to immediate deterioration of the sample. For the aerosol synthesized single-walled carbon nanotubes transferred to the side-polished fiber we estimated 3 W of the critical average power required for the damage. This technique could be used to optimize the parameters of the saturable absorber and to maximize the laser stability for the required pulse generation regime.
4. We demonstrated the first polarization-maintaining neodymium doped allfiber laser at 905 nm wavelength with rectangular shape dissipative soliton resonance mode-lock pulses having 1 nJ energy, 30 pm spectral and 80 -430 ps temporal widths. The laser worked in a nonlinear amplifying loop mirror (NALM) cavity configuration with large net-normal dispersion. To
suppress dominant spontaneous emission of Nd-fiber at 1064 nm, we utilized an active fiber - 920/1064 wavelength division multiplexer - active fiber sandwich-like sequence in the NALM loop. Excellent agreement with numerical simulation is achieved with proper selection of the net-dispersion and nonlinearity parameter of the cavity. The simulation is used to recover pulse width for the pulses out of autocorrelation window.
5. We described dispersion-managed soliton generation in a Nd-doped polarization maintaining all-fiber laser at 920 nm. A linear laser scheme was developed with chirped fiber Bragg grating as a semi-transparent output coupling mirror and SESAM as a second fully reflecting mirror. The chirped fiber Bragg grating also served as a fiber dispersion compensator and laser emission wavelength definer. Self-starting pulse generation regimes was observed with 10 ^ 317 pJ energy, 50 ^ 2 ps width, and 17 ^ 51 MHz repetition rate at the 0.24 ps2 ^ -0.03 ps2 net dispersion range. Besides, harmonic mode-locking up to the 12th order with 0.43 GHz repetition rate was achieved by selecting 0.01 ps2 net cavity dispersion and by adjustment of the pump power. Numerical simulation provided detailed information about pulse duration, spectral width and energy, which continuously change inside the laser resonator within a factor of two. Ultrafast all-fiber laser at 900 nm band could be an effective source for wide variety applications including two-photon microscopy enabling the imaging of living cells, frequency doubling and for excitation of single photon sources.
Список литературы диссертационного исследования кандидат наук Мкртчян Арам Арсенович, 2022 год
7. Bibliography
1. Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, "All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers," Appl. Phys. Lett. 102(13), 1-5 (2013).
2. Bo Fu, Yi Hua, Xiaosheng Xiao, Hongwei Zhu, Zhipei Sun, and Changxi Yang, "Broadband Graphene Saturable Absorber for Pulsed Fiber Lasers at 1, 1.5, and 2 ^m," IEEE J. Sel. Top. Quantum Electron. 20(5), 411-415 (2014).
3. J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, "Ultrafast thulium-doped fiber laser mode locked with black phosphorus," Opt. Lett. 40(16), 3885 (2015).
4. H. Yu, X. Zheng, K. Yin, X. Cheng, and T. Jiang, "Thulium/holmium-doped fiber laser passively mode locked by black phosphorus nanoplatelets-based saturable absorber," Appl. Opt. 54(34), 10290 (2015).
5. M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, "A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi_2Te_3 topological insulator," Opt. Express 22(7), 7865 (2014).
6. Y. Cui, F. Lu, and X. Liu, "MoS2-clad microfibre laser delivering conventional, dispersion-managed and dissipative solitons," Sci. Rep. 6(July), 1-8 (2016).
7. J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, "Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe_2-based saturable absorber," Opt. Express 24(10), 10575 (2016).
8. S. Yamashita, Y. Saito, and J. H. Choi, Carbon Nanotubes and Graphene for Photonic Applications (Woodhead Publishing Limited, 2013).
9. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, "Laser Mode Locking Using a Saturable Absorber Incorporating Carbon Nanotubes," J. Light. Technol. 22(1), 51-56 (2004).
10. Z. Yu, Y. Wang, X. Zhang, X. Dong, J. Tian, and Y. Song, "A 66 fs highly stable single wall carbon nanotube mode locked fiber laser," Laser Phys. 24(1), 015105 (2014).
11. D. Ma, Y. Cai, C. Zhou, W. Zong, L. Chen, and Z. Zhang, "37.4 fs pulse generation in an Erfiber laser at a 225 MHz repetition rate," Opt. Lett. 35(17), 2858 (2010).
12. S. P. Su, Y. H. Xu, and C. A. Wilkie, "Thermal degradation of polymer-carbon nanotube composites," Polym. Nanotub. Compos. Prep. Prop. Appl. 482-510 (2011).
13. S. Y. Ryu, K.-S. Kim, J. Kim, and S. Kim, "Degradation of optical properties of a filmtype single-wall carbon nanotubes saturable absorber (SWNT-SA) with an Er-doped all-fiber laser," Opt. Express 20(12), 12966 (2012).
14. S. F. Bartolucci, K. E. Supan, J. M. Warrender, C. E. Davis, L. La Beaud, K. Knowles, and J. S. Wiggins, "Laser-induced thermo-oxidative degradation of carbon nanotube/polypropylene nanocomposites," Compos. Sci. Technol. 105, 166-173 (2014).
15. A. Martinez and S. Yamashita, "Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes," Opt. Express 19(7), 6155 (2011).
16. A. Martinez and S. Yamashita, "10 GHz fundamental mode fiber laser using a graphene saturable absorber," Appl. Phys. Lett. 101(4), 041118 (2012).
17. A. Martinez, K. Fuse, and S. Yamashita, "Enhanced stability of nitrogen-sealed carbon nanotube saturable absorbers under high-intensity irradiation," Opt. Express 21(4), 4665-4670 (2013).
18. K. Kashiwagi, S. Yamashita, and S. Y. Set, "In-situ monitoring of optical deposition of carbon nanotubes onto fiber end," Opt. Express 17(7), 5711 (2009).
19. Y.-W. Song, S. Yamashita, E. Einarsson, and S. Maruyama, "All-fiber pulsed lasers passively mode locked by transferable vertically aligned carbon nanotube film," Opt. Lett. 32(11), 1399 (2007).
