Характеристика взаимодействия ДНК-узнающего участка белка и ДНК по большой бороздке тема диссертации и автореферата по ВАК РФ 03.00.03, кандидат биологических наук Васильев, Сергей Александрович
- Специальность ВАК РФ03.00.03
- Количество страниц 136
Оглавление диссертации кандидат биологических наук Васильев, Сергей Александрович
Список принятых сокращений.
1. Введение.
2. Цель и задачи работы.
3. Научная новизна.
4 . Обзор литературы.
4.1. Принципы узнавания ДНК белком.
4.2. Особенности структуры ДНК.
4.3. Роль а-спирали и ^-структуры в образовании ДНК-белковых комплексов.
4.4. Строение ДНК-узнающих областей белка.
4.5. Роль конформационных изменений ДНК в образовании ДНК-белковых комплексов.
4.6. ДНК-узнающий домены.
4.6.1. ДНК-узнающий домен НТН.
4.6.2. Цинк содержащие ДНК-узнающие домены.
4.7. Код ДНК-белкового взаимодействия.
4.8. Базы данных, содержащие информацию о пространственной структуре ДНК-белковых комплексов.
5. Материалы и методы.
6. Определения основных объектов.
7 . Результаты.
7.1. Формализованное описание зоны контакта.
7.2. Распределение ДНК-узнающих белковых участков по кластерам.
7.3. Классификация ДНК-узнающих участков по вторичной структуре.
7.4. Распределение показателя водородных связей.
7.5. Распределение показателя гидрофобного взаимодействия.
7.6. Анализ вклада оснований ДНК в образование гидрофобного взаимодействия.
7.7. Роль коротких ДНК-узнающих участков.
7.8. Вариабельность показателей для
ДНК-узнающих участков.
7.9. Показатели у белков с малой специфичностью узнавания ДНК.
7.10. Распределение показателей по типам ДНК-узнающих доменов.
7.11. Сравнение двух показателей.
7.12. Построение таблиц физико-химических взаимодействий.
7.13. Расчет модели ДНК-белкового взаимодействия.
8. Обсуждение результатов.
8.1. Организация информации.
8.2. Выбор критерия отбора ДНК-узнающего участка фильтр 6М45).
8.3. Роли цитозина и гуанина в гидрофобном взаимодействии
8.4. Показатели взаимодействия белка с большой бороздкой ДНК.
8.5. Значение показателей у одинаковых зон контакта.
8.6. Соотношение показателей у разных
ДНК-узнающих доменов.
8.7. Построение таблиц физико-химических взаимодействий.
9. Выводы.
10. Литература.
Рекомендованный список диссертаций по специальности «Молекулярная биология», 03.00.03 шифр ВАК
Физико-химические свойства и механизм расщепления РНК соединениями, не содержащими функциональных групп, катализирующих реакцию трансэтерификации2007 год, кандидат химических наук Ковалев, Николай Алексеевич
Структурно-функциональный анализ ДНК-узнающих белков с помощью синтетических фрагментов ДНК2007 год, доктор химических наук Кубарева, Елена Александровна
Молекулярное моделирование мембрано-связанных участков белков и пептидов1999 год, доктор физико-математических наук Ефремов, Роман Гербертович
Новые подходы к молекулярному моделированию трансмембранных доменов рецепторов, действие которых опосредовано G-белками2007 год, кандидат физико-математических наук Чугунов, Антон Олегович
Электростатические поля вокруг биологических макромолекул как факторы молекулярного узнавания2010 год, доктор биологических наук Сивожелезов, Виктор Семенович
Заключение диссертации по теме «Молекулярная биология», Васильев, Сергей Александрович
9. Выводы.
1. Полученная в результате применения теоретических правил модель ДНК-белкового взаимодействия адекватно описывает специфические контакты, образующиеся при взаимодействии с промоторной областью собственного гена ДНК-метилтрансферазы SsoII, что свидетельствует о возможности применения теоретических правил для предсказания ДНК-белковых контактов.
2. Разработана оригинальная объектно-ориентированная реляционная база данных ДНК-белковых взаимодействий DNA-Protein Interaction Data Base (DPIDB) с адекватной организацией информации о трехмерных расшифровках ДНК-белковых комплексов.
3. Впервые разработано и алгоритмически реализовано формализованное описание зоны ДНК-белкового контакта, что позволяет эффективно осуществлять компьютерный сравнительный анализ зон контакта в любом объеме данных.
4. Впервые предложены нецелочисленные показатели водородных связей и гидрофобного взаимодействия, рассчитанные на основе метода извлечения потенциала взаимодействия из статистических данных о трехмерной структуре ДНК-белковых комплексов с учетом всех известных на сегодняшний день комплексов. Эти показатели численно отражают взаимодействие ДНК-узнающего участка белка с большой бороздкой ДНК.
5. Впервые показано, что для корректного расчета гидрофобного взаимодействия в зоне ДНК-белкового контакта необходимо учитывать, что в образовании гидрофобных взаимодействий между большой бороздкой ДНК и белком примерно в 45% случаев участвуют С5М и С б атомы тимина. Кроме того, атомы С5 и С б цитозина, и атомы С5 и С8 гуанина в сумме образуют примерно то же количество гидрофобных контактов.
6. Соотношение показателей водородных связей и парного гидрофобного взаимодействия и сами значения этих показателей у различных типов ДНК-узнающих доменов существенно различны.
Список литературы диссертационного исследования кандидат биологических наук Васильев, Сергей Александрович, 1999 год
1. Молекулярное взаимодействие. // М., Мир, 198 4
2. Васильев С.А., Севастьянова Г.А. Структурные аспекты ДНК-белкового взаимодействия на примере фермента 5-метилцитозин-метилтрансферазы. // М., МПГУ, 1997.
3. Васильев С.А., Алексеевский А.В., Спирин С.А., Ташлицкий В.Н., Тихонова Т.В., Карягина А. С. Оценка взаимодействия узнающей области белка с большой бороздкой ДНК. // Биофизика, 1999, 12 (в печати).
4. Зенгер В. Принципы структурной организации нуклеиновых кислот. // М., Мир, 1987.
5. Кантор Ч., Шиммел П. Биофизическая химия, в 3-х томах. // М., Мир, 1984.
6. Лыоин Б. Гены. // М., Мир, 1987.
7. Пташне М. Переключение генов. Регуляция генной активности и фаг X. // М., Мир, 1988.
8. PDB newsletter. // PDB, 1999.
9. Protein Data Bank Contents Guide: atomic coordinate entry format description, version 2.1 (draft). // PDB, 1996.
10. Abóla E.E., Sussman J.L., Prilusky J., Manning N.O. Protein Data Bank archives of three-dimensional macromolecu-lar structures. // Methods Enzymol., 1997, v. 277, p. 556571.
