Методы, модели и алгоритм прогнозирования и диагностики холецистита на основе комбинированных правил принятия решений тема диссертации и автореферата по ВАК РФ 05.11.17, кандидат технических наук Шехине, Мохамад Туфик
- Специальность ВАК РФ05.11.17
- Количество страниц 136
Оглавление диссертации кандидат технических наук Шехине, Мохамад Туфик
ВВЕДЕНИЕ.
1. АНАЛИТИЧЕСКИЙ ОБЗОР И ПОСТАНОВКА
ЗАДАЧ ИССЛЕДОВАНИЯ-.!.
Г. 1. Этиология и патогенез острого холецистита.
1.2. Современные методы*диагностики и.лечения холециститов.
1.3. Математические методы и информационные технологии в решении; задачах прогнозирования и диагностики заболеваний;.
1.4. Цель и задачи исследования.!.
2. МЕТОДЫ И МОДЕЛИ ПРОГНОЗИРОВАНИЯ И ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ ОСТРОГО ХОЛЕЦИСТИТА. .42:
2.1. Применение методов рефлексодиагностики для прогнозирования; и ранней диагностики холецистита; Синтез меридианной модели.
212'. Синтез комбинированных решающих правил для прогнозирования и ранней диагностики острого холецистита:.
2.3. Методы синтеза решающих правил для оценки степени тяжести острого холецистита на основе анализа показателей, характеризующих системные взаимосвязи. 1.60?
2.4. Выводы второй главы.
3. РАЗРАБОТКА АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИЙ ПО ВЕДЕНИЮ
БОЛЬНЫХ С ЗАБОЛЕВАНИЕМ ХОЛЕЦИСТИТ.
З.1. Синтез, правилнечеткого вывода; дляюценки степени/тяжести1 ' . . острого холецистита на основе прогностических таблиц. 1.
3.2. Разработка алгоритма управления-процессами принятия решенит при ведении больных с холециститом.
3.3: Структура программного обеспечения системы поддержки принятия .решений врача-гастроэнтеролога.
3.4. Выводы третьей главы.
4. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ.
4.1. Результаты экспериментальной проверки правил прогнозирования возникновения острого холецистита.
4.2. Результаты экспериментальной проверки правил для ранней диагностики холециститов.
4.3. Результаты экспериментальной проверки правил определения степени тяжести острого холецистита.
4.4. Выводы четвертой главы.
Рекомендованный список диссертаций по специальности «Приборы, системы и изделия медицинского назначения», 05.11.17 шифр ВАК
Методы и средства прогнозирования возникновения и оценки степени тяжести панкреатитов на основе правил нечеткого вывода2009 год, кандидат технических наук Гаврилов, Игорь Леонидович
Методы и алгоритмы анализа и управления сложными объектами на гетерогенных нечётких моделях для систем медицинского назначения2011 год, кандидат технических наук Гаврилов, Игорь Леонидович
Методы, модели и алгоритмы нечеткого прогнозирования обострения и оценка степени тяжести больных генитальной вирусной инфекцией2010 год, кандидат технических наук Еремин, Андрей Владимирович
Методы и средства ранней диагностики, оценки тяжести течения и прогнозирования исходов вирусного гепатита на основе нечетких моделей принятия решений2009 год, кандидат технических наук Гнездилов, Александр Александрович
Разработка методов, моделей и алгоритмов прогнозирования и донозологической диагностики кожных болезней, имеющих представительство на проекционных зонах, с использованием нечеткой логики принятия решений и рефлексодиагностики2007 год, кандидат технических наук Ходеев, Денис Владимирович
Введение диссертации (часть автореферата) на тему «Методы, модели и алгоритм прогнозирования и диагностики холецистита на основе комбинированных правил принятия решений»
Актуальность темы. По мнению ведущих отечественных и зарубежных ученых начало нового века характеризуется все возрастающим подъемом биомедицинских наук. Обобщаются знания, накопленные в биологии; биофизике, биохимии, математике, информатике, медицине, экологии-и многих других, достаточно далеких друг от друга, областях человеческой: деятельности, и все это »происходит на фоне прорыва в области новых информационных технологий.
Мировой; опыт показывает, что эффективный, анализ состояния и управления - здоровьем такого^ сложного' биообъекта? как человек возможны» только на: основе современных; математических методов. с* активным; привлечением; информационных технологий.
К одной из проблемных областей медицины, относят желчекаменную болезнь (ЖКБ) и тесно связанные-с ней хронический калькулезный и острый холецистит, которые являются, одной; из актуальных проблем- экстренной; и плановой хирургии. Желчекаменная; болезнь встречается у 10-15% взрослого населения жителей Европы. В*России распространенность ЖКБ колеблется в пределах 3-12% взрослого населения. Острый холецистит вышел на 2-е место в ургентиой хирургической патологии. Диагностика ЖКБ по клиническим данным: без применения? специальных, методов; исследования бывает существенно? затруднена. Около 80% больных даже на-, стадии холецистолитиаза. не предъявляют жалоб, характерных для ЖКБ, а желчные камни являются «случайной находкой».
Таким образом, актуальность темы исследования определяется необходимостью повышения качества прогнозирования> возникновения1 и определения? степени тяжести больных острым холециститом на основе-методологии системного анализа, реализуемого средствами математического моделирования и вычислительной техники. В диссертационной; работе используются такие традиционные для медицины, показатели качества как; диагностические чувствительность, специфичность и эффективность,. прогностическая значимость положительных и отрицательных результатов, а также показатель доверия к принимаемым решениям используемый в теории нечеткой логики.
Работа выполнена в соответствии с программой проблемной комиссии хирургии органов брюшной полости и совместным научным направлением Юго-Западного государственного университета- и Курского государственного медицинского университета «Разработка медико-экологических информационных технологий».
