Динамика космической тросовой системы для доставки полезной нагрузки на землю тема диссертации и автореферата по ВАК РФ 01.02.01, кандидат технических наук Стратилатов, Николай Ремирович

  • Стратилатов, Николай Ремирович
  • кандидат технических науккандидат технических наук
  • 2010, Самара
  • Специальность ВАК РФ01.02.01
  • Количество страниц 124
Стратилатов, Николай Ремирович. Динамика космической тросовой системы для доставки полезной нагрузки на землю: дис. кандидат технических наук: 01.02.01 - Теоретическая механика. Самара. 2010. 124 с.

Оглавление диссертации кандидат технических наук Стратилатов, Николай Ремирович

Введение.

1 Динамика тросовых систем для доставки полезной нагрузки на Землю.

1.1 Космические тросовые системы.

1.2 Тросовые системы для доставки груза с орбиты.

1.3 Эксперимент "Фотон-М" №3 - YES2".

1.4 Задачи исследования динамики.

2 Плоская модель космической тросовой системы.

2.1 Общие положения.

2.2 Уравнения движения космического аппарата.

2.3 Уравнения движения груза.

2.4 Уравнения движения груза в связанной системе координат.

3 Многоточечная пространственная модель космической тросовой системы.

3.1 Особенности уравнения гибкой нити.

Нелинейная модель с распределёнными параметрами.

3.2 Обоснование введения дискретной модели троса.

3.3 Взаимодействие отдельного элемента троса с атмосферой.

3.4 Уравнения движения точечных масс системы.

3.5 Дискретизация процесса выпуска троса.

3.6 Алгоритм численной реализации процесса развёртывания.

3.7 Моделирование движения космической тросовой системы на примере эксперимента YES2.

3.8 Оценка влияния числа точечных масс.

3.9 Оценка влияния атмосферы

4 Движение космического аппарата относительно центра масс под действием силы натяжения троса.

4.1 Уравнения плоских колебаний КА с тросом.

4.2 Приближённо-аналитические решения.

4.3 Приближённо-аналитические решения для случая малых колебаний КА

4.4 Развёртывание тросовой системы и уровень микроускорений на борту КА.

4.5 Результаты численного моделирования.

4.6 Движение К А с тросом с учётом штатной работы системы управления движением.

5. Нештатные ситуации при развертывании троса.

5.1 Классификация нештатных ситуаций.

5.2 Начальные условия отделения груза и возможность появления нештатных ситуаций.

5.3 Заклинивание троса.

5.4 Нештатные ситуации при отказе системы управления движением КА.

Рекомендованный список диссертаций по специальности «Теоретическая механика», 01.02.01 шифр ВАК

Введение диссертации (часть автореферата) на тему «Динамика космической тросовой системы для доставки полезной нагрузки на землю»

Для доставки груза с орбиты на поверхность планет традиционно используются спускаемые аппараты и капсулы, переводимые на орбиту спуска с помощью реактивных двигателей. В последние десятилетия активно ведутся работы по созданию альтернативной схемы доставки груза с использованием космических тросовых систем (КТС), состоящих из космического аппарата (КА), троса и спускаемой (возвращаемой) капсулы с полезной нагрузкой (груз). Главным достоинством этой схемы является снижение стоимости осуществления маневра за счёт отказа от использования реактивного топлива, например [1,2].

Суть транспортной операции доставки груза с орбиты с помощью тросовой системы качественно можно описать следующим образом. С находящегося на орбите КА на гибком тросе в вертикальном направлении с некоторой скоростью выпускается груз. Под действием кориолисовой силы он отклоняется от местной вертикали в сторону направления движения КА. По мере увеличения длины троса высота груза над поверхностью Земли будет уменьшаться, а гравитационное ускорение, действующее на груз, будет увеличиваться по сравнению с аналогичным ускорением, действующим на КА. За счёт этого груз совершит возвратное движение. Находясь в окрестности местной вертикали КА, груз будет иметь скорость меньшую, чем скорость КА. Другими словами, за счёт возвратного движения груз получит отрицательное приращение к орбитальной скорости, эквивалентное тормозному импульсу. Если на этом этапе разорвать трос, то груз по определенной траектории совершит спуск в атмосферу.

Описанная транспортная операция была реализована в 2007 году в рамках российско-европейского эксперимента "Young Engineers' Satellite 2 — YES2" [3] . Со спутника "Фотон-М" N3, движущегося на высоте порядка 250 км, отделялась капсула, установленная на нём и скрепленная1 с ним - Здесь и далее звездочкой отмечаются работы автора. 4 тросом. При достижении расчётной длины троса (около 30 км) происходил его принудительный разрыв, и капсула по баллистической траектории спускалась на поверхность Земли. Автор принимал участие в подготовке и выпуске ряда документов по эксперименту. Проектные параметры КА "Ootoh-M"N3 [4, 5] *, циклограмма проведения эксперимента [3]*, расчетные модели и итоговый отчёт были разработаны при его непосредственном участии [6] \ В результате эксперимента была показана принципиальная возможность осуществления доставки груза с помощью троса, однако потеря спускаемой капсулы в реальном эксперименте указывает на необходимость более детального изучения динамики движения элементов системы.

