Метод оценки соответствия метрологического обеспечения предприятия при сертификации его системы менеджмента качества тема диссертации и автореферата по ВАК РФ 05.11.15, кандидат технических наук Храменков, Алексей Викторович
- Специальность ВАК РФ05.11.15
- Количество страниц 136
Оглавление диссертации кандидат технических наук Храменков, Алексей Викторович
Введение
Глава 1. Анализ целей и задач метрологического обеспечения 15 предприятия.
1.1 Содержание метрологического обеспечения разработки и 15 производства продукции.
1.2 Роль метрологического обеспечения предприятия в его 29стеме менеджмента качества.
1.3 Постановка задачи исследований.
Глава 2. Оценка влияния метрологического обеспечения на показатели его эффективности.
2.1 Влияние погрешностей измерений параметров 44 технологического процесса на его точность.
2.2 Влияние погрешности СИ на достоверность контроля 50 качестваздаваемой предприятием продукции.
2.3 Оценка влияния достоверности метрологического анализа на 59 качество продукции.
Глава 3. Разработка метода проверкиатистических гипотез при 73 оценкеответствия метрологического обеспечения предприятия установленным требованиям.
3.1 Выбор показателей метрологического обеспечения для 73 оценки егоответствия установленным требованиям.
3.2 Выбор методики проверкиатистических гипотез для 84 оценкиответствия метрологического обеспечения установленным требованиям.
3.3 Сравнение числа наблюдений (объема выборок) для 93 различных процедур проверкиатистических гипотез.
Глава 4. Разработкаособа определения оптимальных параметров последовательной процедуры проверки статистических гипотез.
4.1 Анализ принципов и возможных подходов к выбору 98 показателей эффективности метрологического обеспечения.
4.2 Выбор комплексного показателя эффективности проверки 106ответствия метрологического обеспечения предприятия.
4.3 Разработка математической модели расчета экономической 113 эффективности проведения проверкиответствия метрологического обеспечения предприятия установленным требованиям.
Рекомендованный список диссертаций по специальности «Метрология и метрологическое обеспечение», 05.11.15 шифр ВАК
Метрологическое обеспечение приборов компьютерного инверсионного вольтамперометрического анализа состава веществ2002 год, кандидат технических наук Чухланцева, Марина Михайловна
Управление качеством процесса метрологического обеспечения разработки, серийного производства и обслуживания радиоэлектронных средств измерений2011 год, кандидат технических наук Золотухина, Надежда Павловна
Разработка структуры информационной системы и алгоритмов реализации метрологических требований документов аналитической лаборатории2009 год, кандидат технических наук Толстихина, Татьяна Викторовна
Разработка алгоритмического и программного обеспечения адаптивной методики расчёта достоверности результатов поверки средств измерений2012 год, кандидат технических наук Сулейман Имад Ахмад
Метрологическое обеспечение сертификационных испытаний газовой продукции0 год, кандидат технических наук Окрепилов, Михаил Владимирович
Введение диссертации (часть автореферата) на тему «Метод оценки соответствия метрологического обеспечения предприятия при сертификации его системы менеджмента качества»
Эффективность работы промышленного предприятия зависит от множества факторов, среди которых важное место занимает повышение качества продукции и обеспечение ее соответствия требованиям отечественных и международных стандартов. В условиях жесткой конкуренции в единой системе международных экономических отношений основными условиями конкурентоспособности предприятия является качество создаваемой продукции, ее цена и способность предприятия выполнить требования заказчика в установленные сроки. Качество продукции рассматривается сейчас как способ удовлетворения потребителя, так и средство уменьшения издержек производства. Как показывает практика, потери предприятия из-за низкого качества продукции, вызванные обнаружением и устранением дефектов, могут достигать до 30% от текущих затрат на производство продукции. Данное обстоятельство приводит к необходимости разработки системы управления качеством предприятия, способной при рациональном сочетании материальных, временных и стоимостных затрат на повышение качества продукции обеспечить производство продукции, удовлетворяющей требованиям заказчика.
В настоящее время вопросы повышения качества продукции решаются на основе систем управления качеством предприятия, соответствующих требованиям международных стандартов ISO серии 9000. Важнейшим элементом системы управления (менеджмента) качества (СМК) предприятия является система его метрологического обеспечения, играющая в СМК роль информационно-аналитической основы для управления (улучшения) процессами и объектами, т.е. результативностью СМК предприятия. Метрологическое обеспечение отличает наибольший объём требований в рамках систем менеджмента качества, включающих не только непосредственные измерения в совокупности видов деятельности предприятия, но и повсеместное присутствие измерений при мониторинге и анализе других видов деятельности, начиная с контроля точности технологических процессов предприятия и заканчивая мониторингом выпускаемой продукции, внутренним аудитом и адекватными корректирующими (управляющими) действиями [19, 62]. Согласно ГОСТ Р ИСО 9001-2008 [30] оценка результативности СМК, т.е. правильности и полноты осуществления процессов, необходимых для СМК, управленческая деятельность руководства предприятия, обеспечение ресурсами должны проводиться на основе достоверной объективной информации, которую можно получить только на основе измерений, обладающих необходимыми точностными показателями, полнотой и своевременностью.