20. Y. W. Song, S. Yamashita, and S. Maruyama, "Single-walled carbon nanotubes for high-energy optical pulse formation," Appl. Phys. Lett. 92(2), 1-4 (2008).
21. A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivisto, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, "Multifunctional free-standing single-walled carbon nanotube films," ACS Nano 5(4), 3214-3221 (2011).
22. S. Kivisto, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Harkonen, and O. G. Okhotnikov, "Carbon nanotube films for ultrafast broadband technology," Opt. Express 17(4), 2358 (2009).
23. S. Kobtsev, A. Ivanenko, Y. G. Gladush, B. Nyushkov, A. Kokhanovskiy, A. S. Anisimov, and A. G. Nasibulin, "Ultrafast all-fibre laser mode-locked by polymer-free carbon nanotube film," Opt. Express 24(25), 28768 (2016).
24. A. Khegai, M. Melkumov, S. Firstov, K. Riumkin, Y. Gladush, S. Alyshev, A. Lobanov, V. Khopin, F. Afanasiev, A. G. Nasibulin, and E. Dianov, "Bismuth-doped fiber laser at 132 ^m mode-locked by single-walled carbon nanotubes," Opt. Express 26(18), 23911 (2018).
25. H. Jeong, S. Y. Choi, F. Rotermund, Y.-H. Cha, D.-Y. Jeong, and D.-I. Yeom, "All-fiber mode-locked laser oscillator with pulse energy of 34 nJ using a single-walled carbon nanotube saturable absorber," Opt. Express 22(19), 22667 (2014).
26. Y.-W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, "Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers," Opt. Lett. 32(2), 148 (2007).
27. H. H. Liu, K. K. Chow, S. Yamashita, and S. Y. Set, "Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation," Opt. Laser Technol. 45(1), 713-716 (2013).
28. J. Ko, H. Jeong, S. Y. Choi, F. Rotermund, D.-I. Yeom, and B. Y. Kim, "Single-walled carbon nanotubes on side polished fiber as a universal saturable absorber for various laser output states," Curr. Appl. Phys. 17(1), 37-40 (2017).
29. S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, "All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber," Laser Phys. Lett. 11(1), 015101 (2014).
30. J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, "Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3topological insulator," Laser Phys. 24(10), (2014).
31. C. S. Jun, J. H. Im, S. H. Yoo, S. Y. Choi, F. Rotermund, D.-I. Yeom, and B. Y. Kim, "Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes," Opt. Express 19(20), 19775 (2011).
32. K. Mustonen, P. Laiho, A. Kaskela, T. Susi, A. G. Nasibulin, and E. I. Kauppinen, "Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors," Appl. Phys. Lett. 107(14), 143113 (2015).
33. A. G. Nasibulin, D. P. Brown, P. Queipo, D. Gonzalez, H. Jiang, and E. I. Kauppinen, "An essential role of CO2 and H2O during single-walled CNT synthesis from carbon monoxide," Chem. Phys. Lett. 417(1-3), 179-184 (2006).
34. J. H. Im, S. Y. Choi, F. Rotermund, and D.-I. Yeom, "All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber," Opt. Express 18(21), 22141 (2010).
35. H. Jeong, S. Y. Choi, F. Rotermund, and D.-I. Yeom, "Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber," Opt. Express 21(22), 27011 (2013).
36. J. Boguslawski, G. Sobon, R. Zybala, K. Mars, A. Mikula, K. M. Abramski, and J. Sotor, "Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb_2Te_3 saturable absorber," Opt. Express 23(22), 29014 (2015).
37. K.-H. Lin, J.-J. Kang, H.-H. Wu, C.-K. Lee, and G.-R. Lin, "Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber.," Opt. Express 17(6), 4806-4814 (2009).
38. C. S. Jun, S. Y. Choi, F. Rotermund, B. Y. Kim, and D.-I. Yeom, "Toward higher-order passive harmonic mode-locking of a soliton fiber laser," Opt. Lett. 37(11), 1862 (2012).
39. D. S. Chernykh, A. A. Krylov, A. E. Levchenko, V. V. Grebenyukov, N. R. Arutunyan, A. S. Pozharov, E. D. Obraztsova, and E. M. Dianov, "Hybrid mode-locked erbium-doped all-fiber soliton laser with a distributed polarizer," Appl. Opt. 53(29), 6654 (2014).
40. U. N. Maiti, W. J. Lee, J. M. Lee, Y. Oh, J. Y. Kim, J. E. Kim, J. Shim, T. H. Han, and S. O. Kim, "25th anniversary article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices," Adv. Mater. 26(1), 40-67 (2014).
41. L. Duclaux, "Review of the doping of carbon nanotubes (multiwalled and single-walled)," Carbon N. Y. 40(10), 1751-1764 (2002).
42. H. Kataura, Y. Achiba, and R. Jacquemin, "Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy," Phys. Rev. B - Condens. Matter Mater. Phys. 60(19), 13339-13342 (1999).
43. S. Kazaoui, N. Minami, N. Matsuda, H. Kataura, and Y. Achiba, "Electrochemical tuning of electronic states in single-wall carbon nanotubes studied by in situ absorption spectroscopy and ac resistance," Appl. Phys. Lett. 78(22), 3433-3435 (2001).
44. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, "Transparent, conductive carbon nanotube films," Science (80-. ). 305(5688), 1273-1276 (2004).
45. S. Z. Bisri, S. Shimizu, M. Nakano, and Y. Iwasa, "Endeavor of Iontronics: From Fundamentals to Applications of Ion-Controlled Electronics," Adv. Mater. 29(25), (2017).
46. J. S. Park, Y. Hirana, S. Mouri, Y. Miyauchi, N. Nakashima, and K. Matsuda, "Observation of negative and positive trions in the electrochemically carrier-doped single-walled carbon nanotubes," J. Am. Chem. Soc. 134(35), 14461-14466 (2012).