11. Abóla E.E., Manning N.O., Prilusky J., Stampf D.R., Sussman J.L. The Protein Data Bank: current status and future challenges. // J.Res.Natl.Inst.Stand.Technol., 1996, v. 101, p. 231-241.
12. Aggarwal A.K., Wah D.A. Novel site-specific DNA endonu-cleases. // Curr.Opin.Struct.Biol., 1998, v. 8, p. 19-25.
13. Albright R.A., Matthews B.W. Crystal structure of a-Cro bounding to a consensus operator at 3.0 A resolution. // J.Mol.Biol., 1998 , v. 280, p. 137-151.
14. Allen M.D., Yamasaki K., Ohme-Takagi M., Tateno M., Suzuki M. A novel mode of DNA recognition by a fJ-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. // EMBO J., 1998, v. 17, p. 5484-5496.
15. Anderson J.E., Ptashne M., Harrison S.C. Structure of the repressor-operator complex of bacteriophage 434. // Nature, 1987, v. 326 , p. 846-852.
16. Apaya R.P., Bondi M., Price S.L. The orientation of N-H.0=C and N-H.N hydrogen bonds in biological systems:
17. How good is a point charge as a model for a hydrogen binding atom? // J.Comput.-Aided Mol.Desighn, 1997, v. 11, p. 479-490.
18. Auffinger P., Westhof E. Simulation of the molecular dynamics of nucleic acids. // Curr . Opin.Struct.Biol. , 1998, v. 8, p. 227-236.
19. Balaeff A., Churchill M.E.A., Schulten K. Structural prediction of a complex between the chromosomal protein HMG-D and DNA. // Proteins Struct.Funct.Genet., 1998, v. 30, p. 113-135.
20. Barrett T., Savva R., Panayotou G., Barlow T., Brown T., Jiricny J., Pearl L.H. Crystal structure of a G:T/U mismatch-specific DNA glycosylase: mismatch recognition by complementary-strand interactions. // Cell, 1998, v. 92, p. 117129.
21. Bastia D. Structural aspects of protein-DNA interactions as revealed by conversion of the interacting protein into a sequence-specific cross-linking agent or a chemical nuclease. // Structure, 1996, v. 4, p. 661-664.
22. Berg J.M. DNA binding specificity of steroid receptors. // Cell, 1989, v. 57, p. 1065-1068.
23. Berg J.M. Proposed structure for the zinc-binding domains from transcription factor IIIA and related proteins. // Proc.Natl.Acad.Sci.U.S.A, 1988, v. 85, p. 99-102.
24. Berger C., Piubelli L., Haditsch U., Bosshard H.R. Diffu-siom-controlled DNA recognition by an unfolded, monomeric bZIP transcription factor. // FEBS Lett., 1998, v. 425, p. 14-18.
25. Berger J.M. Type II topoisomerases. // Curr.Opin.Struct. Biol., 1998, v. 8, p. 26-32.
26. Berger J.M., Gamblin S.J., Harrison S.C., Wang J.C. Structure and mechanism of DNA topoisomerase II. // Nature, 1996, v. 379, p. 225-232.
27. Bernstein F.C., Koetzle T.F., Williams G.J., Meyer E.E. Jr., Brice M.D., Rodgers J.R., Kennard 0., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. // J.Mol.Biol., 1977, v. 112, p. 535-542.
28. Billeter M., Qian Y.Q., Otting G., Muller M., Gehring W., Wuthrich K. Determination of the nuclear magnetic resonance solution structure of an antennapedia homeodomain-DNA complex. // J.Mol.Biol., 1993, v. 234, p. 1084-1097.
29. Bird L.E., Subramanya H.S., Wigley D.B. Helicases: a unifying structural theme? // Curr.Opin.Struct.Biol., 1998, v. 8, p. 14-18.
30. Bochkarev A., Barwell J.A., Pfuetzner R.A., Bochkareva E., Frappier L., Edwards A.M. Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin-binding protein, EBNA1, bound to DNA. // Cell, 1996, v. 84, p. 791800.
31. Bochkarev A., Barwell J.A., Pfuetzner R.A., Furey W., Edwards A.M., Frappier L. Crystal structure of the DNA-bind-ing domain of the Epstein-Barr virus origin-binding protein EBNA1. // Cell, 1995, v. 83, p. 39-46.
32. Bornberg-Bauer E., Rivals E., Vingron M. Computational approach to identify leucine zippers. // Nucleic Acids Res., 1998, v. 26, p. 2740-2746.
33. Brautigam C.A., Steitz T.A. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. // Curr.Opin. Struct. Biol., 1998, v. 8, p. 63.
34. Brennan R.G. DNA recognition by the helix-turn-helix motif. // Curr.Opin.Struct.Biol. , 1992, v. 2, p. 100-108.
35. Brennan R.G. Interaction of the helix-turn-helix binding domain. // Curr.Opin.Struct.Biol., 1991, v. 1, p. 80-88.
36. Brennan R.G., Matthews B.W. Structural basis of DNA-protein recognition. // Trends Biochem.Sei., 1989, v. 14, p. 286-290.
37. Buning H., Gatner U., von Schack D., Baeuerle P.A., Zorbas H. The histidine tail of a recombination DNA binding proteins may influence the quality of interaxtion with DNA. // Anal.Biochem. , 1996, v. 234, p. 227-230.
38. Burley S.K. The TATA box binding protein. // Curr.Opin. Struct.Biol., 1996, v. 6, p. 69-75.
39. Chen J., Pongor S., Simoncsits A. Recognition of DNA by single-chain derivatives of the phage 434 repressor: high affinity binding depends on both the contacted and non-contacted base pairs. // Nucleic Acids Res., 1997, v. 25, p. 2047-2054.
40. Cho Y., Gorina S., Jeffrey P.D., Pavletich N.P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. // Science, 1994, v. 265, p. 346-355.
41. Choo Y. End effects in DNA recognition by zinc finger arrays. // Nucleic Acids Res., 1998, v. 26, p. 554-557.
42. Clark K.L., Halay E.D., Lai E., Burley S.K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. // Nature, 1993, v. 364, p. 412-420.
43. Crothers D.M. DNA curvature and deformation in protein-DNA complexes: a step in the right direction. // Proc.Natl.Acad. Sci.USA, 1998, v. 95, p. 15163-15165.
44. Damante G., Pellizzari L., Esposito G., Fogolari F., Viglino P., Fabbro D., Tell G., Formisano S., Lauro R.D. A molecular code dictates sequence-specific DNA recognition by ho-meodomains. // EMBO J., 1996, v. 15 , p. 4992-5000.
45. Deng Q.L., Ishii S., Sarai A. Binding site analysis of c-Myb: screening of potentional binding sites by using the mutation matrix derived from systematic binding affinity measurements. // Nucleic Acids Res., 1996, v. 24, p. 766774 .
