Оптимальная компенсация фазовых дрожаний в цифровых системах передачи тема диссертации и автореферата по ВАК РФ 05.12.13, кандидат технических наук Матюхин, Александр Юрьевич
- Специальность ВАК РФ05.12.13
- Количество страниц 269
Оглавление диссертации кандидат технических наук Матюхин, Александр Юрьевич
Введение.
1. Моделирование фазовых дрожаний.
1.1 Основные понятия и определения.
1.2 Модель фазовых дрожаний, вносимых линейным трактом.
1.3 Модель фазовых дрожаний временного группообразования.
1.4 Модель наблюдения синхропараметров.
Выводы.
2. Алгоритм компенсации фазовых дрожаний.
2.1 Общий алгоритм экстраполяции.
2.2 Анализ сходимости алгоритма.
2.3 Анализ вычислительных сложностей.
2.4 Идентификация частоты фазовых дрожаний времени ожидания.
Выводы.
3. Моделирование алгоритма компенсации фазовых дрожаний. Экспериментальная проверка эффективности работы алгоритма с использованием полной модели аппаратуры вторичного временного группообразования.
3.1 Анализ синтезированных алгоритмов и структурные схемы оценивателей.
3.2 Моделирование алгоритма компенсации фазовых дрожаний на ЭВМ.
3.3 Экспериментальная проверка эффективности работы компенсатора фазовых дрожаний с использованием полной программной модели аппаратуры вторичного временного группообразования.
Выводы.
Рекомендованный список диссертаций по специальности «Системы, сети и устройства телекоммуникаций», 05.12.13 шифр ВАК
Адаптивная обработка сигналов в высокоскоростных цифровых абонентских линиях1998 год, кандидат технических наук Панков, Александр Александрович
Адаптивная обработка сигналов QAM в фантомных цепях симметричных кабелей связи2009 год, кандидат технических наук Комарова, Ксения Александровна
Адаптивная обработка двумерных сигналов в высокоскоростных цифровых абонентских линиях2001 год, кандидат технических наук Калинихин, Андрей Евгеньевич
Исследование фазового дрожания сигналов в цифровых системах связи и разработка методов его контроля и компенсации1984 год, кандидат технических наук Абрамов, Валентин Александрович
Применение адаптивных технологий обработки цифровых сигналов в искусственных цепях симметричных кабелей связи2006 год, кандидат технических наук Иванов, Сергей Алексеевич
Введение диссертации (часть автореферата) на тему «Оптимальная компенсация фазовых дрожаний в цифровых системах передачи»
Комплекс электросвязи является составной частью инфраструктуры любой страны. Основой электросвязи России является Единая сеть электросвязи ( ЕСЭ ), представляющая собой совокупность сетей общего пользования, выделенных и технологических сетей, а также сетей специального назначения.
В соответствии с классификацией по функциональному признаку, ЕСЭ строится на основе первичной сети, которая образуется путем объединения оконечных и узловых пунктов и связывающих их линий передачи в единую сеть типовых каналов и групповых трактов, обеспечивающих передачу любых видов информации.
На базе типовых каналов и трактов первичной сети образуются вторичные сети, предназначенные для передачи определенных видов информации. В соответствии с этим, вторичные сети подразделяются на телефонные, телеграфные, сети передачи данных, звукового и телевизионного вещания, различные ведомственные сети.
Основным направлением развития как первичных, так и вторичных сетей ЕСЭ является внедрение цифровых систем передачи (ЦСП) и цифровых систем коммутации (ЦСК). При этом, используется принцип организационного и технического единства, заключающийся в проведении единой технической политики, применении единого комплекса максимально унифицированных технических средств, единой номенклатуры типовых каналов и сетевых трактов, а также в построении единой для первичных и вторичных сетей системы технической эксплуатации.
При практической реализации данного перспективного плана построения цифровой сети ЕСЭ наиболее важной является задача по созданию надежной и высококачественной системы тактовой синхронизации.
