Математическая модель динамики фьючерсных контрактов на основе методов теории детерминированного хаоса тема диссертации и автореферата по ВАК РФ 05.13.01, кандидат технических наук Ситникова, Оксана Валерьевна

  • Ситникова, Оксана Валерьевна
  • кандидат технических науккандидат технических наук
  • 2004, Томск
  • Специальность ВАК РФ05.13.01
  • Количество страниц 138
Ситникова, Оксана Валерьевна. Математическая модель динамики фьючерсных контрактов на основе методов теории детерминированного хаоса: дис. кандидат технических наук: 05.13.01 - Системный анализ, управление и обработка информации (по отраслям). Томск. 2004. 138 с.

Оглавление диссертации кандидат технических наук Ситникова, Оксана Валерьевна

Введение

1. Обзор методов прогнозирования динамики экономических показателей

1.1. Стохастические модели прогнозирования динамики ценных бумаг

1.2. Детерминированный подход к прогнозрованию динамики ценных бумаг

1.3. Технический анализ

1.4. Выводы

2. Исследование правомерности применения теории детерминированного хаоса к описанию фьючерсных рынков

2.1. Тесты для проверки стационарности

2. 1. 1. Критерий серии

2. 1.2. Критерий инверсий

2. 2. Тесты для проверки случайности

2. 3. Тесты для проверки нормальности

2. 3. 1. Критерий согласия %

2. 4. Вычисление спектральной плотности и автокорреляционной функции

2. 4. 1. Спектральная плотность

2. 4. 2. Автокорреляционная функция

2. 5. Меры фрактальной размерности

2. 6. Исследование временных рядов реальных фьючерсных рынков на наличие хаотической компоненты

2.7. Выводы

3. Математическое обоснование модели 466 3.1. Восстановление фазового портрета системы по одномерному временному ряду

3. 2. Оценка размерности хаотического процесса.

3.3. Нелинейная модель динамики фьючерсных рынков

3.4. Исследование модели качественными методами теории дифференциальных уравнений

3.5. Выводы 61 4. Схемы построения прогноза и применение модели

4. 1. Постороение точечного прогноза 62 4. 2. Схемы адаптации модели 67 4. 3. Построение интервального прогноза

4.4. Применение модели

4.5. Прогноз изменения тренда на основе анализа поведения точек равновесия 82 4. 6. Исследование качества модели 83 4.7. Выводы

Рекомендованный список диссертаций по специальности «Системный анализ, управление и обработка информации (по отраслям)», 05.13.01 шифр ВАК

Введение диссертации (часть автореферата) на тему «Математическая модель динамики фьючерсных контрактов на основе методов теории детерминированного хаоса»

Актуальность диссертационной работы. Финансовые рынки являются основой рыночной экономики. В странах с развитыми рыночными отношениями уже давно осознана практическая важность исследований данной области. И в России в последнее время, в связи с включением ее в систему мирового финансового рынка, появилась острая необходимость в изучении ценовой динамики на различных сегментах фондового рынка. Именно поэтому последние годы ознаменовались растущим интересом к поиску новых моделей нерегулярного поведения на финансовых рынках.

К моделированию динамики показателей фондовых рынков существует несколько альтернативных подходов. Традиционные модели являются стохастическими [например, 3, 10, 92 - 95]. Вопросами стохастического моделирования финансовых процессов занимаются в Актуарно-финансовом центре, созданном при поддержке Правительства РФ.

Другой подход к анализу нерегулярности и сложности финансовых данных основан на теории детерминированного хаоса [например, 41, 73, 98]. В частности, детерминированный хаос предлагает объяснение нерегулярного поведения в системах, которые не являются стохастическими, как результат сложных нелинейных взаимодействий внутренних параметров данных систем. Согласно теории хаоса введение в модель теоретически оправданных нелинейностей может объяснить экономические флуктуации более успешно, нежели введение случайных переменных. Данная теория представляет совершенно новые концепции и алгоритмы для анализа временных рядов, что может привести к более полному пониманию природы сигнала. Вопросами моделирования сложных систем (в том числе и экономических) с позиций теории детерминированного хаоса занимаются в Институте математических методов и антикризисного управления Финансовой академии при Правительстве РФ.