Цель работы. Разработка методов, моделей' и алгоритма для- системы, поддержки принятия, решений врача- - гастроэнтеролога,, обеспечивающих повышение качества прогнозирования; донозологической диагностики и оценки-степени тяжести холециститов замечет применения комбинированных решающих правил, использующих информацию-о • микроэлементном статусе организма и электрическом состоянии* биологически активных точек в сочетании с информативными-признаками, используемыми.в современной медицинской практике. '
В' соответствии с поставленной целью в работе решаются следующие основные задачи:
1. Сформировать систему информативных признаков на основании данных об этиологии и патогенезе' холецистита, изучить структуру классификационных данных, выбрать адекватный математический аппарат;
2. Создать модель взаимодействия*желчного-пузыря с поверхностными, биологически« активными точками меридианных структур;
3. Разработать методы синтеза нечетких решающих правил для прогнозирования и-диагностики холециститов;
4. Синтезировать набор нечетких решающих.правил для прогнозирования^ возникновения, ранней диагностики и оценки степени тяжести острого холецистита;
5. Разработать алгоритм управления процессами принятия решений и структуру программного обеспечения соответствующей автоматизированной системы;
6. Провести апробацию предложенных методов и средств на репрезентативных контрольных выборках.
Методы исследований. Для решения поставленных задач использовав лись методы управления в биотехнических системах, методология искусственного интеллекта, методы математического моделирования^ теории нечеткой логики принятия решений, графов, экспертного оценивания, статистического анализа и системного анализа. Для^синтеза и проверки;качествафаботы» нечетких решающих правил1 использовалась система; компьютерной; математики? MATLAB 7 SP1 и пакет визуального- моделирования Simulink с: системой нечеткой лошки-Fuzzy Eogic Toolbox.
Научная новизна результатов работы» и основные положения, -выносимые на защиту, заключаются в следующем:
1. Меридианная» модель взаимодействия желчного пузыря с биологически активными, точками,, отличающаяся возможностью- контроля? энергетиче-1 ского баланса: структур организма, меняющегося- при нарушениях в работе контролируемого» органа,: что позволяет повысить эффективность прогнози рования и ранней0 диагностики выбранного класса заболеваний;:
2. Методы синтеза комбинированных решающих правил для принятия: решений; по прогнозированию, ранней и дифференциальной диагностике острого холецистита, отличающиеся/ тем, что получаемые' классификационные решающие правила, дополнительно» к общепринятым в медицине признакам учитывают микроэлементный статус организма и энергетическое состояние биологически активных точек, «связанных» с: желчным пузырем, позволяющие на основе анализа показателей, характеризующих общесистемные взаимосвязи, получать комбинированные решающие правила, обеспечивающие достаточный для практики? уровень, уверенности в принимаемых решениях при плохоформализуемой структуре данных; : 3. Система нечетких решающих правил для прогнозирования, ранней диагностики и оценки степени тяжести острого холецистита, отличающаяся тем, что высокое качество принятия решений обеспечивается агрегированием различных типов правил, выбираемых в соответствии со структурой данных с учетом индивидуальных особенностей организма, что позволяет достигать уверенности в принимаемых решениях на уровне 0,9 и выше в зависимости от количества собранной о пациенте информации;
4. Алгоритм управления процессами принятия« решений при ведении больных с холециститом, составляющий основу аппаратно-программного комплекса, поддерживающего работу врача-гастроэнтеролога, отличающийся возможностью гибкой смены тактики обследования и профилактики пациентов с учетом индивидуальных особенностей организма и наличия сочетанных заболеваний, обеспечивающий; приемлемую-для - медицинской практики, эффективность работы соответствующей системы поддержки принятия ¿решений.
Практическая значимость работы состоит в том, что ее результаты (методы, модели, решающие правила и алгоритм) являются основой разработки системы поддержки принятия решений врача — гастроэнтеролога, клинические испытания которой показали целесообразность ее использования в медицинской практике.
Применение предложенных в диссертации разработок позволяет снизить риск возникновения, развития и обострения заболеваний желчного пузыря, а также вырабатывать рациональные схемы проведения лечебно-оздоровительных мероприятий, повышая эффективность лечения м сокращая его сроки.
Основные теоретические и практические результаты работы внедрены в составе медицинской информационной системы в практическую деятельность муниципального учреждения здравоохранения «Городская клиническая больница №4», используются в научно-исследовательской работе кафедры химической технологии биологически активных веществ Курского государственного медицинского университета и в учебном процессе Юго-Западного государственного университета при подготовке специалистов по направлению «Биомедицинская инженерия».
Экономическая и социальная значимость результатов диссертационного исследования состоит в улучшении качества медицинского обслуживания населения.
Соответствие диссертации паспорту научной специальности.
Содержание диссертации соответствует п.1 «Исследование, разработка и создание медицинской техники, изделий, инструментов; методов и способов диагностикиш лечения,человека,.которые рассматриваются»как средства восстановления* нарушенной: поливариантной системы; представление1 которой возможно' математической;, физико- и биотехнической, механической« моделью, а также энергетической, физико-химической, химической, электрохимической моделью»и т.д.» паспорта специальности - 05.И. 17 «Приборы, • системы и изделия медицинского назначения».
Апробация работы. Основные: положения диссертационной работы докладывались и обсуждались на; следующих научно-технических конференциях: XII международной- научно-технической конференций «Медико-экологические информационные технологии» (Курск, 2009); на XIV международной научно-практическош конференции, «Экология ш жизнь» (Пенза,. 2008); на международной конференции «Биотехнические; медицинские ш экологические- системы и комплексы» (Рязань, 2009); на Межрегиональной научно-практической конференции- «Информационные технологии : в медицине и педагогические исследования» (Курск,.2009); на Всероссийской научно-практической конференции «Биотехнология. Биомедицинская инженерия и технология современных социальных практик» (Курск, 2009); на научно-технических. семинарах кафедрьъ Биомедицинской инженерии Юго-Западного государственного; университета и кафедры Химической технологии биологически, активных, веществ Курского государственного; медицинского университета (Курск, 2005 - 2009).
Публикации. По материалам диссертации опубликовано 9 научных работ, перечень которых приведен в конце автореферата, из них. три статьи в рецензируемых журналах и изданиях, входящих в Перечень ВАК Минобрнауки России.