46. Desjarlais J.R., Berg J.M. Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. // Proc.Natl.Acad.Sci.USA, 1993, v. 90, p. 2256-2260.
47. Dickerson R.E. DNA bending: the prevalence of kinkiness and the virtues of normality. // Nucleic Acids Res., 1998, v. 26, p. 1906-1926.
48. Dickerson R.E. Definition and nomenclature of nucleic acid structure parameters. // J.Biomol.Struct.Dyn., 1989, v. 4, p. 627-634.
49. Dodd I.B., Egan J.B. Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. // Nucleic Acids Res., 1990, v. 18, p. 5019-5026.
50. Doherty A.J., Serpell L.C., Ponting C.P. The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. // Nucleic Acids Res., 1996, v. 24, p. 2488-2497.
51. Duong T.H., Zakrzewska K. Sequence specificity of bacte-riphage 434 repressor-operator complexation. // J.Mol.Biol., 1998, v. 280, p. 31-39.
52. Edwards A.M., Bochkarev A., Frappier L. Origin DNA-binding proteins. // Curr.Opin.Struct.Biol., 1998, v. 8, p. 49-53.
53. Ellenberger T.E., Brandl C.J., Struhl K., Harrison S.C. The GCN4 basic region leucine zipper binds DNA as a dinner of uninterrupted a helices: crystal structure of the protein-DNA complex. // Cell, 1992, v. 71, p. 1223-1237.
54. Elrod-Erickson M., Benson T.E., Pabo C.O. High-resolution structures of variant Zif268-DNA complexes: implication for understanding zinc finger-DNA recognition. // Structure, 1998, v. 6, p. 451-464.
55. Elrod-Erickson M., Rould M.A., Nekludova L., Pabo C.O. Zif268 protein-DNA complex refined at 1.6 A: a model system for understanding zinc finger-DNA interaction. // Structure, 1996, v. 4, p. 1171-1180.
56. Ezaz-Nikpay K., Verdine G.L. The effects of N7-methylgua-nine on duplex DNA structure. // Chem.Biol., 1994, v. 1, p. 235-240.
57. Fairall L., Schwabe J.W., Chapman L., Finch J.T., Rhodes D. The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition. // Nature, 1993, v. 366, p. 483-487.
58. Feng D.F., Johnson M.S., Doolittle R.F. Aligning amino acid sequences: comparison of commonly used methods. // J.Mol.Evol., 1985, v. 21, p. 112-125.
59. Feng J.A., Johnson R.C., Dickerson R.E. Hin recombinase bound to DNA: the origin of specificity in major and minor groove interactions. // Science, 1994, v. 263, p. 348-355.
60. Ferre-D'Amare A.R., Pognonec P., Roeder R.G., Burley S.K. Structure and function of the b/HLH/Z domain of USF. // EMBO J., 1994, v. 13, p. 180-189.
61. Fields D.S., Stormo G.D. Quantatative DNA sequencing to determine the relative protein-DNA binding constants to multiple DNA sequences. // Anal.Biochem., 1994, v. 219, p. 230239.
62. Fogh R.H., Ottleben G., Ruterjans H., Schnarr M., Boelens R., Kaptein R. Solution structure of the LexA repressor
63. DNA binding domain determined by 1H NMR spectroscopy. // EMBO J., 1994, v. 13, p. 3936-3944.
64. Fraenkel E., Pabo C.O. Comparison of X-ray and NMR structures for the Antennapedia homeodomain-DNA complex. // Nat.Struct.Biol., 1998, v. 5, p. 692-697.
65. Fraenkel E., Rould M.A., Chambers K.A., Pabo C.O. Engrailed homeodomain-DNA complex at 2.2 A resolution: a detailed view of the interface and comparison with other engrailed structures. // J.Mol.Biol. , 1998, v. 284, p. 351361.
66. Frankel A.D., Bredt D.S., Pabo C.O. Tat protein from human immunodeficiency virus forms a metal-linked dimer. // Science, 1988, v. 240, p. 70-73.
67. Freedman L.P., Luisi B.F., Korszun Z.R., Basavappa R., Si-gler P.B., Yamamoto K.R. The function and structure of the metal coordination sites within the glucocorticoid receptor DNA binding domain. // Nature, 1988, v. 334, p. 543546.
68. Giffin W., Torrance H., Rodda D.J., Prefontaine G.G., Pope L., Hache R.J.G. Sequence-specific DNA binding by Ku autoantigen and its effect on transcription. // Nature, 1996, v. 380, p. 265-268.
69. Gilis D., Rooman M.J. Stability changes upon mutation of solvent-accessible residues in proteins evaluted by database-derived potentials. // J.Mol.Biol., 1996, v. 257, p. 1112-1126.
70. Gorin A.A., Zhurkin V.B., Olson W.K. B-DNA twisting correlates with base-pare morphology. // J.Mol.Biol., 1995, v. 247, p. 34-48.
71. Gromiha M.M., Munteanu M.G., Simon I., Pongor S. The role of DNA bending in Cro protein-DNA interaction. // Biophys.Chem. , 1997, v. 69, p. 153-160.
72. Harrison S.C. A structural taxonomy of DNA-binding domains. // Nature, 1991, v. 353, p. 715-719.
73. Harrison S.C., Aggarwal A.K. DNA recognition by proteins with the helix-turn-helix motif. // Annu.Rev.Biochem., 1990, v. 59, p. 933-969.
74. Hegde R.S., Grossman S.R., Laimins L.A., Sigler P.B. Crystal structure at 1.7 Â of the bovine papillomavirus-1 E2 DNA-binding domain bound to its DNA target. // Nature, 1992, v. 359, p. 505-512.
75. Jacobs G., Michaels G. Zinc finger gene database. // New Biol., 1990, v. 2, p. 583.
76. Janin J. Quantifuing biological specificity: the statistical mechanics of molecular recognition. // Proteins Struct.Funct. Genet., 1996, v. 25, p. 438-445.
77. Jansen C., Gronenborn A.M., Clore G.M. The binding of the cyclic AMP receptor protein to synthetic DNA sites containing permutations in the consensus sequence TGTGA. // Biochem.J., 1987, v. 246, p. 227-232.
78. Jeon C., Yoon H., Agarwal K. The transcription factor TFI-IS zinc ribbon dipeptide Asp-Glu is critical for stimulation of elongation and RNA cleavage by RNA polymerase II. // Proc.Natl.Acad.Sci.U.S .A, 1994, v. 91, p. 9106-9110.
79. Jin C., Marsden I., Chen X., Liao X. Dynamic DNA contacts observed in the NMR structure of winged helix protein-DNA complex. // J.Mol.Biol., 1999, v. 289, p. 683-690.
80. Jones S., van Heyningen P., Berman H.M., Thronton J.M. Protein-DNA interactions: a structural analysis. // J.Mol.Biol., 1999, v. 287, p. 877-896.