Анализ существующих ЦСП как плезиохронной (PDH), так и синхронной ( SDH) цифровой иерархии показывает, что процесс передачи сигнала сопровождается возникновением ряда дестабилизирующих факторов, оказывающих негативное влияние на качество передачи информации. При этом, одним из основных негативных факторов, имеющих место в цифровой сети и связанных непосредственно с работой системы тактовой синхронизации, являются фазовые дрожания.
В плезиохронных ЦСП в качестве главных источников фазовых дрожаний выступают линейный тракт, а именно, регенераторы с выделением тактовой частоты из информационного сигнала, а также аппаратура временного группообразования с выполнением операции согласования скоростей. В системах SDH основным источником флуктуации фазы являются мультиплексоры, в которых так же, как и в PDH, используются операции цифровой коррекции.
Негативное воздействие высокочастотных фазовых флуктуаций проявляется в увеличении вероятности ошибки регенерации цифрового сигнала, а накопление низкочастотных флуктуаций — приводит к дополнительным искажениям в каналах ТЧ за счет смещения импульсов АИМ-сигнала на выходе декодера, а также, при использовании буферной памяти, к потере или повторению передаваемых символов, т.е. к "проскальзываниям что, в свою очередь, нарушает циклическую структуру сигнала и может вызвать срыв цикловой и сверхцикловой синхронизации. Применяемый в настоящее время метод подавления фазовых дрожаний, основанный на использовании эластичной памяти, является малоэффективным, так как позволяет устранить только кратковременные и незначительные фазовые флуктуации В связи с этим, проблема компенсации фазовых дрожаний в цифровых сигналах представляется весьма актуальной.
Следует также заметить, что создание системы тактовой сетевой синхронизации ( ТСС ), которая, согласно Руководящему техническому материалу ( РТМ ) по построению ТСС на цифровой сети связи РФ [1], должна быть единой для всех сетей, входящих в ЕСЭ, не снижает остроты данной проблемы. Это связано с тем, что в соответствии с международными нормами [18], точность установки номинала тактовой частоты на цифровой сети при относительной погрешности, не превышающей Ю-11, должна быть очень высокой. Поэтому для получения необходимых характеристик система ТСС должна использовать первичные эталонные генераторы ( ПЭГ ) с долговременной стабильностью частоты не хуже Ю-11. Однако использование таких генераторов на каждом оконечном пункте или коммутационной станции не оправдано ни с экономической, ни с технической точки зрения. Поэтому для передачи синхросигналов от ПЭГ к коммутационным станциям и оборудованию передачи данных используются ресурсы первичной сети, т.е. типовые тракты, организованные с помощью плезиохронных и синхронных ЦСП. Таким образом, основные источники возникновения фазовых флуктуаций сохраняются, а следовательно, и проблема компенсации фазовых дрожаний не теряет своей актуальности.
Подводя итог всему вышесказанному, можно сделать вывод, что устранение фазовых флуктуаций является одной из ключевых задач на пути построения цифровой сети связи, оптимального решения которой в настоящее время не найдено. В связи с этим, целью данной диссертационной работы является создание эффективного алгоритма компенсации фазовых дрожаний в цифровых сигналах, что позволит решить вышеуказанную проблему, и тем самым, обеспечить возможность построения надежной и высококачественной системы тактовой синхронизации.
Поставленная цель достигается путем решения следующего комплекса задач:
1. Конкретизация математической модели системы тактовой синхронизации ЦСП, с учетом гауссовского шума и фазовых дрожаний, вносимых линейным трактом и аппаратурой временного группообразования.
2. Синтез алгоритма экстраполяции фазовых дрожаний применительно к полученной модели.
3. Модификация построенного алгоритма на основе выбора оптимального базиса, а также путем осуществления дополнительного преобразования входного сигнала до его подачи на вход экстраполятора. Цель модификации — получение реализуемого в реальном масштабе времени алгоритма экстраполяции без ограничения потенциальных возможностей исходного алгоритма.