Личный вклад автора. Все выносимые на защиту научные результаты получены соискателем лично. В опубликованных в соавторстве работах лич ный вклад сводится к следующему: в работах [1,2] соискателем предложены метод синтеза и система нечетких решающих правил для прогнозирования, ранней и дифференциальной- диагностики стадий острого холецистита; в работе [3] соискателем определялось влияние системных взаимосвязей используемых информативных признаков-на развитие острого холецистита; в работах [4, 5] показывается роль микроэлементного статуса в прогнозировании и дифференциальной диагностике холецистита; в работах [6, 8, 9] исследуется роль проекционных зон и, в частности, биологически, активных точек в прогнозировании и диагностике заболеваний и, в частности, гастроэнтерологических заболеваний; в работе [7]' рассматриваются» вопросы, построения комбинированных нечетких решающих правил на основе сетевых моделей.
Структура, и объем диссертации. Объем основного текста диссертации 136 страниц; диссертация состоит из введения, четырёх глав, заключения, библиографического списка из 228 наименований; содержит 29 таблиц, 22 рисунка.
Похожие диссертационные работы по специальности «Приборы, системы и изделия медицинского назначения», 05.11.17 шифр ВАК
Разработка методов и средств прогнозирования и дифференциальной диагностики остеохондрозов поясничного отдела позвоночника на основе нечетких моделей принятия решений2007 год, кандидат технических наук Ефремов, Михаил Александрович
Разработка и исследование методов и средств управления процессами диагностики и комбинированной терапии язвенной болезни желудка2005 год, кандидат медицинских наук Башлыков, Иван Анатольевич
Методы и средства прогнозирования и ранней диагностики сердечно-сосудистой патологии на основе рефлексодиагностики и нечеткой логики принятия решений2007 год, кандидат технических наук Татаренков, Алексей Александрович
Прогнозирование, донозологическая и дифференциальная диагностика мочекаменной болезни2009 год, кандидат технических наук Стародубцева, Лилия Викторовна
Методы и средства прогнозирования и диагностики состояния здоровья студентов с учетом психофизиологических затрат на процесс обучения2007 год, кандидат технических наук Калуцкий, Роман Фатихович
Заключение диссертации по теме «Приборы, системы и изделия медицинского назначения», Шехине, Мохамад Туфик
4.4. Выводы четвертой главы.
1. Качество принятия прогностических решений, обеспечиваемое нечеткими решающими правилами проверено на репрезентативных контрольных выборках и было установлено, что для наиболее часто встречающихся информативных признаков они обеспечивают трехлетний прогноз по риску заболевания холециститом на уровне 0,85 и выше в зависимости от количества и качества собираемой информации.
2. Правила принятия решений о наличии у пациента ранней стадии холецистита обеспечивают уверенность для наиболее распространенных значений информативных признаков на уровне 0,9 и выше, что достаточно для их использования в практике врачей, работающих с выбранным контингентом больных.
3. Статистическая проверка правил принятия решений о степени тяжести холецистита превышает уровень 0,95, что соответствует медико-техническим требованиям по выбранному классу задач.
ЗАКЛЮЧЕНИЕ
Предлагаемая работа посвящена решению научных и практических задач, связанных с повышением качества медицинского обслуживания пациентов, предрасположенных к холециститу или страдающих: этим заболеванием.
В ходе проведенных исследований- получены следующие: основные: результаты;. . :
Г. На основании сведений^ об этиологии? и патогенезе холециститов определена система: информативных' признаков;, проведен: разведочный анализ структуры данных, на основании чего был- выбран математический аппарат, принятия решений для поставленных в работе.задач.
2. Получена-меридианная модель взаимодействия желчного пузыря с поверхностными« биологически активными точками^ использование■которой позволяет повысить эффективность прогнозирования и ранней-диагностики холециститов; а также рационализировать, тактику проведения лечебно-оздоровительных мероприятий. 3:.Разработаны методы синтеза комбинированных решающих правил для прогнозирования возникновения, .ранней и дифференциальной диагностики; холециститов, позволяющие на основе: анализа показателей; Характеризующих общесистем! 1ые взаимосвязи, получать правила принятия решений; , обеспечивающие достаточные для- практики показатели качества классификации при плохоформализуемой структуре данных. , : :■
4. Синтезирована система комбинированных решающих правил для решениям задач- прогнозирования возникновениям холециститов;, ихСраннёШ диагностики и оценки степени тяжести, обеспечивающая уверенность в прогнозе заболевания на уровне 0,87, ранней диагностики на уровне 0,94 и при определении степени тяжести этого заболевания с использованием нечетких решающих правил коэффициент уверенности достигает величины 0,95, а при использовании^других методов диагностическая эффективность правил превышает величину 0,9, что соответствует требованиям практической медицины к подобному классу задач.
5. Разработаны алгоритмы управления процессами принятия решений и структура программного обеспечения системы поддержки принятия решений, позволяющие на удобном для врача - гастроэнтеролога языке обеспечивать рациональное планирование лечебно-оздоровительных мероприятий для пациентов, склонных к заболеванию холециститом или имеющих различные формы этой патологии.
6. Проведена апробация предложенных методов и средств на репрезентативных контрольных выборках и показана целесообразность их использования в практике врачей - гастроэнтерологов.
Список литературы диссертационного исследования кандидат технических наук Шехине, Мохамад Туфик, 2011 год
1. Автоматизированная регистрация угрожающих состояний у новорожденных в г. Ленинграде / Е.В. Гублер, В.А. Любименко и др. // Автоматизированные медико-технические системы в лечебно — профилактических учреждениях здравоохранения. М., 1986. с. 62-66.
2. Александров; В.В. Обработка медико -биологических данных на ЭВМ Текст.У В.В. Александров, B.C. Шнейдеров // Л.: Медицина, 1984. - 160 с.
3. Александров; В.В. Анализ данных на ЭВМ'(на примере СИТО).' Текст. / В.В'. Александров; А.И. Алексеев, И.Д. Горский М.: Финансы и статистика, 1990.-245с.