81. Jordan S.R., Pabo C.O. Structure of the lambda complex at 2.5 A resolution: details of the repressor-operator interactions. // Science, 1988, v. 242, p. 893-899.
82. Kabsch W. , Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. // Biopolymers, 1983, v. 22, p. 2577-2637.
83. Kaptein R., Zuiderweg E.R., Scheek R.M., Boelens R., van Gunsteren D. A protein structure from nuclear magnetic resonance data Lac repressor headpiece. // J.Mol.Biol., 1985, v. 182, p. 179-182.
84. Karlin S., Brendel V. Chance and statistical significance in protein and DNA sequence analysis. // Science, 1992, v. 257, p. 39-49.
85. Keller W., Konig P., Richmond T.J. Crystal structure of a bZip/DNA complex at 2.2 Â: determinants of DNA specificrecognition. // J.Mol.Biol., 1995, v. 254, p. 657-667.
86. Kim J.L., Nikolov D.B., Burley S.K. Co-crystal structure of TBP recognizing the minor groove of a TATA element. // Nature, 1993, v. 365, p. 520-527.
87. Kim Y., Geiger J.H., Hahn S., Sigler P.B. Crystal structure of a yeast TBP/TATA-box complex. // Nature, 1993, v. 365, p. 512-527.
88. Kissinger C.R., Liu B.S., Martin-Blanco E., Kornberg T.B., Pabo C.O. Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A resolution: a framework for understanding homeodomain-DNA interactions. // Cell, 1990, v. 63, p. 579-590.
89. Klemm J.D., Rould M.A., Aurora R., Herr W., Pabo C.O. Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. // Cell, 1994, v. 77, p. 21-32.
90. Klug A., Rhodes D. Zinc fingers: a novel protein fold for nucleic acid recognition. // Cold Spring Harb.Symp. Quant.Biol., 1987, v. 52, p. 473-482.
91. Kodandapani R., Pio F., Ni C., Piccialli G., Klemsz M., McKercher S., Maki R.A., Ely K.R. A new pattern for helix-turn-helix recognition revealed by the PU.l ETS-domain-DNA complex. // Nature, 1996, v. 380, p. 456-460.
92. Kohn W.D., Mant C.T., Hodges R.S. a-helical protein assembly motifs. // J.Biol.Chem. , 1997, v. 272, p. 2583-2586.
93. Konig P., Girado R., Chapman L., Rhodes D. The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. // Cell, 1996, v. 85, p. 125-136.
94. Kostrewa D., Winkler F.K. Mg-+ binding to the active site of EcoRV endonuclease: a cristallographic study of complexes with substrate and product DNA at 2 A resolution. // Biochemistry, 1995, v. 34, p. 683-696.
95. Kostrewa D., Granzin J., Stock D., Choe H.W., Labahn J., Saenger W. Crystal structure of the factor for inversion stimulation FIS at 2.0 A resolution. // J.Mol.Biol., 1992, v. 226, p. 209-226.
96. Koudelka G.B. Recognition of DNA structure by 434 repressor. // Nucleic Acids Res., 1998, v. 26, p. 669-675.
97. Leplae R. , Hubbard T., Tramontane» A. GLASS: a tool to visualize protein structure prediction data in three dimensions and evaluate their consistency. // Proteins Struct.Funct. Genet., 1998, v. 30, p. 339-351.
98. Lesser D.R., Kurpiewski M.R., Waters T., Connolly B.A., Jen-Jacobson L. Facilitated distortion of the DNA site enhances EcoRI endonuclease-DNA recognition. // Proc.Natl.Acad. Sci.U.S.A, 1993, v. 90, p. 7548-7552.
99. Lindauer K., Bendic C., Suhnel J. HBexplore a new tool for identifying and analysing hydrogen bonding patterns in biological macromolecules. // CABIOS communication, 1996, v. 12 (4), p. 281-289.
100. Lipanov A., Kopka M.L., Kaczor-Grzeskowiak M., Quintana J., Dickerson R.E. Structure of the B-DNA decamer C-C-A-A-C-I-T-T-G-G in two different space groups: conformation flexibility of B-DNA. // Biochemistry, 1993, v. 32, p. 13731389.
101. Louse-May S., Auffinger P., Westhof E. Calculation of nucleic acid conformation. // Curr.Opin.Struct.Biol., 1996, v. 6, p. 289-298.
102. Luger K., Richmond T.J. DNA binding within the nucleosome core. // Curr.Opin.Struct.Biol., 1998, v. 8, p. 33-40.
103. Luger K., Rechsteiner T.J., Flaus A.J., Waye M.M., Richmond T.J. Characterization of nucleosome core particles containing histone proteins made in bacteria. // J.Mol.Biol., 1997, v. 272, p. 301-311.
104. Luisi B.F., Xu W.X., Otwinowski Z., Freedman L.P., Yamamo-to K.R., Sigler P.B. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. // Nature, 1991, v. 352, p. 497-505.
105. Luscombe N.M., Laskowski R.A., Thronton J.M. NUCPLOT: a program to generate schematic diagrams of protein-nucleic acid interactions. // Nucleic Acids Res., 1997, v. 25, p. 4940-4945.
106. Ma P.C.M., Rould M.A., Weintraub H., Pabo C.O. Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. // Cell, 1994, v. 77, p. 451-459.
107. Mandel-Gutfreund Y., Margalit H., Jernigan R.L., Zhurkin V.B. A role for CH.0 interactions in protein-DNA recognition. // J.Mol.Biol., 1998, v. 277, p. 1129-1140.
108. Mandel-Gutfreund Y., Margalit H. Quantitave parameters for amino acid-base interaction: implications for prediction of protein-DNA binding sites. // Nucleic Acids Res., 1998, v. 26, p. 2306-2312.
109. Mandel-Gutfreund Y., Schueler 0., Margalit H. Comprehensive analysis of hydrogen bonds in regulatory protein DNA-complexes: insearch of common principles. // J.Mol.Biol., 1995, v. 253, p. 370-382.
110. Marmorstein R.Q., Carey M., Ptashne M., Harrison S.C. DNA recognition by GAL4: structure of a protein-DNA complex. // Nature, 1992, v. 356, p. 408-414.
111. Matsuo H., Shirakawa M., Kyogoku Y. Three-dimentional dimer structure of the X-Cro repressor in solution as determined by heteronuclear multidimensional NMR. // J.Mol.Biol., 1995, v. 254, p. 668-680.
112. Matthews B.W. Protein-DNA interaction. No code for recognition. // Nature, 1988, v. 335, p. 294-295.
113. McCammon J.A. Theory of biomolecular recognition. // Curr.Opin.Struct.Biol., 1998, v. 8, p. 245-249.
114. Misra V.K., Sharp K.A., Friedman R.A., Honig B. Salt effects on ligand-DNA binding minor groove binding antibiotics. // J.Mol.Biol., 1994, v. 238, p. 245-263.