Оценка соответствия метрологического обеспечения предприятия требованиям, предъявляемым к СМК, предполагает контроль соответствия средств измерений (наличие сертификата об утверждении типа, первичной и периодической поверки, работоспособности, наличие документации), методик измерений, испытательного оборудования, средств контроля, планов проведения метрологической экспертизы требованиям, установленным в обязательных нормативных документах.
• Анализ «метрологического потенциала» промышленных предприятий (в основном приборостроительных и машиностроительных) показывает, что в среднем на предприятии имеются тысячи средств измерений (СИ), сотни образцов испытательного и контрольного оборудования (ИО), аттестованных методик измерений (МИ). Если учесть, что проверка «соответствия-несоответствия» каждого экземпляра СИ, ИО, а также МИ установленным требованиям составляет в среднем 0,5 часа, то оценка соответствия метрологического обеспечения при сертификации СМК предприятия группой экспертов 3-5 человек потребует неприемлемо большого времени. С другой стороны, требования по метрологическому обеспечению носят, как правило, обязательный характер. Поэтому невыполнение большинства из них приводят к критическому (существенному) несоответствию СМК предприятия установленным требованиям и является основанием для отказа в выдаче предприятию сертификата на СМК. Данное обстоятельство заставляет, наоборот, стремиться к возможно большему объему проверки и, соответственно, большей достоверности оценки соответствия.
Таким образом, имеется противоречие между потребностями в повышении достоверности оценки соответствия метрологического обеспечения предприятия установленным требованиям и возможными затратами на ее получение.
Разрешение этого противоречия невозможно в рамках существующих методов оценки состояния метрологического обеспечения и требует разработки нового научно-методического аппарата, устанавливающего рациональные соотношения между достоверностью оценки соответствия метрологического обеспечения и возможными затратами, связанными с получением такой оценки.
Исследования по отдельным вопросам оценки соответствия метрологического обеспечения установленным требованиям проводились в ряде работ. Так, методология проведения контроля качества продукции и метрологического надзора разработана Богомоловым Ю.А., Исаевым JI.K., Окрепиловым В.В., Асташенковым А.И.
Вопросы стратегии получения экспертных оценок качества продукции в зависимости от характеристик плана проверки исследовались в работах Радаева H.H., Лукашова Ю.Е., Гильта И.Ю. Исследования статистических методов экспериментального определения состояния средств измерений, контроля и испытаний и его влияния на качество продукции выполнены в работах Назарова Н.Г., Данилевича С.Б., Левина С.Ф., Данилова A.A. Организация и порядок проведения метрологической экспертизы разрабатываемой продукции и оценки влияния средств измерений на качество технических систем рассмотрены в работах Сычева Е.И., Шкитина А.Д., Швыдуна В.В.
Однако в проведенных исследованиях методы разрешения вышеуказанного противоречия не рассматривались, поэтому разработка метода оценки соответствия метрологического обеспечения предприятия установленным требованиям, позволяющего получить необходимую достоверность оценки соответствия при минимальных затратах на ее получение, является новой актуальной научной задачей, имеющей существенное значение для повышения результативности СМК предприятий.
Для решения сформулированной научной задачи в первой главе диссертации проведен анализ целей и задач метрологического обеспечения предприятия, рассмотрено содержание метрологического обеспечения при получении измерительной информации и достижении ее необходимого качества. Анализ показал [37, 45, 51], что основные усилия по метрологическому обеспечению на предприятии сосредоточены на поддержании точностных показателей технологических процессов создания продукции, испытаниях и контроле ее качества, а также на проведении метрологического анализа (метрологической экспертизы) конструкторской документации, регламентирующей процедуры измерений и измерительного контроля при эксплуатации продукции .
С учетом этого в главе предложена скорректированная известная «петля» качества [35, 73], учитывающая как формирование управляющих воздействий руководства предприятия, так и в управление устройствами для мониторинга и измерений. Анализ требований, содержащихся в ГОСТ Р ИСО 9001-2008 [79], показал, что в нем регламентируются лишь процедуры управления устройствами для мониторинга и измерений предприятия. Такие направления деятельности по повышению качества выпускаемой продукции, как метрологический анализ конструкторской документации, аттестация методик измерений, метрологический надзор за состоянием и правильным применением средств измерений и испытательным оборудованием в [38, 40, 46, 83] не регламентируются и-, следовательно, не проверяются. В связи с этим в 1 -й главе диссертации приведена постановка задачи исследований, содержащая цели, частные задачи исследований, объект, предмет и методы исследований, положения, выносимые на защиту.
Во второй главе диссертации проведены исследования по оценке влияния показателей качества измерений на эффективность функционирования предприятия и результативность его системы менеджмента качества. Используя методы теории чувствительности [58], проведен анализ влияния погрешности измерений на точность технологического процесса и достоверность контроля качества выпускаемой продукции. При этом погрешность измерений параметров технологического процесса и продукции рассматривалась как нестационарный случайный процесс, обусловленный изменением со временем погрешности средств измерений вследствие деградационных процессов в элементах, входящих в их состав [8]. В диссертации получены зависимости точности технологического процесса и достоверности контроля качества выпускаемой продукции как от погрешности измерений, так и от характеристик средств измерений (их метрологической надежности) и показателей системы их поверки (величины межповерочного интервала и достоверности поверки). Анализ полученных зависимостей показал необходимость проверки выполнения требований нормативных документов системы ГСИ в части проведения поверки средств измерений и аттестации испытательного оборудования при оценке соответствия метрологического обеспечения предприятия установленным требованиям.