4. Алексахин, C.B. Прикладной статистический анализ данных. Теория. Компьютерная обработка. Области применения. Текст. / C.B. Алексахин'// В 2-х томах. М. ПРИОР, 2002. -688 с.
5. Ананин, В.Ф. Рефлексология, (теория* и методы). Текст. / В.Ф. Ананин //Монография. -М.: изд-во РУДН'и Биомединформ, 1992. -168с.
6. Андерсен, Т. Введение в многомерный статистический анализ М.: Физматгиз, 1963. -500 с. ■ '
7. Анохин, П.К. Очерки по »физиологии^ функциональных систем. Текст. // П.К. Анохин»// М.: Медицина, 1975. 446с.
8. Анишева, Т.Н. Применение препаратов-производных нуклеиновых кислот в лечении острого панкреатита: автореферат дисс. канд. мед: наук / Т.Н. Анищева. Курск 2005. -23с.
9. И. Артеменко, M.B. К вопросу системной оценки уровня здоровья // Фундаментальные исследования №7, 2005, с. 74-75
10. Артеменко, М.В. Математическая оценка системной соорганизации физиологических функций //Образование через науку текст.: сборник материалов научно-технической конференции: в 2 ч. 41: КурскГТУ, 2006. 196 с.
11. Артеменко, М.В. Оценка состояния патологического процесса по функциональным* сдвигам // Фундаментальные исследования №1, 2006, е., 100-102 I ' 1
12. Артеменко, М. В., Дронова Т.А. Количественная оценка соорганизации физиологических функций в диагностических процессах //Вестник новых медицинских технологий 2006 - T. XIII, №2, с. 127-129'
13. Артеменко, М.В., Дронова Т.А., Кореневский, H.A. Применение-показателей системной организации в диагностическом процессе // Системный анализ и. управление в биомедицинских системах.- 2003.- Т.2.-№1.- С.16-19.
14. Артеменко, М.В., Гудец О., Лапина Т.И., Соколова < М.В. Информационно-аналитическая подсистема поддержки принятия управленческих решений в социальной^ сфере региона. / Телекоммуникации, М.: №9, 2004.
15. Ахутин, В.М. Биотехнические системы. Л.: ЛГУ, 1979. — 257 с.
16. Ахутин, В.М., Маркатун М.Г., Ульянов C.B. Аппаратное • ' и программное обеспечение автоматизированных систем сбора, обработки, отображения и контроля медико-биологической информации.//Мед. техника—1988.-№ 6.-C.2-6:t
17. Баевский, P.M. Оценка адаптационных возможностей организма и рискразвития заболеваний. Текст. / P.M. Баевский, А.П. Берсенева-М.: Медицина, 1997.-235с.
18. Бешелев, С.Д., Гурович Ф.Г. Математико-статистические методы экспертных оценок. —М.: Статистика, 1980. -263с.
19. Бикел, П., Доксам, К. Математическая статистика. М.: Финансы и статистика, 1983. вып.1. -278с.; Вып.2. -254с.
20. Боровиков, В.П. Statistica для студентов и инженеров. — М.: Компьютер * Пресс,2001.-301с.
21. Браверман, Э.М., Мучник, Ч.Б. Структурные методы обработки ' эмпирических данных. М.: Наука, 1983. -^464с. ' 1
22. Васильев, Н.С., Панов, В.М. «Имитационное моделирование сложных систем» М.: Практика, 1998.
23. Вапник, В.Н., Червоненкис, А .Я1. Теория распознавания образов. — М.:г <1. Наука, 1974. -487с.
24. Васильев, В.Н. Распознающие системы. Текст. / В.Н. Васильев // Справочник. -Киев.: Наукова думка, 1983. -82с.
25. Вельховер, Е.С. Клиническая рефлексология. Текст. Е.С. Вельховер, В.Г. Никифоров. -М.: Медицина, 1983.С. 19-83.
26. Вероятностные методы в вычислительной технике / A.B. Крайников и др.,-М.:Высш.шк.,1996.-312 с.
27. Волкова С.Н., Муха Д.В. Моделирование и прогнозирование эволюционных процессов в социально-экологических системах. Курск: Изд-воКГСХА, 1999.-153 с.
28. Воробьев, С.А. Математическая обработка результатов исследований в медицине, биологии и экологии. Текст.» / С.А. Воробьев, A.A. Яшин // под ред. A.A. Яшина: Монография; Тула. ТулГу, 1999: -120с.
29. Винник, Ю:С. Эффективность применения глутоксима в комплексном! лечении больных острым панкреатитом / Ю.С. Винник, Г.В. Бульгищ G.G. Дунаевская // Сибирское мед. Обозрение 2002.- №2. -С.29-32.
30. Гаваа Лувсан. Очерк методов восточной рефлексотерапии:- 3-е изд. -Новосибирск, 1991'. 432 с.
31. Гаврилов, И.Л. Построение экспертных систем с базой знаний на нечетких сетевых моделях обучаемых по структуре данных Текст.: H.A.
32. Гаврилов, И.Л. Прогнозирование и ранняя диагностика панкреатитов по микроэлементному статусу Текст.: H.A. Кореневский, Л.П! Лазурина^ И.Л5. Гаврилов, А.Л. Локтионов. Вестник Воронежского государственного университета.
33. Гаврилов, И.Л. Прогнозирование возникновения и оценка- степени^ тяжести панкреатитов на основе нечеткой логики принятия решений'Текст.: А.Л. Локтионов, H.A. Кореневский, Л.П. Лазурина, И.Л. Гаврилов / Биомедицинская техника и радиоэлектроника
34. Гайдышев, И:И: Анализ и обработка данных: специальный справочник. -СПб.: Питер, 2001. -752 с. и
35. Галушкин, А.И. Синтез многослойных4 систем распознавания образов. Текст. / А.И. Галушкин М.: Энергия, 1974. -386с.
36. Гельфанд И.М., Розенфельнд Б.И., Шифрин М.А. Очерки о совместной работе математиков и врачей / Под ред. С.Г. Гиндикина. М.: Единоториал; УРСС, 2005. — 320 с.