115. Misra V.K., Hecht J.L., Sharp K.A., Friedman R.A., Honig B. Salt effects on protein-DNA interactions. The A-cI repressor and -EcoRI endonuclease. // J.Mol.Biol., 1994, v. 238, p. 264-280.
116. Mondragon A., Subbiah S., Almo S.C., Drottar M., Harrison S.C. Structure of the amino-terminal domain of phage 434 repressor at 2.0 A resolution. // J.Mol.Biol., 1989, v. 205, p. 189-200.
117. Mueser T.C., Nossal N.G., Hyde C.C. Structure of bacteriophage T4 RNase H, a 5' to 3' RNA-DNA and DNA-DNA Exonu-clease with sequence similarity to the RAD2 family of eu-karyotic proteins. // Cell, 1996, v. 85, p. 1101-1112.
118. Nardelli J., Gibson T.J., Vesque C., Charnay P. Base sequence discrimination by zinc-finger DNA-binding domains. // Nature, 1991, v. 349, p. 175-178.
119. Nekludova L., Pabo C.O. Distinctive DNA conformation with enlarged major groove is found in Zn-finger-DNA and other protein-DNA complexes. // Proc.Natl.Acad.Sci.U.S.A, 1994, v. 91, p. 6948-6952.
120. Nelson H.C.M. Structure and function of DNA-binding proteins. // Curr.Opin.Genet.& Dev., 1995, v. 5, p. 180-189.
121. Newman M., Lunnen K., Wilson G., Greci J., Schildkraut I., Phillips S.E.V. Crystal structure of restriction endonu-clease Bgl I bound to its interrupted recognition sequence. // EMBO J., 1998, v. 17, p. 5466-5476.
122. Oelgeschlager T., Chiang C., Roeder R.G. Topology and reorganization of a human TFIID-promoter complex. // Nature,1996, v. 382, p. 735-738.
123. Ogata K., Morikawa S., Nakamura H., Sekikawa A., Inoue T., Kanai H., Sarai A., Ishii S., Nishimura Y. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. // Cell, 1994, v. 79, p. 639-648.
124. Olson W.K., Gorkin A.A. , Lu X., Hock L.M., Zhurkin V.B. DNA sequence-dependent deformability deduced from proteinDNA crystal complexes. // Proc.Natl.Acad.Sci.USA, 1998, v. 95, p. 11163-11168.
125. Otwinowski Z., Schevitz R.W., Zhang R.G., Lawson C.L., Joachimiak A., Marmorstein R.Q., Luisi B.F., Sigler P.B. Crystal structure of trp repressor/operator complex at atomic-resolution. // Nature, 1988, v. 335, p. 321-329.
126. Pabo C.O., Aggarwal A.K., Jordan S.R., Beamer L.J., Obey-sekare U.R., Harrison S.C. Conserved residues make similar contacts in two repressor-operator complexes. // Science, 1990, v. 247, p. 1210-1213.
127. Pabo C.O. New generation databases for molecular biology. // Nature, 1987, v. 327, p. 467.136137138139140141142143144145146147148149
128. Pabo C.O., Suchanek E.G. Computer-aided model-building strategies for protein design. // Biochemistry, 1986, v. 25, p. 5987-5991.
129. Pabo C.O., Sauer R.T. Protein-DNA recognition. // Annu.Rev.Biochem. , 1984 , v. 53, p. 293-321. Pabo C.O., Lewis M. The operator-binding domain of X repressor: structure and DNA recognition. // Nature, 1982, v. 298, p. 443-447.
130. Pabo C.O., Sauer R.T., Sturtevant J.M., Ptashne M. The X repressor contains two domains. // Proc.Natl .Acad.Sci.U.S.A, 1979, v. 76, p. 1608-1612.
131. Packer M.J., Hunter C.A. Sequence-dependent DNA structure: the role of the sugar-phosphate backbone. // J.Mol.Biol., 1998, v. 280, p. 407-420.
132. Pan T., Coleman J.E. GAL4 transcription factor is not a wzinc finger" but forms a Zn(II)2Cys6 binuclear cluster. // Proc.Natl.Acad.Sci.U.S.A, 1990, v. 87, p. 2077-2081 .
133. Pavletich N.P., Pabo C.O. Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. // Science, 1993, v. 261, p. 1701-1707.
134. Pavletich N.P., Pabo C.O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. // Science, 1991, v. 252, p. 809-817.
135. Pettitt M., Makarov V.A., Andrews B.K. Protein hydration density: theory, simulations and crystallography. // Curr.Opin.Struct.Biol. , 1998, v. 8, p. 218-221.
136. Phillips S.E.V. Specific p-sheet interaction. // Curr.Opin.Struct.Biol., 1991, v. 1, p. 89-98.
137. Pomerantz J.L., Pabo C.O., Sharp P.A. Analysis of home-odomain function by structure-based design of a transcription factor. // Proc.Natl.Acad.Sci.USA, 1995, v. 92, p. 97529756.
138. Povey J.F., Diakun G.P., Garner C.D., Wilson S.P., Laue E.D. Metal ion co-ordination in the DNA binding domain of the yeast transcriptional activator GAL4. // FEBS Lett.,1501511521531541551561571581591601611621631990, v. 266, p. 142-146.
139. Preibner R., Goede A., Fruromel C. Dictionary of interfaces in proteins (DIP) . Data bank of complementary molecular surface patches. // J.Mol.Biol., 1998, v. 280, p. 535-550.
140. Ptashne M., Jeffrey A., Johnson A.D., Maurer R., Meyer B.J., Pabo C.O., Roberts T.M., Sauer R.T. How the X repressor and cro work. // Cell, 1980, v. 19, p. 1-11.
141. Raumann B.E., Rould M.A., Pabo C.O., Sauer R.T. DNA recognition by ß-sheets in the Arc repressor-operator crystal structure. // Nature, 1994, v. 367, p. 754-757.
142. Rice P.A., Yang S., Mizuuchi K. , Nash H.A. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. // Cell, 1996, v. 87, p. 1295-1306.
143. Ringe D. What makes a binding site a binding site? // Curr.Opin.Struct.Biol. , 1995, v. 5, p. 825-829.
144. Robinson H., Gao Y., McCrary B.S., Edmondson S.P., Shriver J.W., Wang A.H.J. Thehyperthermophile chromosomal protein Sac7d sharply kinks DNA. // Nature, 1998, v. 392, p. 202205.
145. Rozenberg H., Rabinovich D., Frolow F., Hegde R.S., Shakked Z. Structural code for DNA recognition revealed in crystal structures of papillomavirus E2-DNA targets. // Proc.Natl.Acad.Sei.USA, 1998, v. 95, p. 15194-15199.