47. K. H. Eckstein, H. Hartleb, M. M. Achsnich, F. Schöppler, and T. Hertel, "Localized Charges Control Exciton Energetics and Energy Dissipation in Doped Carbon Nanotubes," ACS Nano 11(10), 10401-10408 (2017).
48. C. Möhl, A. Graf, F. J. Berger, J. Lüttgens, Y. Zakharko, V. Lumsargis, M. C. Gather, and J. Zaumseil, "Trion-Polariton Formation in Single-Walled Carbon Nanotube Microcavities," ACS Photonics 5(6), 2074-2080 (2018).
49. M. G. Burdanova, A. P. Tsapenko, D. A. Satco, R. Kashtiban, C. D. W. Mosley, M. Monti, M. Staniforth, J. Sloan, Y. G. Gladush, A. G. Nasibulin, and J. Lloyd-Hughes, "Giant Negative Terahertz Photoconductivity in Controllably Doped Carbon Nanotube Networks," ACS Photonics 6(4), 1058-1066 (2019).
50. T. Igarashi, H. Kawai, K. Yanagi, N. T. Cuong, S. Okada, and T. Pichler, "Tuning localized transverse surface plasmon resonance in electricity-selected single-wall carbon nanotubes by electrochemical doping," Phys. Rev. Lett. 114(17), (2015).
51. K. Yanagi, R. Okada, Y. Ichinose, Y. Yomogida, F. Katsutani, W. Gao, and J. Kono, "Intersubband plasmons in the quantum limit in gated and aligned carbon nanotubes," Nat. Commun. 9(1), 1-7 (2018).
52. K. Yanagi, R. Moriya, Y. Yomogida, T. Takenobu, Y. Naitoh, T. Ishida, H. Kataura, K. Matsuda, and Y. Maniwa, "Electrochromic carbon electrodes: Controllable visible color changes in metallic single-wall carbon nanotubes," Adv. Mater. 23(25), 2811-2814 (2011).
53. F. Wang, M. E. Itkis, E. Bekyarova, and R. C. Haddon, "Charge-compensated, semiconducting single-walled carbon nanotube thin film as an electrically configurable optical medium," Nat. Photonics 7(6), 459-465 (2013).
54. F. J. Berger, T. M. Higgins, M. Rother, A. Graf, Y. Zakharko, S. Allard, M. Matthiesen, J. M. Gotthardt, U. Scherf, and J. Zaumseil, "From Broadband to Electrochromic Notch Filters with Printed Monochiral Carbon Nanotubes," ACS Appl. Mater. Interfaces 10(13), 11135-11142 (2018).
55. M. L. Moser, G. Li, M. Chen, E. Bekyarova, M. E. Itkis, and R. C. Haddon, "Fast Electrochromic Device Based on Single-Walled Carbon Nanotube Thin Films," Nano Lett. 16(9), 5386-5393 (2016).
56. S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, "Optical limiting in single-walled carbon nanotube suspensions," Chem. Phys. Lett. 317(3-5), 510-514 (2000).
57. E. M. Ni Mhuircheartaigh, S. Giordani, and W. J. Blau, "Linear and Nonlinear Optical Characterization of a Tetraphenylporphyrin-Carbon Nanotube Composite System," J. Phys. Chem. B 110(46), 23136-23141 (2006).
58. J. Wang, Y. Chen, and W. J. Blau, "Carbon nanotubes and nanotube composites for nonlinear optical devices," J. Mater. Chem. 19(40), 7425-7443 (2009).
59. L. De Dominicis, S. Botti, L. S. Asilyan, R. Ciardi, R. Fantoni, M. L. Terranova, A. Fiori, S. Orlanducci, and R. Appolloni, "Second- and third-harmonic generation in single-walled carbon nanotubes at nanosecond time scale," Appl. Phys. Lett. 85(8), 1418-1420 (2004).
60. M. J. Huttunen, O. Herranen, A. Johansson, H. Jiang, P. R. Mudimela, P. Myllyperkio, G. Bautista, A. G. Nasibulin, E. I. Kauppinen, M. Ahlskog, M. Kauranen, and M. Pettersson, "Measurement of optical second-harmonic generation from an individual single-walled carbon nanotube," New J. Phys. 15, (2013).
61. K. K. Chow and S. Yamashita, "Four-wave mixing in a single-walled carbon-nanotube-deposited D-shaped fiber and its application in tunable wavelength conversion.," Opt. Express 17(18), 15608-15613 (2009).
62. H. Kim, H. Kim, T. Sheps, T. Sheps, P. G. Collins, P. G. Collins, E. O. Potma, and E. O. Potma, "Nonlinear optical imaging of individual carbon nanotubes with four-wave-mixing microscopy.," Nano Lett. 9(8), 2991 (2009).
63. K. F. Lee, Y. Tian, H. Yang, K. Mustonen, A. Martinez, Q. Dai, E. I. Kauppinen, J. Malowicki, P. Kumar, and Z. Sun, "Photon-Pair Generation with a 100 nm Thick Carbon Nanotube Film," Adv. Mater. 29(24), (2017).
64. P. Myllyperkio, O. Herranen, J. Rintala, H. Jiang, P. R. Mudimela, Z. Zhu, A. G. Nasibulin, A. Johansson, E. I. Kauppinen, M. Ahlskog, and M. Pettersson, "Femtosecond four-wave-mixing
spectroscopy of suspended individual semiconducting single-walled carbon nanotubes," ACS Nano 4(11), 6780-6786 (2010).
65. A. Maeda, S. Matsumoto, H. Kishida, T. Takenobu, Y. Iwasa, M. Shiraishi, M. Ata, and H. Okamoto, "Large optical nonlinearity of semiconducting single-walled carbon nanotubes under resonant excitations," Phys. Rev. Lett. 94(4), (2005).