Проблеме изучения динамики КТС в научной литературе уделено большое внимание. Основополагающей работой в этой области является монография В.В. Белецкого и Е.М. Левина [1]. Среди других работ следует отметить статью М.П. Картмелла и Д.Д. Мак-Кензи [7], в которой даётся обзор существующих к настоящему времени научных работ и экспериментов с использованием КТС. Среди работ, посвященных проблеме разработки и использования КТС, можно выделить несколько направлений исследований. Часть авторов занималась общими вопросами динамики КТС [8-12]. Другие -проработкой вопросов, связанных с устойчивостью и надёжностью поведения тросов на орбите, а также вопросов поиска новых и усовершенствованием уже существующих методов стабилизации [13-15]. Большая часть работ посвящена разработке и усовершенствованию математических моделей, описывающих тросовые системы [16-18]. Ряд научных и отчасти популяризующих статей направлены на поиск и разработку новых путей использования КТС [19-22]. И наконец, пять работ [23-27] характеризуют направление, где основные усилия авторов сосредоточены на решении задачи управления развёртыванием (свёртыванием) троса с КА, находящегося на орбите, с разными критериями эффективности.

Анализ работ показывает, что не все вопросы динамики тросовых систем нашли в них свое отражение. В частности, для исследования динамики троса в процессе развёртывания используются весьма приближенные математические модели без учёта движения несущего КА. За рамками исследований остаются вопросы влияния развёртывания тросовой системы и системы управления движением КА на его вращательное движение. Для задачи развёртывания КТС не исследованы потенциально возможные нештатные ситуации в условиях полета реального КА. Настоящая диссертационная работа посвящена совместному анализу динамики КТС и КА в процессе доставки полезной нагрузки с орбиты на Землю.

Актуальность настоящей работы обусловлена практической необходимостью решения задачи доставки полезного груза с орбиты на Землю, определяется возможностью снижения стоимости этой транспортной операции за счёт отказа от использования тормозных двигателей и топлива на борту возвращаемой капсулы (нагрузки) и связана с исследованием динамики КТС переменной конфигурации.

Целью работы является исследование динамики КТС совместно с КА на основе математических моделей, описывающих движение КТС переменной конфигурации с учетом движения несущего КА относительно его центра масс, изучение с их помощью задачи доставки нагрузки (груза) с орбиты и анализа влияния возможных отказов системы управления движением КА.

Объектом исследования является КТС, представляющая собой связку из несущего КА и груза, соединенных гибкой связью (тросом), используемая для спуска полезной нагрузки на Землю.

Предметом исследования является динамика КТС реального космического эксперимента КА "Фотон-М" №3 — YES2" со спуском груза с орбиты на основе построенных математических моделей, позволяющих провести качественный и количественный анализ изучаемых движений КТС с учетом вращения КА вокруг центра масс и отказов системы управления движением.

Основными методами исследований, используемыми в работе, являются методы теоретической механики, теории колебаний, асимптотические и численные методы решения дифференциальных уравнений.

Научная новизна работы состоит в следующем:

1. Построена пространственная дискретная модель КТС с весомым, гибким, вязкоупругим тросом переменной длины, учитывающая влияние атмосферы на трос.

2. Разработана математическая модель, описывающая плоское движение КА относительно центра масс в процессе развертывания тросовой системы.

3. Получены приближенные аналитические решения, описывающие изменение амплитуды колебаний КА, вызванное изменением величины и направления силы натяжения троса.

4. Получена приближенная аналитическая зависимость, позволяющая оценить уровень микроускорений, возникающих на борту КА в процессе развертывания троса.

5. Разработаны модели потенциально возможных нештатных ситуаций, связанных с отказами в системе управления движением КА и в механизме развертывания троса.

Практическая ценность работы заключается в возможности использования разработанных математических моделей и аналитических зависимостей для исследования движения КТС и КА в штатных нештатных режимах их функционирования.

Апробация результатов, полученных в диссертации, проведена на XIII и XIV Всероссийских научно-технических семинарах по управлению движением и навигации летательных аппаратов (Самара, 2007 г., 2009г.).

Математические модели были использованы при разработке программного комплекса моделирования движения КТС: • "Разработка программного комплекса моделирования характеристик движения тросовой системы КА "Фотон-М" №3 — "MASS-FOTINO"" (2007 г.).

• "Послеполетный анализ динамики орбитальной тросовой системы YES2 по данным аппаратуры MASS, NORAD (ЕКА) и аппаратуры SSAU-YES2 (СГАУ)" (2008 г.).

Результаты исследований вошли в научно-технические отчеты ФГУП ГНПРКЦ "ЦСКБ-Прогресс" [3-6]*, в отчёты по проекту Российского фонда фундаментальных исследований №06-01-00355-а "Возмущенное движение систем твердых тел постоянного и переменного состава", а также были внедрены в учебный процесс кафедры теоретической механики Самарского государственного аэрокосмического университета.