37. Генкин, ЯШ. Новая информационная технология анализа медицйнских данных. СПб: Политехника, 1999. -191с.
38. Глухов, A.A. Статистикам медицинских'исследованиях Текст. / A.A. Глухов, A.M. Земсков, H.A. Степанян, A.A. Андреев, А.Н. Рог, Э.В1 Савенюк, И.Н. Химина, В.А. Куташов. Воронеж: Изд-во «Водолей», 2005. -158с. '" •I
39. Гмурман, В.Е. Теория вероятностей и математическая статистика.- « М.:Высш.шк., -2000, 479 с.
40. Горбань, А.Н., Дунин-Барковский В.Л., Кирдин А-.Н. и' ' др; Нейроинформатика. Новосибирск: Наука. Сибирское предприятие РАН, 1998.-296с. .
41. Горбань, А.Н. Обучение нейронных сетей. —М.: Изд. СССР-США СП «ParaGraph», 1990.-160с. " *
42. Горбатенко, П.К. Моделирование процесса распознавания с помощью нейронной сети. Текст. / П.К. Горбатенко, JI.H. Паринский // Вестник новых медицинских технологий. -2000 -Т.: VII, №3 —4.С.21-22.
43. Горелик, A.JI. Методы распознавания. Текст. / A.JI. Горелик, В.А. Скрипкин М.: Высшая школа, 1984.-258с.
44. Горелова, B.JL, Мельникова E.H. Основы прогнозирования систем. -М.: Высш.шк., 1996-287 с.
45. Гублер, Е.В. Применение непараметрических критериев статистики в медико-биологических исследованиях / Е.В. Гублер, A.A. Генкин. JIí: Медицина, 1973.-103с.
46. Гублер, Е.В. Вычислительные методы анализа № распознавания патологических процессов: — Л.: Медицина, 1978. —296с.
47. Гринин, A.C. Математическое моделирование в экологии Текст.: Учебное пособие для вузов / A.C. Гринин, H.A. Орехов, В.Н. Новиков. -Mi: ЮНИТИ-ДАНА, 2003.296с.
48. Демьянов, A.B. Диагностическая* ценность исследования уровней цитокинов в клинической практике / A.B. Демьянов, А.Ю. Котов, 'A.C. Симбирцев // Цитокины и воспаление. -2003. -Т.2, №3. -С.20-35.
49. Дронова, Т. А., Артеменко М.В. Два подхода к синтезу диагностических правил при скрининге по результатам лабораторных анализов .// Материалы всероссийского научного форума «Инновационные технологии медицины XXI века», М.,2005 -с.427-429 * !>
50. Дуброва, Т.А. Статистические методы прогнозирования- Текст.: Учебное пособие для вузов / Т.А, Дуброва. М.: ЮНИТИ-ДАНА, 2003.206с. 65: Дуда, Р.', Харт П. Распознавание образов и анализ сцен. М.: Мир' 1978.-5 Юс.
51. Дюк, В., Эмануэль, В. Информационные технологии в медико-биологических исследованиях. — СПб: Питер, 2003. —528с.
52. Елисеева, H.H. Общая теория статистики. Текст./ H.H. Елисеева, М.М. Юзбашев // Учебник под ред. И.И. Елисеевой. -4-еизд., перераб. и доп. — М.: Финансы и статистика, 2003.-480с.
53. Енюков, И.С. Методы, алгоритмы, программы1 многомерного статистического анализа. М;: Финансы и статистика, 1986. - 325 с.
54. Загоруйко, H.F. Методы?, распознавания. и> их; применение: .— Mi: Сов* радио, 1972. -308с.
55. Заде, Л: Основы нового подхода к анализу сложных систем и процессов принятия-!решени№//Математика:сегодня: -М.: Знание, 1974: '! v'?:';,bn.!
56. Заде, Л.А. Понятие лингвистической переменной, и ее применение к принятию приближенных решений: Текст. / Л.А. Заде М.: Мир, 1976. — 312с. ' •
57. Зилов, В.Г. Новое в изучении акупунктурных меридианов тела человека. Текст. / В.Г. Зилов // Вестник новых медицинских технологий. -1999 —Т. VI. №3-4. -С.148-153.
58. Ивахненко, А.Г. Самообучающиеся системы распознавания и автоматического регулирования. Текст. / А.Г. Ивахненко — Киев: Техника, 1969: -392с.
59. Ивахненко, А.Г. Справочник по типовым'программам моделирования. Киев; Техника -1990, -256 с.
60. Ивахненко; А.Г. Долгосрочное прогнозирование и управление сложными системами. Киев: Техника, 1975. — 3 Мс. 80:. Ивахненко, А.Г., Юрачковскищ Ю.Н1 Моделирование сложных систем/: по экспериментальным данным. — М:: Радио^и связь, 1987. —118с.
61. Капица, С.П., Курдюмов СЛ., Малинецкий Г.Г. Синергетика и прогнозы будущего М:: Едиториал УРСС, 2003;-288-с:
62. Кон, Е.М. Оценка5 тяжести-заболевания при остромшанкреатите / Е.М. Кон; В;А. Черкасов // IX Всерос. съезд хирургов (20-22 сентября :2000гЦ г.Волгоград).—Волгоград,.2000.—С.62-63'.
63. Кореневский; H.A. Проектирование систем принятия решений на нечетких сетевых моделях • в задачах медицинской диагностики' й прогнозированиям Текст. / Н: А. Кореневский;// Вестник новы» медицинских технологий, 2006.Т.ХШ;№2:С.6-10. : j
64. Кореневский; H.A. Синтез! меридианных: моделей для рефлексодиагностики и рефлексотерапии: Текст. / H.A. Кореневский;- B.B: Буняев // Системный анализ* и управление в биомедицинских системах.' Том з.ш, 2004. -С.178-182.