Данная теория предлагает широкий выбор мощных методов и находит обширную область применения в экономике: от моделирования бизнес-процессов отдельных фирм до математического описания развития национальной экономики [47 - 48, 70, 86]. Но область исследования именно фондового рынка остается мало изученной. В то время как динамика данных рынков является одним из важных индикаторов состояния экономики в целом.

В настоящей работе представляются результаты применения теории детерминированного хаоса к моделированию динамики фьючерсных контрактов на финансовых рынках.

Цель и задачи исследования. Целью диссертационной работы является создание адекватной математической модели динамики фьючерсных контрактов на финансовом рынке. В связи с этим в работе поставлены следующие задачи:

1. Доказать наличие детерминированной хаотической компоненты в динамике исследуемого экономического объекта.

2. Построить нелинейную математическую модель динамики фьючерсных контрактов на финансовом рынке.

3. Исследовать модель методами качественной теории дифференциальных уравнений.

4. Разработать схемы построения прогноза и адаптации модели.

5. Провести исследование временных рядов различных фьючерсных рынков.

Методы исследования. Для решения поставленных задач использовался ряд методов. Например, для определения наличия детерминированной хаотической компоненты в анализируемом временном ряде использовались методы спектрального и корреляционного анализа [26, 27]. При разработке модели динамики фьючерсных контрактов на финансовом рынке решалась обратная задача нелинейной динамики [20, 23, 35]. При построении точечного и интервального прогнозов, а так же схем адаптации модели использовались широко известные экономико-статистические методы [55, 97]. В ходе исследования, для реализации поставленных задач, был разработан комплекс программ в пакете инженерных расчетов MatLab.

Так же в работе применялись методы, специфичные именно для фьючерсных рынков - методы технического анализа [57, 66]. Для проведения исследования выбраны следующие данные: фьючерсные контракты на Coffee Continuous [91], Coca-Cola [91] и фьючерсные контракты на валюту [68] (евродоллар, немецкая марка).

Научные положения, выносимые на защиту:

1. Результаты исследования правомерности применения методов теории детерминированного хаоса к описанию динамики фьючерсных контрактов.

2. Нелинейная модель динамики фьючерсных контрактов на финансовом рынке.

3. Схемы построения прогноза и схемы адаптации модели.

4. Комплекс программ, реализующих построение прогноза по представленной модели и схемам ее адаптации.

5. Результаты исследования фьючерсных рынков на основе разработанной модели.

Научная ценность и новизна:

1. В настоящее время существует две точки зрения на прогнозирование динамики фьючерсных рынков [57]. Согласно одной из них изменение биржевых курсов случайно и не подчиняется никакой закономерности, т.е. моделирование данных систем возможно только с помощью стохастических моделей. С другой стороны теория детерминированного хаоса утверждает, что теоретически оправданные нелинейные динамические модели описывают экономические флуктуации более успешно, нежели вероятностные модели. Проведенные в работе исследования показали наличие детерминированной хаотической компоненты в динамике исследуемого процесса, и следовательно целесообразность применения теории детерминированного хаоса к моделированию динамики параметров финансового рынка.

2. В результате проведенной работы построена теоретически оправданная нелинейная динамическая модель динамики фьючерсных контрактов на финансовом рынке. Структура модельных уравнений выбрана из содержательных экономических соображений, и ее параметры имеют экономический смысл.

3. Представлены схемы построения прогноза динамики фьючерсных контрактов с помощью приведенной модели.

4. Принимая во внимание факт гиперчувствительности хаотических систем к малым возмущениям, разработаны схемы адаптации модели, позволяющие учитывать временную ценность информации.

Практическая значимость. Представлена нелинейная модель динамики фьючерсных контрактов на фондовом рынке, позволяющая прогнозировать рыночные характеристики «в реальном времени» не имея богатого ретроспективного материала. Получены практические результаты, проводимого исследования для российского и иностранного фьючерсных рынков. Разработан комплекс программ, реализующих поставленные задачи, в пакете инженерных расчетов MatLab.

Апробация работы. Результаты работы были доложены и опубликованы:

1. Козловских А.В., Шипачев В.И., Ситникова О.В. Описание динамики курсов акций системой нелинейных дифференциальных уравнений // «Математическое моделирование экономических систем и процессов»: Материалы всероссийской научно-практической конференции. - Чебоксары, 2000.