4. Анализ и разрешение проблем вычислительного характера, которые могут возникнуть при реализации экстраполятора. В том числе, разработка аналитического метода, позволяющего использовать неравенства Вейля и Брауна для локализации собственных значений матрицы 5-го порядка.
5. Разработка алгоритма идентификации частоты фазовых дрожаний времени ожидания.
6. Разработка программы статистического моделирования синтезированного алгоритма оптимальной обработки цифровых сигналов при наличии фазовых дрожаний и гауссовского шума.
7. Создание пакета программ, позволяющего моделировать работу вторичной ЦСП, соответствующей отечественной аппаратуре ИКМ-120, для проведения, как аналога натурных испытаний, экспериментальных исследований полученного алгоритма компенсации фазовых дрожаний в условиях, максимально приближенных к реальным.
При выполнении исследований были использованы методы теории оптимальной нелинейной фильтрации дискретных и непрерывных процессов, теории передачи сигналов, теории вероятностей, теории матриц, методы математической статистики и машинного моделирования.
К защите представляются следующие тезисы.
Конкретизирована модель наблюдения, описывающая работу системы тактовой синхронизации ЦСП PDH, при наличии таких дестабилизирующих факторов, как гауссовский шум и фазовые дрожания, вносимые линейным трактом и аппаратурой временного группообразования.
Разработанный алгоритм экстраполяции фазовых дрожаний предусматривает осуществление преобразования наблюдаемого сигнала до его подачи на вход экстраполятора, а также выбор оптимального базиса для обработки вектора состояния, что позволяет, в отличие от известных структур, не накладывая ограничения на модель, существенно уменьшить вычислительную сложность алгоритма и получить возможность его реализации на современных сигнальных процессорах.
Решение проблемы вычислительного характера, связанной с невозможностью диагонализации матрицы состояния, приводит к модифицированному алгоритму, в котором, в отличие от исходного, используется ортогональное преобразование базиса, и корректируются рекуррентные соотношения для расчета собственных значений дисперсионной матрицы.
Предложенный алгоритм реализации наиболее эффективных методов локализации характеристических чисел — неравенств Вейля и Брауна, позволяет на основе определения сингулярных чисел вспомогательной матрицы получить с требуемой точностью оценки собственных значений дисперсионной матрицы.
Показано, что ошибка в определении частоты фазовых дрожаний времени ожидания приводит к ошибке угла поворота вектора оцениваемых параметров в плоскости, в связи с чем, в синтезированном алгоритме идентификации частоты сначала производится вычисление матрицы ошибки угла поворота, а затем, с использованием данной матрицы, осуществляется плоское вращение вектора состояния.
Разработанная программа статистического моделирования компенсатора фазовых дрожаний позволяет оценить потенциальные возможности синтезированных алгоритмов и является основой программного обеспечения сигнального процессора, реализующего эти алгоритмы.
Разработанный пакет программ, позволяющий полностью моделировать работу вторичной ЦСП, соответствующей отечественной аппаратуре ИКМ-120, дает возможность проводить экспериментальные исследования синтезированных алгоритмов в условиях, максимально приближенных к реальным, что может рассматриваться как аналог натурных испытаний.
Полученные в диссертации результаты могут быть использованы при построении системы тактовой синхронизации перспективных ЦСП, что позволит уменьшить вероятность ошибки, увеличить длину линейного тракта, уменьшить искажения в каналах ТЧ за счет смещения импульсов АИМ-сигнала на выходе декодера, а также обеспечить надежность и высокое качество работы стыка ЦСП и ЦСК.
Результаты диссертационной работы обсуждались и были одобрены на международной конференции ICINAS-98 и на научно-технических конференциях профессорско-преподавательского состава СПбГУТ им. проф. М. А. Бонч-Бруевича в 1999-2004гг.
Основные результаты диссертационной работы опубликованы в 10-и научных трудах.