66. S. Xu, F. Wang, C. Zhu, Y. Meng, Y. Liu, W. Liu, J. Tang, K. Liu, G. Hu, R. C. T. Howe, T. Hasan, R. Zhang, Y. Shi, and Y. Xu, "Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: A broadband degenerate investigation," Nanoscale 8(17), 9304-9309 (2016).
67. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, "Nanotube - Polymer composites for ultrafast photonics," Adv. Mater. 21(38-39), 3874-3899 (2009).
68. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, "Carbon nanotube films for ultrafast broadband technology," Opt. Express 17(4), 2358 (2009).
69. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, "Laser Mode Locking Using a Saturable Absorber Incorporating Carbon Nanotubes," J. Light. Technol. 22(1), 51-56 (2004).
70. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, "Wideband-tuneable, nanotube mode-locked, fibre laser," Nat. Nanotechnol. 3(12), 738-742 (2008).
71. M. Chernysheva, A. Rozhin, Y. Fedotov, C. Mou, R. Arif, S. M. Kobtsev, E. M. Dianov, and S. K. Turitsyn, "Carbon nanotubes for ultrafast fibre lasers," Nanophotonics 6(1), 1-30 (2017).
72. J. H. Im, S. Y. Choi, F. Rotermund, and D.-I. Yeom, "All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber," Opt. Express 18(21), 22141 (2010).
73. G. Sobon, A. Duzynska, M. Swiniarski, J. Judek, J. Sotor, and M. Zdrojek, "CNT-based saturable absorbers with scalable modulation depth for Thulium-doped fiber lasers operating at 1.9 pm," Sci. Rep. 7, (2017).
74. D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, "Graphene actively Q-switched lasers," 2D Mater. 4(2), (2017).
75. J. Boguslawski, Y. Wang, H. Xue, X. Yang, D. Mao, X. Gan, Z. Ren, J. Zhao, Q. Dai, G. Sobon, J. Sotor, and Z. Sun, "Graphene Actively Mode-Locked Lasers," Adv. Funct. Mater. 28(28), (2018).
76. E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J. K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. Il Yeom, "Active control of all-fibre graphene devices with electrical gating," Nat. Commun. 6, (2015).
77. K. Alexander, N. A. Savostianova, S. A. Mikhailov, B. Kuyken, and D. Van Thourhout, "Electrically Tunable Optical Nonlinearities in Graphene-Covered SiN Waveguides Characterized by Four-Wave Mixing," ACS Photonics 4(12), 3039-3044 (2017).
78. T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y. R. Shen, W. T. Liu, and S. Wu, "Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene," Nat. Photonics 12(7), 430-436 (2018).
79. G. Soavi, G. Wang, H. Rostami, D. G. Purdie, D. De Fazio, T. Ma, B. Luo, J. Wang, A. K. Ott, D. Yoon, S. A. Bourelle, J. E. Muench, I. Goykhman, S. Dal Conte, M. Celebrano, A. Tomadin, M. Polini, G. Cerullo, and A. C. Ferrari, "Broadband, electrically tunable third-harmonic generation in graphene," Nat. Nanotechnol. 13(7), 583-588 (2018).
80. J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, "Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique," Phys. Rev. E -Stat. Nonlinear, Soft Matter Phys. 74(4), 1-7 (2006).
81. M. L. Moser, G. Li, M. Chen, E. Bekyarova, M. E. Itkis, and R. C. Haddon, "Fast Electrochromic Device Based on Single-Walled Carbon Nanotube Thin Films," Nano Lett. 16(9), 5386-5393 (2016).
82. O. J. Korovyanko, C. X. Sheng, Z. V. Vardeny, A. B. Dalton, and R. H. Baughman, "Ultrafast Spectroscopy of Excitons in Single-Walled Carbon Nanotubes," Phys. Rev. Lett. 92(1), 4 (2004).
83. T. Nishihara, Y. Yamada, and Y. Kanemitsu, "Dynamics of exciton-hole recombination in hole-doped single-walled carbon nanotubes," Phys. Rev. B - Condens. Matter Mater. Phys. 86(7), 1-5 (2012).
84. H. A. Haus, "Parameter Ranges for CW Passive Mode Locking," IEEE J. Quantum Electron. 12(3), 169-176 (1976).
85. S. Namiki, E. P. Ippen, H. a. Haus, and C. X. Yu, "Energy rate equations for mode-locked lasers," J. Opt. Soc. Am. B 14(8), 2099 (1997).
86. C. Ho, "Q -switching stability limits of continuous-wave passive mode locking," 16(1), 4656 (1999).
87. E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J. K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. Il Yeom, "Active control of all-fibre graphene devices with electrical gating," Nat. Commun. 6, 1-6 (2015).
88. J. Gene, N. H. Park, H. Jeong, S. Y. Choi, F. Rotermund, D.-I. Yeom, and B. Y. Kim,
"Optically controlled in-line graphene saturable absorber for the manipulation of pulsed fiber laser
operation," Opt. Express 24(19), 21301 (2016).
118
89. K.-H. Lin, J.-J. Kang, H.-H. Wu, C.-K. Lee, and G.-R. Lin, "Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber," Opt. Express 17(6), 4806 (2009).
90. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B Lasers Opt. 65(2), 277-294 (1997).
91. H. H. Liu and K. K. Chow, "Enhanced stability of dispersion-managed mode-locked fiber lasers with near-zero net cavity dispersion by high-contrast saturable absorbers," Opt. Lett. 39(1), 150 (2014).
92. J. Jeon, J. Lee, and J. H. Lee, "Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking," J. Opt. Soc. Am. B 32(1), 31 (2015).
93. G. Sobon, A. Duzynska, M. Swiniarski, J. Judek, J. Sotor, and M. Zdrojek, "CNT-based saturable absorbers with scalable modulation depth for Thulium-doped fiber lasers operating at 1.9 ^m," Sci. Rep. 7(1), 45491 (2017).
94. T. R. Schibli, E. R. Thoen, F. X. Kartner, and E. P. Ippen, "Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption," Appl. Phys. B 2000 701 70(1), S41-S49 (2000).