2. Ситникова О.В. Моделирование динамики рынка ценных бумаг для краткосрочного прогноза рыночных характеристик // «Математическое моделирование физических, экономических, технических, социальных систем и процессов»: Тезисы докладов IV Международной конференции. - Ульяновск, 2001.

3. Ситникова О.В. Моделирование динамики рынка ценных бумаг // Дальневосточная конференция студентов и аспирантов по математическому моделированию: Тезисы докладов. -Владивосток, 2001.

4. Козловских А.В., Козловских В.А., Синникова О.В. Нелинейная математическая модель краткосрочного прогнозирования динамики фьючерсных рынков и ее применение // «Математические методы и информационные технологии в экономике, социологии и образовании»: Сборник статей X Международной научно-технической конференции. - Пенза, 2002.

5. Ситникова О.В. Моделирование динамики рынка ценных бумаг как сложной системы // «Современные проблемы информатизации в непромышленной сфере и экономике»: Сборник трудов. Вып. 7 (по итогам VII Международной открытой научной конференции). -Воронеж, 2002.

6. Ситникова О.В. Сравнение методов прогнозирования динамики цен на фондовом и сырьевом рынках. // Сборник студентов, аспирантов и молодых сотрудников по математическому моделированию. -Томск, 2002.

7. Козловских А.В., Ситникова О.В. Модифицированные модели краткосрочного прогнозирования динамики фьючерсных рынков // «Методы и алгоритмы прикладной математики в технике, медицине и экономике»: Материалы III Международной научн.-пркт. конференции. - Новочеркасск, 2003.

8. Григорьев В.П., Козловских А.В., Ситникова О.В. Математическая модель краткосрочного прогнозирования динамики фьючерсных рынков // Изв. ТПУ. - 2003, - Т. 306, - вып. 3.

9. Козловских А.В., Ситникова О.В. Математическое моделирование динамики рынка ценных бумаг // Кибернетика и вуз. Межвузовский научно-технический сборник. - 2003, - вып. 5.

10. Григорьев В.П., Козловских А.В., Ситникова О.В. Применение теории детерминированного хаоса к моделированию динамики фьючерсных рынков // Финансы и кредит. - 2003, №24.

Основное содержание работы. Первая глава диссертационной работы посвящена краткому обзору существующих методов и моделей прогнозирования динамики рыночных характеристик. Во второй главе представлены результаты исследования объекта моделирования на наличие детерминированной хаотической компоненты в динамике показателей фьючерсных рынков. Третья глава посвящена математическому обоснованию нелинейной динамической модели исследуемого экономического объекта. Четвертая глава содержит схемы построения прогноза, схемы адаптации модели и примеры применения нелинейной модели динамики фьючерсных контрактов на финансовом рынке.

Похожие диссертационные работы по специальности «Системный анализ, управление и обработка информации (по отраслям)», 05.13.01 шифр ВАК

Заключение диссертации по теме «Системный анализ, управление и обработка информации (по отраслям)», Ситникова, Оксана Валерьевна

1. Проведено исследование изучаемого экономического объекта на наличие детерминированной хаотической компоненты. Результаты данного исследования позволяют нам утверждать, что динамика фьючерсного рынка характеризуется наличием хаоса.2. Разработана новая нелинейная динамическая модель фьючерсного рынка на основе методов теории детерминированного хаоса, позволяющая в короткий срок, не имея длительной реализации рыночных характеристик (фазовых координат модели), получить качественный прогноз в динамичных условиях функционирования товарно-сырьевых бирж.3. Предложены схемы построения точечного и интервального прогнозов.4. Разработана новая схема адаптации модели, что является очень важным условием при формировании достоверного прогноза динамики хаотических систем. Применение схем адаптации модели к реальным поступающим данным позволяет отодвигать «горизонт предсказуемости» и использовать модель для прогнозирования динамики рыночных характеристик «в реальном времени».5. Проведенный анализ результатов экспериментов по данным с различных фьючерсных рынков показал адекватность разработанной модели исследуемому процессу.6. Предложена модификация нелинейной динамической модели, представляющий собой синтез методов технического анализа и традиционных методов прогнозирования при помощи представленной модели.7. Качественный анализ описанной модели позволил выявить критерий принятия решения о смене общей тенденции при анализе динамики фьючерсных рынков.Таким образом, главным результатом представленной работы является нелинейная адаптивная математическая модель краткосрочного прогнозирования динамики фьючерсных рынков. Она позволяет в короткий срок осуществить прогноз характеристик фьючерсного рынка и выработать критерий принятия решения в динамичных условиях функционирования товарно-сырьевых бирж.