Кроме того, в главе проведен анализ влияния полноты и правильности проведения метрологической экспертизы конструкторской документации создаваемой предприятием продукции в части методов и средств измерений и измерительного контроля, проводимых в ходе эксплуатации продукции. Как установлено в [27, 39], при проведении метрологической экспертизы анализируются и оцениваются правильность выбора измеряемых (контролируемых) в процессе эксплуатации параметров продукции, допусков на их отклонение, соответствие погрешностей измерений и выбранных средств измерений требуемым значениям, наличие и обоснованность системы поверки средств измерений, входящих в состав создаваемых образцов продукции (или необходимых для их эксплуатации).
Оценка влияния качества выполнения описанных выше процедур, реализуемых в ходе метрологической экспертизы, проводилась с помощью модели [60], устанавливающей зависимость надежности, (коэффициента готовности) образца от качества измерений и измерительного контроля при его эксплуатации. Анализ показал, что точность, продолжительность, периодичность и полнота измерений существенно (и при этом не всегда монотонно) влияют на готовность образца продукции к применению, что подчеркивает важность проведения метрологической экспертизы конструкторской документации и продукции и, естественно, приводит к необходимости проверки полноты и правильности ее проведения при оценке соответствия метрологического обеспечения установленным требованиям.
В третьей главе диссертации разработан метод проверки статистических гипотез при оценке соответствия метрологического обеспечения предприятия установленным требованиям. Как было установлено выше, соответствие метрологического обеспечения можно оценивать только выборочным методом, что неизбежно приводит к ошибкам в оценке его состояния: признание метрологического обеспечения не соответствующим требованиям, тогда как оно им соответствует (ошибка 1 рода), и признание метрологического обеспечения соответствующим требованиям, тогда как оно им не соответствует (ошибка II рода). Методов проверки статистических гипотез и их модификаций достаточно много [12, 15, 16, 61], поэтому очень важно сформулировать критерий для их сравнения и выбора. В диссертации предложен в качестве критерия выбора метода проверки наименьший потребный объем проверок при одинаковых вероятностях ошибок I и II рода.
Применение метода проверки статистических гипотез предполагает формализованное описание оцениваемой совокупности, состоящей из единичных элементов, в виде случайной величины, характеристики (одна или несколько) которой неизвестны и должны быть оценены в ходе выборочной проверки. Кроме того, состояние элементов оцениваемой совокупности должно определяться, как правило, без применения инструментальных средств и с максимально возможной достоверностью.
Для такого представления в диссертации проведена декомпозиция показателей метрологического обеспечения предприятия в виде: обобщенный показатель метрологического обеспечения - комплексные показатели метрологического обеспечения (качество измерений, качество испытаний, качество проведения метрологической экспертизы) — единичные элементы метрологического обеспечения (средство измерений, испытательный стенд, методика измерений, процедура метрологической экспертизы) — значения характеристик единичных элементов.
Анализ показал, что единичные элементы метрологического обеспечения в наибольшей степени отвечает требованиям, сформулированным выше для элементов оцениваемой совокупности и ее формализованного списания в виде случайной величины, имеющей некоторый закон распределения. Критерии оценки соответствия каждого единичного элемента определены в нормативных документах системы ГСИ и их выполнение оценивается в виде «соответствует - не соответствует» без применения инструментальных средств. Тогда оцениваемую совокупность элементов можно описать случайной величиной, имеющей биномиальное распределение [44, 52], в котором неизвестным параметром будет доля единичных элементов метрологического обеспечения, не соответствующих установленным требованиям (например, неповеренных средств измерений, неаттестованного испытательного оборудования, неаттестованных методик измерений и др.). При этом вероятность нахождения определенного количества единичных элементов метрологического обеспечения, не соответствующих требованиям в некотором объеме выборки из оцениваемой совокупности элементов рассчитывается по известным формулам4 для биномиального распределения [59].
В диссертации проведено сравнение двух методов проверки статистических гипотез - по критерию Неймана-Пирсона и последовательной процедуры, предложенной А. Вальдом. Сравнение проводилось исходя из объема выборки каждого из методов, необходимого для достижения одинаковых вероятностей ошибок I и II рода.
Для определения необходимого объема выборки по наиболее мощному критерию выборочного контроля - критерию Неймана-Пирсона в главе получена система уравнений, устанавливающая зависимость необходимого объема выборки от вероятностей ошибок первого и второго рода. Как показали расчеты, необходимый объем выборки по критерию Неймана-Пирсона существенно увеличивается при уменьшении вероятностей ошибок I и II рода.
Сравнительный анализ объема выборки по критерию Неймана-Пирсона и среднее значение объема выборки, необходимого для последовательной процедуры проверки А. Вальда, показал, что выигрыш в необходимом объеме выборки при последовательной процедуре в среднем составляет 2-К2,5, достигая значений 3-К3,5 при вероятностях ошибок первого и второго рода, меньших 0,001.
В четвертой главе диссертации разработан способ определения вероятностей ошибок I* и II рода и необходимого объема выборки для последовательной процедуры проверки статистических гипотез при оценке соответствия метрологического обеспечения предприятия установленным требованиям.