95. A. A. Mkrtchyan, Y. G. Gladush, D. Galiakhmetova, V. Yakovlev, V. T. Ahtyamov, and A. G. Nasibulin, "Dry-transfer technique for polymer-free single-walled carbon nanotube saturable absorber on a side polished fiber," Opt. Mater. Express 9(4), 1551 (2019).
96. S. Yamashita, "Nonlinear optics in carbon nanotube, graphene, and related 2D materials," APL Photonics 4(3), (2019).
97. S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, and K. Kikuchi, "Mode-locked Fiber Lasers based on a Saturable Absorber
Incorporating Carbon Nanotubes," in Optical Fiber Communication Conference (Optical Society of America, 2003), p. PD44.
98. M. Chernysheva, A. Rozhin, Y. Fedotov, C. Mou, R. Arif, S. M. Kobtsev, E. M. Dianov, and S. K. Turitsyn, "Carbon nanotubes for ultrafast fibre lasers," Nanophotonics 6(1), 1-30 (2017).
99. L. Huang, Y. Zhang, and X. Liu, "Dynamics of carbon nanotube-based mode-locking fiber lasers," Nanophotonics 9(9), 2731-2761 (2020).
100. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. Ferrari, "Generation of 63-nJ Pulses from a Fiber Oscillator Mode-Locked by Nanotubes," Opt. InfoBase Conf. Pap. 1-2 (2010).
101. A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, "Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker," Appl. Phys. Lett. 88(5), 1-3 (2006).
102. A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, P. G. Kryukov, A. V. Konyashchenko, and E. M. Dianov, "177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes," Appl. Phys. Lett. 92(17), (2008).
103. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, "Nanotube-Polymer Composites for Ultrafast Photonics," Adv. Mater. 21(38-39), 3874-3899 (2009).
104. A. Martinez and S. Yamashita, "Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes," Opt. Express 19(7), 6155 (2011).
105. S. Kobtsev, A. Ivanenko, Y. G. Gladush, B. Nyushkov, A. Kokhanovskiy, A. S. Anisimov, and A. G. Nasibulin, "Ultrafast all-fibre laser mode-locked by polymer-free carbon nanotube film," Opt. Express 24(25), 28768 (2016).
106. E. G. Gamaly and A. V. Rode, "Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations," Prog. Quantum Electron. 37(5), 215-323 (2013).
107. H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, "Theory for the ultrafast ablation of graphite films," Phys. Rev. Lett. 87(1), (2001).
108. J. Chae, X. Ho, J. A. Rogers, and K. Jain, "Patterning of single walled carbon nanotubes using a low-fluence excimer laser photoablation process," Appl. Phys. Lett. 92(17), (2008).
109. J. Chae, H. Jin, and K. Jain, "Large-area, high-speed patterning of carbon nanotubes using material-assisted excimer laser photoablation," Mater. Lett. 63(21), 1823-1825 (2009).
110. P. A. Danilov, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, N. N. Mel'nik, A. A. Rudenko, V. I. Yurovskikh, D. V. Zayarny, V. N. Lednev, E. D. Obraztsova, S. M. Pershin, and A. F. Bunkin, "Femtosecond laser ablation of single-wall carbon nanotube-based material," Laser Phys. Lett. 11(10), (2014).
111. C. Li, D. Wang, T. Liang, X. Wang, J. Wu, X. Hu, and J. Liang, "Oxidation of multiwalled carbon nanotubes by air: Benefits for electric double layer capacitors," Powder Technol. 142(2-3), 175-179 (2004).
112. S. P. Su, Y. H. Xu, and C. A. Wilkie, "Thermal degradation of polymer-carbon nanotube composites," Polym. Nanotub. Compos. Prep. Prop. Appl. 482-510 (2011).
113. M. Chernysheva, M. Al Araimi, G. A. Rance, N. J. Weston, B. Shi, S. Saied, J. L. Sullivan, N. Marsh, and A. Rozhin, "Revealing the nature of morphological changes in carbon nanotube-polymer saturable absorber under high-power laser irradiation," Sci. Rep. 8(1), (2018).
114. P. V. Huong, R. Cavagnat, P. M. Ajayan, and O. Stephan, "Temperature-dependent vibrational spectra of carbon nanotubes," Phys. Rev. B 51(15), 10048-10051 (1995).
115. M. He, E. Rikkinen, Z. Zhu, Y. Tian, A. S. Anisimov, H. Jiang, A. G. Nasibulin, E. I. Kauppinen, M. Niemelä, and A. O. I. Krause, "Temperature Dependent Raman Spectra of Carbon Nanobuds," J. Phys. Chem. C 114(32), 13540-13545 (2010).
116. M. H. Rümmeli, C. Kramberger, M. Löffler, O. Jost, M. Bystrzejewski, A. Grüneis, T. Gemming, W. Pompe, B. Büchner, and T. Pichler, "Catalyst volume to surface area constraints for nucleating carbon nanotubes," J. Phys. Chem. B 111(28), 8234-8241 (2007).
117. E. M. Khabushev, D. V. Krasnikov, O. T. Zaremba, A. P. Tsapenko, A. E. Goldt, and A. G. Nasibulin, "Machine Learning for Tailoring Optoelectronic Properties of Single-Walled Carbon Nanotube Films," J. Phys. Chem. Lett. 6962-6966 (2019).
118. A. Kaskela, A. G. Nasibulin, M. Y. Timmermans, B. Aitchison, A. Papadimitratos, Y. Tian, Z. Zhu, H. Jiang, D. P. Brown, A. Zakhidov, and E. I. Kauppinen, "Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique," Nano Lett. 10(11), 4349-4355 (2010).
119. K. Ramadurai, C. L. Cromer, A. C. Dillon, R. L. Mahajan, and J. H. Lehman, "Raman and electron microscopy analysis of carbon nanotubes exposed to high power laser irradiance," J. Appl. Phys. 105(9), (2009).