Список литературы диссертационного исследования кандидат технических наук Ситникова, Оксана Валерьевна, 2004 год

1. Arnold V.I. Ordinary Differential Equations. MIT Press, Cambridge, 1978. 2. 3. 4. 5.

2. Bransater A., Swinney H.L. Strange attractor in weakly turbulent Couette -Taylor flow Phys. Rev. A., 1987. Vol. 35. P. 2

3. Franses P.H., Time series models for business and economic forecasting. Cambridge University Press, 1998. 280 p. Frazer A.M., Swinney H.L. Independent coordinates from mutual information Phys. Rev. A., 1986. Vol. 33. P. 1

4. Grassberger P., Procaccia I. Characterization of strange attractors Phys. Rev. Lett. 1983. Vol. 50. P.

5. Guckenheimer J., Holmes P.J. Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields. New York: Verlag, 1983.

6. Havstad J.W., Ehlers C.L. Attractor dimension of nonstationary dynamical systems from small date sets Phys. Rev. A. 1989. Vol. 3 9 P 212-220.

7. Liebert W., Shuster H.G, Proper choice of the time delay for the analysis ofchaotic time series Phys. Rev. A., 1989. Vol. 142. P. 107.

8. Liebert W., Shuster H.G. Proper choice of the time delay for the analysis of chaotic time series Phys. Rev. A. 1989. Vol. 142. P. 107.

9. Mills Т.е. The econometric modelling of financial time series. Cambridge University Press, 1993. 247 p. 11. Ott E., Oregon C Yorke J.A. Controlling Chaos Phys. Rev. Lett. 1990.- №64.

10. Packard N.M., Crutchfield J.P., Farmer J.D., Shaw R.S. Geometry from a time series Phys. Rev. Lett. 1980. Vol. 45. P. 712.

11. Schwarz G. Estimating the dimension of a model Annals of Statistiks. 1978. Vol. 6. P. 461.

12. Takens F. Detecting strange attractors in turbulence Dynamical Systems and Turbulence. Lecture Notes and Mathematics Eds. D. Rang and L.S. Young. Warwick -1980. Vol. 898, P. 366.

13. Williams C.A. On the Choice of the Number and Width of Classes for Chi-Square Test of Goodness of Fit J. Am. Statistical Assoc. Berlin, 1950. Vol. 45. P. 77 86.

14. Андерсон Т. Статистический анализ временных рядов. М.: Наука, 1986.-406 с.

15. Анищенко B.C. Сложные колебания в простых системах. М.: Наука, 1990.-310с.

16. Анищенко B.C., Вадивасова Т.С, Астахов В.В. Нелинейная динамика хаотических и стохаотических систем. Саратов: Изд во Саратовского Университета, 1999. 368с.

17. Аносов О.Л., Бутковский О.Я., Кравцов Ю.А. Минимальная процедура идентификации хаотических систем по наблюдаемой временной последовательности РЭ. 1997. Т. 42, 3. 1 10.

18. Аносов О.Л., Бутовский О.Я., Кравцов Ю.А., Восстановление динамических систем по хаотическим временным рядам Изв. ВУЗов. Прикладная нелинейная динамика. 2000. Т.8, №1. 2 9 5 2

19. Апанасович В.В., Тихоненко О.М. Цифровое моделирование стохастических систем. Минск: Изд. Университетское, 1986. 127 с.

20. Балакришнан А.В. Теория фильтрации Калмана. М.: Мир, 1988. 5 0 2 с.

21. Безручко Б.П., Диканев Т.В,, Смирнов Д.А. Тестирование на однозначность и непрерывность при глобальной реконструкции модельных уравнений по временным рядам Изв. ВУЗов. Прикладная нелинейная динамика. 2002, Т. 10, №4 51- 57.