С этой целью проведен анализ принципов и возможных подходов к выбору показателей, определяющих эффективность проведения проверки соответствия метрологического обеспечения. В ходе анализа установлено, что основным принципом выбора показателя эффективности (принцип соответствия) является его строгое соответствие цели, которая может быть достигнута в результате выполнения процесса (применения системы). Иными словами, показатель эффективности должен быть мерой достижения цели действий, мерой успешного выполнения задачи. Применительно к задаче синтеза этот принцип означает, что характер целевой функции и ее масштабные коэффициенты должны определяться так, чтобы оптимизация целевой функции соответствовала наиболее успешному выполнению поставленной задачи.
Другими принципами выбора показателя эффективности (целевой функции) являются [64]: принцип однозначности — должна минимизироваться или максимизироваться одна и только одна целевая функция, поскольку однозначное количественное измерение эффективности процесса и сведение показателя эффективности к числу позволяют легко сравнивать различные варианты процессов (процедур); принцип управляемости — целевая функция должна выражаться через переменные управления, т.е. через те характеристики процесса (системы), которые можно контролировать и изменять; иначе говоря, показатель должен быть критичен к исследуемым параметрам процесса (системы); принцип подходящей формы — желательно использовать целевую функцию, имеющую экстремум; на целевые функции, не имеющие экстремума, должны быть наложены ограничения для обеспечения решения, которое имело бы смысл; принцип иерархичности, означающий, что критерий должен учитывать связь системы с метасистемой.
Исходя из сформулированных принципов, выбран комплексный показатель эффективности процедуры проверки соответствия метрологического обеспечения предприятия установленным требованиям. Наиболее близким по смыслу "комплексному показателю эффективности процедуры проверки соответствия метрологического обеспечения является коэффициент эффективности метрологического обеспечения, предложенный в [84]. Он является типичным показателем сравнительной оценки с использованием "весовых" коэффициентов. Так, показатель метрологического обеспечения производства по предприятию определяется как взвешенная сумма частных показателей уровня метрологического обеспечения группы видов измерений, уровня организации метрологической службы предприятия, уровня проведения метрологической экспертизы и уровня квалификации работников подразделений контроля качества предприятия. Единичные (частные) показатели вида измерений характеризуют укомплектованность предприятия рабочими средствами измерений и эталонами, объем собственной поверки средств измерений, выполнение графика поверки, оптимизацию межповерочных интервалов, объем ремонта рабочих средств измерений и эталонов, техническое состояние средств измерений, правильность применения методов и средств измерений, интенсивность замены устаревших средств измерений и др.
Главным достоинством этого показателя является возможность оценить степень «совершенства» метрологического обеспечения предприятия в смысле приближения его к идеальному уровню, при котором измерения проводятся без погрешностей, с максимальными полнотой и быстродействием и т.д. Однако при этом остается открытым вопрос о потребных для достижения такого уровня затратам.
Для преодоления такого недостатка в диссертации принято следующее предположение: требования к метрологическому обеспечению предприятия и его составляющим, установленные в нормативных документах, соответствуют максимальной эффективности функционирования предприятия. Следовательно, любые отклонения от этих требований будут приводить к потерям, в конечном счете к экономическим. Иначе говоря, для' такого предположения как повышение требований к метрологическому обеспечению, так и их снижение должно приводить к уменьшению эффективности функционирования предприятия.
Исходя из выдвинутых предположений, разработана математическая модель для расчета экономического эффекта от проведения проверки соответствия метрологического обеспечения предприятия установленным требованиям.
Проведенный анализ критериев эффективности метрологического обеспечения показал, что процесс метрологического обеспечения предприятия сопровождается потерями в эффективности функционирования предприятия, обусловленными ошибочными решениями при оценке качества выпускаемой продукции и состояния его технологических процессов, и затратами на организацию и проведение оценки соответствия метрологического обеспечения [75, 82].
Потери, обусловленные неудовлетворительным состоянием метрологического обеспечения предприятия, складываются в общем случае из следующих составляющих:
-потерь, вызванных отсутствием проверки соответствия метрологического обеспечения установленным требованиям, когда доля дефектных элементов постоянно растет вследствие деградационных процессов, присущих неконтролируемым системам [23, 24];
- потерь, вызванных недостоверной оценкой состояния метрологического обеспечения предприятия из-за имеющих место ошибок первого и второго рода, а также конечных значений браковочного и приемочного уровней дефектных элементов метрологического обеспечения;
Затрат на организацию и проведение оценки соответствия метрологического обеспечения предприятия установленным требованиям, которые зависят от затрат на проверку соответствия одного элемента метрологического и среднего числа (объема выборки) элементов, необходимого для проверки соответствия при определенных значениях вероятностей I и II рода.
Полученная математическая модель устанавливает соотношение между предотвращенными экономическими потерями предприятия обусловленными проведением оценки соответствия метрологического обеспечения установленными требованиями и соответствующими корректирующими действиями, и затратами на проведение проверки соответствия и реализацию необходимых корректирующих воздействий. Она представляет собой нелинейную функцию, зависящую от четырех переменных, характеризующих процедуру проверки, при этом диапазон возможных вариаций переменных составляет 0-4. Поиск экстремума таких функций возможен различными методами, достаточно подробно описанными в соответствующей литературе [59, и др.] и представленными стандартными программами для ЭВМ.