Диссертация состоит из введения, трех глав, заключения, списка литературы и двух приложений.
Похожие диссертационные работы по специальности «Системы, сети и устройства телекоммуникаций», 05.12.13 шифр ВАК
Исследование методов нелинейной пространственно-временной обработки случайных полей1998 год, кандидат физико-математических наук Быков, Александр Викторович
Анализ сети тактовой синхронизации и разработка метода расчета цепи задающих генераторов при случайных воздействиях2005 год, кандидат технических наук Климов, Дмитрий Александрович
Разработка и реализация демодулятора высокоскоростного потока, работающего при малых значениях отношения сигнал/шум2006 год, кандидат технических наук Круглик, Евгений Анатольевич
Синтез и оптимизация алогоритма коррекции фазы многомерных сигналов с ортогональным частотным разделением2007 год, кандидат технических наук Кукушкин, Дмитрий Сергеевич
Статистический синтез и исследование алгоритмов определения координат наземных источников радиоизлучения в космических системах2008 год, кандидат технических наук Савин, Александр Александрович
Заключение диссертации по теме «Системы, сети и устройства телекоммуникаций», Матюхин, Александр Юрьевич
Выводы
В третьей главе, как обобщение результатов, полученных ранее, представлены окончательные выражения для алгоритмов экстраполяции фазовых дрожаний и идентификации частоты фазовых флуктуаций времени ожидания. Причем, алгоритм экстраполяции рассмотрен в двух вариантах: первый предусматривает выполнение диагонализации матрицы состояния, второй - невозможность осуществления данной операции. Следует отметить, что первый вариант концептуально является более общим, тем не менее, учет реальных условий передачи, а именно, малой величины скорости изменения параметров трактов ЦСП, приводит к тому, что матрица состояния становится недиагонализуемой, а следовательно, возникает необходимость использовать второй алгоритм.
Затем, благодаря специфической структуре рассматриваемых уравнений, каждый из вариантов был разделен на ряд самостоятельных алгоритмов. На основе полученных в результате разбиения выражений, были построены структурные схемы оценивателей для каждой компоненты фазовых флуктуаций, а также структурная схема регенератора с компенсацией фазовых дрожаний.
Для проверки работоспособности алгоритма и определения его потенциальных возможностей была разработана программа моделирования на ЭВМ. Результаты экспериментов полностью подтвердили справедливость теоретических выводов и позволили получить оценки качественных показателей работы синтезированного алгоритма.
Далее, для проведения испытаний компенсатора в условиях, максимально приближенных к реальным, был создан пакет программ, позволяющий моделировать работу вторичной ЦСП. Экспериментальная проверка алгоритма с использованием данной модели может рассматриваться как аналог натурных испытаний. Результаты, полученные в ходе экспериментов, позволяют сделать вывод о том, что предложенный алгоритм работоспособен и имеет высокие качественные показатели.
Заключение
Сформулируем основные научные и практические результаты, полученные в диссертации.
На основе подробного анализа причин и механизмов возникновения фазовых дрожаний получена математическая модель системы тактовой синхронизации, учитывающая все основные источники флуктуаций фазы, а именно, линейный тракт и оборудование временного группообразования. При этом, в качестве основных компонент фазовых флуктуаций были выделены: фазовые дрожания, вносимые линейным трактом; фазовые дрожания цифрового выравнивания и фазовые дрожания времени ожидания. Для всех указанных компонент были построены модели, и на их базе сформирована модель наблюдения, представляющая собой выходной сигнал фильтра ВТЧ первичного мультиплексора на приемном конце.