22. Безручко Б.П., Селезнев Е.П., Смирнов Д.А. Реконструкция уравнений временному 56.

23. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры. М.: Наука, 1987. 320 с.

24. Бендат Дж., Пирсол А. Измерение и анализ случайных процессов: (ф неавтономного ряду: модели, нелинейного эксперимент осциллятора Изв. по ВУЗов. Прикладная нелинейная динамика. 1999. Т. 7, 1. 49- Пер. с англ. Под ред. И.Н. Коваленко. М Мир, 1971, с. 11.

25. Бендат Дж., Пирсол А. Прикладной анализ случайных данных: Пер. с англ. М.: Мир, 1989. 540 с.

27. Бережная Е.В. А. Применение корреляционного и спектрального анализа М.: Мир, 1983 310 с. Математические методы моделирования экономических систем. М.: Мир, 1999. 412 с.

28. Буренин А.Н. Рынки производных финансовых инструментов. М.: Фазис, 1996.-312 с. 31. В.-Б. Занг. Синергетическая экономика. Время и перемены в нелинейной экономической теории. М.: Мир, 1999. 334 с,

29. Вечерин Н. Возможен или невозможен прогноз на финансовых рынках? [Электронный ресурс] Режим доступа http://www.franklin-grant.ru/ru/reviews/reviewl.shtml.

30. Воробьев Ю.Л., Малинецкий Г.Г., Махутов Н.А. Управление риском и устойчивое развитие. Человеческое измерение Изв. ВУЗов. Прикладная нелинейная динамика. 2000. Т. 8, №6. 12-26.

31. Вычислительные методы в прикладной математике Под ред. Г.И. Маргука, Ж.-Л. Лионса. Новосибирск: Наука, 1982. 286 с.

32. Грибков Д.А., Грибкова В.В., Кравцов Ю.А., Кузнецов Ю.И., Ржанов А.Г. Восстановление структуры динамической системы из временных рядов РЭ. 1994. Т.39, 2. 241 248.

33. Грибков Д.А., Грибкова В.В., Кравцов Ю.А., Кузнецов Ю.И., Ржанов А.Г. Восстановление дифференциальных уравнений одной автостоханческих систем по временной реализации С 1-10. динамической переменной процесса ЖТФ. 1994. Т.64, 3.

34. Грибков Д.А., Грибкова В.В., Кузнецов Ю.И. Восстановление внешнего воздействия по реализации одной переменной автостохаотической системы Вестник МГУ. Сер. Физ. Астрон. -1995.-Т.36,№1.-С. 76-82.

35. Григорьев В.П., Козловских модель А.В., Ситникова О.В. Математическая краткосрочного прогнозирования динамики фьючерсных рынков Изв. ТПУ. 2003. Ч. 3.

36. Гроп Д. Методы идентификации систем. М.: Мир, 1979. 302 с.

37. Дженкинс Г., Ватте Д. Спектральный анализ и его приложения. М.: Мир, 1971.-316 с.

38. Дмитриева Л.А., Куперин Ю.А., Сорока И.В. Методы теории сложных систем в экономике [Электронный ресурс] Режим доступа: http://is2001.icape.ru/thesis/7.html, свободный.

39. Дубровин В.И., Субботин А. Программный комплекс нейросетевой диагностики. Программные продукты и системы. М.: Мир, 1999.-206 с.

40. Егорова Н.Е., Мудунов А.С. Система моделей прогнозирования спроса на продукцию сферы услуг Экономика и в математические методы. 2002. Т.38, №2. 66 83.

41. Завьлов Ю.С, Луис В.А., Скороспелов В.А. Сплайны инженерной геометрии. М.: Машиностроение, 1985. 224 с.

42. Зубков А.В. Предсказание многомерных временных рядов с помощью нейросетей Информационные технологии. 2002. 2 С 20-26.

43. Иванов Ю.П., Лотов А.В. Математическое моделирование экономике. М.: Наука, 1979. 304 с. в <ш

44. Иванова Ю.Н. Малый инновационный бизнес в странах развитой рыночной экономики Российский экономический журнал. 1995. №2.

45. Иванова Ю.Н., Орлов А.И. Экономико-математическое моделирование малого бизнеса (обзор подходов) Экономика и математические методы. 2001. Т.37, №2. 128 136.