120. B. G. Bale, O. G. Okhitnikov, and S. K. Turitsyn, "Modeling and Technologies of Ultrafast Fiber Lasers," Fiber Lasers 135-175 (2012).
121. Y. Gladush, A. A. Mkrtchyan, D. S. Kopylova, A. Ivanenko, B. Nyushkov, S. Kobtsev, A. Kokhanovskiy, A. Khegai, M. Melkumov, M. Burdanova, M. Staniforth, J. Lloyd-Hughes, and A. G. Nasibulin, "Ionic Liquid Gated Carbon Nanotube Saturable Absorber for Switchable Pulse Generation," Nano Lett. 19(9), 5836-5843 (2019).
122. Y. Tsuchiya and K. Sumi, "Thermal decomposition products of poly(vinyl alcohol)," J. Polym. Sci. Part A-1 Polym. Chem. 7(11), 3151-3158 (1969).
123. A. Y. Shaulov, S. M. Lomakin, T. S. Zarkhina, A. D. Rakhimkulov, N. G. Shilkina, Y. B. Muravlev, and A. Al Berlin, "Carbonization of poly(vinyl alcohol) in blends with boron polyoxide," Dokl. Phys. Chem. 403(4-6), 154-158 (2005).
124. B. J. Holland and J. N. Hay, "The thermal degradation of poly(vinyl alcohol)," Polymer (Guildf). 42(16), 6775-6783 (2001).
125. H. Yang, S. Xu, L. Jiang, and Y. Dan, "Thermal decomposition behavior of poly (vinyl alcohol) with different hydroxyl content," J. Macromol. Sci. Part B Phys. 51(3), 464-480 (2012).
126. P. Budrugeac, "Kinetics of the complex process of thermo-oxidative degradation of poly(vinyl alcohol)," J. Therm. Anal. Calorim. 92(1), 291-296 (2008).
127. V. Y. Iakovlev, Y. A. Sklyueva, F. S. Fedorov, D. P. Rupasov, V. A. Kondrashov, A. K. Grebenko, K. G. Mikheev, F. Z. Gilmutdinov, A. S. Anisimov, G. M. Mikheev, and A. G. Nasibulin, "Improvement of optoelectronic properties of single-walled carbon nanotube films by laser treatment," Diam. Relat. Mater. 88, 144-150 (2018).
128. Y. S. Park, Y. C. Choi, K. S. Kim, D. C. Chung, D. J. Bae, K. H. An, S. C. Lim, X. Y. Zhu, and Y. H. Lee, "High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing," Carbon N. Y. 39(5), 655-661 (2001).
129. Z. Shi, Y. Lian, F. H. Liao, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, H. Li, K. T. Yue, and S. L. Zhang, "Large scale synthesis of single-wall carbon nanotubes by arc-discharge method," J. Phys. Chem. Solids 61(7), 1031-1036 (2000).
130. A. M. Rao, P. C. Eklund, S. Bandow, A. Thess, and R. E. Smalley, "Evidence for charge transfer in doped carbon nanotube bundles from raman scattering," Nature 388(6639), 257-259 (1997).
131. X. Duan, H. Son, B. Gao, J. Zhang, T. Wu, G. G. Samsonidze, M. S. Dresselhaus, Z. Liu, and J. Kong, "Resonant Raman spectroscopy of individual strained single-wall carbon nanotubes," Nano Lett. 7(7), 2116-2121 (2007).
132. S. Y. Ryu, K.-S. Kim, J. Kim, and S. Kim, "Degradation of optical properties of a filmtype single-wall carbon nanotubes saturable absorber (SWNT-SA) with an Er-doped all-fiber laser," Opt. Express 20(12), 12966 (2012).
133. A. E. Islam, J. A. Rogers, and M. A. Alam, "Recent Progress in Obtaining Semiconducting Single-Walled Carbon Nanotubes for Transistor Applications," Adv. Mater. 27(48), 7908-7937 (2015).
134. M. P. Gupta, A. Behnam, F. Lian, D. Estrada, E. Pop, and S. Kumar, "High field breakdown characteristics of carbon nanotube thin film transistors," Nanotechnology 24(40), (2013).
135. Y.-W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, "Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers," Opt. Lett. 32(2), 148 (2007).
136. "Dry-transfer technique for polymer-free single-walled carbon nanotube saturable absorber on a side polished fiber," https://opg.optica.org/ome/fulltext.cfm?uri=ome-9-4-1551&id=406963.
137. K. Kieu and M. Mansuripur, "Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite," Opt. Lett. 32(15), 2242 (2007).
138. A. Martinez, M. Al Araimi, A. Dmitriev, P. Lutsyk, S. Li, C. Mou, A. Rozhin, M. Sumetsky, and S. Turitsyn, "Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites," APL Photonics 2(12), (2017).
139. C. Mou, A. G. Rozhin, R. Arif, K. Zhou, and S. Turitsyn, "Polarization insensitive in-fiber
mode-locker based on carbon nanotube with N-methyl-2-pryrrolidone solvent filled fiber
microchamber," Appl. Phys. Lett. 100(10), (2012).
124
140. A. Roch, T. Roch, E. R. Talens, B. Kaiser, A. Lasagni, E. Beyer, O. Jost, G. Cuniberti, and A. Leson, " Selective laser treatment and laser patterning of metallic and semiconducting nanotubes in single walled carbon nanotube films," Diam. Relat. Mater. 45, 70-75 (2014).
141. F. Huang, K. T. Yue, P. Tan, S. L. Zhang, Z. Shi, X. Zhou, and Z. Gu, "Temperature dependence of the Raman spectra of carbon nanotubes," J. Appl. Phys. 84(7), 4022-4024 (1998).
142. M. He, E. Rikkinen, Z. Zhu, Y. Tian, A. S. Anisimov, H. Jiang, A. G. Nasibulin, E. I. Kauppinen, M. Niemelä, and A. O. I. Krause, "Temperature dependent Raman spectra of carbon nanobuds," J. Phys. Chem. C 114(32), 13540-13545 (2010).