146. Sandmann C., Cordes F., Saenger W. Structure model of a complex between the factor for inversion stimulation (FIS) and DNA: modeling protein-DNA complexes with dyad symmetry and known protein structures. // Proteins, 1996, v. 25, p. 486-500.
147. Saroff H.A. Energetics of protein-DNA interactions: an exact calculation for binding of ligands to a lattice of overlapping sites. // Biopolymers, 1994, v. 36, p. 121134 .
148. Sauer R.T. Lac repressor at last. // Structure, 1996, v. 4, p. 219-222.
149. Sayle R. RasMol user manual. 1992.
150. Scheif R. DNA binding by proteins. // Science, 1988, v. 241, p. 1182-1187.
151. Schildbach J.F., Karzai A.W., Raumann B.E., Sauer R.T. Origins of DNA-binding specificity: role of protein contacts with the DNA backbone. // Proc .Natl .Acad. Sei . USA, 1999, v. 96, p. 811-817.
152. Schneider R., Daruvar A., Sander C. The HSSP database of protein structure-sequence aliment. // Nucleic Acids Res.,1997, v. 25, p. 226-230.
153. Schneider T.D. Sequence walker: a graphical method to display how binding proteins interact with DNA or RNA sequences. // Nucleic Acids Res., 1997, v. 25, p. 4408-4415.
154. Schreiber J., Enderich J., Wegner M. Structural requirement for DNA binding of GCM proteins. // Nucleic Acids Res., 1998, v. 26, p. 2337-2343.
155. Schultz S.C., Shields G.C., Steitz T.A. Crystal structure of a CAP-DNA complex: the DNA is bent by 90. // Science, 1991, v. 253, p. 1001-1007.
156. Schumacher M.A., Choi K.Y., Zalkin H., Brennan R.G. Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices. // Science, 1994, v. 266, p. 763-770.
157. Schwabe J.W.R., Chapman L., Flinch J.T. The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements. // Cell, 1993, v. 75, p. 567-578.
158. Shilov I., Tashlitskii V., Khodoun M., Vasil'ev S., Alek-seev Y., Kuzubov A., Kubareva E.A., Karyagina A.S. DNA-methyltransferase SsoII interaction with own promotor region binding site. // Nucleic Acids Res., 1998, v. 26, p. 2659-2664.
159. Shimofurutani N., Kisu Y., Suzuki M., Esaka M. Functional analyses of the Dof domain, a zinc finger DNA-binding domain, in a pumpking DNA-protein AOBP. // FEBS Lett., 1998, v. 430, p. 251-256.
160. Simoncsits A., Chen J., Percipalle P., Wang S., Toro I., Pongor S. Single-chain repressors containing engineered DNA-binding domains of the phage 434 repressor recognize symmetric or asymmetric DNA operators. // J.Mol.Biol., 1997, v. 267, p. 118-131.
161. Sippl M.J., Jaritz M. Prediction power of mean force pair potentials. // n/a, 1996, p. 113-134.
162. Sippl M.J., Ortner M., Jaritz M., Lackner P., Flockner H. Helmholtz free energies of atom pair interactions in proteins. // Fold.Des., 1996, v. 1, p. 289-298.
163. Sippl M.J. Helmholtz free energy of peptide hydrogen bonds in proteins. // J.Mol.Biol., 1996, v. 260, p. 644-648.
164. Somers W.S., Phillips S.E.V. Crystal structure of the met repressor-operator complex at 2.8 A resolution reveals DNA recognition by b-strands. // Nature, 1992, v. 359, p. 387393.176177178179180181182183184185186187188189
165. Steitz T.A. Structural studies of protein-nucleic acid interaction: the sources of sequence-specific binding. // Q.Rev.Biophys. , 1990, v. 23, p. 205-280.
166. Sternberg M.J.E., Gabb H.A., Jackson R.M. Predictive docking of protein-protein and protein-DNA complexes. // Curr.Opin.Struct.Biol., 1998, v. 8, p. 250-256.
167. Stormo G.D., Fields D.S. Specifity, free energy and information contents in protein-DNA interaction. // TIBS, 1998, v. 23, p. 109-113.
168. Suzuki M., Amano N., Kakinuma J., Tateno M. Use a 3D structure data base for understanding sequence-dependent conformational aspects of DNA. // J.Mol.Biol., 1997, v. 274, p. 421-435.
169. Suzuki M., Yagi N. An in-the-groove view of DNA structures in complexes with proteins. // J.Mol.Biol., 1996, v. 255, p. 677-687.
170. Suzuki M., Yagi N., Finch J.T. Role of base-backbone and base-base interactions in alternating DNA conformations. / / FEBS Lett., 1996, v. 379, p. 148-152.
171. Suzuki M., Brenner S.E., Gerstein M., Yagi N. DNA recognition code of transcription factors. // Protein Eng., 1995, v. 8, p. 319-328.
172. Suzuki M., Yagi N., Gerstein M. DNA recognition and superstructural formation by helix-turn-helix proteins. // Protein Eng., 1995, v. 8, p. 329-338.
173. Suzuki M., Gerstein M., Yagi N. Stereochemical basis of DNA recognition by Zn finger. // Nucleic Acids Res., 1994, v. 22, p. 3397-3405.
174. Suzuki M., Yagi N. DNA recognition rules for steroid hormone receptors and GATA1: specificity of the rules. // Proc.Japan Acad., 1994, v. 70B, p. 62-66.
175. Suzuki M., Yagi N. DNA recognition rules for steroid hormone receptors and GATA1: chemical and stereochemical rules. // Proc.Japan Acad., 1994, v. 70B, p. 58-61.
176. Suzuki M. A framework for the DNA-protein recognition code of the probe helix in transcription factors: the chemical and stereochemical rules. // Structure, 1994, v. 2, p. 317326.
177. Suzuki M., Yagi N. DNA recognition code of transcription factors in the helix-turn-helix, probe helix, hormone receptor, and zinc finger families. // Proc.Natl.Acad.Sci.USA, 1994, v. 91, p. 12357-12361.
178. Tan S., Richmond T.J. Eukariotic transcription factors. // Curr.Opin.Struct.Biol., 1998, v. 8, p. 41-48.
179. Tan S., Hunziker Y., Sargent D.F., Richmond T.J. Crystal structure of a yeast TFIIA/TBP/DNA complex. // Nature, 1996, v. 381, p. 127-134.
180. Turner D.H. Thermodynamics of base pairing. // Curr.Opin. Struct.Biol., 1996, v. 6, p. 299-304.
181. Vipond I.B., Baldwin G.S., Halford S.E. Divalent metal ions at the active sites of the EcoRV and EcoRI restriction endonucleases. // Biochemistry, 1995, v. 34, p. 697-704.
182. Vuister G.W., Kim S.J., Orosz A., Marquardt J., Wu C., Bax A. Solution structure of the DNA-binding domain of Droso-phila heat shock transcription factor. // Nat.Struct.Biol., 1994, v. 1, p. 605-614.