46. Иванхненко А.Г., Юрачковский Ю.П. Моделирование сложных систем. М.: Радио и связь, 1987. 120 с.

47. Ивахненко А.Г. Долгосрочное прогнозирование и управление сложными системами. М.: Техника, 1995. 312 с.

48. Капица СП., Кудрюмов СП., Малинецкий Г.Г. Синергетика и прогнозы будущего. М.: Наука, 1997. 412 с.

49. Касти Дж. Большие системы: связность, сложность, катострофы. М Мир, 1999.-334 с.

50. Козловских А.В., Козловских В.А., Ситникова О.В. Нелинейная математическая динамики модель краткосрочного рынков и ее прогнозирования применение фьючерсных «Математические методы и информационные технологии в экономике, социологии и образовании»: Сборник статей X Международной НТК 1 1 1 3 ноября 2002 г., Пенза). Экономика. 148-151.

51. Козловских А.В., Ситникова О.В. Модифицированные модели краткосрочного прогнозирования динамики фьючерсных рынков «Методы и алгоритмы прикладной математики в технике, медицине и экономике»: Материалы III Международной НПК. (15 17 января 2003 г., Новочеркасск). Ч. 3. 52 54.

52. Колемаев В.А., Калинина В.Н. Теория вероятностей и математическая статистика: Учебник Под ред. В.А. Колемаева. М.: ИНФРА-М, 1997. 302 с.

53. Кравцов Ю.А. Случайность, детерминированность, предсказуемость УФН. 1989. Т. 158, №1. 93 -102.

54. Кузнецов М.В. Технический анализ рынка ценных бумаг. Киев: Наукова думака, 1990. 248 с.

55. Ланда П.С., Розенблюм М.Г. Об одном методе оценки размерности вложения аттрактора по результатам эксперимента ЖТФ. -1989. Т.59, 1. 13 20.

56. Ларичев О.И. Теория и методы принятия решения. М.: Логос, 2000.-418 с.

57. Лоренц Эд.Н. Детерминированное непериодическое течение Странные аттракторы. М.: Мир, 1981. 59 76.

58. Льюгин Л. Идентификация систем. Теория для пользователя: Пер. с англ. Под ред. Я.З.Ципкина. М.: Наука, 1991. 432 с. Ш*

59. Магнус Я.Р. Эконометрика. Учебное пособие. М.: Мир, 1999. 310с.

60. Малинецкий Г.Г., Подлазов А.В. Парадигма самоорганизованной критичности. Иерархия моделей и пределы предсказуемости Изв. ВУЗов. Прикладная нелинейная динамика, 1997. Т. 5, 5 С 89-106.

61. Мельник М. Г.Г., Потапов А.Б. Современные статистики. проблемы М.: нелинейной динамики. М.: Эдиториал УРСС, 2000. 336 с. Основы прикладной Энегоатомиздат, 1990. 372 с,

62. Мерфи Дж. Технический анализ фьючерсных рынков: теория и практика: Пер. с англ. М: Сокол, 1996. 592 с.

63. Минюк А. Математические методы и модели в экономике. Учебное пособие. М.: ТетраСистемс, 2002. 432 с.

64. Московская межбанковская валютная биржа [Электронный ресурс] Режим доступа http://www.micex.ru/online/currencv/archive/. 69. Мун Ф. Хаотические колебания: Вводный курс для научных работников и инженеров: Пер. в англ. М Мир, 1990.-312 с.

65. Накоряков В.Е., Гасенко В.Г. Математическая модель плановой макроэкономики Экономика и математические методы. 2002. -Т.38,-№2. 118-124.

66. Неймарк Ю.И., Островский в рыночной А.В. О некоторых Изв. моделях ВУЗов. ценообразования 41.

67. Николис Г., Пригожий И. Познание сложного. Введение:

68. Никульчаев Е.В., Волович М.Е. Модели хаоса для процессов изменения курса акций [Электронный ресурс] Exponenta-Pro. Математика в приложениях. 2003. №

69. Электрон. Текстовые дан. М.: КомпьютерПресс. 2003. №3. 1 электрон, опт. диск (CD-ROM).