143. G. Liu, K. Kieu, F. W. Wise, and Z. Chen, "Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe," J. Biophotonics 4(1-2), 34-39 (2011).
144. F. L. I. Ao and D. Marc, Introduction to Nonlinear Laser Spectroscopy (Elsevier, 1988).
145. A. Fix, G. Ehret, J. Löhring, D. Hoffmann, and M. Alpers, "Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935 nm," Appl. Phys. B 102(4), 905-915 (2011).
146. C. Bartolacci, M. Laroche, H. Gilles, S. Girard, T. Robin, and B. Cadier, "Generation of picosecond blue light pulses at 464 nm by frequency doubling an Nd-doped fiber based Master Oscillator Power Amplifier," Opt. Express 18(5), 5100 (2010).
147. Y. Gladush, A. A. Mkrtchyan, D. S. Kopylova, A. Ivanenko, B. Nyushkov, S. Kobtsev, A. Kokhanovskiy, A. Khegai, M. Melkumov, M. Burdanova, M. Staniforth, J. Lloyd-Hughes, and A. G. Nasibulin, "Ionic Liquid Gated Carbon Nanotube Saturable Absorber for Switchable Pulse Generation," Nano Lett. 19(9), (2019).
148. A. A. Mkrtchyan, Y. G. Gladush, D. Galiakhmetova, V. Yakovlev, V. T. Ahtyamov, and
A. G. Nasibulin, "Dry-transfer technique for polymer-free single-walled carbon nanotube saturable
absorber on a side polished fiber," Opt. Mater. Express 9(4), 1551 (2019).
125
149. M. N. Zervas, "High power ytterbium-doped fiber lasers - Fundamentals and applications," Int. J. Mod. Phys. B 28(12), 1-35 (2014).
150. S. S. Aleshkina, A. Fedotov, D. Korobko, D. Stoliarov, D. S. Lipatov, V. V. Velmiskin, V. L. Temyanko, L. V. Kotov, R. Gumenyuk, and M. E. Likhachev, "All-fiber polarization-maintaining mode-locked laser operated at 980 nm," Opt. Lett. 45(8), 2275 (2020).
151. A. Khegai, M. Melkumov, S. Firstov, K. Riumkin, Y. Gladush, S. Alyshev, A. Lobanov, V. Khopin, F. Afanasiev, A. G. Nasibulin, and E. Dianov, "Bismuth-doped fiber laser at 132 ^m mode-locked by single-walled carbon nanotubes," Opt. Express 26(18), 23911 (2018).
152. M. F. Mohd Rusdi, A. A. Latiff, M. C. Paul, S. Das, A. Dhar, H. Ahmad, and S. W. Harun, "Titanium Dioxide (TiO 2 ) film as a new saturable absorber for generating mode-locked ThuliumHolmium doped all-fiber laser," Opt. Laser Technol. 89(September 2016), 16-20 (2017).
153. S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. M. Khegai, A. V. Kharakhordin, M. A. Melkumov, and E. M. Dianov, "Laser-Active Fibers Doped With Bismuth for a Wavelength Region of 1.6-1.8 ^m," IEEE J. Sel. Top. Quantum Electron. 24(5), 1-15 (2018).
154. S. Kobtsev, A. Ivanenko, A. Kokhanovskiy, and M. Gervaziev, "Raman-converted high-energy double-scale pulses at 1270 nm in P 2 O 5 -doped silica fiber," Opt. Express 26(23), 29867 (2018).
155. W. Denk, J. H. Strickler, and W. W. Webb, "Two-Photon Laser Scanning Fluorescence Microscopy," Science (80-. ). 248(4951), 73-76 (1990).
156. G. J. BRAKENHOFF, J. SQUIER, T. NORRIS, A. C. BLITON, M. H. WADE, and B. ATHEY, "Real-time two-photon confocal microscopy using a femtosecond, amplified Ti: sapphire system," J. Microsc. 181(3), 253-259 (1996).
157. Z. Guo, Q. Hao, K. Yang, and H. Zeng, "A two-stage optical parametric amplifier for
femtosecond fiber laser generation at 920 nm," Opt. Commun. 425(March), 166-171 (2018).
126
158. P. Wang, X. Xu, Z. Guo, X. Jin, and G. Shi, "926 nm Yb-doped fiber femtosecond laser system for two-photon microscopy," Appl. Phys. Express 12(3), 032008 (2019).
159. J. R. Unruh, E. S. Price, R. G. Molla, L. Stehno-Bittel, C. K. Johnson, and R. Hui, "Two-photon microscopy with wavelength switchable fiber laser excitation," Opt. Express 14(21), 9825 (2006).
160. W. Liu, C. Li, Z. Zhang, F. X. Kartner, and G. Chang, "Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach," Opt. Express 24(14), 15328 (2016).
161. C.-H. Hage, J.-T. Gomes, S. M. Bardet, G. Granger, M. Jossent, L. Lavoute, D. Gaponov, and S. Fevrier, "Two-photon microscopy with a frequency-doubled fully fusion-spliced fiber laser at 1840 nm," Opt. Lett. 43(20), 5098 (2018).
162. H. Chen, Z. Haider, J. Lim, S. Xu, Z. Yang, F. X. Kartner, and G. Chang, "3 GHz, Yb-fiber laser-based, few-cycle ultrafast source at the Ti:sapphire laser wavelength," Opt. Lett. 38(22), 4927 (2013).
163. X. Gao, W. Zong, B. Chen, J. Zhang, C. Li, Y. Liu, A. Wang, Y. Song, and Z. Zhang, "Core-pumped femtosecond Ndfiber laser at 910 and 935 nm," Opt. Lett. 39(15), 4404 (2014).
164. R. Hofer, M. Hofer, G. A. Reider, M. Cernusca, and M. H. Ober, "Modelocking of a Nd-fiber laser at 920 nm," Opt. Commun. 140(4-6), 242-244 (1997).