183. Waters T.R., Connolly B.A. Interaction of the restriction endonuclease UcoRV with the deoxyguanosine and deoxycyti-dine bases in its recognition sequence. // Biochemistry, 1994, v. 33, p. 1812-1819.
184. Werner M.H., Gronenborn A.M., Clore G.M. Intercalation, DNA kinking, and control of transcription. // Science, 1996, v. 271, p. 778-784.
185. Werner M.H., Clore G.M., Fisher C.L., Fisher R.J., Trinh L., Shiloach J., Gronenborn A.M. The solution structure of the human ETS1-DNA complex reveals a novel mode of binding and true side chain intercalation. // Cell, 1995, v. 83, p. 761-771.
186. Westcott T.P., Tobias I., Olson W.K. Elasticity theory and numerical analysis of DNA supercoiling: an application to DNA looping. // J.Phys.Chem., 1995, v. 99, p. 17926-17935.
187. Wikstrum A., Berglund H., Hambraeus C., van der Berg S., Hurd T. Conformational dynamics and molecular recognition: backbone dynamics of the estrogen receptor DNA-binding domain. // J.Mol.Biol. , 1999, v. 289, p. 963-979.
188. Wilson D.S., Guenther B., Desplan C., Kuriyan J. High resolution cristal structure of a paired (Pax) class cooperative homeodomain dimer on DNA. // Cell, 1995, v. 82, p. 709719.
189. Wingenber E., Dietze P., Karas H., Knuppel R. TRANSFAC: a database on transcription factors and their DNA binding sites. // Nucleic Acids Res., 1996, v. 24, p. 238-241.
190. Wintjens R.T., Rooman M.J., Wodak S.J. Automatic classification and analysis of aa-turn motifs in proteins. // J.Mol.Biol., 1996, v. 255, p. 235-253.
191. Wintjens R.T., Rooman M.J. Structural classification of HTH DNA-binding domains and protein-DNA interaction modes. // J.Mol.Biol., 1996, v. 262, p. 294-313.
192. Wolberger C. Homeodomain interactions. // Curr.Opin. Struct.Biol., 1996, v. 6, p. 62-68.
193. Wolberger C., Vershon A.K., Liu B., Johnson A.D., Pabo C.O. Crystal structure of a MATa2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. // Cell, 1991, v. 67, p. 517-528.
194. Wolberger C., Dong Y., Ptashne M., Harrison S.C. Structure of a phage 434 Cro/DNA complex. // Nature, 1988, v. 335, p. 789-795.
195. Wolfe S.A., Greisman H.A., Ramm E.I., Pabo C.O. Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. // J.Mol.Biol., 1999, v. 285, p. 1917-1934.
196. Yang W., Steitz T.A. Crystal structure of the site-specific recombinase y5 resolvase complexed with a 34 bp cleavage site. // Cell, 1995, v. 82, p. 193-207.
197. Yura K., Tomoda S., Go M. Repeat of a helix-turn-helix module in DNA-binding proteins. // Protein Eng., 1993, v. 6, p. 621-628.
198. Zhang H., Zhao D., Revington M., Lee W., Jia X., Arrow-smith C., Jardetzky 0. The solution structures of the trp repressor-operator DNA complex. // J.Mol.Biol., 1994, v. 238, p. 592-614.
199. Zhang P., Tobias I., Olson W.K. Computer simulation of protein-induced structural changes in closed circular DNA. // J.Mol.Biol., 1994, v. 242, p. 271-290.
200. Zhou P., Sun L.J., Dotch V., Wagner G., Verdine G.L. Solution structure of the core NFATCl/DNA complex. // Cell, 1998, v. 92, p. 687-696.
201. Zou Q., Habermann-Rottinghaus S.M., Murphy K.P. Urea effects on protein stability: hydrogen bonding and the hydrophobic effect. // Proteins Struct.Funct.Genet., 1998, v. 31, p. 107-115.
202. Код БД-источника Kofl DPIDB БД-ис- ТОЧ-НИК Заголовок Состав Разрешение Дата (A)1 1А02 2 3 4 5 6 7
203. MOLECULE: DNA; CHAIN: D, E MOLECULE: 3-1BNK P1BNK PDB DNA REPAIR METHYLADENINE DNA GLYCOSYLASE; CHAIN: A, B, 2 . 70 29 . 07 .981. C; SYNONYM: AAG, I1BNZ P1BNZ PDB PROTEIN-DNA INTERACTION MOL ID: 1; MOLECULE: SS07D; CHAIN: NULL 2 .00 31 .07 . 98
204. CHAIN: T, P, D; ENGINEERED: YES;1BPX P1BPX PDB COMPLEX (NUCLEOTIDYL- OTHER DETAILS: GAPPED DNA IS COMPOSED OF 3 2 .40 11 . 04 .97
205. TRANSFERASE / DNA ) STRANDS TEMPLATE, PRIMER, AND DOWNSTREAM1. OLIGO SYNONYM: POL-B
206. CHAIN: T, P, D; ENGINEERED: YES;1BPY P1BPY PDB COMPLEX (NUCLEOTIDYLTRANSFERASE / DNA ) OTHER DETAILS: GAPPED DNA IS COMPOSED OF 3 STRANDS TEMPLATE, PRIMER, AND DOWNSTREAM 2 .20 15 .04 .971. OLIGO SYNONYM: POL B
207. COMPLEX (ENDONUCLEASE /DNA) CHAIN: B, C; ENGINEERED: YES MOLECULE: FOKI RESTRICTION ENDONUCLEASE; CHAIN: A; SYNONYM: 2.80 R. FOK 18.04.97
208. COMPLEX (GENE-REGULATORY PROTEIN/DNA) C-JUN PROTO-ONCOGENE (TRANSCRIPTION FACTOR AP-1) DIMERIZED WITH C-FOS AND COMPLEXED WITH 3.05 DNA 07.03.95