Работоспособность» предложенного способа определения вероятностей ошибок I и II рода и необходимого объема выборки для последовательной процедуры проверки статистических гипотез при оценке соответствия метрологического обеспечения оценена в диссертации на «тестовых» функциях [66]. В результате проверки оказалось, что функция потерь, выбранная в качестве критерия эффективности процедуры проверки статистических гипотез, имеет минимум, координаты которого соответствуют оптимальным значениям вероятностей ошибок I и II .рода и объема выборки при последовательной процедуре проверок.
Координаты минимума функции потерь чувствительны к изменению исходных данных, характеризующих зависимость потерь предприятия от различных составляющих его метрологического обеспечения, что требует изучения индивидуальных особенностей каждого предприятия.
Одновременно с нахождением оптимальных значений параметров последовательной процедуры проверки статистических гипотез рассчитывался объем выборки по критерию Неймана-Пирсона при тех же значениях вероятностей ошибок I и II рода. Оказалось, что он в 1,8- 2,2 раза превышает объем- выборки, необходимый для последовательной процедуры, что хорошо1 согласуется с теоретическими расчетами.
В заключении диссертации приведены основные результаты и выводы по работе, а также сведения о их внедрении.
Похожие диссертационные работы по специальности «Метрология и метрологическое обеспечение», 05.11.15 шифр ВАК
Разработка методики синтеза метрологического обеспечения контроля технического состояния автотранспортных средств2000 год, кандидат технических наук Мищенко, Зорислав Владимирович
Научно-методические и организационно-технические основы сертификации товаров в условиях реформируемой экономики России1998 год, доктор технических наук Мигачев, Борис Сергеевич
Исследование и совершенствование метрологического обеспечения диагностирования при техническом обслуживании и ремонте автотранспортных средств: на примере электрооборудования2007 год, кандидат технических наук Исакова, Кира Сергеевна
Повышение качества контроля технического состояния автомобилей на основе совершенствования региональной системы метрологического обеспечения2007 год, кандидат технических наук Барашков, Геннадий Иванович
Разработка и исследование системы обеспечения единства координатных измерений геометрических параметров обработанных поверхностей2005 год, доктор технических наук Лысенко, Валерий Григорьевич
Заключение диссертации по теме «Метрология и метрологическое обеспечение», Храменков, Алексей Викторович
Результаты работы внедрены, при подготовке «Положения о Системе добровольной сертификации «Оборонный Регистр»» (СДС ОР) зарегистрированной в Госстандарте России (Свидетельство о государственной регистрации № РОСС БШ. В063.04 ОРОО от 29.10.02 г.), руководящего документа СДС ОР 15-2002 «Порядок сертификации систем качества», руководящего документа СДС ОР 16-2002 «Порядок проверки систем качества», руководящего документа СДС ОР 08-2002 «Положения об органе по сертификации систем качества».
Проведенные математическое моделирование поиска минимума «тестовых» функций потерь показало, что оптимальные параметры процедуры проверки существенно зависят от вида функции потерь и характеризующих ее коэффициентов, что указывает на необходимость проведения предварительного анализа составляющих потерь предприятия от его метрологического обеспечения. В ходе моделирования были подтверждены полученные теоретические выводы о значительном сокращении необходимого объема выборки при последовательной процедуры проверок при прочих равных условиях.
Заключение
Анализ содержания метрологического обеспечения показал, что оно направлено на повышение качества разрабатываемой и производимой предприятием продукции путем достижения не только необходимой точности измерений, но и полноты, своевременности и быстродействия измерений и измерительного контроля параметров и характеристик продукции на всех стадиях ее жизненного цикла - разработки, производства, испытаний и эксплуатации.
Анализ требований ГОСТ Р ИСО серий 9000 к системе менеджмента качества предприятия в части метрологического обеспечения показал, что они регламентируют, и то лишь частично, требования к техническим средствам метрологического обеспечения. Требования к организации и проведению метрологической экспертизы конструкторской и технологической документации на создаваемую продукцию, к методикам измерений и их аттестации, к организации деятельности метрологической службы предприятия не установлены и, соответственно, не оцениваются.
На основе анализа предложены показатели эффективности метрологического обеспечения предприятия, позволяющие определить влияние точностных характеристик методов и средств измерений на эффективность технологических процессов и контроля качества продукции, учитывающие метрологическую надежность средств измерений и достоверность их поверки.
В диссертации разработана модель оценки влияния погрешностей методов и средств измерений на достоверность многопараметрического контроля качества выпускаемой продукции, позволяющая оценить влияние метрологической надежности и погрешности средств измерений на показатели контроля качества продукции и учитывающая параметры системы метрологического обслуживания средств измерений.
Анализ влияния качества измерений при создании продукции на ее эффективность позволил определить совокупность элементов метрологического обеспечения предприятия, подлежащих проверке его соответствия установленным требованиям. Установлено, что к таким элементам необходимо отнести средства измерений, контрольное и испытательное оборудование, методики измерений, полноту и правильность проведения метрологического анализа (экспертизы) конструкторской документации на создаваемую продукцию.