Результаты исследований опубликованы в 9 печатных работах, из них 4 - в ведущих рецензируемых журналах и изданиях, определенных высшей аттестационной комиссией: Общероссийский научно-технический журнал "Полет", "Вестник Самарского государственного университета", "Вестник Самарского государственного аэрокосмического университета имени академика С.П. Королёва" [3-6, 28-32]*.

В первой, главе рассматриваются универсальные свойства КТС, приводится краткий обзор задач, где они могли бы найти свое применение. Подробно рассматривается задача доставки груза с орбиты на Землю с использованием КТС. Сравниваются статическая и динамическая схемы развертывания. Приводится краткий обзор эксперимента "Фотон-ЗМ - YES2", в ходе которого была реализована схема спуска груза с орбиты на Землю с помощью КТС без использования тормозных двигателей и затрат топлива. Рассмотрены математические модели, используемые для изучения динамики КТС.

Во второй главе строится модель КТС с невесомым абсолютно неупругим тросом. Достоинством этой модели является её простота и наглядность, однако возможности использования ограничены оценочными расчётами. При построении этой модели вводится ряд допущений: КА и груз рассматриваются как материальные точки; движение считается плоским; не учитывается влияние атмосферы на трос; считается, что длина троса во много раз меньше радиуса орбиты КТС, но во много раз превосходит размеры КА и груза. Уравнения движения соединённых тросом КА и груза записаны в связанной с Землей системе координат. Уравнения движения груза получены для неинерциальной вращающейся системы координат, связанной с КА. Полученная во второй главе модель с невесомым абсолютно неупругим тросом служит основой для построения более сложной дискретной модели, а также используется при разработке модели, описывающей пространственное движение КА в составе КТС.

В третьей главе строится многоточечная пространственная модель КТС. Даётся обоснование введения дискретной модели, в которой трос заменяется совокупностью точечных масс, соединённых упругими стержнями. Показываются её преимущества и недостатки по сравнению с другими известными моделями. Определяются силы аэродинамического сопротивления, действующие на трос. Выводятся уравнения, описывающие движения точечных масс и конечных тел во вращающейся прямоугольной гринвичской системе координат. Приводятся формулы для перевода координат и скоростей точек из гринвичской в барицентрическую систему координат, связанную с КА. Особое внимание в главе уделено особенностям моделирования процесса выпуска троса и реализации расчётного алгоритма. С помощью полученной математической модели проведено моделирование движения КТС с параметрами и начальными условиями, соответствующими проекту YES—2. Проведена оценка влияния числа точечных масс троса на точность моделирования. Показано, что учёт действующей на трос силы сопротивления атмосферы ощутимо влияет на параметры движения груза в момент отделения от троса. Разработанная в третьей главе дискретная модель, в частности, использована для проведения требующих большой точности расчетов. В пятой главе она использована для выявления возможных нештатных ситуаций системы управления движением КА.

Четвёртая глава посвящена исследованию влияния работы КТС на пространственное движение несущего КА. В главе получены дифференциальные уравнения, описывающие движение тросовой системы с учётом вращения КА относительно его центра масс. Для случая, когда момент силы натяжения троса существенно превышает гравитационный момент, а параметры движения центра масс спутника, угол отклонения, длина троса и их производные являются медленными функциями, найдено приближённое аналитическое решение, описывающее изменение амплитуды колебаний угла отклонения продольной оси спутника от линии действия силы натяжения троса. Приближённое аналитическое решение получено также для случая, когда угол отклонения оси симметрии спутника от местной вертикали мал, а сила натяжения троса и угол между линией действия этой силы и вертикалью являются медленно меняющимися функциями медленного времени. С помощью найденных решений получены приближённые аналитические зависимости, позволяющие оценить максимальные дополнительные перегрузки, вызванные развертыванием тросовой системы. Получено также дифференциальное уравнение пространственного движения КА относительно его- центра масс с учётом работы двигателей системы управления движением. Проведено-численное моделирование движения спутника с тросом при наличии и при отсутствии управляющего момента, создаваемого двигателями. Полученные в главе результаты позволяют оценивать влияние поведения космической тросовой системы на пространственное движение КА.

В пятой главе на основе технического анализа подсистем КТС и КТС в целом разработаны модели возможных нештатных ситуаций. Показано, что отклонение от требуемой ориентации КА в момент отделения груза может привести к тому, что он перейдёт на более высокую по сравнению с КА орбиту, столкнётся с ним, или произойдёт наматывание троса на сам КА. В результате численных экспериментов^ в пространстве углов, задающих направление относительной скорости спускаемой капсулы (груза), построены зоны, соответствующие вышеуказанным нештатным ситуациям и зона безопасного отделения. Для нештатной ситуации заклинивания троса расчёты показали, что заклинивание особенно опасно на начальном этапе развёртывания, когда груз находится около спутника и наматывание троса происходит независимо от его ориентации. Для КА с системой управления движением, позволяющей ориентировать его по местной вертикали, показано, что её отказ после начала развёртывания троса влияет только на уровень микроускорений на его борту и не приводит к столкновению КА с отделяемой капсулой, или наматыванию троса на спутник. Если существует вероятность отказа системы ориентации, то с точки зрения обеспечения минимального уровня микроускорений на борту лучше вообще её не использовать, позволив КА совершать свободные колебания. Анализ нештатных ситуаций проводился для конкретного эксперимента YES-2, однако, полученные в пятой главе результаты и методики оценки нештатных ситуаций могут быть легко распространены и на другие типы космических аппаратов и схемы полеты.