Как подчеркивалось ранее, полученные модели могут быть использованы для анализа не только систем PDH, но и при рассмотрении сетей синхронной цифровой иерархии ( SDH ). Подобная универсальность обусловлена тем, что, в большинстве случаев, в качестве компонентных сигналов в SDH используются плезиохронные потоки, а следовательно, фазовые дрожания, имеющие место во входном сигнале, приводят к возникновению флуктуаций и в агрегатном потоке. Помимо этого, процессы мультиплексирования в PDH и SDH имеют много общего, а именно, и в том, и в другом случае применяется один из вариантов цифровой коррекции. Таким образом, результаты анализа дрожаний фазы, вызываемых группообразованием в PDH, можно распространить и на синхронные сети.
С учетом введенной модели получен оптимальный алгоритм компенсации фазовых дрожаний, построенный в форме одно шагового экстра-полятора, минимизирующего средний квадрат ошибки. При этом, на начальном этапе, в качестве базового механизма работы экстраполятора, был использован универсальный алгоритм, в соответствии с которым все компоненты фазовых дрожаний были объединены в вектор оцениваемых параметров, и для него синтезирован алгоритм экстраполяции в общем виде.
Анализ полученных уравнений показал, что алгоритм не может быть реализован в реальном масштабе времени, так как матрица дисперсий имеет большую размерность, а зависимость дисперсионного уравнения от вектора оцениваемых параметров не позволяет решать его отдельно от уравнения оценивания.
На практике, наиболее часто, подобные задачи решают путем упрощения алгоритма, опираясь, при этом, на физический смысл задачи. Такой подход дает положительные результаты и позволяет получить аппроксимацию оптимального решения. Но, при этом, приходится жертвовать оптимальностью пути, а кроме того, накладывать ограничения на модель, сужая, тем самым, область устойчивой работы алгоритма, что может оказаться неприемлемым. Также, следует заметить, что, даже используя упрощенный алгоритм, практически всегда приходится сталкиваться с необходимостью поиска собственных значений дисперсионной матрицы. Эта задача, даже с учетом симметричности и положительной определенности матрицы, является достаточно сложной, так как ни один из известных численных методов не гарантирует получение решения за фиксированное число шагов.
Чтобы разрешить указанные трудности, алгоритм экстраполяции был модифицирован: от вектора производных потребовали, чтобы он являлся собственным вектором дисперсионной матрицы, а кроме того, была произведена смена базиса с целью формирования равных собственных векторов для матрицы состояния и матрицы дисперсий. Произведенные преобразования позволили резко упростить как уравнение оценивания, так и дисперсионное уравнение, вместо решения которого теперь стало возможным вычислять с использованием рекуррентных соотношений лишь спектр дисперсионной матрицы.
Таким образом, не прибегая к ограничению потенциальных возможностей исходного алгоритма, получен модифицированный алгоритм экстраполяции, реализуемый в реальном масштабе времени.
Предъявляемые к вектору производных требования выполняются путем модуляции наблюдаемого сигнала до его подачи на вход экстраполятора.
На следующем этапе проведен анализ сходимости алгоритма к оптимальному решению. Доказана его сходимость, и получена оценка скорости сходимости.
Далее рассмотрены трудности вычислительного характера, которые могут возникнуть при реализации экстраполятора. Первая проблема - это невозможность диагонализации матрицы состояния. В этом случае алгоритм экстраполяции остается без изменений, а корректируются лишь выражения для расчета собственных значений дисперсионной матрицы. Благодаря тому, что матрица состояния является сильно разреженной, сложность соотношений повышается незначительно. Следует заметить, что первый вариант алгоритма концептуально является более общим, тем не менее, учет реальных условий передачи, а именно, малой величины скорости изменения параметров трактов ЦСП, как раз и приводит к тому, что матрица состояния становится недиагонализуемой, и появляется необходимость применения второго варианта алгоритма.