Поскольку проведение полной проверки соответствия всех элементов метрологического обеспечения предприятия установленным требованиям практически невозможно, предложено использовать методы выборочной оценки, основанные на процедуре проверки статистических гипотез о соответствии (несоответствии) метрологического обеспечения установленным требованиям.
Для применения метода выборочной проверки соответствия метрологического обеспечения предприятия установленным требованиям необходимо математическое описание оцениваемой совокупности единичных элементов метрологического обеспечения в виде случайной величины с известным законом распределения, характеристики которого необходимо оценить при выборочной проверке.
Выбранная для проверки соответствия метрологического обеспечения совокупность его единичных элементов представлена в диссертации в виде случайной величины, имеющей биномиальное распределение с неизвестным значением доли дефектных элементов в оцениваемой совокупности.
Полученные в диссертации аналитические выражения для определения необходимого объема выборки при последовательной процедуре проверки статистических гипотез и процедуры по методике Неймана-Пирсона, зависящие от вероятностей ошибок первого и второго рода, позволяют сравнить эффективность обеих процедур выборочной проверки по критерию минимально необходимого объема выборки при одинаковых вероятностях ошибок первого и второго рода.
Проведенная оценка эффективности сравниваемых процедур выборочных проверок показала, что при последовательной процедуре выигрыш в необходимом объеме выборки составляет в среднем 2-5-2,5, а при вероятностях ошибок первого и второго рода, меньших 0,001, он достигает значений 3-^-3,5.
Разработана математическая модель оценки экономического эффекта от проведения оценки соответствия метрологического обеспечения установленным требованиям, представляющая собой предотвращенные экономические потери, вызванные его несоответствием, уменьшенные на величину затрат, связанных с проведением оценки соответствия.
Разработан алгоритм определения рациональной процедуры проверки статистических гипотез для оценки соответствия метрологического обеспечения установленным требованиям позволяющий определить такие значения вероятностей I и II рода и объем выборки, при которых экономический эффект от проведения оценки соответствия максимален.
Список литературы диссертационного исследования кандидат технических наук Храменков, Алексей Викторович, 2010 год
1. Назаров Н.Г., Крушняк Н.Т. Критический анализ понятия «качество» и возможности его количественной оценки // Измерительная техника. - 2005. - №10 - с.24.
2. Гильт И.Ю., Виниченко С.М., Сысоев Ю.С. Построение оптимальной групповой стратегии при различных законах распределения погрешности экспертных оценок // Измерительная техника. 2005. - №10 — с.58.
3. Ефремова Н.Ю. Классификация статистических моделей, применяемых для анализа данных сличений испытательных, поверочных, калибровочных лабораторий // Измерительная техника. — 2005. №5 - с.З.
4. Левин С.Ф. Обеспечение единства измерений при поверке средств измерений // Измерительная техника. 2005. - №8 - с. 14.
5. Страхов А.Ф. Многопараметровые измерительные системы // Измерительная техника. 2005. - №4 - с.З.
6. Богомолов Ю.А., Тверитипов Д.И. Метрологическая деятельность в современной концепции качества // Измерительная техника. 2006. - №5 - с.8.
7. Болычевцев А.Д., Болычевцева Л.А. Некоторые методологические аспекты проблемы повышения качества технического контроля // Измерительная техника. 2006. - №11 - с. 10.
8. Голубев Э.А., Исаев Л.К., Чирков А.П. Об оценке качества поверки средств измерений // Измерительная техника. 2006. - №8 - с. 18.
9. Назаров Н.Г., Крушняк Н.Т. Что количественно измеряют в квалиметрии // Измерительная техника. 2006. - №3 - с.25.
10. Сысоев Ю.С., Гильт И.Ю., Виниченко С.М. Использование метода оптимальных групповых стратегий для согласования результатов субъективных измерений // Измерительная техника. 2006. - №2 — с.20.
11. Шишов А.К. Оценка показателей эффективности при неполных данных // Измерительная техника. 2006. - №2 - с.25.
12. Данилевич С.Б., Колесников С.С. Разработка методик эффективного контроля сложных объектов // Измерительная техника. 2007. - №5 - с. 19.
13. Ефремова Н.Ю., Чуповкина А.Г. Опыт оценивания данных межлабораторных сличений калибровочных и поверочных лабораторий // Измерительная техника. 2007. - №6 - с. 15.
14. Лисин С.К. Оценка достоверности результатов послеоперационного контроля качества промышленных изделий // Измерительная техника. 2007. -№8-с. 18.
15. Назаров Н.Г., Попов A.B. Метод формирования оптимального плана контроля партии на основе случайной последовательной выборки // Измерительная техника. — 2007. №10 — с. 12.
16. Радаев H.H. Точность экспертного оценивания состояния объекта методом попарных сравнений с количественной оценкой предпочтений // Измерительная техника. 2007. - №9 - с.6.
17. Харитонов И.А., Чуповкина А.Г. Международные сличения как инструмент подтверждения измерительных и калибровочных возможностей национальных метрологических институтов // Измерительная техника. 2007. -№7-с. 14.
18. Шишкин А.Ю. Статистически планируемый эксперимент как метод проектирования параметров процесса технологических измерений // Измерительная техника. 2007. - №2 - с. 14.