65. Кореневский, H.A. Энергоинформационные* модели? рефлексодиагностики-. Текст., / H.A. Кореневский, Л:П. Лазурина !// Монография Курск, ОЦМП, 2000, -177с. •
66. Кореневский, H.A. Энергоинформационные основы рефлексологии. Текст. / H.A. Кореневский, М.И. Рудник, Е.М. Рудник, Курск, гуман.-техн! инст., Курск, 2001-236с. '
67. Кореневский, H.A., Тутов Н.Д., Лазурина Л.П. Проектированиеjмедико-технологических информационных систем // КурскГТу, Курск, 2001.194 с.
68. Котов, И:Ж., Артеменко М.В: Врожденные пороки развития — индикаторы экологической напряженности региона (опыт системного^ анализа и математического моделирования) - Курск, МУТТ «Кур.гор.тип.», 2002,- 168 с.
69. Котов И.Ж., Покровский М.В., Артеменко М.В., Баранов- ;В^П*. Принципы управления как ключевой фактор улучшения социальной адаптации и показателей-репродуктивного здоровья женщин: Монография1 — Курск,.2005. 192'с. ; , i)i,! "
70. Котов Ю.Б. Новые математические подходы к задачам'медицинской» диагностики. М.: Единоториал, УРСС, 2004. -328 с.
71. Кульбак, С. Теория информации и статистика. — М.: Наука, 1967. -^408с7
72. Кэнал, JT. Обзор систем для анализа структуры образов и разработки алгоритмов классификации в режиме диалога. Текст. / Л. Кэнал // Распознавание образов при помощи цифровых вычислительных машин. —М.: Мир; 1974.-157с.
73. Лбов, Г.С. Логические функции в задачах эмпирического предсказания. Текст./ Г.С. Лбов // Эмпирическое предсказание и распознавание образов: Вычислительные системы. Новосибирск, 1978, вып.76. -С.34-64.
74. Лбов, Г.С. Методы обработки разнотипных экспериментальных данных. Текст. / Г.С. Лбов, Новосибирск: Наука. 1981. -287с.
75. Лейдерман, H.H. Синдром полиорганной недостаточности (ПОН)! Метаболические основы (Лекция часты 1) / H.H. Лейдерман // Вестн.' интенсив, терапии: -1999. -№2. -С.24-28.
76. Лейдерман, H.H. Синдром полиорганной недостаточности (ПОН). Метаболические основы (Лекция часть 2) / И.Н. Лейдерман // Вестн. интенсив, терапии. —1999. —№3. —С.32-37. ' ■
77. Леоненков A.B. Нечеткое моделирование в* среде MATLAB fiizzeTesh. Спб.: БХВ-Петербург, 2003. - 73 6с.
78. Лисенков, А.Н. Математические методы планирования многофакторных медико-биологических экспериментов. — М.: Медицина, 1979. -344с. ' ' ■ •
79. Литвак, Б.Г. Экспертная информация. Методы получения и анализа. — М.: Радио и связь, 1982. -184с.
80. Лорьер, Ж.-Л: Системы искусственного интеллекта. М.: Мир —1991.— 342с.
81. Медицинские математические- модели и их идентификация //Итоги науки и техники. ВИНИТИ.-1998.-216 с.
82. Мелихов, А.Н. Расплывчатые ситуационные модели принятия решений Текст. / А.Н. Мелихов, Л.С. Берштейн, С.Я. Коровин // Учеб. Пособие, Таганрог: ТРТИ, 1986. -211с.
83. Нечеткие множества и теория возможностей. Последние достижения: Пер. с англ. / Под ред. Р.П. Ягеря. М.: Радио и связь, 1986. -408с.
84. Никифоров, В.Г. Электропунктура метод изучения механизмов иглорефлексотерапии Текст. / В.Г. Никифоров // В кн. Электропунктура и проблемы информационно-энергетической регуляции деятельности человека. М: 1976.-С.11-19.
85. Нильсен, Н.Д. Искусственный интеллект. Методы поиска решений. — М.: Мир, 1973. -298с.
86. Омельченко, В.П. Практикум по1 медицинской информатике Текст.'/ В.П. Омельченко,ч A.A. Демидова // Серия учебники. Учебные пособия:1/ Ростов на Дону. Феникс, 2001.304с.
87. Орлов, А.И. Прикладная теория измерений // Прикладной многомерный статистический анализ. -М.: наука, 1978.С.68-138.
88. Оссовский, С. Нейронные сети для обработки информации. Текст. / Оссовский С. / Пер. с польского Рудинского Л: Д. — М.: Финансы и статистика.2002. -344с.
89. Пашков, В.Г. Использование'лапароскопии в лечении деструктивного панкреатита / В.Г. Пашков, CA. Аносов // Эндоскопич. хирургия. —1998.' -№1. -С.37. ' • !:i¡
90. Подшибякин, А.К. Об изменении электрических потенциалов во внутренних органах и связанных с ними активных точек кожи // Физиол! журнал. СССР,1995, Т.41', вып.З. -С.357-362.
91. Попов, Э.В. Экспертные системы: Решение неформализованных задач в диалоге с ЭВМ. М.: Наука, 1987. -287с. ■ 1
92. Портнов, Ф.И: Электропунктурная рефлексотерапия. — Рига: Зинатне. 1980:-245с. ■ —
93. Порохна, В:С. ' Некоторые аспекты рефлексодиагностики' и рефлексотерапии // Вестник новых медицинских технологий. 2003 Т.Х, №3 —С.45-47. .
94. Построение экспертных систем: Пер. с англ./ Под ред. Ф. Хейса Рота, Д. Уотермана, Д. Лената. -М.: Мир, 1987.-412с.
95. Плотников, В.В. Автоматизация методик психологического исследования Текст. /В.В. Плотников, Н.А. Кореневский, Ю.М. Забродин. — Орел, изд-во института психологии АНСССР; ВНИИОТ Госагропрома СССР, 1989.-327с.
96. Радионов, И.А. Критерии1 оценки тяжести состояния больных с панкреонекрозом / И.А. Родионов, А.В: Шабунин, М.С. Гордеев // IX Всерос. съезд хирургов (20-22 сентября.2000 г., г. Волгоград). Волгоград, 2000: —С.7-7:
97. Распознавание образов и медицинская диагностика1 / Под ред-. Неймарка Ю.И., гл. ред. физ.-мат. литературы издательства «Наука»,- М., 1972.-328с.