Следующая задача, которая рассматривается на данном этапе - это решение проблемы собственных значений дисперсионной матрицы. Для обеспечения работоспособности алгоритма в начальный период настройки необходимо наличие эффективной процедуры поиска собственных значений матрицы дисперсий. Так как размерность дисперсионной матрицы 5 х 5, то аналитических выражений для расчета спектра не существует. Как подчеркивалось ранее, результативность работы используемых на практике численных методов зависит от обусловленности матрицы, а следовательно, сходимость не гарантируется. Существующие наиболее эффективные методы локализации характеристических чисел - неравенства Вейля и Брауна, связаны с необходимостью поиска сингулярных чисел матрицы, т.е. с решением эквивалентной по сложности задачи. Для возможности их использования были получены аналитические выражения для расчета сингулярных чисел вспомогательной матрицы пятого порядка, однозначно связанной с исходной матрицей. Локализация и последующее определение собственных значений вспомогательной матрицы позволяет найти спектр исходной матрицы.
Завершающим этапом решения задачи экстраполяции фазовых флуктуаций стал синтез алгоритма идентификации частоты фазовых дрожаний времени ожидания. Анализ матрицы состояния показал, что ошибка в определении частоты фазовых дрожаний приводит к ошибке угла поворота вектора оцениваемых параметров в плоскости. Таким образом, в алгоритме идентификации сначала осуществляется вычисление матрицы ошибки угла поворота, а затем определяется текущая оценка матрицы вращения как произведение оценки, соответствующей предыдущему такту, и матрицы ошибок. Для случая, когда алгоритм экстраполяции работает в установившемся режиме или близок к нему, предложен более простой вариант алгоритма идентификации.
На основе полученных алгоритмов построены структурные схемы оценивателей для каждой компоненты фазовых флуктуаций, а также структурная схема регенератора с компенсацией фазовых дрожаний.
Для проверки работоспособности алгоритма и определения его потенциальных возможностей была разработана программа моделирования на ЭВМ. Результаты экспериментов полностью подтвердили справедливость теоретических выводов и позволили получить оценки качественных показателей работы синтезированного алгоритма.
Для проведения испытаний компенсатора в условиях, максимально приближенных к реальным, был создан пакет программ, позволяющий моделировать работу вторичной ЦСП, соответствующей отечественной аппаратуре ИКМ-120. Экспериментальная проверка алгоритма с использованием данной модели может рассматриваться как аналог натурных испытаний. Результаты, полученные в ходе экспериментов, позволяют сделать вывод о том, что предложенный алгоритм работоспособен и имеет высокие качественные показатели.
Список литературы диссертационного исследования кандидат технических наук Матюхин, Александр Юрьевич, 2004 год
1. Руководящий технический материал по построению тактовой сетевой синхронизации на цифровой сети связи Российской Федерации.-Москва, 1995.
2. Тихонов В.И., Харисов В.Н. Статистический анализ и синтез радио-технических устройств и систем,-М.: Радио и связь, 1991.
3. Голубев А.Н., Иванов Ю.П., Левин JI.C. и др.; Аппаратура ИКМ-120/ Под ред. JI.C. Левина. -М.: Радио и связь, 1989.
4. Левин Б.Р. Теоретические основы статистической радиотехники. 3-е изд., перераб. и доп.-М.: Радио и связь, 1989.
5. Гельфанд И.М. Лекции по линейной алгебре.-М.: Наука, 1971
6. Маркус М., Минк X. Обзор по теории матриц и матричных неравенств. М.: Наука, 1972.
7. Гантмахер Ф.Р. Теория матриц. 4-е изд.- М.: Наука, 1988.
8. Уилкинсон Дж. X. Алгебраическая проблема собственных значений. -М.: Наука, 1970.
9. CCITT Recommendation G.703 ( 1991 ). Physical/electrical haracteris-tics of hierarchical digital interfasces.
10. Сосулин Ю.Г. Теория обнаружения и оценивания стохастических сигналов. -М.: Советское радио, 1978.
11. Ланкастер П. Теория матриц. М.: Наука, 1982.
12. Голуб Дж., Ван Лоун Ч. Матричные вычисления. М.: Мир, 1999.
13. Гоноровский И.С. Радиотехнические цепи и сигналы. Изд. 3-е, перераб. и доп. М.: Советское радио, 1977.