Похожие диссертационные работы по специальности «Теоретическая механика», 01.02.01 шифр ВАК

Заключение диссертации по теме «Теоретическая механика», Стратилатов, Николай Ремирович

Выводы и результаты:

1. Показано, что неправильная ориентация КА в момент отделения груза может привести к тому, что груз перейдет на более высокую по сравнению с КА орбиту, столкнется с ним, или произойдет наматывания троса на КА. В результате серии численных экспериментов в пространстве углов, задающих направление относительной скорости груза, построены зоны соответствующие вышеуказанным нештатным ситуациям и зона безопасного отделения [28]*.

2. Нештатная ситуация заклинивания троса особенно опасна на начальном этапе развертывания, когда груз находится около КА, и наматывание троса происходит независимо от его ориентации.

3. Для КА с системой управления движением, позволяющей ориентировать его по местной вертикали, отказ системы после начала развертывания троса влияет только на уровень микроускорений на борту КА и не приводит к столкновению и/или наматыванию троса на КА. Если существует вероятность отказа системы ориентации, то с точки зрения обеспечения минимальных дополнительных микроускорений на борту лучше вообще ее не использовать, позволив КА совершать свободные колебания [29]*.

4. Полученные в главе результаты и методики оценки нештатных ситуаций легко распространяются на любые космические программы, включающие в себя этап доставки груза с использованием КТС.

Заключение

В результате проведенных в работе исследований решена актуальная научно-техническая задача создания моделей динамики космической тросовой системы по доставке полезной нагрузки с орбиты на Землю на всех этапах её жизненного цикла, включая влияние нештатных ситуаций при развертывании.

Получены следующие основные научные и практические результаты, позволяющие вести качественный и количественный анализ процесса спуска полезной нагрузки с орбиты на Землю:

1. Построена пространственная дискретная модель КТС с весомым, гибким, вязкоупругим тросом переменной длины, учитывающая влияние атмосферы на трос;

2. Разработана математическая модель, описывающая плоское движение КА относительно центра масс в процессе развертывания тросовой системы;

3. Получены приближенные аналитические решения, описывающие изменение амплитуды колебаний КА, вызванное изменением величины и направления силы натяжения троса;

4. Получена приближенная аналитическая зависимость, позволяющая оценить уровень микроускорений, возникающих на борту КА в процессе развертывания троса;

5. Разработаны модели потенциально возможных нештатных ситуаций, связанных с отказами в системе управления движением КА и в механизме развертывания троса.

Результаты, полученные автором, нашли реализацию в рамках российско-европейского проекта YES-2, который был выполнен в качестве попутного эксперимента на КА "Фотон-М" №3 в 2007г., главным конструктором которого является, в том числе автор.

Список литературы диссертационного исследования кандидат технических наук Стратилатов, Николай Ремирович, 2010 год

1. Белецкий, В.В. Динамика космических тросовых систем Текст./ В .В. Белецкий, Е.М. Левин. М.: Наука, 1990. - 330 с.

2. Zimmermann, F. Optimization of the tether-assisted return mission of a guided re-entry capsule Text./ F. Zimmermann, U.M. Schottle, E. Messerschmid//Aerospace Science and Technology. 2005. - № 9. -P. 713-721.

3. Стратилатов, H.P. Инженерная записка TN2 "Описание эксперимента YES2" Текст./Н.Р. Стратилатов, А.В. Чечин и др. Самара: ФГУП ГНПРКЦ "ЦСКБ-Прогресс", 2006. - 16 с.

4. Ахметов, Р.Н. Исходные данные на разработку КА «Фотон-М» N2, N3, N353I1-34KC-27972-1111 Текст./Р.Н. Ахметов, Н.Р. Стратилатов и др. Самара: ФГУП ГНПРКЦ "ЦСКБ-Прогресс", 2003. - 168 с.

5. Ахметов, Р.Н. Космический комплекс «Фотон-М» N:3. Отчет по результатам летных испытаний КА «Фотон-М» N 353П-34КС-32335-1103 Текст./Р.Н. Ахметов, Н.Р. Стратилатов и др. Самара: ФГУП ГНПРКЦ "ЦСКБ-Прогресс", 2007. - 157 с.

6. Стратилатов, Н.Р. Инженерная записка TN5 "Проведение эксперимента YES2" Текст./Н.Р. Стратилатов, А.В. Чечин и др. Самара: ФГУП ГНПРКЦ "ЦСКБ-Прогресс", 2006. - 73 с.

7. Cartmell, М.Р. A review of space tether research Text./M.P. Cartmell, D.J. McKenzie// Progress in Aerospace Sciences. 2008 . Vol.44. - P 1-21.