98. Реброва, О.Ю. Статистический анализ, медицинских данных: Применение пакета прикладных программ STATISTICA. М.,МедиаСфера. 2003,312с.
99. Савельев, B.C. Лечебная тактика при панкреонекрозе / B.C. Савельев,1 М.И. Филимонов, Б.Р. Гельфанд // IX Всерос. съезд хирургов (20-22 сентября 2000 г., г. Волгоград). -Волгоград, 2000:-С.111-112.//
100. Савельев, B.C. Панкреонекроз. Состояние и перспектива / B.C. Савельев, В:А. Кубышкин // Хирургия. 1993. -№6. -С.22-28.
101. Селье Г. Стресс без дисстресса . М.: Прогресс, 1979. - 215 с.
102. Таусенд, К., Фохт, Д. Проектирование и программная реализация экспертных систем на персональных ЭВМ. М.: Финансы и статистика 1990. -346с.
103. Терехина, А.Ю. Анализ данных методами многомерного шкалирования Текст. / А.Ю. Терехина. -М.: Наука, 1986. -215с.
104. Тутов, Н.Д. Методы диагностики заболеваний по содержанию микроэлементов в. органах и тканях / Тутов- Н.Д., Лазурина Л.П. // Биомедицинская радиоэлектроника 2001. №3.G. 35-40.
105. Уинстон, П. Искусственный'интеллект.-М.: Мир, 1980.-520с. !
106. Уотермен, Д. Руководство по экспертным системам. — 1980. —384с. '
107. Уотерман, Р.Д. Построение экспертных систем Текст.: Д. Уотерман, Д: Ленат, Ф. Хейсе-Рот.: пер: с англ. М.Мир, 1987. -521с.
108. Усков, A.A. Интеллектуальные технологии управления. Искусственные нейронные сети и нечеткая логика Текст. / A.A. Усков, A.B. Кузьмин. М.: горячая линия телеком, 2004. -143с. 11' ' °
109. Устинов, А.Г. Автоматизированные медико-технологические системы в 3-х частях Текст. / A.F. Устинов, В.А. Ситарчук, H.A. Кореневский // Под ред. А.Г. Устинова // Монография КурскГТУ, Курск. 1995. -390с.
110. Флейшман, Б.С., Брусиловский, П:М., Розенберг, Г.С. О методах математического моделирования сложных систем // Системные исследования. Ежегодник. М:: Наука, 1982. - С. 65-79.
111. Фогель, Л., Оуэне, А., Уолш, М. Искусственный интеллект и эволюционное моделирование. Мир, 1969. -230с.
112. Фомин, A.A., Тарловский, Г.Р. Статистическое распознавание образов. Текст. / A.A. Фомин, Г.Р. Тарловский. Радио и связь, 1986i 288с. ' v "
113. Фролов, В.Н., Управление в биологических и- медицинских системах Текст.: Учеб. пособие / В.'Н. Фролов. Под ред. д-ра техн. наук проф. Я.Е. Львовича и д-ра мед. наук, проф. М.В, Фролова Воронеж, гос. техн. унт, Воронеж, 2001. 327с.
114. Шехине, М.Т. Ранняя диагностика холецистита по содержанию микроэлементов в крови человека и данным рефлексодиагностики; Текст. 7
115. Н.А. Кореневский, М.Т. Шехине, Л.П. Лазурина // Информационные технологии в медицине и педагогические исследования: материалы Межрегиональной научно-практической конференции. Часть1.- Курск. 2009, КГУ.- С. 100-104.
116. Шехине, М.Т. Синтез комбинированных нечетких решающих правил для» прогнозирования и диагностики острого? холецистита Текст. / Л.П." Лазурина, М.Т. Шехине; Hi А-. Кореневский, М.В'. Артеменко • • 41 Биомедицинская радиоэлектроника. ' ''
117. Alexander, J., Jayne, D: Multi-Cause Coding: A Major« Step in improving Mortality Statistics'in Australia. Proceedings of the ICE on Automating Mortality Statistics, voi. II; CDC, Hyattsville, Maryland, September, 2001. '
118. Arslan,.E. The relationship between tumor necrosis-factor (TNF) alpha, and survival following granulocyte colony stimulating factor (G CSF) administration in burn-sepsis / E. Arslan,M. Yavuz, G. Dalay // Burns. -2000: -Vob.26; №6. -P:521-524. '
119. Bachman, G. Leitfaden der akupunktur, die akupunktur, eine altchiriesische-Heilwese und ihre kliniseh-experimentle Bestatigug.G. Bachman. Ulm-Donau: 196kP:2039; ■ •
120. Bone, RiC. Sepsis: a new hypothesis for pathogenesis of the disease process / R.C. Bone, С J. Godzin R.A. Balk // Chest. -1997. -Vol.112. -P.235-243.
121. Bone, R.C. Sir Isaac Newton, sepsis, SirS and CARS / R.G. Вопё // Grit! Care. Med. -1996. -Voli24. -P.l 125-1129:
122. Bruce, G. Buchanan, Edward H. Sportlife. Rule-Based Expert SystemsA The MYCIN Experiments of the Stanford Heuristic Programming Projext. Addison-Wesley Publishing Company. Reading, Massachusetts, 1984, ISBN 0-201-10172
123. Chandrasekaran, B;, Mittal, S., Conceptual Representation of Medical Knowledge for Diagnosis by Computer: MDX snd Related System // Adv. Comput. 1983.-N22.-P.217-293:
124. Cheg, Tan-An "s "Treatment of Shang Han Diseases" American J. Acupuncture. 1988.V.16.№4. pp.351-357.
125. Clough, K., Jardine, I. Telemedicine the agent for change // Brit J. Healthcare Comput: Inform;.Management-2001.-Voin 8; no;8r-P122-24l
126. Head; G.Die Sensibilititsstürungen- der Hant bei Visceralerkrandkungen. Berlin: Hirschwald;; li>98r • • ' •
127. Hoang Bao T'au; La Kuang Niep. Acupucture. Translate from Vietnam. in Russian.'. Moscow:.Medicine, 1989: ISBN 5-225-00299-4.