19. Храменков A.B. Мониторинг метрологического обеспечения в системе менеджмента качества предприятия // Измерительная техника. — 2007. -№8 с.67.
20. Скворцов Б.В., Жиганов И.Ю. Способ совокупно-косвенных измерений показателей качества объектов // Измерительная техника. — 2008. -№8-с. 13.
21. Данилевич С.Б. Методологические аспекты планирования методик контроля качества продукции // Измерительная техника. 2008. - №1 - с.71.
22. Миттаг X. Статистические методы обеспечения качества // М.: Машиностроение 1995. — с.601.
23. Лукашов Ю.Е. О требованиях технических регламентов и национальных стандартов к достоверности метрологических процедур // Законодательная и прикладная метрология. 2004. - №6 - с.З.
24. Брюханов В.А. Об обеспечении единства измерений с позиции теории управления // Законодательная и прикладная метрология. 2004. - №3
25. Горохов М.Е. Результаты государственного метрологического надзора в системе ОАО «Мосэнерго» по г. Москве // Законодательная и прикладная метрология. 2004. - №1
26. Михеева C.B., Герасимов Д.В. Государственный метрологический надзор на предприятиях топливно-энергетического комплекса в Уральской федеральном округе // Законодательная и прикладная метрология. 2005. - №4
27. Губин И.Т., Чирков А.П., Шаруев В.И. Оценка качества измерений при межлабораторных сличениях // Законодательная и прикладная метрология. 2007. - №2.
28. Данилевич С.Б., Колесников С.С. Метрологическое обеспечение производства и качество продукции // Законодательная и прикладная метрология. — 2007. №2. — с.6.
29. Степанов A.B., Храменков A.B. Обеспечение единства измерений в рамках систем менеджмента качества. -Стандарты и качество, №4, 2005 с. 8083.
30. Струнов В.И. Об использовании мгновенных выборок при статистическом управлении качеством калибровочного процесса по параметру разброса // Законодательная и прикладная метрология. 2007. - №3. - с.4.
31. Бержинская М.В., Данилов A.A. Анализ статистических методов экспериментального определения нестабильности средств измерений // Законодательная и прикладная метрология. 2008. - №4.
32. Данил евич С.Б., Колесников С. С. О выборе показателей достоверности результатов контроля // Законодательная и прикладная метрология. 2008. - №2.
33. Кондратьев В.Т. Новая стратегия измерений // Законодательная и прикладная метрология. 2008. - №3.
34. Крысин Ю.М., Баранов В.А. Системный подход к аксиоматике теории измерений // Законодательная и прикладная метрология. 2008. - №5.
35. Асташенков А.И., Генкина Р.И., Сковородников В.А. К концепции развития государственного метрологического надзора // Законодательная и прикладная метрология. 1997. - №3.
36. Тактаров П.К. Оперативный контроль погрешности результатов измерений содержаний вредных веществ в воздухе и промышленных выбросах при применении лабораторных аналитических методов // Законодательная и прикладная метрология. 1997. - №3.
37. Храменков A.B. Оценка соответствия метрологического обеспечения и испытаний оборонной продукции при сертификации СМК -Вестник метролога, ,№1, 2009 с. 19-20.
38. Сычев Е.И. О последствиях применения неаттестованных МВИ в машиностроении // Законодательная и прикладная метрология. 1997. - №4.
39. Яшин A.B., Кизима C.B. Об априорной оценке погрешности средств измерений методами непараметрической статистики // Законодательная и прикладная метрология. — 1997. №5.
40. Бегунов A.A., Лячнев В.В. Общие правила построения систем обеспечения единств измерений // Законодательная и прикладная метрология. — 1997.-№1.
41. Ильичев A.M. Аппроксимация планов контроля показателей надежности типа средней наработки до отказа средств измерений алгебраическими формулами // Законодательная и прикладная метрология. -1997. №2.
42. Храменков A.B., Храменков В.Н. Оценка состояния метрологического обеспечения в СМК оборонных предприятий Вестник качества, №2, 2007 - с. 39-40.
43. Окрепилов В.В. Государственный метрологический надзор в экологии // Законодательная и прикладная метрология. 1997. - №4.
44. Тарбеев Ю.В. Концепция обеспечения достоверности комплексного мониторинга окружающей среды // Законодательная и прикладная метрология. 1997. - №4.
45. Брянский J1.H. Метрология и сертификация // Законодательная и прикладная метрология. 1997. - №3.
46. Асташенков ' А.И., Сафаров Г.П., Томилин А.Ю. Государственная система обеспечения единства измерений и её нормативная база- // Законодательная и прикладная метрология. 2000. - №3.
47. Храменков В.Н., Храменков A.B. Критерии оценки состояния метрологического обеспечения и испытаний оборонной продукции при сертификации СМК. Вестник качества, №2, 2008 - с. 28-33.
48. Ильичев A.M., Оболенский А.И. О связи межповерочных интервалов с нормированными показателями надежности для средствизмерений единичного производства // Законодательная и прикладная метрология. 2000. - №5
49. Исаев JI.K. Основные направления внедрения стандартов ГОСТ Р ИСО 5725 PI их роль в повышении качества измерений и испытаний // Законодательная и прикладная метрология. — 2003. №3.