8. Cho, S. Approximate Solutions for Tethered Satellite Motion Text./S. Cho, A. Lovell, J. E. Cochran, D.A. Cicci//Journal of Guidance, Control, and Dynamics.- 2001. Vol. 24, №. 4. - P. 746-754.

9. Noboru, T. Dynamic Behavior of a Tethered System with Multiple Subsatellites in Elliptic Orbits Text./ Takeichi Noboru, M.C. Natori, Okuizumi Nobukatsu.// Journal of Spacecraft and Rockets. 2001. -Vol. 38, №6. -P. 914-921.

10. Садов Ю.А. Формы равновесия гибкого троса в плоскости круговой орбиты. 0- и 1- параметрические семейства. Текст./ Ю.А. Садов// Институт прикладной математики им. М. В. Келдыша РАН.- 2001.-№ 68. С. 1-29.

11. Ситарский Ю.С. Развертывание механической системы, состоящей из двух соединенных тросом КА, из режима свободных колебаний Текст./ Ю.С. Ситарский, B.C. Ручинский// Научные труды MATH Рос. гос. технол. ун-т. - 2004. - № 7. - С. 321-324.

12. Mahadevan S. Reliability Analysis of Space Exploration Truss Support Structures Text./S. Mahadevan, P. Raghothamachar//Journal of Spacecraft and Rockets. 2001. - Vol. 38, №5. - P. 789-794.

13. Ситарский Ю.С.,. Ручинский B.C. Методика стабилизации движения гибко связанных КА Текст./ Ю.С. Ситарский, B.C. Ручинский //Научные труды MATH - Рос. гос. технол. ун-т. - 2004. - № 7. - С. 316-320.

14. Дигнат Ф. Управление колебаниями орбитальной тросовой системы Текст./ Ф. Дигнат, В. Шилен //Прикладная математика и механика. 2000. - т. 64, вып. 5. - С. 747-754.

15. Crist S.A. Cable motion of a spinning spring-mass systemText./S.A. Crist, J.G. Eisley// Journal of Spacecraft and Rockets. 1970. -Vol. 7, №11. - P. 1352-1357.

16. Сазонов В.В. Математическое моделирование развертывания тросовой системы с учетом массы тросаТекст./В.В. Сазонов. —М.: Институт прикладной математеки им. М.В. Келдышева. 2006. — 36 с.

17. Djebli A. A new method for the orbital modification of a tether connected satellite system Text./ A. Djebli, M. Pascal//Acta Mechanica. 2004. -Vol. 167, № 1-2.-C. 113-122.

18. Ziegler S.W. Using motorized tethers for payload orbital transferText./ S.W. Ziegler, M.P. Cartmell// Journal of Spacecraft and Rockets. 2001. -Vol. 38, № 6. - P. 904-913.

19. Сидоров И.М. О применении тросовых систем для создания постоянно действующего транспортного канала в космическом пространствеТекст./И.М. Сидоров// Полет. 2000. - №8. - С.36-39.

20. Сидоров И.М. Принципиальная возможность использования тросовых систем для реализации гравитационных маневров- в окрестности планеты. Текст./И.М. Сидоров//Докл. Российской академии наук. -2002. т. 384, № 4. - С. 483-488.

21. Steindl A. Optimal Control of Deployment of a Tethered Subsatellite Text./A. Steindl, H. Troger//Nonlinear Dynamics. 2003. - Vol. 31, №3. - P. 257-274.

22. Vigneron F. R. Tether Deployment and Trajectory Modeling for Space Plasma Science MissionsText./F. R. Vigneron, F. Schultz, A. M. Jablonski, G. Tyc //Journal of Spacecraft and Rockets.- 2000. Vol. 37. №1. - P. 78-85.

23. Паскаль M. Новая схема развертывания и свертывания спутниковой тросовой системы, промежуточная между обычной схемой и схемойползунаТекст./М. Паскаль/ЛТрикладная математика и механика. -2001. т. 65, вып. 4. - С. 705-713.

24. Черноусько Ф.Л. Динамика свертывания космической тросовой системы Текст./Ф.Л. Черноусько/ЯТрикладная математика и механика. 1995. - т.59, вып.2. - с. 179-187.

25. Асланов B.C. Пространственное движение космической тросовой системы, предназначенной для доставки груза на Землю Текст. / B.C. Асланов, А.С. Ледков, Н.Р. Стратилатов// Общероссийский научно-технический журнал "Полет". 2007. - №2. - С. 28-33.

26. Асланов B.C. Анализ движения космического аппарата с тросовой системой с учетом работы двигателей ориентации Текст./

27. B.C. Асланов, Н.Р. Стратилатов// Сборник трудов XIII Всероссийского научно-технического семинара по управлению движением и навигации летательных аппаратов. Самара. 2007. - С.48-53.

28. Асланов B.C. Малые колебания осесимметричного космического аппарата с тросовой системой Текст./ B.C. Асланов, Н.Р. Стратилатов// Вестник Самарского государственного университета Естественнонаучная серия. Механика. - 2008. - №.6.1. C.202-208.

29. Циолковский К.Э. Грезы о Земле и небе Текст./К.Э. Циолковский.