165. M. Li, W. Yang, Z. Zhang, and A. Wang, "Mode-locked femtosecond 910 nm Nd:fibre laser with phase biased non-linear loop mirror," Electron. Lett. 53(22), 1479-1481 (2017).
166. B. Chen, T. Jiang, W. Zong, L. Chen, Z. Zhang, and A. Wang, "910nm femtosecond Nd-doped fiber laser for in vivo two-photon microscopic imaging," Opt. Express 24(15), 16544 (2016).
167. B. Chen, H. Rong, X. Huang, R. Wu, D. Wu, Y. Li, L. Feng, Z. Zhang, L. Chen, and A. Wang, "Robust hollow-fiber-pigtailed 930 nm femtosecond Nd:fiber laser for volumetric two-photon imaging," Opt. Express 25(19), 22704 (2017).
168. M. Rusu, S. Karirinne, M. Guina, A. B. Grudinin, and O. G. Okhotnikov, "Femtosecond Neodymium-Doped Fiber Laser Operating in the 894-909-nm Spectral Range," IEEE Photonics Technol. Lett. 16(4), 1029-1031 (2004).
169. K. Qian, H. Wang, M. Laroche, and A. Hideur, "Mode-locked Nd-doped fiber laser at 930 nm," Opt. Lett. 39(2), 267 (2014).
170. O. Shtyrina, M. Fedoruk, S. Turitsyn, R. Herda, and O. Okhotnikov, "Evolution and stability of pulse regimes in SESAM-mode-locked femtosecond fiber lasers," in CLEO/Europe -EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (IEEE, 2009), 26(2), pp. 1-1.
171. X. Wei, C. Kong, S. Sy, H. Ko, K. K. Tsia, and K. K. Y. Wong, "Ultrafast time-stretch imaging at 932 nm through a new highly-dispersive fiber," Biomed. Opt. Express 7(12), 5208 (2016).
172. R. Becheker, M. Tang, M. Touil, T. Robin, B. Cadier, M. Laroche, T. Godin, and A. Hideur, "Dissipative soliton resonance in a mode-locked Nd-fiber laser operating at 927 nm," Opt. Lett. 44(22), 5497 (2019).
173. Q. Fang, Y. Xu, S. Fu, and W. Shi, "Single-frequency distributed Bragg reflector Nd doped silica fiber laser at 930 nm," Opt. Lett. 41(8), 1829 (2016).
174. D. B. S. Soh, Seongwoo Yoo, J. Nilsson, J. K. Sahu, Kyunghwan Oh, Seungin Baek, Yoonchan Jeong, C. Codemard, P. Dupriez, Jaesun Kim, and V. Philippov, "Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-/spl mu/m wavelength range," IEEE J. Quantum Electron. 40(9), 1275-1282 (2004).
175. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, "Dissipative soliton resonances," Phys. Rev. A 78(2), 023830 (2008).
176. G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2019).
177. P. Grelu and N. Akhmediev, "Dissipative solitons for mode-locked lasers," Nat. Photonics 6(2), 84-92 (2012).
178. Q. Gong, H. Zhang, D. Deng, and J. Zu, "Dissipative Soliton Resonance in an All-Polarization Maintaining Fiber Laser With a Nonlinear Amplifying Loop Mirror," IEEE Photonics J. 12(3), 1-8 (2020).
179. P. Grelu, W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, "Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators," J. Opt. Soc. Am. B 27(11), 2336 (2010).
180. M. Pawliszewska, T. Martynkien, A. Przewloka, and J. Sotor, "Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber," Opt. Lett. 43(1), 38 (2018).
181. S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, "Dispersion-managed solitons in fibre systems and lasers," Phys. Rep. 521(4), 135-203 (2012).
182. S. K. Turitsyn, V. K. Mezentsev, and E. G. Shapiro, "Dispersion-Managed Solitons and Optimization of the Dispersion Management," Opt. Fiber Technol. 4(4), 384-452 (1998).
183. Y. Wang, J. Li, K. Mo, Y. Wang, F. Liu, and Y. Liu, "14.5 GHz passive harmonic mode-locking in a dispersion compensated Tm-doped fiber laser," Sci. Rep. 7(1), 7779 (2017).
184. D. Yan, B. Liu, J. Guo, M. Zhang, Y. Chu, Y. Song, and M. Hu, "Route to stable dispersion-managed mode-locked Yb-doped fiber lasers with near-zero net cavity dispersion," Opt. Express 28(20), 29766 (2020).
185. J. Jeon, J. Lee, and J. H. Lee, "Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking," J. Opt. Soc. Am. B 32(1), 31 (2015).
186. K. Le Corre, T. Robin, B. Cadier, R. Becheker, T. Godin, A. Hideur, H. Gilles, S. Girard, and M. Laroche, "Mode-locked all-PM Nd-doped fiber laser near 910 nm," Opt. Lett. 46(15), 3564 (2021).
187. V. S. Grigoryan, T. Yu, E. A. Golovchenko, C. R. Menyuk, and A. N. Pilipetskii, "Dispersion-managed soliton dynamics," Opt. Lett. 22(21), 1609 (1997).
188. S. K. Turitsyn, E. G. Shapiro, S. B. Medvedev, M. P. Fedoruk, and V. K. Mezentsev, "Physics and mathematics of dispersion-managed optical solitons," Comptes Rendus Phys. 4(1), 145-161 (2003).
189. A. A. Mkrtchyan, Y. G. Gladush, M. A. Melkumov, A. M. Khegai, K. A. Sitnik, P. G. Lagoudakis, and A. G. Nasibulin, "Nd-Doped Polarization Maintaining All-Fiber Laser With Dissipative Soliton Resonance Mode-Locking at 905 nm," J. Light. Technol. 39(17), 5582-5588 (2021).
190. H. A. Haus, "Theory of mode locking with a fast saturable absorber," J. Appl. Phys. 46(7), 3049-3058 (1975).
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.