50. Голубев Э.А. Об общих положениях стандартов ГОСТ Р ИСО 5725 по оценке точности методов и результатов измерений // Законодательная и прикладная метрология. 2003. - №3.
51. Храменков A.B. Применение метода последовательного анализа при проверке статистических гипотез. // Материалы 34-й конференщш молодых ученых 32 ГНИИИ МО РФ, 2009, с. 38-39.
52. Степанов О.С., Данилов М.А., Кудеяров Ю.А. Метод оперативной оценки метрологического класса счетчиков воды // Законодательная и прикладная метрология. 2003. - №5.
53. Храменков A.B. Организация метрологического обеспечения в СМК предприятий. // Материалы 7-й Всероссийской научно-технической конференции, «Метрологическое обеспечение обороны и безопасности в Российской Федерации», 2008 с. 158-159.
54. Назаров Н.Г. О роли понятия «Единство измерений» в прикладной метрологии // Законодательная и прикладная метрология. 2003. - №6.
55. Богатырев A.A., Филиппов Ю.Д. Стандартизация статистических методов управления качеством // М.: Издательство стандартов 1990.
56. Фрумкин В.Д., Рубичев H.A. Теория вероятностей и статистика в метрологии и измерительной технике // М.: Машиностроение 1987. - с. 168.
57. Вентцель Е.С., Овчаров JI.A. Теория вероятностей и её инженерные приложения // М.: Наука. 1988. - с.480.
58. Сычев Е.И. Оценка влияния измерительного контроля на надежность технических систем // Надежность и контроль качества. — 1997. -№10.
59. Леман Э. Проверка статистических гипотез // М.: Наука. 1964.
60. Окрепилов В.В. Управление качеством: Учебник для вузов/2-e изд., доп. и перераб. М.: ОАО "Изд-во Экономика", 1998. - 639 с.
61. Львов Д.С., Зыков Ю.А. Общие принципы определения экономической эффективности новой техники. М.: ИЭ АН СССР, 1991.
62. Дубровская И.С., Койфман Ю.И., Удовиченко Е.Т Системные исследования проблем управления качеством и автоматизации процессов управления. М.: Изд. стандартов., 1980.
63. Бадалов Л.М. Экономические проблемы качества продукции. М.: "Экономика", 1982.
64. Немчинов B.C. Экономика математические методы и модели. -М.: "Мысль", 1965.
65. Матвеев Л. А. Экономическое обеспечение систем управления качеством продукции. Л. "Машиностроение", Ленинградское отделение, 1983.
66. Версан В.Г., Сиськов В.И., Дубицкий Л.Г. и др. Интеграция производства и управления качеством продукции. М.: Издательство стандартов, 1995.
67. Крылова Г.Д. Зарубежный опыт управления качеством. -М.: "Издательство стандартов", 1992.
68. Кузнецов В.А., Ялунина Г.В. Основы метрологии. М.: ИПК "Издательство стандартов", 1995.
69. Харрингтон Дж. X. Управление качеством в американских корпорациях. М.: "Экономика", 1990.
70. Вильям Дж. Стивенсон. Управление производством / Пер. с англ. -М.: ООО "Издательство "Лаборатория Базовых знаний", ЗАО "Издательство БИНОМ", 1998.
71. Всеобщее управление качеством: Учебник для вузов / О.П. Глудкин, Н.М. Горбунов, А.И. Гуров, Ю.В. Зорин; Под ред. О.П. Глудкина. -М.: "Радио и связь", 1999.
72. Статистические методы повышения качества / Под ред. Хотоси Куме. М.: "Финансы и статистика", 1990.
73. Фейгенбаум А. Контроль качества продукции. М.: "Экономика",
74. Крылова Г.Д. Основы стандартизации, сертификации и метрологии: Учебник для вузов. М.: "Аудит", ЮНИТИ, 1998.
75. Савицкая Г.В. Анализ хозяйственной деятельности предприятия: 2-е изд., перераб. и доп. Мн.: ИП "Экоперспектива", 1998.
76. Радионов Н.В., Радионова С.П. Основы финансового анализа: математические методы, системный подход. СПб.: Альфа, 1999.
77. Успешная сертификация на соответствие нормам ИСО серии 9000: Руководство по подготовке, проведению и последующей сертификации / изд. Eckhard Kreier. Kissing: Foum -Verl. Herkert - Losebl. - Ausg. 1995.
78. Управление качеством электронных средств / О.П. Глудкин, А.И. Гуров, А.И. Коробов и др. Под ред. О.П. Глудкина. М.: "Высшая школа", 1994.
79. Статистические методы повышения качества: Пер. с англ. / Под ред. Х.Кумэ. М.: Финансы и статистика, 1990.
80. Бесфамильная Л.В., Резчиков В.И. Соколов Л.Г. Швандер В.А. Экономика стандартизации, метрологии и качества продукции. М.: Издательство стандартов, 1988.
81. Р 50-601-30-92. Рекомендации. Организация на предприятии работы по обеспечению стабильности качества изготовления продукции (в соответствии с положением MC ИСО серии 9000). Состав работ. М.: Издательство ВНИИС, 1992.
82. Пансков A.B. Экономические вопросы в деятельности метрологических служб предприятий // Измерительная техника. 1983. - № 91986.-с. 17-22.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.