30. М.: Издательство Академии наук СССР, 1959. 96 с.116

31. Kelly W.D. Delivery and disposal of a space shuttle external tank to low-Earth orbitText./ W.D. Kelly// Journal of Astronaut Science. 1984. -Vol.32, №.3.-P.343-350.

32. Johnson L. Overview of future NASA tether applicationsText./ L. Johnson ,B.E. Gilchrist ,R.D. Estes, E.C. Lorenzini // Adv Space Res. 1999. -Vol.24, №.4, - P. 1055-1063.

33. Bainum P.M. Optimal control of the shuttle-tetheredsubsatellite systemText./P.M. Bainum,V.K. Kumar// Acta Astronautica. 1980. - №7. -P. 1333-1348.

34. Меркин Д.P. Введение в механику гибкой нитиТекст./Д.Р. Меркин. -М.: Наука, 1980. 240 с.

35. No T.S. Dynamics and control of a tethered flight vehicleText./T.S. No, Jr. J.E. Cochrane//J Guidance Control Dynam. 1995. - Vol.18, №.1. - P. 66-72.

36. Мазец Е.П. Микрометеориты в космическом пространстве. Пыль в атмосфере и околоземном космическом пространствеТекст./Е.П. Мазец. М.: Наука, 1973. - С. 13-23.

37. Estes R.D. Performance of Bare-Tether Systems Under Varying Magnetic and Plasma ConditionsText./R.D. Estes,J. Sanmartin, M. Martinez-Sanchez // Journal of Spacecraft and Rockets.- 2000. Vol.37, №2. - P. 197-204.

38. Сергеев C.T. Стальные канатыТекст./С.Т. Сергеев. Киев: Техника, 1974.-328 с.

39. Lang D.D. Operations with tethered space vehiclesText./D.D. Lang, R.R. Nolthing// Gemini Summary Conference, Februar 1-2, 1967, Houston, Texas, NASA SP 138: - 1967. - P.55-56.

40. Белецкий B.B. О влиянии атмосферы на относительное движение гантелеобразного спутниуаТекст./В.В. Белецкий, M.JI. Пивоваров// Прикладная математика и механика. 2000. Том 64. Вып. 5. - С. 721-731.

41. Misra А.К. A survey on the dynamics and control of tethered satellite systemsText./ A.K. Misra, VJ. Modi// Adv Astronaut Sci. 1987. - №62. -P.667-719.

42. Takeichi N. Periodic solutions and controls of tethered systems in elliptic orbitsText./N. Takeichi, M.C. Natori, N. Okuizumi, K. Higuchi//J Vib Control. 2004. - №10. - P.1393-^13.

43. Pascal M. Laws of deployment/retrieval in tether connected satellite systemsText./M. Pascal, A. Djebli, L. El Bakkali//Acta Astronaut. 1999. -Vol.45, №2. P.61-73.

44. Kumar K. Effects of deployment rates and librations on tethered payload raisingText./K. Kumar, R. Kumar, A.K. Misra//J Guidance Control Dynam. 1992. - Vol.15 №5. - P.1230-1235.

45. Djebli A. On fast retrieval laws for tethered, satellite systemsText./A. Djebli,L. El-Bakkali, M. Pascal//Acta Astronaut. 2002. - Vol.50, №8. P.461—470.

46. GlaBel H. Adaptive neural control of the deployment procedure for tether-assisted re-entryText./H. GlaBel, F. Zimmermann, S. Bruckner, U.M. Schottle, S. Rudolph// Aerospace Science and Technology. -2004. №8. -P.73-81.

47. Mazzoleni A.P. Nonplanar spin-up dynamics of the ASTOR tethered satellite system Text. In: Proceedings of the AAS/AIAA space flight mechanics meeting, 2001, AAS [AAS 01-193]/ A.P. Mazzoleni, J.H. Hoffinan. 2001.

48. Kumar K. Tethered dual spacecraft configuration: a solution to attitude control problems Text./K. Kumar, K.D. Kumar//Aerospace Sci Technol. -2000. №4. - P.495-505.

49. Белецкий В.В. Модельная задача о космическом лифте Текст./ В.В. Белецкий, М.Б. Иванов, Е.И. Отставнов// Космические исследования. -2005. том 43, №2. - С. 157-160.

50. Clarke A. The fountains of paradiseText./A. Clarke. NY.:Ballantine Books, 1978.

51. Edwards B.C. Space Elevator NIAC Phase II Final ReportText./ B.C. Edwards , E. Scientific. 2003. - 43 p.

52. Moravec H. A nonsynchronous orbital skyhookText./H. Moravec// J Astronaut Sci. 1977. - Vol.25, №4. - P.307-322.

53. Forward R.L. Tether transport from LEO to the lunar surface.Text. In: Proceedings of the 27th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit. AIAA/R.L. Forward. 1991. - P.91-2322.

54. Pearson J. Anchored lunar satellites for cislunar transportation and communicationText./J. Pearson// Journal of the Astronautical Sciences. -1979. V. 17, №1. - P.39-62.