128. Hsu; Jay CI, Andrew U. Meyer. Modern control principles and applications. New York: McGraw-Hill, 1968. ;
129. Hu Xianglong, Wu Baohua, You Zhenguan. "Preliminary analysis of the mechanism underlying the phenomenon of channel blocking" J. Trad. Chinese Medicine. 1986. V.6 №4.pp. 289-296.
130. Jayasuriya, A. Scientific Basis of Acupuncture. Chandrakanthi Press (International) Colombo, Sri Lanka, 1987.
131. Jonson, C.H. Pancreatic Diseases / C.H. Jonson, C.W. Imprie // Springer.-1999.-P.1-253.
132. Kendall, D.E. "A Scientific model for acupuncture: part 1" American Journal of acupuncture. 1989. V. 17, №3 .pp.251-268. ; 5
133. Kendall, D. "A Scientific model for acupuncture: part 1 &2" American Journal of acupuncture. 1989;.17(3) pp.251-268; 17(4)pp.343-360.
134. Kobrinsky,B., Tester, I., Demikova, N. et al. A. Multifunctional^ system of1 the national genetic register // Medinfo'98: Proc.9111 Intern, congr. On medical informatics. Ptl.-Seoul, 1998.-P.121-125.
135. Kobrinsky, B.A., Database for disabled children received an injuries in disasters // Prehospital and Disaster med.-1997.-Vol.12, №3.Suppl.l.-Pl90-91.
136. Kulback, S. Information Theory and Statistics. New York: Wiley, 1959.
137. Manaka, Y. Practice of Acupuncture.-Yokosuka, 1972.-185 p. ' • -iwsi o!
138. Mann, F. Acupuncture: The ancient Chinese art of heating.-L.A Heinemann, 1978.-200p. ' is
139. Negoita, C.N. Expert System and Fuzzy Systems. The Benjamin/ Cammings Publishing Co., Menio Park, CA, 1985. : !
140. Nechushkin, A.L. "Definition of a functional condition of the channel on change of electroskin resistance in one point."Igloreflexoterapia in Russian. Gorkkii. 1974.pp.22-25:
141. Niboyet, J.E.H. L' anesthesia; par 1' acupuncture. Maisonneuve, sainte1. Ruffine, 1973.
142. Nystrom, P.O. The systemic inflammatory response syndrome : definitions and aetiology/ P.O. Nystrom// Journal of Antimicrobial Chemotherapy.-1998.-Vol.4'.-P.l-7. '
143. Sammon; Y.W. A;. Nonlinear- mapping for Data Structure; Analysis//' IEEE Trans/ Gomputi-1969; -C-18-N5-P:401.-409; ' •
144. Schnorrenberger, C.C. Lehrbuch der chinesischen Medizin für westliche Arzte. Die theoretischen Grundlagen der chinesischen Akupunktur und Arzneiverordnung.-Stuttgart: Hippokrates Veri., 1979.-636 S.
145. Schnorrenberger, C.C. Spezielle Techniken der Akupunktur und Moxabustion.-Stuttgart: Hippokrates Veri., 1983.-385 S.
146. Seem, M.D. Acupuncture imaging: Perceiving the Energy Pathways of the Body: A Guide for Practitioners and Their Patients. Healing* Arts Press Rochester, Vermont, 1990, p85.
147. Shortliffe, E.H. Computer- Based medical Consultations: MYCIN, New York: American Elseviver, 1976. '
148. Sokolova Marina, Hudec Oto. Neurab Networks for Economical Data Prediction*// 6th International Scientific Conference «Applications of Mathematics and Statistics in Economy», Banska Bystrica, Slovakia, 2003. '
149. Song X, Mitnitski A, MacKnight Ch. and, Rockwood K. Assessment of1.dividual* Risk of Death Using Self-report Data: an- Artificial Neural' Network2
150. Compared to a Frailty Index / Journal5 of the American Geriatrics Society, Issue 7, July 2004.
151. Tran*, D.V. "The curious meridians." American Journal of acupuncture. 1989.V.17, №l!,pp.45-56.
152. Tran,» D:V. "Wind as a factor of pathogenesis." American Journal of acupuncture. 1988.V.16,№2.pp.l59-164.
153. Weiss, S.M., Kulikowski, C.A. A Practical Guide to Desinging Expert System.- New Gersey: Powman &Allan-heild Publ., 1984. n!
154. Werbos, P.J. Beyondf Regression: New Tools for Prediction and Analysis in; theBehavioralSciences, Ph.D. in Statistics, Harvard University, 1974.
155. Voll, R. "Electroakupuncturdiagnostik" Medizin heute. 1960.№5.P: 128-131.
156. Voll,R. "Electroakupuncturtepapie" Medizin heute.l960.№l.P.256-260.
157. Voll, R. "Gelöste und ungelöste Probleme den Electroakkupunctur" Schriftenrehe des Zentralrerbandes der Ärtzte für Naturheilverfahrenl 1961.5.Sonderheft.P.148-152.•n
158. Yeh, F.L. Changes in ciculating levels of anti inflammatory cytokine interreukin 10 in burned patients / F.L. Yeh, W.L. Lin, H.D. Shen // Burns.-2000.-Vol.26, №5.-P.454-459.
159. Zadeh, L.A Advances in Fuzzy Mathematics and Engineering Fuzzy Sets and Fuzzy information-Granulation Theory. Beijing. Beijing Normal University Press. 2005. ISBN 7-303-05324-7
160. Zadeh, L.A., King-Sun Fu, Kokichi Tanaka, Massamichi Shimura. Fuzzy sets and their applications to cognitive and decision processes. Academic Press, Inc. New York San Francisco London, 1975. ISBN 0-12-775260-9
161. Zhao Jianguo, Zhang Linying. "Review of the current status of acupuncture and moxibustion." American Journal of acupuncture. 1986. V/14, №2. pp.105-109.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.