14. Френке Л. Теория сигналов. -М.: Советское радио, 1974.
15. Зюко А.Г., Кловский Д.Д., Коржик В.И., Назаров М.В. Теория электрической связи.-М.: Радио и связь, 1999.
16. Беллами Дж. Цифровая телефония.-М.: Радио и связь, 1986.
17. ITU-T Recommendation G.823 ( 02/00 ). The control of jitter andwander within digital networks which are based on the 2048 kbit/s hierarchy.
18. ITU-T Recommendation G.811 ( 1993 ). Timing requirements at the output of primary reference clocks suitable for plesiochronous operation of international digital links.
19. Зингеренко A.M., Баева H.H., Тверецкий M.C. Системы многоканальной связи.-М.: Связь, 1980.
20. Мышкис А.Д. Лекции по высшей математике. М.: Наука, 1967.
21. Витерби Э.Д. Принципы когерентной связи. М.: Советское радио, 1970.
22. Крылов В.И., Бобков В.В., Монастырский П.И. Вычислительные методы, том 1. — М.: Наука, 1976.
23. Зюко А.Г., Фалько А.И., Панфилов И.П., Банкет B.JI. Помехоустойчивость и эффективность систем передачи информации. М.: Радио и связь, 1985.
24. Баева Н.Н., Бобровская И.К., Брескин В.А., Якуб Ю.А. Основы многоканальной связи. — М.: Связь, 1975.
25. Курицын С.А. Методы адаптивной обработки сигналов передачи данных. -М.: Радио и связь, 1988.
26. Ахмедов Э.А., Левин Л.С., Офицеров В.Г. Временные девиации в системах с асинхронным объединением цифровых потоков. «Вопросы радиоэлектроники», сер. ТПС, 1974, вып. 1.
27. Duttweiler D.L. Waiting time jitter, " Bell Syst ". Tech. J., 1972, vol. 51, Jan.
28. Курицын C.A., Буянов В.Ф., Жиленков М.Г., Захаров И.И. Марковская модель канала тональной частоты. — Техника средств связи. Сер. ТПС, 1984, вып. 2.
29. Ван Трис Г. Теория обнаружения, оценок и модуляции. — М.: Советское радио, т.1, 2, 3,1975.
30. Кульман Н.К., Стратонович Р.Л. Фазовая автоподстройка частоты и оптимальное измерение параметров узкополосного сигнала с непостоянной частотой в шуме. Радиотехника и электроника, 1964, т. 9, вып. 1.
31. Кульман Н.К. Оптимальный прием сигналов с непостоянными частотой и амплитудой на фоне шумов. — Радиотехника и электроника, 1964, т.9, вып.9.
32. Стратонович P.JI. Принципы адаптивного приема. М.: Советское радио, 1973.
33. Тихонов В.И., Кульман Н.К. Нелинейная фильтрация и квазикогерентный прием сигналов. -М.: Советское радио, 1975.
34. Амиантов И.Н. Избранные вопросы статистической теории связи. -М.: Советское радио, 1971.
35. Левин JI.C., Плоткин М.А. Цифровые системы передачи информации. — М.: Радио и связь, 1982.
36. Былянски П., Ингрем Д. Цифровые системы передачи: Пер. с англ. М.: Связь, 1980.
37. Цифровые системы передачи: Пер. с польск./Под ред. В.Д. Романова. -М.: Связь, 1979.
38. Альтшуллер Г.Б. Кварцевая стабилизация частоты. М.: Связь,1974.
39. Штульберг М.Н. Влияние объема запоминающего устройства на временные флуктуации сигнала в системах передачи с асинхронным сопряжением цифровых потоков.//Вопросы радиоэлектроники.-Сер. ТПС. 1974.- №9.
40. А. с. 410567 СССР. Синхронизатор независимых импульсных последовательностей/ JI.C. Левин, Ю.А. Алексеев, И.В. Мягков.