55. Cartmell M.P. Multiple scales analyses of the dynamics of weakly nonlinear mechanical systems Text./ M.P. Cartmell, S.W. Ziegler, R. Khanin, D.I.M. Forehand//Appl Mech Rev. 2003.- Vol.56, №5ю - P.455-^92.

56. Hablani H.B: Analytical solution for planar librations of a gravity-stabilised satellite Text./ H.B. Hablani, S.K. Shrivastava // Journal of Spacecraft. -1977. Vol.14, №2. P.126-128.

57. Napolitano L.G. Tethered cnstellations, their utilization as microgravityplatform and relevant reaturesText. 35-th Internat. Astronautical Congr.,1191.usanne, Switzerland, October 7-13/ L.G. Napolitano, F. Bevilacqua -1984. P.84-439.

58. Bombardelli C. Retargetting dynamics of a linear tethered interferometerText./C. Bombardelli, E.C. Lorenzini, M.B. Quadrelli // J Guidance Control Dynam. 2004. - Vol.27, №6. - P.1061-1067.

59. Beichman C.A. The Terrestrial Planet FinderText.: A NASA Origins Program to Search for Habitable Planets, JPL Publication, 99-3 (Jet Propulsion Laboratory, Pasadena, CA, 1999)/C.A. Beichman, N.J. Woolf, C.A. Lindensmith, eds. 1999.

60. Родников А.В. О движении груза по тросу, закрепленному на гантелевидном космическом аппаратеТекст./ А.В. Родников// Космические исследования. 2004. - Т.42, №4. - С. 444-448.

61. Пироженко А.В. Анализ частот колебаний космической тросовой системы со сферическим шарниромТекст./ А.В. Пироженко, Д.А. Храмов// Техническая механика. 2004. - №1. - С. 24-30.

62. Lorenzini E.C. Error-tolerant technique for catching a spacecraft with a spinning tetherText./E.C. Lorenzini// J Vib Control. 2004. - №10. -P.:1473-1491.

63. Williams P. In-plane payload capture using tethers Text./ P. Williams, C. Blanksbya , P. Trivailoa, H.A. Fujii//Acta Astronautica. -2005. Vol. 57. -P. 772 - 787.

64. Cartmell M.P. Generating velocity increments by means of a spinning motorised tether Text. In: Proceedings of the 34th joint propulsion conference and exhibit[AIAA 98-3739]/ M.P. Cartmell. -1998.i a

65. Kyroudis G.A. Advantages of tether release of satellites from elliptic orbits Text./ G.A. Kyroudis, B.A. Conway//J Guidance. 1988. - Vol.11, №5.-P.441-448.

66. Lorenzini E.C. Mission analysis of spinning systems for transfer from low orbits to geostationary. Harvard-Smithsonian Center for AstrophysicsText./ E.C. Lorenzini, M.L. Cosmo, M. Kaiser, M.E. Bangham, D.J. Vonderwell, L. Johnson. 1999.

67. Carroll J.A. Guidebook for analysis of tether applications Text. NASA Report NASA-CR-178904/ J.A. Carroll. 1985. - 45 p.

68. Sorensen K. Momentum exchange electrodynamic reboost tether. Technology assessment group final report Text. In: Space propulsion technologies program July 24, 2003. NASA Marshall Space Flight Center, Huntsville, AL 35812/K. Sorensen. 2003.

69. Bonometti J.A. 2006 status of the MXER tether development Text. In: Proceedings of the 42nd AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, AIAA, AIAA 2006-4521/ J.A. Bonometti, K.F. Sorensen J.W. Dankanich, K.L. Frame. 2006.

70. Sorensen K. Hyperbolic injection issues for. MXER tethers Text. In: Proceedings of the 39th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, 2003, AIAA [AIAA 2003-5221]/K. Sorensen. -2003.-P. 1-7.

71. Мартинес-Санчес M. Изучение 100-кВт электродинамического тросаТекст./ М. Мартинес-Санчес, Д.Е. Гастингс // Астронавтика т ракетодинамика: Экспресс-информация / ВИНИТИ. 1988. - №8. - С. 12-22.

72. McCoy J.E. Electrodynamic tethers Text. 35-th Internat. Astronautical Congr., Lausanne, Switzerland, October 7-13/J.E. McCoy 1984. - P.84-440.

73. Nordley G. Tether-tossed Mars mission examples Text. In: Proceedings of the 37th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit [AIAA 2001-3375]/G. Nordley. 2001.

74. Forward R.L. Space tethers Text./ R.L. Forward, R.P. Hoyt// Sci Am. -1999. P.86-87.

75. Carroll J.A. Tether applications in space transportationText./ J.A. Carroll//Acta Astronaut. 1986. - Vol.13, №4. - P.165-174.

76. Longuski J.M. Characterisation of the optimal mass problem for aerobraking tethersText./J.M. Longuski, S.G. Tragesser, J. Puig-Suari// Acta Astronaut. 1999. - Vol.44, №5. - P.227-241.

77. Pearson J. The satellite sail: a new device for applying aerodynamic forces to spacecraftText./J. Pearson// J. of the British Interplanetary Society. -1984. V.37, №4. - P.172-176.