209. LU 1-- 1HCQ PI GLU P1HCQ PDB PDB PDB GLUCOCORTICOID RECEPTOR (DNA-BINDING DOMAIN) COMPLEX WITH DNA (FIRST SIX RESIDUES ARE CLONAL LINKERS) 2 . 90
210. COMPLEX (DNA-BINDING PROTEIN/DNA) MOL ID 1, MOLECULE: HUMAN SRY; CHAIN: A; MOL ID 2, HMP 09.05.951HRZ P1HRZ PDB COMPLEX (DNA-BINDING PROTEIN/DNA) MOL ID 1, MOLECULE: HUMAN SRY; CHAIN: A; MOL ID 2, HMP 09.05.95
211. Fl 1IGN UHF PI I Fl PDB COMPLEX (DNA-BINDING PROTEIN/DNA) S MOLECULE: INTERFERON REGULATORY FACTOR 1; CHAIN: A, B; FRAGMENT: DNA- 3 . 00 2.25 12.09.97 29.02.96
212. P1IGN PDB P1IHF PDB ■ COMPLEX (DNA-BINDING PROTEIN/DNA) ENGINEERED: YES MOLECULE: RAP1; CHAIN: A, B; FRAGMENT: DNA
213. CHAIN: A, B; ENGINEERED: YE
214. DNA POLYMERASE I (KLENOW FRAGMENT)1KLN P1KLN PDB NUCLEOTIDYLTRANSFERASE (E.C.2.7.7.7) MUTANT WITH ASP 3 55 REPLACED BY 3.20 24 . 05. 94
215. ALA (D355A) COMPLEXED WITH DNA1LAT < 1 P1LAT PDB 1 1 COMPLEX (TRANSCRIPTION REGULATION/DNA) CHAIN: C, D; SYNONYM: GRESO; ENGINEERED: YES; OTHER DETAILS: 2 GRE HALF-SITES SEPARATED BY ZERO BASE PAIRS OF SPACE 1 . 90 18 . 12 . 95
216. C REPRESSOR ("HEADPIECE") COMPLEX WITH AN1LCC P1LCC PDB GENE-REGULATING PROTEIN 11 BASE-PAIR HALF-OPERATOR CORRESPONDING TO THE LEFT HALF OF THE WILD TYPE LAC OPERATOR ÜMP 25. 03. 931. NMR, BEST STRUCTURE)
217. C REPRESSOR ("HEADPIECE") COMPLEX WITH AN1LCD 1 PlLCD GENE-REGULATING PROTEIN 11 BASE-PAIR HALF-OPERATOR CORRESPONDING TO THE LEFT HALF OF THE WILD TYPE LAC OPERATOR HMP 25. 03. 931. NMR, 3 STRUCTURES)
218. MBDA REPRESSOR MUTANT WITH VAL 3 6 REPLACED1LLI P1LLI PDB TRANSCRIPTION REGULA- BY LEU, MET 40 REPLACED BY LEU, AND VAL 47 2.10 25. 03. 94
219. TION PROTEIN/DNA REPLACED BY ILE (V36L,M4OL,V471) COMPLEXED WITH DNA OPERATOR1LMB P1LMB PDB DNA-BINDING REGULATORY PROTEIN LAMBDA REPRESSOROPERATOR COMPLEX 1.80 05. 11. 91
220. MYOD BASIC-HELIX-LOOP-HELIX (BHLH) DOMAIN1MDY P1MDY PDB TRANSCRIPTION ACTIVA- (RESIDUES 102 166) MUTANT WITH CYS 135 RE- 2 .80 09. 06. 94
221. S F 1NFK 10CT 1 PAR COMPLEX (BINDING PRO-P1MSFPDB TEIN/DNA) C-MYB DNA-BINDING DOMAIN COMPLEXED WITH DNA (NMR, 25 STRUCTURES) 24.01.95
222. P1NFK PIOCT PI PAR PDB PDB PDB COMPLEX (TRANSCRIPTION FACTOR/DNA) THE HOMODIMER IS BOUND TO A KB SITE MOLECULE: NUCLEAR FACTOR KAPPA-B; CHAIN: A, B; FRAGMENT : P50 2 .30 03.10.96
223. DNA-BINDING PROTEIN OCT-1 (POU DOMAIN) 3 . 00 2 . 60 09.05.94 22.03.94
224. COMPLEX (DNA-BINDING PROTEIN/DNA)1TRO P1TRO PDB I L > — 51TRR P1TRR PDB
225. ARE NONCODING STRAND NUCLEOTIDES + 62 +92, CHAINS C AND F ARE CODING STRAND NUCLEOTIDES + 6
226. ENGINEERED: YES MOLECULE: HUMAN TATA BINDING PROTEIN; CHAIN: A; SYNONYM: HTBP;1TSR P1TSR PDB
227. DNA-BINDING REGULATORY PROTEIN
228. DNA-BINDING REGULATORY PROTEIN
229. COMPLEX (DNA-BINDING PROTEIN/DNA)
230. TRP REPRESSOR COMPLEX WITH OPERATOR290 13 1.90 30
231. TRP REPRESSOROPERATOR HALF-SITE TANDEM COMPLEX2.401TUP P1TUP PDB1UBD P1UBD PDB1.AS P1VAS PDB i1VOL P1VOL1VPW A00191.' I '1WET A00201.I ""1XBR1YRN 1YSA1. P1XBR1. P1YRN P1YSA1. PDB1. PDB1. PDB1. PDB1. PDB PDB
232. COMPLEX (TUMOR SUP-PRESSOR/DNA)
233. COMPLEX (TRANSCRIPTION CHAIN: A, B; ENGINEERED: YES MOLECULE: YY1; REGULATION/DNA) COMPLEX (ENDONUCLEase/dna)1. COMPLEX(TRANSCRIPTIONI1. FACTOR/REGN/DNA)
234. MOL ID: 1; MOLECULE: P53 TUMOR SUPPRESSOR; CHAIN: A, B, C; ENGINEERED: YE
235. MOL ID: 1; MOLECULE: TUMOR SUPPRESSOR P53; CHAIN: A, B, C; MOL ID: 2;chain: c; fragment: zinc5'-d(tpapgpcpgpcpapapcpgpcpgpa)-3'); chain: B, c; engineered: yes chain: a; ec: 3.1.25.1;
236. MOL ID: 3; MOLECULE: 16 BASE-PAIR TATA-CONTAINING OLIGONUCLEOTIDE; CHAIN: C, D; ENGINEERED: YES FRAGMENT: RESI1. PROTEIN/DNA)
237. ENGINEERED: YES; OTHER DETAILS: BOUND TO COMPLEX (DNA-BINDING COREPRESSOR, HYPOXANTHINE, AND PURF OPERATOR.
238. NO 5' PHOSPHATE ON OLIGONUCLEOTIDE CHAIN: A; ENGINEERED: YE
239. MOL ID: 1; MOLECULE: PURINE REPRESSOR-GUANINE-PURF-OPERATOR; CHAIN: A; MOL ID: 2;
240. COMPLEX (DNA-BINDING PROTEIN/DNA)
241. COMPLEX (TRANSCRIPTION FACTOR/DNA)1. COMPLEX (TWO DNA
242. ENGINEERED: YES; OTHER DETAILS: 24-MERIC DNA DUPLEX MOLECULE: T PROTEIN; CHAIN: A, B; FRAGMENT: T DO
243. DOMAIN: HOMEODOMAIN; SYNONYM: MAT ALPHA-2;
244. BINDING PROTEINS/DNA) ENGINEERED: YES; MOL ID: 3; MOLECULE: DNA;1.UCINE ZIPPER
245. GCN4 (BASIC REGION, LEUCINE ZIPPER) COMPLEX220 2.20 2.50275 2.702 .702128 11 0408
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.