41. А. с. 472468 СССР. Устройство асинхронного ввода двоичных сигналов в цифровой тракт систем связи с двусторонними временными сдвигами/ Л.С. Левин.
42. Оксман В.А. О выделении сигналов тактовой частоты из реального линейного сигнала// Техника средств связи. Сер. ТПС. - 1979. -вып. 9.
43. Буянов В.Ф., Захаров И.И., Курицын С.А., Перфильев Э.П. Моделирование адаптивных устройств преобразования сигналов на ЭВМ. — Киев: Электронное моделирование, т. 7, 1985, № 1.
44. Ярлыков М.С. Применение Марковской теории нелинейной фильтрации в радиотехнике. — М.: Советское радио, 1980.
45. Казаков В.А. Введение в теорию марковских процессов и некоторые радиотехнические задачи. -М.: Сов. Радио, 1973.
46. Стиффлер Д. Теория синхронной связи.-М.: Связь, 1975.
47. Линдсей В. Системы синхронизации в связи и управлении. — М.: Сов. Радио, 1978.
48. Деруссо П., Рой Р., Клоуз И. Пространство состояний в теории управления. М.: Наука, 1970.
49. Химмельблау Д. Прикладное нелинейное программирование. — М.: Мир, 1975.
50. Системы фазовой автоподстройки частоты с элементами дискретизации/ В.В. Шахгильдян, А.А. Ляховкин, B.JI. Карякин и др. М.: Связь, 1979.
51. Тихонов В.И. Оптимальный прием сигналов. М.: Радио и связь,1983.
52. Сейдж Э., Меле Д. Теория оценивания и ее применение в связи и управлении. — М.: Связь, 1976.
53. Мартынов Е.М. Синхронизация в системах передач дискретных сообщений. -М.: Связь, 1972.
54. Жодзишский М.И. Анализ цифровых систем ФАПЧ при работе в шумах. «Радиотехника и электроника», №5, 1973.
55. Курицын С.А., Матюхин А.Ю. Модель фазовых дрожаний // Тр. учеб. зав-ий связи. — 1999. Вып. 165.
56. Курицын С.А. Теоретические основы построения адаптивных систем передачи. — Л.: Изд. ЛЭИС, 1983.
57. Фомин В.Н. Операторные методы теории линейной фильтрациислучайных процессов. СПб.: Изд. СПбГУ, 1996.
58. Фаддеев Д.К., Фаддеева В.Н. Вычислительные методы линейной алгебры. — М.: Физматгиз, 1963.
59. Колмогоров А.Н. Интерполирование и экстраполирование стационарных случайных последовательностей. — Известия АН СССР. Серия математическая, т.5, 1941.
60. Гроп Д. Методы идентификации систем. -М.: Мир, 1979.
61. Цыкин И.А. Дискретно аналоговая обработка сигналов. — М.: Радио и связь, 1982.
62. Аппаратура ИКМ-30 / А.Н. Голубев, Ю.П. Иванов, JI.C. Левин и др.; Под ред. Ю.П. Иванова и Л.С. Левина. — М.: Радио и связь,1983.
63. ITU-T Recommendation 0.171. Timing jitter and wander measuring equipment for digital systems which are based on the plesiochronous digital hierarchy (PDH).
64. ITU-T Recommendation G.742. Second order digital multiplex equipment operating at 8448 kbit/s and using positive justification.
65. ITU-T Recommendation G.751. Digital multiplex equipments operating at the third order bit rate of 34 368 kbit/s and the fourth order bit rate of 139 264 kbit/s and using positive justification.
66. ITU-T Recommendation G.921. Digital sections based on the 2048 kbit/s hierarchy.
67. БеллманР. Введение в теорию матриц. — М.: Наука, 1969.
68. Лидский В.Б. Собственные значения суммы и произведения симметрических матриц, ДАН СССР 75 (1950).
69. Корн Г., Корн Т. Справочник по математике. — М.: Наука, 1978.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.