78. Van der Heide E.J. Tethers and debris mitigationText./van der Heide EJ, M. KruijffZ/Acta Astronaut. 2001. - Vol.48, №5-12. - P.503-516.

79. Patera R.P. Method for calculating collision probability between a satellite and.a space tetherText./R.P. Patera//J Guidance Control. 2002. - Vol.25, №5. - P.940-945.

80. Gittins G.L. A study of debris impact collision probabilities to space tethersText./ G.L. Gittins, G.G. Swinerd, H.G. Lewis, D.N. Williams//Adv Space Res. 2004. - Vol.34. - P. 1080-1084.

81. Ishige Y. Study on electrodynamic tether system for space debris removal Text./Y. Ishige, S. Kawamoto, S. Kibe//Acta Astronaut. 2004. - Vol.55. - P.917-929.

82. Chobotov V.A. Tether satellite system collision study Text./ V.A. Chobotov, D.L. Mains//Acta Astronaut. 1999. - Vol.44, №7-12. - P.543-551.

83. Gates S.S. Advanced tether experiment deployment failureText./ S.S. Gates, S.M. Koss, M.F. Zedd// J Spacecraft Rockets. 2001. - Vol.38, №1. -P.60-68.

84. Hirayama H. Stochastic analysis of survivability of double tetherText./H. Hirayama, A. Oishi, T. Hanada, T. Yasaka//Acta Astronautica. 2008. -Vol.62, №l.-P.54-58.

85. Vigneron F.R. Comparison of analytical modelling of OEDIPUS tethers with data from tether laboratoryText. /F.R. Vigneron, A.M. Jablonski, R. Chandrashaker, J.L. Bergmans, B.A. McClure, G. Tyc // J Guidance Control Dynam. 1997. - Vol.20, №3. - P.47M78.

86. Mankala K.K. Dynamic Modeling and simulation of Satellite Tethered SystemsText./K.K. Mankala, S.K. Agrawal//J. Vib. Acoust. Vol. 127, №2. - P.144-157.

87. Пироженко А.В. Хаотические режимы движения в динамике космических тросовых систем. 1. Анализ проблемы Текст./А.В. Пироженко //Косм1чна наука i технологтя. 2001. - Т.7, №2/3. - С. 83-89.

88. Пироженко А.В. Хаотические режимы движения в динамике космических тросовых систем. 2. Механически образ явлений Текст./А.В. Пироженко// Косм1чна наука i технологш. 2001. - Т.7, №2/3. - С. 90-99.

89. Пироженко А.В. Хаотические режимы движения в динамике космических тросовых систем. 1. Влияние диссипации энергии Текст./А.В. Пироженко// Косм1чна наука i технологш. 2001. - Т.7, №5/6. - С. 13-20.

90. Kruijff М. The Second young engineers satellite (YES2) Text. IAC-07

91. D2.3.04/ M. Kruijff, P. Hambloch, E.J. van der Heide, M. Stelzer. 2007.123

92. Lennert S. Analysis and design of a friction brake for momentum exchange propulsion tethersText./S. Lennert, M.P. Cartmell// Acta Astronautica. -2006. Vol.59. - P.923-930.

93. Иванов В.А. Космические тросовые системы. Некоторые аспекты практического использованияТекст./В.А. Иванов, С.А. Купреев, М.Р. Либерзон. М.: СИП РИА, 2005. - 100с.

94. Алпатов А.П. Космические тросовые системы. Обзор проблемы Текст./А.П. Алпатов, В.И. Драновский, А.Е. Закржевский, А.В. Пироженко, B.C. Хорошилов//Косм1чна наука i технолопя; 1997. ТЗ. №5/6. - С. 21-29.

95. Liangdon L. Effect of tether flexibility on tethered Shuttle subsatellity and controlText. 2-nd International Conference on Tethers in Space/ L. Liangdon P.M. Вainum. Venice, Italy. 4-8, October. - 1987.

96. Основы теории полета космических аппаратов Text./ Под ред. д-ра физ.-мат. наук. F.C. Нариманова и д-ра техн. Наук М.К. Тихонова. -М. Машиностроение, 1972. 608 с.

97. Маркеев А.П. Теоретическая, механики: Учебник для университетов TextJ/А.П: Маркеев. Ижевск.:. НИЦ «Регулярная и хаотическая динамика», 2001. - 592 с.

98. Белецкий В.В: Движение искусственного спутника относительно центра масс Текст. / В.В. Белецкий. М.:Наука, 1965. - 416 с.

99. Моисеев Н.Н. Асимптотические методы нелинейной механикиТекст./ Н.Н. Моисеев. М.: Наука, 1969. - 378с.

100. Градштейн И.С. Рыжик Таблица интегралов, сумм, рядов и произведенийТекст./И.С. Градштейн, И.М. Рыжик. М.: Физматгиз, 1963.- 1108 с.

101. Волосов В.М. Некоторые виды расчетов в теории нелинейных колебаний, связанных с усреднением Текст. // Журнал вычислительной математики и математической физики. 1963. - Т.З №1. - С. 3-53.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.