70. Павлов А.Н., Янсон Н.Б. Применение метода восстановления математической модели к анализу электрокардиограмм Изв. ВУЗов. Прикладная нелинейная динамика. 1997. Т.5, 1. 93-104.

71. Первозванский А.А. Финансовый рынок. М.: Наука, 1993. 216 с.

72. Перегудов Ф.И., Тарасенко Ф.П. Основы системного анализа. Томск: Изд. НТЛ, 2001. 396 с.

73. Петере Э. Хаос и порядок на рынках капитала. М.: Мир, 2000. 332 с.

74. Петров А.А., Поспелов И.Г., Шананин экономики. А.А. Опыт М.: математического моделирования Энергоатомиздат, 1996. 544 с.

75. Ротарь В.И., Бенинг В.Е. Введение

76. Ситникова О.В. Сравнение методов прогнозирования динамики цен на фондовом и сырьевом рынках. Сборник студентов, аспирантов и молодых сотрудников по математическому моделированию. 2002.

77. Современные методы идентификации систем Под ред. П. Эйкхоффа. М.: Мир, 1983. 400 с. 0/

78. Современные методы идентификации систем Под ред. П.Эйкхоффа. М.: Мир, 1983. 208 с.

79. Сорос Дж. Алхимия финансов. М.: Инфра-М, 1996. 240 с.

80. Строгий П.Р. Независимые производители и независимые посредники на рынке стандартизированного товара Вест. ННГУ. Математические методы и оптимальное управление. 1997. Вып. 17.-С. 160.

81. Сюдсетер Г. Справочник по математике для экономистов. М.: ЮНИТИ,2001.-306с.

82. Тарасенко В.Ф. Нелинейные математические модели и информационные системы в финансовом менеджменте Под ред. Ямпольского В.З. Томск: Изд. ТПУ, 1998. 191 с.

83. Тарасенко Ф.П. Введение

84. Теория систем с переменной структурой Под ред. С В Емельянова. М.: Мир, 1970. 592 с.

85. Терпугов А.Ф. Математика рынка ценных бумаг. Томск.: ТГПУ,2000.-171с.

86. Хищенко В. И хаотический рынок можно [Электронный ресурс] http://tradingclub.ru/bibIio/st4ta/hishenko.htiTi.

87. Чикагская товарно-сырьевая биржа [Электронный ресурс]. Режим доступа: http://www.chicagostockex.com/.

88. Ширяев А.Н. О некоторых понятиях и стохастических моделях финансовой математики Теория вероятностей и ее применение. 1994, Т. 39, вып. 1. 5 22.

89. Ширяев А.Н. Основы стохастической финансовой математики. М.: Фазис, 1998.-612 с. прогнозировать доступа Режим f

90. Ширяев А.Н. Стохастические проблемы финансовой математики Обозрение прикладной и промышленной математики. 1994, Т. 1,-вып. 5 С 780-820.

91. Ширяев А., Кабанов Ю.М., Крамков Д.О., Мельников А.В. К теории расчетов опционов Европейского и Американского типов 0) Теория вероятностей и ее применение. -1994, Т. 39, вып. 1. 2 3 7 9

92. Шустер Г. Детерминированный хаос: Пер. с англ. М.: Мир, 1988.-240 с.

93. Экономико-математические методы и прикладные модели Под ред. В.В. Федосеева. М.: ЮНИТИ, 2001. 390 с.

94. Яковлев В.Л., Яковлева Г.Л. Лисицкий Л.А. математический алгоритмов

95. Яновский моделей прогнозирования ресурс] Режим в Создание тенденций доступа моделях финансовых рынков, реализуемых при помощи нейросетевых [Электронный Л.П. http://neurncws.iu4.bmstu.ru/book/finance/article2.htm. Контролирование хаоса экономического роста Экономика и математические методы. 2002.-Т.38,- №1.-С.16-23.

96. Янсон Н.Б., Анищенко B.C. Моделирование динамических систем по экспериментальным рядам Изв. ВУЗов. Прикладная нелинейная динамика. —1995. Т. 3, №3. 112 1 2 6 §if

97. Янсон Н.Б., Павлов А.Н., Баланов А.Г., Анищенко B.C. Задача реконструкции 57. математической модели применительно к электрокардиограмме Письма в ЖТЖ. 1996. Т.22, №16.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.